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ABSTRACT

How diffusion models generalize beyond their training set is not known, and is
somewhat mysterious given two facts: the optimum of the denoising score match-
ing (DSM) objective usually used to train diffusion models is the score function of
the training distribution; and the networks usually used to learn the score function
are expressive enough to learn this score to high accuracy. We claim that a certain
feature of the DSM objective—the fact that its target is not the training distribu-
tion’s score, but a noisy quantity only equal to it in expectation—strongly impacts
whether and to what extent diffusion models generalize. In this paper, we develop
a mathematical theory that partly explains this ‘generalization through variance’
phenomenon. Our theoretical analysis exploits a physics-inspired path integral ap-
proach to compute the distributions typically learned by a few paradigmatic under-
and overparameterized diffusion models. We find that the distributions diffusion
models effectively learn to sample from resemble their training distributions, but
with ‘gaps’ filled in, and that this inductive bias is due to the covariance structure
of the noisy target used during training. We also characterize how this inductive
bias interacts with feature-related inductive biases.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Yang et al.,
2023) have proven effective at producing high-quality samples (e.g., images) like those from some
training distribution, but not overwhelmingly so. This ability to generalize is somewhat surprising
for two reasons. First, the optimum of the denoising score matching (DSM) objective usually used
to train them is the score function of the training distribution (Vincent, 2011; Song & Ermon, 2019),
and sampling using this score only reproduces training examples (see Appendix A). Second, the
network architectures usually used for score function approximation are highly expressive. Two
near-SOTA models developed by Karras et al. (2022) have ∼ 56 million (CIFAR-10, trained on 200
million samples) and ∼ 296 million parameters (ImageNet-64, trained on 2500 million samples),
respectively. Sufficiently expressive models can fit even random noise (Zhang et al., 2017).

A body of empirical work bears on the question of when and to what extent diffusion models gen-
eralize. Training data is more likely to be memorized when training sets are small (Somepalli et al.,
2023a; Stein et al., 2023; Dar et al., 2024; Kadkhodaie et al., 2024), contain duplicates (Somepalli
et al., 2023a; Carlini et al., 2023; Somepalli et al., 2023b), or feature low ‘complexity’ (Somepalli
et al., 2023b; Stein et al., 2023). The specific training examples more likely to be memorized are ei-
ther highly duplicated or outliers (Carlini et al., 2023). Whether generalization happens also strongly
depends on model capacity, with Yoon et al. (2023) and Zhang et al. (2024) observing a sharp tran-
sition from memorization to generalization as the number of training examples used somewhat out-
strips model capacity. However, the relationship between model performance (e.g., FID score) and
model size, given a fixed number of training examples, is not monotonic; Karras et al. (2024) observe
that their ImageNet models strictly improve (and hence generalize better) as model size increases.

At present, there is arguably no theory that describes when diffusion models generalize and charac-
terizes how the associated inductive biases depend on details like training set structure, the choice
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of forward/reverse processes, and model architecture. Most existing theoretical work focuses on
orthogonal questions: given a known ground truth, can one mathematically guarantee that in some
limit (e.g., a large or infinite number of samples from the ground truth distribution) diffusion mod-
els recover the ground truth, and bound how score approximation error impacts agreement (Bortoli,
2022; Chen et al., 2023a;c; Han et al., 2024)? The question we are interested in is qualitatively dif-
ferent: given M ≥ 1 examples from a data distribution pdata, how do samples from a model trained
on those examples differ from them? For example, does the model effectively interpolate training
data? If so, when, and what details does this depend on? Concurrent work (Kamb & Ganguli, 2024;
Niedoba et al., 2025) addresses these questions at the level of phenomenology, but not mechanism.

In this paper, we argue that six factors substantially impact how diffusion models generalize.

1. Noisy objective. The target of the DSM objective is not the score of the training distri-
bution, but a noisy quantity only equal to it in expectation. This quantity, which we call
the ‘proxy score’, introduces additional randomness to training, and has extremely high
variance at low noise levels (infinite variance, in fact, at zero noise). Intuitively, this makes
score function estimates, especially at low noise levels, inaccurate (this is well-known; Kar-
ras et al. (2022) remark on this when they discuss their choice of loss weighting). Moreover,
this variance is not uniform in state space, but higher in ‘boundary regions’, e.g., regions
of state space close to multiple training examples. This provides a useful inductive bias.

2. Forward process. Details of the forward process (e.g., when noise is added, asymmetry in
how noise is added along different directions of state space) affect generalization through
their influence on the covariance structure of the proxy score.

3. Nonlinear score-dependence. The learned distribution depends nonlinearly on the learned
score function through the dynamics of the reverse process. This implies that the average
learned distribution is not the training distribution, even if the score estimator is unbiased.

4. Model capacity. Models generalize better when # training samples ∼ # model parameters.
5. Model features. Feature-related inductive biases interact with, and can enhance, inductive

biases due to the covariance structure of the proxy score.
6. Training set structure. Nontrivial generalization (e.g., interpolation) is substantially more

likely when a large number of training examples are near each other in state space; outliers
are less likely to be meaningfully generalized.

Hence, details of training (1, 2), sampling (3), model architecture (4, 5), and the training set (6) all
interact to determine the details of generalization. Other aspects, like learning dynamics, also almost
certainly play a role, but we mostly neglect them here. The first factor is particularly important, and
without it we will see that diffusion models do not generalize well; for this reason, we refer to the
phenomenon enabled by (1) and affected by (2-6) as generalization through variance.

We support this claim using physics-inspired theory. The Martin-Siggia-Rose (MSR) path integral
description of stochastic dynamics (Martin et al., 1973), which has also been exploited to charac-
terize random neural networks (Crisanti & Sompolinsky, 2018) and learning dynamics (Mignacco
et al., 2020; Bordelon & Pehlevan, 2022; 2023), plays a pivotal role in our analysis. First, we use
the MSR path integral to derive the generic form of ‘generalization through variance’, and then we
discuss in specific, analytically tractable cases of interest (e.g., linear models, lazy infinite-width
neural networks) how the details change and the role of each of the aforementioned factors. To keep
our theoretical analysis tractable, we focus on unconditional, non-latent models.

2 PRELIMINARIES

Data distribution. Let pdata(x0) denote a data distribution on RD. We are especially but not
exclusively interested in the case that pdata consists of a discrete set of 1 ≤M <∞ examples (e.g.,
images), so that pdata(x0) =

∑M
m=1 δ(x0 − µm)/M , where δ is the Dirac delta function.

Forward/reverse diffusion. Training a diffusion model involves learning to convert samples from
a normal distribution pnoise(xT ) = N (xT ;0,ST ) to samples from pdata(x0) via processes

ẋt = −βtxt +Gtηt t = 0 → t = T forward process, pdata to pnoise (1)
ẋt = −βtxt −Dts(xt, t) t = T → t = ϵ reverse process, pnoise to pdata (2)
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Table 1: Popular forward processes in our parameterization. For these,Gt := gtID andSt = σ2
t ID.

βt gt αt σt end time

VP-SDE βmin + βdt
√
2βt e−

∫ t
0
βt′ dt′

√
1− e−2

∫ t
0
βt′ dt′ 1

EDM 0
√
2t 1 t T

where ηt ∈ RK is Gaussian white noise,Gt ∈ RD×K is a nonnegative matrix that controls the noise
amplitude, Dt := GtG

T
t /2 is the corresponding diffusion tensor, βt ≥ 0 controls decay to the ori-

gin, ϵ > 0 is a time cutoff that helps ensure numerical stability, and s(x, t) := ∇x log p(x|t) is the
score function. We allow Gt to be a matrix so we can study how asymmetries affect generalization
later. The forward process’ marginals are p(x|t) :=

∫
p(x|x0, t)pdata(x0) dx0. The transition

probabilities are p(x|x0, t) = N (x;αtx0,St), where αt := e−
∫ t
0
βt′ dt′ and St :=

∫ t

0
2Dt′α

2
t′ dt

′.

The forward process assumed here is fairly general, and includes popular choices like the VP-SDE
(Song et al., 2021) and EDM formulation (Karras et al., 2022) (Table 1). This choice of reverse
process is called the probability flow ODE (PF-ODE), and has been shown to have both practical
(Song et al., 2021) and theoretical (Chen et al., 2023b) advantages. Since s(x, t) is required to run
the reverse process but is a priori unknown, “training” a model means approximating s(x, t).

Denoising score matching. Given P ≫ 1 independent samples from p(x,x0, t) (note: P is differ-
ent than M , the number of points in discrete pdata), one could use a mean-squared-error objective

J0(θ) := Et,x

{
λt
2
∥ŝθ(x, t)− s(x, t)∥22

}
=

∫
λt
2
∥ŝθ(x, t)− s(x, t)∥22 p(x|t)p(t) dxdt (3)

to learn a parameterized score estimator ŝθ(x, t). Here, λt > 0 is a positive weighting function and
p(t) is a time-sampling distribution. The DSM objective (Vincent, 2011; Song & Ermon, 2019)

J1(θ) := Et,x0,x

{
λt
2
∥ŝθ(x, t)− s̃(x, t;x0)∥22

}
=

∫
λt
2

∥ŝθ − s̃∥22 p(x,x0, t) dxdx0dt (4)

where p(x,x0, t) := p(x|x0, t)pdata(x0)p(t), is usually used instead. While the folklore justifying
this choice is that the score function is not known, this is not true; both J0 and J1 are optimized
when ŝθ equals the score of the training distribution (see Appendix A), which is known.

We will argue that the real difference between J0 and J1 is that J1 generalizes better, and that this is
in part because the proxy score s̃(x, t;x0) := ∇x log p(x|x0, t) = S−1

t (αtx0 − x) is used as the
target instead of the true score. It is a ‘noisy’ version of the true score (see Appendix B), since
Ex0|x,t[s̃(x, t;x0)] = s(x, t) Cij(x, t) := Covx0|x,t[s̃i, s̃j ] = S−1

t,ij + ∂2ij log p(x|t) . (5)
Although the proxy score is equal to the score of the training distribution in expectation, neural
networks trained on J1 empirically learn a different distribution and generalize better. We claim that
this fact is closely related to the covariance structure of the proxy score. Two relevant observations
about its form are as follows. First, it is large at small times, since St → 0 as t → 0. Second, it is
large where the log-likelihood log p(x|t) has substantial curvature. In the typical case, where pdata
consists of a discrete set of M examples, regions of high curvature correspond to the location of
training examples and the boundaries between them (Fig. 1; see Appendix C for more discussion).

Generalization and inductive biases. In a typical supervised learning setting, one trains a model
on one set of data and tests it on another, and defines ‘generalization error’ as performance on
the held-out data. Here, we are interested in a different type of problem: given a model trained
on samples from p(x,x0, t), to what extent does the learned distribution differ from pdata, and
what are the associated inductive biases? Of particular interest is whether models do three things:
(i) interpolation (filling in gaps in the training data), (ii) extrapolation (extending patterns in the
training data), and (iii) feature blending (generating samples which include both feature X and
feature Y even when training examples only involve one of the two features).

In our setting, a subtle but important point is that there is generally no ground truth. For example,
the smooth distribution that CIFAR-10 or MNIST images are drawn from does not exist, except
in a ‘Platonic’ sense; we are interested in the extent to which diffusion models learn a distribution
plausibly like a smoothed version of the training distribution.
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Figure 1: Visualization of proxy score variance (tr(C)/[tr(C) + ∥s∥22]) for four example 2D data
distributions. Each example data distribution is supported on a small number of point masses (red
dots). As t changes (left: small t, right: large t), boundary regions at different scales are emphasized.

3 APPROACH: COMPUTING TYPICAL LEARNED DISTRIBUTIONS

The distribution q(x0|θ) learned by a diffusion model depends on the learned score ŝθ nonlinearly
through PF-ODE dynamics; importantly, we are less interested in how well the score is estimated,
and more interested in how estimation errors impact q. The learned score can be viewed as a random
variable, since it depends on the P samples x(i),x

(i)
0 , t(i) ∼ p(x,x0, t) used during training. In

order to theoretically understand how diffusion models generalize, we aim to obtain an analytic
expression for the ‘typical’ learned distribution by averaging q over sample realizations.

How do we do the required averaging? One of our major contributions is to introduce a theoretical
approach for averaging q(x0) over variation due to ŝ. Below, we describe our approach.

Writing PF-ODE dynamics in terms of a path integral. How does one average over the result of
an ODE given that, in the case of PF-ODE dynamics, there is generally no closed-form expression
for the result? To address this issue, we use a novel stochastic path integral representation of PF-
ODE dynamics that makes the required average easy to do. If q(x0|xT ;θ) denotes the distribution
of PF-ODE outputs given a score estimator ŝθ(x, t) and a fixed noise seed xT ,

q(x0|xT ;θ) =

∫
D[pt]D[xt] exp

{∫ T

ϵ

ipt · [ẋt + βtxt +Dtŝθ(xt, t)] dt

}
(6)

where the integral is over all possible paths from xT to x0. (To avoid technical issues, we assume
a particular time discretization in all calculations. See Appendix D.) This type of path integral is a
time-reversed version of the Martin-Siggia-Rose (MSR) path integral (Martin et al., 1973).

Averaging over possible sample realizations. Because the argument of the exponential depends
linearly on the score, the required ensemble average is now easy to do. Using [· · · ] to denote it,

[q(x0|xT )] =

∫
D[pt]D[xt] exp

{
M1 −

1

2
M2 + · · ·

}
(7)

M1 :=

∫ T

ϵ

ipt · [ẋt + βtxt +Dtsavg(xt, t)] dt M2 :=

∫ T

ϵ

∫ T

ϵ

pTt V (xt, t;xt′ , t
′)pt′ dtdt

′

where savg(xt, t) := [ŝθ(xt, t)] is the ensemble’s average score estimator, and V (xt, t;xt′ , t
′) :=

DtCovθ[ŝ(xt, t), ŝ(xt′ , t
′)]Dt′ measures ensemble variance. Assuming higher-order terms can be

neglected—and hence that the estimator distribution is approximately Gaussian—one can show (see
Appendix D) that sampling from [q(x0|xT )] is equivalent to integrating an (Ito-interpreted) SDE:
Proposition 3.1 (Effective SDE description of typical learned distribution). Sampling from
[q(x0|xT )] is equivalent to integrating the (Ito-interpreted) SDE

ẋt = −βtxt −Dtsavg(xt, t) + ξ(xt, t) t = T → t = ϵ (8)

with initial condition xT , where savg(xt, t) := [ŝθ(xt, t)] and where the noise term ξ(xt, t) has
mean zero and autocorrelation V (xt, t;xt′ , t

′) :=DtCovθ[ŝ(xt, t), ŝ(xt′ , t
′)]Dt′ .

If ŝ is unbiased and M is finite, then the noise term is solely responsible for the difference between
true PF-ODE dynamics (which reproduces training examples) and a model’s ‘typical’ sampling
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dynamics—i.e., generalization occurs if and only if V ̸= 0. This makes characterizing V , which
we call the V-kernel since it reflects ensemble variance, crucially important for understanding how
diffusion models generalize. Our remaining theoretical work is to complete two tasks: first, to
compute savg and V for a few paradigmatic and theoretically tractable architectures; and second, to
study how their precise forms affect [q(x0)].

4 DIFFUSION MODELS THAT MEMORIZE TRAINING DATA STILL GENERALIZE

It is instructive to first consider an extreme case: do diffusion models generalize in the complete
absence of any model-related inductive biases? Perhaps surprisingly, the answer is yes. In this
section, we make this point using a toy model in which training and sampling are interleaved.

Suppose the PF-ODE is integrated backward in time from an initial point xT until t = ϵ using
first-order Euler updates of size ∆t. At each time step, suppose one samples x0t ∼ p(x0|xt, t) =
p(xt|x0,t)pdata(x0)

p(xt|t) , constructs the ‘naive’ score estimator ŝ(xt, t) := s(xt, t)+
√

κ
∆t [s̃(xt, t;x0t)−

s(xt, t)], and uses this estimator as the score for that update. Assume this process continues, with
new samples drawn at each time step. Despite this approach using the proxy score directly (so that
training data is ‘memorized’), one obtains a nontrivial V-kernel, and hence generalization:
Proposition 4.1 (Naive score estimator generalizes). Consider the result of integrating the PF-ODE
(Eq. 2) from t = T to t = ϵ using first-order Euler updates of the form

xt−1 = xt +∆t

{
βtxt +Dt

(
s(xt, t) +

√
κ

∆t
[s̃(xt, t;x0t)− s(xt, t)]

)}
, x0t ∼ p(x0|xt, t) .

Then [q(x0|xT )] is described by an effective SDE (Eq. 8) with savg = s and V-kernel

V (xt, t;xt′ , t
′) := κDtC(x, t)Dt δ(t− t′) . (9)

See Appendix E for details. Notably, the effective SDE is noisier when the covariance C of the
proxy score is high, e.g., in boundary regions between training examples. Next, we will see that this
is also true for less trivial models, but that the proxy score’s covariance interacts with feature-related
biases in order to determine the SDE’s overall noise term.

5 FEATURE-RELATED INDUCTIVE BIASES MODULATE GENERALIZATION

Model architecture is known to produce certain inductive biases, with spectral bias being a well-
known example (Rahaman et al., 2019; Bordelon et al., 2020; Canatar et al., 2021). How do model-
feature-related inductive biases affect the V-kernel? We answer this question below in two interest-
ing but tractable cases: linear models, and (lazy regime) infinite-width neural networks.

5.1 THE V-KERNEL OF EXPRESSIVE LINEAR MODELS

In what follows, we may write z := (x, t) to ease notation. Consider a linear score estimator

ŝθ(x, t) = w0 +Wϕ(x, t) , (10)

where the F feature maps ϕ := (ϕ1, ..., ϕF )
T are linearly independent, smooth functions from

RD× (0, T ] to R that are square-integrable with respect to the measure λtp(x, t). The parameters to
be estimated are θ := {w0,W }, withw0 ∈ RD andW ∈ RD×F . Note that this estimator is linear
in its features, but not necessarily in x or t. The weights that optimize Eq. 4 are (see Appendix F)

W ∗ = −JTΣ−1
ϕ w∗

0 = JTΣ−1
ϕ ⟨ϕ⟩+ ⟨s̃⟩ (11)

where we define ⟨ · · · ⟩ := Ex,x0,t[λt · · · ]/Et[λt] and matrices

J := − ⟨[ϕ(x, t)− ⟨ϕ⟩] [s̃(x, t;x0)− ⟨s̃⟩]T ⟩ Σϕ := ⟨[ϕ(x, t)− ⟨ϕ⟩] [ϕ(x, t)− ⟨ϕ⟩]T ⟩ .

When averaged over x0 sample realizations, the estimator ŝ∗(x, t) = w∗
0 +W

∗ϕ(x, t) is unbiased
as long as the set of feature maps is sufficiently expressive. Interestingly, this is true regardless of the
x or t samples used, provided F ≤ P . The following result characterizes [q(x0)] for linear models:
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Proposition 5.1 (Expressive linear models asymptotically generalize). Suppose the parameters of
an expressive linear score estimator (Eq. 10) with F features are perfectly optimized according to
the DSM objective (Eq. 4) using P independent samples from p(x,x0, t). Define the feature kernel

k(z; z′) :=
1√
F
[ϕ(z)− ⟨ϕ⟩]TΣ−1

ϕ [ϕ(z′)− ⟨ϕ⟩] . (12)

Let κ := F/P . Provided that the limit exists and is finite, in the P → ∞ limit, we have

V (z; z′) = lim
P→∞

κDt Ez′′

{
λ2t′′

Et[λt]2
k(z; z′′)C(z′′)k(z′′; z′)

}
Dt′ . (13)

Note that if the number of features F does not scale with P , V ≡ 0. See Appendix F for the details
of our argument. The V-kernel for linear models differs from the naive score’s V-kernel (Eq. 9)
via the presence of feature-related factors—in particular, the effective SDE is noisier where features
take atypical values. One expects that these factors can either enhance or compete with noise due to
the covariance structure (e.g., noise is higher if features take atypical values in boundary regions).

5.2 THE V-KERNEL OF LAZY INFINITE-WIDTH NEURAL NETWORKS

Neural networks in the neural tangent kernel (NTK) regime (Jacot et al., 2018; Bietti & Mairal,
2019) provide another interesting but tractable model. Such networks exhibit ‘lazy’ learning (Chizat
et al., 2019) in the sense that weights do not move much from their initial values. Moreover, it is
known that they interpolate training data in the absence of parameter regularization or early stopping
(Bordelon et al., 2020). If they precisely interpolated their samples, we would expect to recover a
V-kernel like the one we computed in Sec. 4; more generally, we expect something similar modified
by the spectral inductive biases associated with the architecture (Canatar et al., 2021).

For simplicity, we consider fully-connected networks whose hidden layers all have width N , which
is taken to infinity together with P (see Appendix G for details). The associated NTK has a Mercer
decomposition with respect to the measure λtp(x, t)/E[λt], so K can be written in terms of F
orthonormal features {ϕi}:

K(x, t;x′, t′) =
∑
k

λkϕk(x, t)ϕk(x
′, t′)

∫
λt

E[λt]
ϕk(x, t)ϕℓ(x, t) p(x, t) dxdt = δkℓ . (14)

We assume training involves full-batch gradient descent on P samples from p(x,x0, t), so that the
learned score function after training for an amount of ‘time’ τ has the closed-form solution

ŝ(z) = ŝ0(z) + [S̃ − Ŝ0]
T (I − e−ΛTKτ/P )K−1k(z)

where ŝ0 is the network’s initial output, S̃ ∈ RD×P contains proxy score samples, Ŝ0 ∈ RD×P

contains the network’s initial outputs given the samples, K ∈ RP×P is the kernel Gram matrix,
ΛT ∈ RP×P is a diagonal matrix containing the weighting function λt/E[λt] evaluated on samples,
and k(x, t) is an input-dependent vector whose i-th component is K(x(i), t(i);x, t). We have:

Proposition 5.2 (Lazy neural networks asymptotically generalize). Suppose the parameters of a
fully-connected, infinite-width neural network characterized by a rank F NTK are optimized ac-
cording to the DSM objective (Eq. 4) using P independent samples from p(x,x0, t) via full-batch
gradient descent for a training ‘time’ τ . Define the feature kernel

k(z; z′) :=
1√
F
ϕ(z)T (IF − e−Λτ )ϕ(z′) . (15)

Let κ := F/P . Provided that the limit exists and is finite, in the P → ∞ limit, we have

V (z; z′) = lim
P→∞

κDt Ez′′

{
λ2t′′

E[λt]2
k(z; z′′)C(z′′)k(z′′; z′)

}
Dt′ . (16)

In the infinite training time limit, we recover the Sec. 4 result with a prefactor κ(∆z) = const.:

V (z; z′) = κ(∆z)DtC(z)Dt δ(z − z′) . (17)

6



Published as a conference paper at ICLR 2025

0.
01

0.
00

01
0.

00
1ε

1/4 1/2 1 2 4
F/Pincreasing 

in
cr

ea
si

n
g

 

x

pr
ob

. d
en

sit
y

true dist. PF-ODE + true score avg. learned dist.

Figure 2: Average learned distribution (N = 100) for a linear model with Gaussian features trained
on different sample draws from a 1D data distribution {−1, 0, 1}. Red: average learned distribution;
black: true distribution; gray: PF-ODE approximation of true distribution. Different values of the
time cutoff ϵ and ratio F/P are shown. Note that there is more generalization as both become larger.

See Appendix G for the full details of our argument. Interestingly, although the network is not
assumed to be in the feature-learning regime, this result interpolates between our pure memorization
(Prop. 4.1) and linear model (Prop. 5.1) results as we change the value of the training time τ . The
feature-related inductive biases that appear are precisely the well-known spectral biases.

See Appendices H and I for discussion of how to obtain analogous results for diffusion models with
slightly different training objectives, like those for which a ‘denoiser’ rather than a score approxi-
mator is learned (see, e.g., Karras et al. (2022)).

6 GENERALIZATION THROUGH VARIANCE: CONSEQUENCES AND EXAMPLES

In this section, we briefly discuss salient consequences of generalization through variance.

Benign properties of generalization through variance. In what sense might generalization
through variance provide a ‘reasonable’ inductive bias? Its key driver is the proxy score covari-
ance, which is large primarily in boundary regions between training examples (Appendix C), and
this fact greatly constrains the way this type of generalization can occur. A data set with one data
point (so thatM = 1) is not generalized, since the proxy score covariance is trivially zero. If the data
distribution is primarily supported on some low-dimensional ‘data manifold’, the proxy score co-
variance tends to be nontrivial only along that manifold, and hence generalization through variance
preserves the dimensionality of the data manifold.

Very far from training examples, the proxy score covariance is approximately zero, so there is no
generalization through variance. Finally, the effective PF-ODE both follows deterministic PF-ODE
dynamics on average, since the V-kernel-related noise term has mean zero, and is also most likely
to follow deterministic PF-ODE dynamics, since the probability of paths that deviate from it can be
shown to be somewhat lower. This means that, although effective PF-ODE dynamics differ from
the deterministic PF-ODE’s dynamics, they do not substantially differ, meaning that regions near
training data will still tend to be sampled most. See Appendix J for more details and discussion.

Memorization and the V-kernel in the small noise limit. Our characterization of the typical
learned distribution [q] in terms of a stochastic process is somewhat unsatisfying, in part because it
remains unclear how the V-kernel affects the way [q] generalizes pdata. One can make some progress
on the issue by making a small noise approximation, which is valid (for example) when models are
somewhat underparameterized, so that κ = F/P is somewhat less than 1. When the effective PF-
ODE’s noise term is sufficiently small, one can invoke a semiclassical approximation of the relevant
path integral. We find (Appendix K) that, at least in this limit,

[q(x0)] ≈ p(x0|ϵ)
1√

det
(

1
κ

∂2Scl(x0,x∗
T (x0))

∂xT ∂xT

) (18)
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where Scl quantifies the (negative log-) likelihood of the most likely path that goes from a noise seed
xT to a sample x0. In words: [q] equals the (ϵ-noise-corrupted) data distribution, times a curvature
factor that quantifies the likelihood of small deviations from deterministic PF-ODE dynamics. It
is through the V-kernel’s influence on this curvature term that it affects generalization (although
unfortunately it appears difficult to be more explicit about how it does so, at least analytically).

0° 22.5° 45°
Gaussian 
features

Fourier
features

Figure 3: Generalization of a 2D data distribu-
tion depends on features used and data orientation.
Heatmaps of samples from N = 100 linear mod-
els are shown in different conditions, with train-
ing data (red dots) overlaid. Notice that which
gaps are ‘filled in’, e.g., whether a square shape
or cross shape is made, depends on both factors.

Gap-filling inductive bias. Given that the V-
kernel is especially sensitive to the ‘gaps’ be-
tween training examples, one expects that gen-
eralization through variance works by effec-
tively filling in these gaps. This appears to be
often, but not always, true. First, in its naive
form (see, e.g., Sec. 4) generalization through
variance can actually reduce the probability as-
sociated with boundary regions, since the addi-
tional noise in those regions makes the dynam-
ics spend less time in them. If there is nontrivial
temporal generalization, for example via time-
dependent features ϕ, the V-kernel may have
a nontrivial temporal autocorrelation structure;
we speculate that these autocorrelations may be
a key mechanism that allows the dynamics to
spend more time in boundary regions.

Second, the details of generalization are
strongly modulated by two numbers: the time
cutoff ϵ, and the ratio F/P that determines the
extent to which a model is over- or underpa-
rameterized. Fig. 2 depicts an illustrative one-
dimensional example where there are three training examples {−1, 0, 1}, and where the model is
linear (see Prop. 5.1) with Gaussian features centered at different values of x and t, each with the
same width. The average learned distribution (red) tends to differ from both the true distribution
(black) and its PF-ODE approximation (gray) in the size of peaks near training data, and in the re-
gions between training data. These differences are larger when F/P and ϵ are larger. Taking both
large produces the largest difference, but not obviously the ‘best’ generalization of training data.

Feature-noise alignment affects generalization. Different feature sets interact with the structure
of the proxy score covariance differently, and hence produce different kinds of generalization. Fig.
3 shows how the same 2D data distribution (four examples, which together determine the vertices
of a square) is generalized differently depending on its orientation, and depending on which linear
model feature set (here, either Gaussian or Fourier features) is used.

7 DISCUSSION

We used a novel path-integral approach to quantitatively characterize the ‘typical’ distribution
learned by diffusion models, and find that generalization is influenced by a combination of factors
related to training (the DSM objective and forward process; Sec. 2 and 4), sampling (the learned
distribution depends nonlinearly on score estimates; Sec. 3), model architecture (Sec. 5), and the
data distribution. Below, we use our theory to comment on various previous observations.

DSM produces noisy estimators, but stable distributions. Various forms of score ‘mislearning’
are well-known. At small times, scores are hard to learn due to the noisiness of the proxy score target,
leading authors like Karras et al. (2022) to suggest a p(t) that emphasizes intermediate noise scales.
Chao et al. (2022) discuss how score estimation errors affect conditional scores. Xu et al. (2023)
explicitly study the variance-near-mode-boundaries issue we discussed, and propose a strategy for
mitigating it. On the other hand, it is well-known that despite noisy score estimates, diffusion models
generally produce smooth output distributions (see, e.g., Luzi et al. (2024)). Moreover, two diffusion
models trained on non-overlapping subsets of a data set are often highly similar (Kadkhodaie et al.,
2024). These facts are due to noisy score estimates contributing to sample generation through the
PF-ODE, which effectively ‘averages’ over estimator noise. Our theory is consistent with these
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observations: even the interleaved training-sampling procedure discussed in Sec. 4 produces a well-
behaved, smooth distribution.

DSM produces a boundary-smearing inductive bias. This has been previously pointed out by
authors like Xu et al. (2023). Where we differ from previous authors is in considering this issue a
potential strength. Integrating the PF-ODE using the true score reproduces training examples, so
it is in some sense beneficial to ‘mislearn’ the score. This particular kind of mislearning is useful
for several ways of generalizing point clouds, including interpolation, extrapolation, and feature
blending. Moreover, producing this inductive bias is an interesting way diffusion models differ from
something like kernel density estimation: boundary regions across different noise scales are smeared
out, with different scales linked via PF-ODE dynamics, which may provide better generalization
than convolving the training distribution with any single kernel.

Architecture-related inductive biases play a role. As we showed in Sec. 5, feature/architecture-
related inductive biases interact with DSM’s boundary-smearing bias in order to determine how
diffusion models generalize. This appears to be consistent, for example, with the Kadkhodaie et al.
(2024) finding that diffusion models effectively exhibit ‘adaptive geometric harmonic priors’; their
finding is specifically in the context of score estimation using a convolutional neural network (CNN)
architecture. It is plausible that this choice encourages a harmonic inductive bias, since CNNs more
generally exhibit inductive biases related to translation equivariance (Cohen & Welling, 2016).

Generalization through variance harmful and helpful. It is important to note that this kind
of generalization is not always helpful. A trivial example is that unconditional models trained on
MNIST digit images tend to learn to produce non-digits as output in the absence of label information
(see, e.g., Bortoli et al. (2021)). More generally, blending modes may or may not be desirable, since
it can produce (e.g.) images very qualitatively different from those of the training distribution.

Other forms of generalization are possible. Factors we did not study, like learning dynamics,
most likely also partly determine how diffusion models generalize. For example, the use of stochas-
tic gradient descent introduces additional randomness that disfavors converging on sharp local op-
tima (Smith & Le, 2018; Smith et al., 2020). It would be interesting to utilize recent theoretical
tools (Bordelon & Pehlevan, 2023) to characterize how learning dynamics impacts generalization,
especially in the rich (Geiger et al., 2020; Woodworth et al., 2020) rather than lazy learning regime.

Comment on memorization. Determining whether diffusion models memorize data (Somepalli
et al., 2023a; Carlini et al., 2023), and if so how to address the issue (Vyas et al., 2023), has become
a significant technical and societal issue. Our theory suggests that since generalization through
variance happens primarily in boundary regions, diffusion models are unlikely to substantially gen-
eralize outliers. Since conditional models involve distributions of much higher effective dimension,
one may expect that more training examples are ‘outlier-like’, and hence memorization should hap-
pen more often; this is consistent with the observations of Somepalli et al. (2023b). Our theory
also suggests why duplications increase memorization: the existence of a strong boundary between
modes, which requires modes to have comparable probability mass, is degraded.

Limitations of theoretical approach. Our theory is simplified in at least two ways. First, only
a simple formulation of training (via DSM) and sampling (via the PF-ODE) from diffusion models
is considered. There exist alternatives to DSM, like sliced score matching (Song et al., 2020), and
alternative ways of sampling, including using auxiliary momentum-like variables (Dockhorn et al.,
2022b). Also, our theoretical analysis neglects variation due to numerical integration schemes, even
though these may matter in practice (Liu et al., 2022; Karras et al., 2022; Dockhorn et al., 2022a).

Second, we study only unconditional models for simplicity. This means that in particular do not
consider diffusion coupled to attention layers, which enables the text-conditioning behind many of
the most striking diffusion-model-related successes (Rombach et al., 2022; Blattmann et al., 2023).

Finally, we do not consider realistic architectures (like U-nets) and rich learning dynamics due to
theoretical tractability. However, these challenges are not unique to the current setting. Despite
our contribution’s simplicity, we hope that it nonetheless provides a foundation for others to more
rigorously understand the inductive biases and generalization capabilities of diffusion models.
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Appendix
See https://github.com/john-vastola/gtv-iclr25 for code that produces Fig. 1-3.
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A OPTIMIZING OBJECTIVE REPRODUCES TRAINING DISTRIBUTION

In this appendix, we characterize the optima of the naive and DSM objectives introduced in Sec.
2, and in particular show that one (naively) theoretically expects diffusion models to reproduce the
training distribution in the absence of expressivity-related constraints.

A.1 DENOISING SCORE MATCHING PRESERVES OPTIMA OF NAIVE OBJECTIVE

First, we reestablish the well-known fact that the optima of the naive objective

J0(θ) :=
1

2
Et,x

{
λt∥ŝθ(x, t)− s(x, t)∥22

}
=

∫
λt
2
∥ŝθ(x, t)− s(x, t)∥22 p(x|t)p(t) dxdt

(19)
and DSM objective

J1(θ) :=
1

2
Et,x0,x

{
λt∥ŝθ(x, t)− s̃(x, t;x0)∥22

}
=

∫
λt
2

∥ŝθ(x, t)− s̃(x, t;x0)∥22 p(x|x0, t)pdata(x0)p(t) dxdx0dt
(20)

are the same (Vincent, 2011; Song & Ermon, 2019; Song et al., 2021). Assume that x,x0 ∈ RD

and that θ ∈ RF . The gradient of J0 with respect to θ is
∂J0
∂θ

=

∫
λt
∂ŝθ(x, t)

T

∂θ
[ŝθ(x, t)− s(x, t)] p(x|t)p(t) dxdt (21)

where ∂ŝθ(x, t)/∂θ is the D × F Jacobian matrix of the score estimator. The gradient of J1 is
∂J1
∂θ

=

∫
λt
∂ŝθ(x, t)

T

∂θ
[ŝθ(x, t)− s̃(x, t;x0)] p(x|x0, t)pdata(x0)p(t) dxdx0dt . (22)

At this point, we make two observations about the gradient of J1. First, the term on the left does not
depend on x0, so we can marginalize over x0. Explicitly,∫
λt
∂ŝθ(x, t)

T

∂θ
ŝθ(x, t) p(x|x0, t)pdata(x0)p(t) dxdx0dt =

∫
λt
∂ŝθ(x, t)

T

∂θ
ŝθ(x, t) p(x|t)p(t) dxdt .

Second, the term on the right only depends on x0 through the proxy score target. Moreover,∫
s̃(x, t;x0) p(x|x0, t)pdata(x0) dx0 =

∫
∇x log p(x|x0, t) p(x|x0, t)pdata(x0) dx0

=

∫
∇xp(x|x0, t)pdata(x0) dx0

= ∇x

∫
p(x|x0, t)pdata(x0) dx0

= ∇xp(x|t)
= s(x, t)p(x|t) .

(23)

Hence, the gradient of J0 is the same as the gradient of J1, so they have the same optima. If the
score approximator is arbitrarily expressive and smooth in its parameters, we in particular have that
the true score (a global minimum of J0) is an optimum of the DSM objective.

This optimum is also the global minimum of J1. Note that J1 can be written as

Et,x0,x

{
λt
2
∥ŝθ(x, t)− s(x, t) + s(x, t)− s̃(x, t;x0)∥22

}
= Et,x0,x

{
λt
2

(
∥ŝθ(x, t)− s(x, t)∥22 + 2[ŝθ(x, t)− s(x, t)] · [s(x, t)− s̃(x, t;x0)] + ∥s(x, t)− s̃(x, t;x0)∥22

)}
.

The first term is precisely equal to J0. The second term vanishes, since (as shown by Eq. 23)
Ex0|x,t[s̃(x, t;x0)] = s(x, t) . (24)

Hence, we have that

J1 = J0 +
1

2
Et,x

{
λt tr( Covx0|x,t(s̃) )

}
. (25)

In words: J1 is equal to J0 up to a θ-independent term that is a weighted combination of proxy score
variances.
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A.2 TRAINING DISTRIBUTION REPRODUCTION

In practice, the training set consists of 1 ≤M <∞ examples (e.g., images) which together define

pdata(x0) =
1

M

M∑
m=1

δ(x0 − µm) . (26)

The corresponding ‘corrupted’ distribution, given our choice of forward process (see Sec. 2), is

p(x|t) = 1

M

M∑
m=1

N (x;αtµm,St) . (27)

Usually, model updates utilize batches of samples from p(x,x0, t) (Song et al., 2021; Karras et al.,
2022). As training proceeds, the model sees an ever larger number P of samples from this distribu-
tion, making the empirical objective

J1(θ;P ) :=
1

P

P∑
n=1

λ(t(n))

2
∥ŝθ(x(n), t(n))− s̃(x(n), t(n);x

(n)
0 )∥22 , (28)

where the n superscripts index different (independent) samples from p(x,x0, t) =
p(x|x0, t)pdata(x0)p(t). For P sufficiently large, by the central limit theorem, we expect the em-
pirical objective to be extremely close to the true objective, and hence share its global minimum.
But the global minimum is the true score, i.e.,

s(x, t) =

M∑
m=1

S−1
t (αtµm − x) N (x;αtµm,St)∑

m′ N (x;αtµm′ ,St)
.

Since integrating the PF-ODE using this score produces samples from pdata(x0)—as t → 0,
St → 0D, so the asymptotic ‘force’ pushing xt towards an example becomes infinitely strong—we
expect expressive diffusion models trained on the DSM objective using a large number of samples
to reproduce training examples.
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B COVARIANCE OF PROXY SCORE

In this appendix, we compute the covariance of the proxy score s̃(x, t;x0) := ∇x log p(x|x0, t)
with respect to p(x0|x, t). We also show how this covariance is connected to Fisher information,
and explicitly compute it in the case that pdata(x0) is an isotropic Gaussian mixture.

B.1 COMPUTING COVARIANCE OF PROXY SCORE

Note that
∂2

∂xi∂xj
p(x|x0, t) =

[
−S−1

t,ij + s̃is̃j
]
p(x|x0, t) . (29)

Using this fact, we can write

Covx0|x,t(s̃i, s̃j) =

∫
s̃is̃j

p(x|x0, t)pdata(x0)

p(x|t)
dx0 − sisj

=

∫
1

p(x|t)

[
S−1
t,ij +

∂2

∂xi∂xj

]
p(x|x0, t)pdata(x0) dx0 − sisj

=

∫
1

p(x|t)

[
S−1
t,ij +

∂2

∂xi∂xj

]
p(x|t) p(x|x0, t)pdata(x0)

p(x|t)
dx0 − sisj

= S−1
t,ij +

1

p(x|t)
∂2p(x|t)
∂xi∂xj

− sisj

= S−1
t,ij +

∂2

∂xi∂xj
log p(x|t) .

(30)

B.2 CONNECTION TO FISHER INFORMATION

By definition, if p(x0|x, t) is viewed as a distribution with parameter vector x, and t is viewed as a
hyperparameter, the Fisher information IF is defined as

IF (x|t) :=
∫
∂ log p(x0|x, t)

∂xi
· ∂ log p(x0|x, t)

∂xj
p(x0|x, t) dx0

=

∫ [
∂ log p(x|x0, t)

∂xi
− ∂ log p(x|t)

∂xi

] [
∂ log p(x|x0, t)

∂xj
− ∂ log p(x|t)

∂xj

]
p(x0|x, t) dx0

=

∫
[s̃i − si] [s̃j − sj ] p(x0|x, t) dx0

= Covx0|x,t (s̃i, s̃j) .

(31)

B.3 EXPLICIT COVARIANCE FOR ISOTROPIC GAUSSIAN MIXTURE TRAINING DISTRIBUTION

Suppose that p(x0) and p(x|t) are

pdata(x0) =
1

M

∑
m

N (x0;µm, σ
2
0I) p(x|t) = 1

M

∑
m

N (x;αtµm, α
2
tσ

2
0I + St) .

(32)
Note that the delta mixture case is an example (σ2

0 = 0). Define the softmax distribution

p(m|x, t) := N (x;αtµm, α
2
tσ

2
0I + St)∑

m′ N (x;αtµm′ , α2
tσ

2
0I + St)

(33)

on M = {1, ...,M}. This distribution, whose moments determine the proxy score covariance, has
a Bayesian interpretation: it corresponds to an ideal observer’s belief about the outcome x0, given
that said observer is in state x at time t.

The first and second derivatives of p(x|t) can be written in terms of expectations with respect to this
distribution, since

1

p(x|t)
∂p(x|t)
∂x

=
∑
m

(α2
tσ

2
0I + St)

−1(αtµm − x)p(m|x, t) = (α2
tσ

2
0I + St)

−1(αt⟨µ⟩M − x)

18
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and the Hessian matrix (Hij := ∂2ijp(x|t)) is

H

p(x|t)
=
∑
m

[
−(α2

tσ
2
0I + St)

−1 + (α2
tσ

2
0I + St)

−1(αtµm − x)(αtµm − x)T (α2
tσ

2
0I + St)

−1
]
p(m|x, t)

= −(α2
tσ

2
0I + St)

−1 + (α2
tσ

2
0I + St)

−1EM
{
(αtµ− x)(αtµ− x)T

}
(α2

tσ
2
0I + St)

−1

= −(α2
tσ

2
0I + St)

−1 + (α2
tσ

2
0I + St)

−1
[
α2
t CovM(µ) + (αt⟨µ⟩M − x)(αt⟨µ⟩M − x)T

]
(α2

tσ
2
0I + St)

−1 .

Then we have

∂2 log p(x|t)
∂xi∂xj

= −(α2
tσ

2
0I + St)

−1 + α2
t (α

2
tσ

2
0I + St)

−1CovM(µ)(α2
tσ

2
0I + St)

−1 (34)

and hence that

Covx0|x,t(s̃) = S
−1
t − (α2

tσ
2
0I + St)

−1 + α2
t (α

2
tσ

2
0I + St)

−1CovM(µ)(α2
tσ

2
0I + St)

−1 .

For a delta mixture training distribution, since σ2
0 = 0, the covariance simplifies to

Covx0|x,t(s̃) = α2
tS

−1
t CovM(µ)S−1

t . (35)

The above equation implies that the covariance of the proxy score is, up to scaling, the same as
uncertainty about x0 given x and t.
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C BOUNDARY REGIONS: DEFINITION AND BAYESIAN INTERPRETATION

A key concept used throughout this paper is that of a boundary region, which we informally define as
a region of RD between two or more training examples in the case that pdata is discrete. Intuitively,
these regions correspond to the ‘gaps’ in the training distribution, and a reasonable generalization
strategy is to fill them in.

In this appendix, we briefly comment that the notion of a boundary region can be made more precise
via Bayes’ theorem: for a given reverse diffusion time t, boundary regions are sets of x values for
which uncertainty about the endpoint x0 is particularly high. For discrete data distributions, such
regions coincide with sets of states between training examples, since one is maximally uncertain
about the endpoint when x is equidistant from two or more training examples.

An illustrative one-dimensional example involves two training examples at x0 = ±µ. The noise-
corrupted data distribution at time t is

p(x|t) = 1

2
N (x;αtµ, σ

2
t ) +

1

2
N (x;−αtµ, σ

2
t ) , (36)

so the posterior endpoint estimate given x, t is the softmax distribution (see also Appendix B)

p(x0|x, t) =
p(x|x0, t)pdata(x0)∑
x0
p(x|x0, t)pdata(x0)

=
N (x;αtµ, σ

2
t )

N (x;αtµ, σ2
t ) +N (x;−αtµ, σ2

t )
δ(x0 − µ) +

N (x;−αtµ, σ
2
t )

N (x;αtµ, σ2
t ) +N (x;−αtµ, σ2

t )
δ(x0 + µ) .

The mean E[x0|x, t] of this distribution is

E[x0|x, t] =
∑
x0

x0 p(x0|x, t) = µ tanh

(
αtµ

σ2
t

x

)
. (37)

The interpretation of this quantity is interesting in light of the ‘Bayesian guessing game’ metaphor
for score learning (see, e.g., Kamb & Ganguli (2024)). One imagines that one starts at an unknown
x0 (here, either +µ or −µ), and then noise is added according to the forward process until time t.
Given that an observer is in state x at time t, what was the likely starting point x0? The quantity
E[x0|x, t] is the Bayes-optimal solution to this problem.

In the context of this toy example, it has the following form. If x is very positive, one tends to believe
x0 = +µ; if x is very negative, one tends to believe x0 = −µ. For intermediate x, especially near
x = 0, uncertainty is highest, and E[x0|x, t] is near zero, since the observer could have plausibly
started at either x0 = +µ or x0 = −µ.

This high uncertainty allows us to formalize the idea that the region between +µ and −µ, especially
near x = 0, is a boundary region. Quantitatively, we have

var(x0|x, t) =
∑
x0

x20p(x0|x, t)−E[x0|x, t]2 = µ2

[
1− tanh2

(
αtµ

σ2
t

x

)]
=

µ2

cosh2
(

αtµ
σ2
t
x
) (38)

or equivalently √
var(x0|x, t) =

µ

cosh
(

αtµ
σ2
t
x
) . (39)

At x = 0, the standard deviation of p(x0|x, t) equals µ, i.e., there is maximum uncertainty about
the starting point x0. Moreover, it is fairly high until x ≈ σ2

t

αtµ
, which also shows that the effective

size of a boundary region is smaller at smaller noise scales. Said differently, the basins of attraction
surrounding each training example become increasingly sharp as σt → 0.
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D PATH-INTEGRAL REPRESENTATION OF LEARNED DISTRIBUTION

In this appendix, we derive a path-integral description of the ‘typical’ distribution learned by diffu-
sion models. We do this in three stages. First, we derive a path-integral description of the PF-ODE.
Next, we derive a path-integral description of a more general kind of stochastic process. Finally, we
show that averaging the path-integral representation of the PF-ODE over sample realizations pro-
duces a path integral whose dynamics correspond to those of the aforementioned stochastic process.

D.1 WARM-UP: DERIVING A PATH-INTEGRAL REPRESENTATION OF THE PF-ODE

A general ODE can be written as
ẋt = f(xt, t) (40)

where xt ∈ RD and t ∈ [ϵ, T ]. We will assume that f is smooth to avoid technical issues. If we
discretize time, and slightly abuse notation by using t and T to refer to integer-valued indices instead
of real-valued times, we can write the trajectory as {xT , xT−1, ..., x1, x0} and the corresponding
updates in the form

xt = xt+1 − f(xt+1, t+ 1)∆t . (41)
Note that our discretization corresponds to a first-order Euler update scheme. In the small ∆t limit,
this specific choice does not matter, even if it matters in practice; we use it to slightly simplify our
argument. Conditional on the initial point xT , the probability of reaching another point x0 after T
backwards-time steps is

p(x0|xT ) =

∫
δ(x0 − x1 + f(x1, 1)∆t) · · · δ(xT−1 − xT + f(xT , T )∆t) dx1 · · · dxT−1 (42)

where δ is the Dirac delta function. Here, we will employ a well-known integral representation of
the Dirac delta function:

δ(x− x′) =

∫
dp

(2π)D
exp {−ip · (x− x′)} (43)

where p is integrated over all of RD. Our expression for p(x0|xT ) becomes

p(x0|xT ) =

∫
dp0

(2π)D
dx1dp1
(2π)D

· · · dxT−1dpT−1

(2π)D
exp

{
T−1∑
t=0

−ipt · [xt − xt+1 + f(xt+1, t+ 1)∆t]

}
.

(44)
Schematically, we can write this path integral as a ‘sum over paths’

p(x0|xT ) =

∫
D[pt]D[xt] exp

{∫ T

ϵ

−ipt · [−ẋt + f(xt, t)] dt

}
, (45)

although explicitly using this form is unnecessary for our purposes. (This is good, since remaining
in discrete time allows us to avoid various thorny mathematical issues.) For the particular choice of
f associated with the PF-ODE, we have discrete and schematic forms

p(x0|xT ) =

∫
dp0

(2π)D
dx1dp1
(2π)D

· · · dxT−1dpT−1

(2π)D
e
∑T−1

t=0 −ipt·[xt−xt+1−(βt+1xt+1+Dt+1s(xt+1,t+1))∆t]

p(x0|xT ) =

∫
D[pt]D[xt] exp

{∫ T

ϵ

ipt · [ẋt + βtxt +Dts(xt, t)] dt

}
.
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D.2 DERIVING A PATH-INTEGRAL REPRESENTATION OF A MORE GENERAL PROCESS

Consider a more general type of backwards, discrete-time stochastic process. Once again, suppose
that a variable xt ∈ RD evolves backwards in time from an initial point xT . But this time, suppose
that the transition between xt+1 and xt depends upon some set of K independent standard normal
random variables {ξk}. In particular, suppose that discrete-time updates have the form

xtj = xt+1,j − fj(xt+1, t+ 1)∆t+

K∑
k=1

Gjk(xt+1, t+ 1) ξk ∆t , (46)

i.e., updates are the same as before except for the new noise term. In general, the noise term is quite
complicated; G is a D × K matrix which can depend explicitly on both the current state and the
current time. The process described by the above updates is generally not Markov, since noise added
at different time steps can depend on some of the same ξk variables, and hence the amount of noise
added at one time step can be correlated with the amount of noise added at some other time step.

What is the distribution of x0, the result of T steps of this process, conditional on a starting point
xT ? We know that each update depends only on the previous state and the noise variables, so

p(x0|xT ) =

∫
p(x0|x1, {ξk})p(x1|x2, {ξk}) · · · p(xT−1|xT , {ξk}) p({ξk}) dx1 · · · dxT−1d{ξk} .

In particular, conditional on the previous state and the noise variables, updates are deterministic.
This allows us to write the above transition probability as∫  D∏

j=1

T−1∏
t=0

δ

(
xt,j − xt+1,j + fj(xt+1, t+ 1)∆t+

K∑
k=1

Gjk(xt+1, t+ 1) ξk ∆t

) p({ξk}) dx1 · · · dxT−1d{ξk} .

Using the same integral representation of the Dirac delta function that we used above, this becomes∫
e
∑

t,j −ipt,j[xt,j−xt+1,j+fj(xt+1,t+1)∆t+
∑K

k=1 Gjk(xt+1,t+1) ξk ∆t] p({ξk})
dp0

(2π)D
dx1dp1
(2π)D

· · · dxT−1dpT−1

(2π)D
d{ξk} .

Although this appears to be extremely complicated, it can be considerably simplified by doing the
integral over the noise variables. Since the noise variables are all independent and standard normal,

p({ξk}) =
1

(2π)k/2
exp

{
−ξ

2
1

2
− · · · − ξ2K

2

}
. (47)

Hence, the integral over the noise variables is a typical Gaussian integral with a linear term. We
can save time by recognizing the integral as essentially computing the characteristic function of a
standard normal; more precisely, we have

Ik =

∫
exp

−iξk
T−1∑
t=0

D∑
j=1

pt,jGjk(xt+1, t+ 1)∆t

 e−ξ2k/2

√
2π

dξk

= exp

−1

2

T−1∑
t=0

T−1∑
t′=0

D∑
j=1

D∑
j′=1

pt,jGjk(xt+1, t+ 1)Gj′k(xt′+1, t
′ + 1)pt′,j′∆t∆t


(48)

for each ξk. Putting everything together, we find that p(x0|xT ) can be written∫
e
∑

t,j −ipt,j [xt,j−xt+1,j+fj(xt+1,t+1)∆t]− 1
2

∑
t,t′,j,j′

∑K
k=1 pt,jGjk(xt+1,t+1)Gj′k(xt′+1,t

′+1)pt′,j′∆t∆t d{xt}d{pt}
(2π)DT

where we have used the shorthand d{xt}d{pt} := dp0 dx1dp1 · · · dxT−1dpT−1. This is our final
answer, although it is more enlightening to write it in its schematic continuous-time form. We obtain

p(x0|xT ) =

∫
D[pt]D[xt] exp

{∫ T

ϵ

−ipt · [−ẋt + f(xt, t)] dt − 1

2

∫ T

ϵ

∫ T

ϵ

pTt V (xt, t;xt′ , t
′)pt′ dtdt

′

}
where we have defined the state- and time-dependent D ×D V-kernel Vij(xt, t;xt′ , t

′) via

Vij(xt, t;xt′ , t
′) :=

K∑
k=1

Gik(xt, t)Gjk(xt′ , t
′) , (49)

or equivalently via V (xt, t;xt′ , t
′) := G(xt, t)G

T (xt′ , t
′). Note that it is positive semidefinite.
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D.3 AVERAGING LEARNED DISTRIBUTION OVER SAMPLE REALIZATIONS

What is the ‘typical’ distribution learned by an ensemble of diffusion models which differ only in the
samples each used during training? In this subsection, we show that the net effect of averaging over
sample realizations is to contribute a noise term to the PF-ODE. The path-integral representation we
obtain is of the class we discussed in the previous subsection.

Suppose a diffusion model is associated with a parameterized score approximator ŝθ(x, t). The
distribution learned by the diffusion model is then

q(x0|xT ;θ) =

∫
D[pt]D[xt] exp

{∫ T

ϵ

ipt · [ẋt + βtxt +Dtŝθ(xt, t)] dt

}
, (50)

where we have used the schematic form of the PF-ODE path-integral representation for clarity.
(Moving to discrete time does not affect our arguments, but only makes notation more cumbersome.)
Averaging over sample realizations is mathematically equivalent to computing the characteristic
function of the score approximator. The sample-averaged q, Eθ[q(x0|xT ;θ)] = [q(x0|xT )], is

[q(x0|xT )] =

∫
D[pt]D[xt] exp

{∫ T

ϵ

ipt · [ẋt + βtxt] dt

}
Eθ

[
e
∫ T
ϵ

ipT
t Dtŝθ(xt,t) dt

]
. (51)

Assuming the score approximator ensemble is well-behaved, its characteristic function can be writ-
ten as a cumulant expansion. Here, we have

logEθ

[
e
∫ T
ϵ

ipT
t Dtŝθ(xt,t) dt

]
=

∫ T

ϵ

iptDt[ŝθ(xt, t)] dt−
1

2

∫ T

ϵ

∫ T

ϵ

pTt DtCovθ [ŝθ(xt, t), ŝθ(xt′ , t
′)]Dt′pt′ + · · ·

(52)

where the dots indicate higher-order cumulants and [ŝθ(xt, t)] indicates the ensemble-averaged
score approximator. In this work, we neglect the higher-order terms. Often, they are suppressed
by some factor (e.g., the number of model parameters divided by the number of samples).

We obtain dynamics of the class described in the previous subsection. Here, the D ×D V-kernel is

Vij(xt, t;xt′ , t
′) :=

∑
a,b

Dt,iaCovθ[ŝa(xt, t), ŝb(xt′ , t
′)]Dt′,bj , (53)

or equivalently V (xt, t;xt′ , t
′) :=DtCovθ [ŝθ(xt, t), ŝθ(xt′ , t

′)]Dt′ .
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E NAIVE SCORE ESTIMATORS GENERALIZE: DETAILS

In this appendix, we show that integrating the PF-ODE using naive score estimates yields a specific
kind of generalization (Prop. 4.1). Suppose that we are integrating the PF-ODE from some initial
point xT using T first-order Euler updates (or some other integration scheme; the choice does not
matter in the continuous-time limit), so that

xt = xt+1 + (βt+1xt+1 +Dt+1s(xt+1, t+ 1))∆t . (54)

But suppose that we do not use the score function directly in our updates, but at each time step
construct a noisy version of it based on a sample x0t ∼ p(x0|x, t). In particular, consider the naive
score estimator

ŝ(xt, t) := s(xt, t) +

√
κ

∆t
[s̃(xt, t;x0t)− s(xt, t)] (55)

where κ ≥ 0 is a constant that controls the estimator’s variance. Note that a new, independent
sample x0t′ is drawn at each step t′. We are interested in studying the extent to which this scheme
produces a distribution different from pdata(x0).

Using the result from Appendix D, the typical learned distribution [q(x0|xT )] is (approximately)
characterized by the average and V-kernel of ŝ. Since Ex0

[s̃(x, t;x0)] = s(x, t), this score estima-
tor is unbiased, i.e., [ŝ] = s. The V-kernel V (xt, t;xt′ , t

′) is

V :=DtCovθ[ŝ(xt, t), ŝ(xt′ , t
′)]Dt′ =DtCovθ[ŝ(xt, t), ŝ(xt, t)]Dt δ(t− t′)∆t (56)

since samples generated at different time steps are independent of one another. Moreover,

Covθ[ŝ(xt, t)] =
κ

∆t
Covθ[s̃(xt, t)] (57)

since the only random part of the estimator is the proxy score. Finally,

Vij(xt, t;xt′ , t
′) = κ

∑
a,b

Dt,iaCovθ[s̃a(xt, t), s̃b(xt, t)]Dt,bj δ(t− t′)

= κ
∑
a,b

Dt,ia

[
S−1
t,ab + ∂2ab log p(xt|t)

]
Dt,bj δ(t− t′) .

(58)

Using C(x, t) as shorthand for the proxy score covariance matrix, we equivalently have

V (xt, t;xt′ , t
′) = κDtC(xt, t)Dt δ(t− t′) . (59)

As a final technical note, note that the naive estimator must scale like 1/
√
∆t in order for the V-

kernel to be nontrivial in the ∆t→ 0 limit (and indeed, for the continuous-time limit to make sense).
This is easiest to see in discrete time: since samples generated at different time steps k and ℓ are
independent, the V-kernel picks up a factor δkℓ, which equals one when k = ℓ and is zero otherwise.
In continuous time, this looks like δ(t−t′)∆t, not δ(t−t′) (Eq. 56). This problematic ∆t factor can
be canceled by a corresponding 1/(∆t) factor in the estimator covariance, which motivates making
the estimator scale like 1/

√
∆t.
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F LINEAR SCORE ESTIMATOR: DETAILS

In this appendix, we compute the sample-realization-averaged distribution learned by a linear score
estimator (Prop. 5.1). Whether it generalizes or not depends strongly on whether the number of
features F scales with the number of samples P used during training. First, we must compute the
optimum of the DSM objective for a linear model. Then we will determine the average and V-kernel
of the optimal linear score estimator.

F.1 DEFINITION OF LINEAR SCORE MODEL

Consider a linear score estimator

ŝθ(x, t) = w0 +Wϕ(x, t) ŝi(x, t) = w0i +

F∑
j=1

Wijϕj(x, t) , (60)

where the feature maps ϕ = (ϕ1, ..., ϕF )
T are linearly independent, smooth functions from RD ×

[0, T ] to R that are square-integrable with respect to the measure λtp(x, t) for all t. The parameters
to be estimated are θ := {w0,W }, with w0 ∈ RD andW ∈ RD×F .

F.2 OPTIMUM OF DSM OBJECTIVE FOR LINEAR SCORE MODEL

For this estimator, the DSM objective reads

J1(θ) =

∫
λt
2

∥w0 +Wϕ(x, t)− s̃(x, t;x0)∥22 p(x|x0, t)pdata(x0)p(t) dxdx0dt . (61)

Note,

∂ŝi
∂w0a

= δia
∂ŝi
∂Wab

= δiaϕb . (62)

Using these to take the gradient of the DSM objective, we have

∂J1
∂w0a

= Ex,x0,t

λt
w0a +

F∑
j=1

Wajϕj(x, t)− s̃a(x, t;x0)


∂J1
∂Wab

= Ex,x0,t

λt
w0a +

F∑
j=1

Wajϕj(x, t)− s̃a(x, t;x0)

ϕb(x, t)
 .

(63)

Setting these equal to zero, we have

Ex,x0,t {λt}w0a +

F∑
j=1

WajEx,x0,t {λtϕj(x, t)} = Ex,x0,t {λts̃a(x, t;x0)}

Ex,x0,t {λtϕb(x, t)}w0a +

F∑
j=1

WajEx,x0,t {λtϕj(x, t)ϕb(x, t)} = Ex,x0,t {λts̃a(x, t;x0)ϕb(x, t)} .

The first row tells us that

w0a =
1

Et[λt]
Ex,x0,t {λts̃a(x, t;x0)} −

1

Et[λt]

F∑
j=1

WajEx,x0,t {λtϕj(x, t)} , (64)

or equivalently that the optimal bias term satisfies w∗
0 = ⟨s̃⟩ −W ∗⟨ϕ⟩, where we have used ⟨· · · ⟩

to denote averages with respect to λtp(x,x0, t)/E[λt], and where we have defined the vectors

⟨s̃⟩ := Ex,x0,t[λts̃(x, t;x0)]

Et[λt]
=

1

Et[λt]

∫
λt s̃(x, t;x0) p(x,x0, t) dxdx0dt

⟨ϕ⟩ := Ex,t[λtϕ(x, t)]

Et[λt]
=

1

Et[λt]

∫
λt ϕ(x, t) p(x, t) dxdt .

(65)
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Using the first row result, the second row can be written as

⟨ϕb⟩

⟨s̃a⟩ − F∑
j=1

Waj⟨ϕj⟩

+ F∑
j=1

Waj
Ex,x0,t {λtϕj(x, t)ϕb(x, t)}

Et[λt]
=

Ex,x0,t {λts̃a(x, t;x0)ϕb(x, t)}
Et[λt]

and hence the second row can be written in terms of matrices

Σϕ :=
Ex,t

{
λt [ϕ(x, t)− ⟨ϕ⟩] [ϕ(x, t)− ⟨ϕ⟩]T

}
Et[λt]

=
1

Et[λt]

∫
λt [ϕ(x, t)− ⟨ϕ⟩] [ϕ(x, t)− ⟨ϕ⟩]T p(x, t) dxdt

J := −
Ex,x0,t

{
λt [ϕ(x, t)− ⟨ϕ⟩] [s̃(x, t;x0)− ⟨s̃⟩]T

}
Et[λt]

= − 1

Et[λt]

∫
λt [ϕ(x, t)− ⟨ϕ⟩] [s̃(x, t;x0)− ⟨s̃⟩]T p(x,x0, t) dxdx0dt .

(66)

In particular,
W ∗Σϕ = −JT =⇒ W ∗ = −JTΣ−1

ϕ , (67)
where we have assumed that Σϕ is invertible. This ought to be true, since the feature maps are
independent and p(x|t) is a smooth distribution supported on all of RD (especially since we are
technically only considering t as small as ϵ, the nonzero lower bound, for regularization purposes).

The optimal score is

ŝ∗(x, t) = w
∗
0 +W

∗ϕ(x, t) = JTΣ−1
ϕ [ ⟨ϕ⟩ − ϕ(x, t) ] + ⟨s̃⟩ . (68)

As a side comment, omitting the bias term just removes the mean corrections from the definitions
of J and Σϕ, as well as the ⟨ϕ⟩ and ⟨s̃⟩ offsets. Without it, the optimal score is ŝ∗(x, t) =

W ∗ϕ(x, t) = −JTΣ−1
ϕ ϕ(x, t), where J and Σϕ are instead defined to be

Σϕ :=
Ex,t

{
λt ϕ(x, t)ϕ(x, t)

T
}

Et[λt]

J := −
Ex,x0,t

{
λt ϕ(x, t)s̃(x, t;x0)

T
}

Et[λt]
.

(69)

In the rest of this appendix, we will assume that the bias term is present.

F.3 OPTIMUM OF DSM OBJECTIVE GIVEN A FINITE NUMBER OF SAMPLES

Assume we have access to P ≫ 1 samples x(n),x
(n)
0 , t(n) ∼ p(x,x0, t), and that we estimate the

parameters of the linear score model using naive sample mean estimators

λ̄t :=
1

P

∑
n

λ(n)

b̂ :=
1

λ̄t

1

P

∑
n

λ(n)s̃(x(n), t(n);x
(n)
0 )

µ̂ϕ :=
1

λ̄t

1

P

∑
n

λ(n)ϕ(x(n), t(n))

Σ̂ϕ :=
1

λ̄t

1

P

∑
n

λ(n)
[
ϕ(x(n), t(n))− µ̂ϕ

] [
ϕ(x(n), t(n))− µ̂ϕ

]T
Ĵ := − 1

λ̄t

1

P

∑
n

λ(n)
[
ϕ(x(n), t(n))− µ̂ϕ

] [
s̃(x(n), t(n);x

(n)
0 )− b̂

]T

(70)

where we have used λ(n) as a slightly less cumbersome shorthand for λt(n) . We will not worry
about using Bessel’s correction in the covariance estimators, and we will see below that ŝ is actually
unbiased for finite P even if the covariance estimators are not. Our learned score estimator is then

ŝθ(x, t) = Ĵ
T Σ̂−1

ϕ [ µ̂ϕ − ϕ(x, t) ] + b̂ . (71)
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Note that if the number of samples P is less than F , Σ̂ϕ is not invertible; in this case, one can
either use the Moore-Penrose pseudoinverse, or explicitly include a weight regularization term in
the objective, i.e., add to J1 a term of the form

Jreg :=
ξ

2

∑
i

w2
0i +

∑
i,j

W 2
ij

 (72)

where the parameter ξ ≥ 0 controls the importance of this term. Including this term changes the
score estimator (Eq. 71) by modifying the inverse that appears:

Σ̂−1
ϕ →

[
Σ̂ϕ + ξIF

]−1

. (73)

In what follows, if one wants results in the case that such a regularization term is present, note that
this replacement of the inverse of the empirical covariance matrix is the only necessary change.

F.4 LINEAR SCORE MODEL ESTIMATOR IS UNBIASED

We are primarily interested in variance due to x0 (for reasons that will become clear), so we will
consider an ensemble of systems for which the x(n) and t(n) sample draws are the same, but the x(n)

0
draws are different. Our estimator depends linearly on s̃, the quantity through which it depends on
the x0 samples. In particular,

ĴT Σ̂−1
ϕ [µ̂ϕ − ϕ(x, t)] = 1

P

∑
n

λ(n)

λ̄t

[
s̃(x(n), t(n);x

(n)
0 )− b̂

] [
ϕ(x(n), t(n))− µ̂ϕ

]T
Σ̂−1

ϕ [ϕ(x, t)− µ̂ϕ]

=
1

P

∑
n

λ(n)

λ̄t
s̃(x(n), t(n);x

(n)
0 )

[
ϕ(x(n), t(n))− µ̂ϕ

]T
Σ̂−1

ϕ [ϕ(x, t)− µ̂ϕ] ,

so

ŝθ(x, t) =
1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t) s̃(x(n), t(n);x

(n)
0 ) (74)

where we have defined the kernel function

Q(x, t;x′, t′) := 1 + [ϕ(x, t)− µ̂]T Σ̂−1
ϕ [ ϕ(x′, t′)− µ̂ ] . (75)

To see that this estimator is unbiased (when the model is sufficiently expressive), suppose the true
score has the form of our linear estimator, i.e.,

s(x, t) = w∗
0 +W

∗ϕ(x, t) =W ∗ [ ϕ(x, t)− ⟨ϕ⟩ ] , (76)
where we have used the fact that Ex[s] = ⟨s⟩ = 0. Next, note that

1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t) = 1 . (77)

Averaging our estimator over x0 sample draws yields

E[ŝθ(x, t)] =
1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t)W ∗[ϕ(x(n), t(n))− µ̂+ µ̂− ⟨ϕ⟩]

=
1

P

∑
n

λ(n)

λ̄t
Q(x(n), t(n);x, t)W ∗[ϕ(x(n), t(n))− µ̂] +W ∗(µ̂− ⟨ϕ⟩)

=
1

P

∑
n

λ(n)

λ̄t
W ∗[ϕ(x(n), t(n))− µ̂]

[
ϕ(x(n), t(n))− µ̂

]T
Σ̂−1

ϕ (ϕ(x, t)− µ̂) +W ∗(µ̂− ⟨ϕ⟩)

=W ∗ (ϕ(x, t)− µ̂) +W ∗(µ̂− ⟨ϕ⟩)
=W ∗ (ϕ(x, t)− ⟨ϕ⟩) ,

i.e., it is unbiased. What is worth emphasizing is that this is exactly true, and does not require
taking any kind of large P limit. In other words, as long as P is large enough that Σ̂ϕ is invertible,
one recovers the true weights w∗

0 and W ∗, independent of the x and t sample draws. This is why
variance due to x0 sample draws matters, and variance due to the other draws does not, at least for
this linear model.
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F.5 COMPUTING THE V-KERNEL OF THE LINEAR SCORE MODEL

Computing the V-kernel amounts to computing the covariance of the score model with respect to x0

sample realizations. In the previous section, we computed the mean of our estimator; the covariance
calculation will be fairly similar. Note that

Cov[ŝ(z), ŝ(z′)] =
1

P 2

∑
n,m

λ(n)

λ̄t

λ(m)

λ̄t
Q(z(n); z)Q(z(m); z′) Cov[s̃(z(n);x(n)

0 ), s̃(z(m);x
(m)
0 )]

=
1

P 2

∑
n

(
λ(n)

λ̄t

)2

Q(z(n); z)Q(z(n); z′) Cov[s̃(z(n);x(n)
0 )] ,

where we have used z as shorthand for {x, t}, and the fact that x0 sample draws are independent
of one another. Now we will invoke the central limit theorem. Using C(z) := Cov[s̃(z;x0)] as
shorthand, when P is very large, to leading order in 1/P we have

Cov[ŝ(z), ŝ(z′)] ≈ 1

P

∫ (
λt
λ̄t

)2

Q(z′′; z)Q(z′′; z′) C(z′′) p(z′′) dz′′

≈ 1

P

∫ (
λt

E[λt]

)2

Q(z′′; z)Q(z′′; z′) C(z′′) p(z′′) dz′′
(78)

where we replace the estimates µ̂ and Σ̂ϕ that appear in the kernel function with the true quantities,
i.e., we redefine Q to be

Q(x′′, t′′;x, t) := 1 + [ϕ(x′′, t′′)− ⟨ϕ⟩]T Σ−1
ϕ [ϕ(x, t)− ⟨ϕ⟩] . (79)

If the number of features F does not scale with the number of samples P , then we are done: in the
P → ∞ limit, the score estimator covariance, and hence the V-kernel, approach zero. Alternatively,
if the number of features F does scale with the number of samples P , a nontrivial result is possible.

The second term of Q, a quadratic form involving the model’s feature maps, is the only place in Eq.
78 one can get nontrivial scaling with F . Motivated by this observation, define the feature kernel

k(z; z′) :=
1√
F
[ϕ(z)− ⟨ϕ⟩]TΣ−1

ϕ [ϕ(z′)− ⟨ϕ⟩] . (80)

Provided that the limit exists and is finite, in the P → ∞ limit (where F may scale with P ), the
asymptotic V-kernel is then

V (z; z′) = lim
P→∞

F

P
Dt Ez′′

{
λ2t′′

Et[λt]2
k(z; z′′)C(z′′)k(z′′; z′)

}
Dt′ . (81)

Note also that, in the large P limit, the V-kernel also does not depend on the x and t sample draws.
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G NEURAL NETWORK SCORE ESTIMATOR IN NTK REGIME: DETAILS

In this appendix, we prove Prop. 5.2, which means computing the V-kernel of a fully-connected,
infinite-width neural network in the ‘lazy’ learning (Chizat et al., 2019) regime. Although we focus
on an extremely specific type of network here, note that our argument can be straightforwardly
adapted to compute the V-kernel of other architectures with NTK limits, like convolutional neural
networks (Arora et al., 2019).

G.1 DEFINITION OF NEURAL NETWORK MODEL

Consider a neural network score function approximator ŝθ(x, t) trained on the DSM objective (Eq.
4). As elsewhere, we may use z as shorthand for {x, t}. For concreteness, assume that the network
is fully-connected, has L ≥ 1 layers and N∗ trainable parameters, and that each hidden layer has N
neurons and an identical pointwise nonlinearity G:

a
(0)
i (z) := ψi(z)

a
(ℓ+1)
i (z) := G

 1√
N

∑
j

W
(ℓ+1)
ij a

(ℓ)
j (z)

 ℓ = 0, ..., L− 2

a
(L)
i (z) :=

1√
N

∑
j

W
(L)
ij a

(L−1)
j (z) ŝθ(z) := a

(L)(z) .

(82)

The (non-trainable) initial feature maps ψ := (ψ1, ..., ψN0
)T account for various preconditioning-

related choices. For example, in practice, diffusion models receive time/noise as input only through
some time/noise embedding (Ho et al., 2020; Song et al., 2021; Karras et al., 2022).

Although characterizing the gradient descent dynamics of ŝ may be difficult in general, if the initial
network weights are sampled i.i.d. from a standard normal (i.e., W (ℓ)

ij ∼ N (0, 1) for all i, j, and ℓ),
as N is taken to infinity the network output becomes independent of the precise values of the initial
weights. Moreover, the network’s output throughout training can be written in terms of a kernel
function—the so-called NTK—defined by

Kcc′(z, z′) :=
∑
i

Eθ

{
∂ŝc(z)

∂θi

∂ŝc′(z
′)

∂θi

}
(83)

where c and c′ index different network outputs. In the infinite-width (N → ∞) limit, Kcc′(z, z′) =
δcc′K(z, z′), i.e., the off-diagonal kernels are identically zero and all kernels along the diagonal are
the same (Shan & Bordelon, 2022).

G.2 LEARNED SCORE AFTER FULL-BATCH GRADIENT DESCENT

Computing the learned score. For simplicity, we assume that our neural network model is trained
via full-batch gradient descent on P samples from p(x,x0, t). Although this assumption does not
reflect standard practice (Song et al., 2021; Karras et al., 2022), it makes our computation substan-
tially easier. If we let the dimensionless parameter τ denote training time, the output evolves via

d

dτ
ŝ(x′, t′) = Ex,t,x0

{
λt

Et[λt]

∂ŝ(x′, t′)

∂θ

∂ŝ(x, t)T

∂θ
[s̃(x, t;x0)− ŝ(x, t)]

}
. (84)

In the infinite-width limit, we can replace the outer product that appears with the NTK:

d

dτ
ŝ(x′, t′) = Ex,t,x0

{
λt

Et[λt]
K(x′, t′;x, t) [s̃(x, t;x0)− ŝ(x, t)]

}
. (85)
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Define the Gram matrix K ∈ RP×P , the time-weighting matrix ΛT ∈ RP×P , the target matrix
S̃ ∈ RP×D, and the output matrix Ŝ ∈ RP×D via

Kab := K(x(a), t(a);x(b), t(b))

ΛT,ab := δab
λt(a)

Et[λt]

S̃ai := s̃i(x
(a), t(a);x

(a)
0 )

Ŝai := ŝi(x
(a), t(a)) .

(86)

Eq. 85 implies that
d

dτ
Ŝ =

1

P
KΛT

(
S̃ − Ŝ

)
. (87)

Hence, after training, the network’s output on the set of samples is given by

Ŝ = e−KΛT τ/P Ŝ0 + (I − e−KΛT τ/P )S̃ (88)

where τ is the total training ‘time’ and Ŝ0 is the P × D matrix containing the network’s initial
output on the samples. Let k(x, t) denote the P -dimensional vector whose i-th component is
K(x(i), t(i);x, t). The network’s output given other inputs evolves according to the ODE

d

dτ
ŝ(x, t)T =

1

P
k(x, t)TΛT

(
S̃ − Ŝ

)
, (89)

whose solution is

ŝ(x, t)T = ŝ0(x, t)
T + k(x, t)TK−1(I − e−KΛT τ/P )(S̃ − Ŝ0) (90)

where ŝ0(x, t) is the network’s initial output given a {x, t} input. If the Gram matrix K is rank-
deficient, we must use its Moore-Penrose pseudoinverse. Alternatively, one can avoid this issue by
including a weight regularization term in the objective.

Expressing the learned score in terms of eigenfunctions. We will find it useful to consider a
Mercer decomposition of K with respect to the measure λtp(x, t)/Et[λt], so that K can be written

K(x, t;x′, t′) =
∑
k

λkϕk(x, t)ϕk(x
′, t′) (91)

where the features are orthonormal and complete, i.e.,∫
λt

Et[λt]
ϕk(x, t)ϕk′(x, t) p(x, t) dxdt = δk,k′∑

k

λt
Et[λt]

p(x, t) ϕk(x, t)ϕk(x
′, t′) = δ(x− x′)δ(t− t′) .

(92)

If we assume K has rank F not necessarily equal to P, we can write Eq. 90 in terms of the eigen-
functions associated with the Mercer decomposition by defining the P × F matrix Φ with

Φak := ϕk(x
(a), t(a)) (93)

and noting that K = ΦΛΦT , where Λ is the F × F diagonal matrix of associated eigenvalues. It
is useful to observe that

δkk′ = Ex,t

{
λt

Et[λt]
ϕk(x, t)ϕk′(x, t)

}
=

1

P

∑
n

λ(n)

Et[λt]
ϕk(x

(n), t(n))ϕk′(x(n), t(n)) +O(1/
√
P ) ,

which implies IF = ΦTΛTΦ
P to leading order. Similarly, the completeness relation becomes

IP ≈ ΦΦTΛT

P
=

ΛTΦΦT

P
(94)
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to leading order. Using these identities, we can rewrite Eq. 90 as

ŝ(x, t)T = ŝ0(x, t)
T +

[
ϕ(x, t)TΛΦT

] [ΛTΦΛ−1ΦTΛT

P 2

] [
Φ

P
(I − e−Λτ )ΦTΛT

]
(S̃ − Ŝ0)

= ŝ0(x, t)
T +

1

P
ϕ(x, t)T (I − e−Λτ )ΦTΛT (S̃ − Ŝ0) .

(95)

Equivalently,

ŝ(x, t) = ŝ0(x, t) +
1

P
(S̃ − Ŝ0)

TΛTΦ(I − e−Λτ )ϕ(x, t) . (96)

Let S denote the P ×D matrix whose entries are the true score evaluated on the set of input samples
{(x(a), t(a))}. When averaged over x0 sample realizations, our estimator is

E[ŝ(x, t)] = ŝ0(x, t) +
1

P
(S − Ŝ0)

TΛTΦ(I − e−Λτ )ϕ(x, t) (97)

which implies

ŝ(x, t)− E[ŝ(x, t)] =
1

P
(S̃ − S)TΛTΦ(I − e−Λτ )ϕ(x, t) . (98)

To make things slightly easier, define the feature kernel1

k(x, t;x′, t′) :=
1√
F
ϕ(x, t)T (I − e−Λτ )ϕ(x′, t′) =

1√
F

F∑
k=1

ϕk(x, t)(1− e−λkτ )ϕk(x
′, t′) .

(99)
In terms of this kernel, we can write

ŝ(x, t)− E[ŝ(x, t)] =
√
F

P

∑
n

λ(n)

Et[λt]

[
s̃(x(n), t(n);x

(n)
0 )− s(x(n), t(n))

]
k(x(n), t(n);x, t) .

(100)
We will use this result in the next subsection to compute the V-kernel of this model.

G.3 COMPUTING THE V-KERNEL OF THE NTK MODEL

The covariance of the learned score estimator with respect to x0 sample realizations is

Cov[ŝθ(z), ŝθ(z′)] =
F

P 2

∑
n,m

λ(n)

Et[λt]

λ(m)

Et[λt]
Cov

[
s̃(z(n);x

(n)
0 ), s̃(z(m);x

(m)
0 )

]
k(z(n); z)k(z(m); z′)

=
F

P 2

∑
n

(
λ(n)

Et[λt]

)2

Cov
[
s̃(z(n);x

(n)
0 )
]
k(z(n); z)k(z(n); z′)

=
F

P

∫
λ2t′′

Et[λt]2
C(z′′)k(z′′; z)k(z′′; z′) p(z′′) dz′′ ,

when P is large, where we exploited the independence of the samples in the first step, and the central
limit theorem in the second. As elsewhere, we have used C(z) := Cov [s̃(z;x0)] as shorthand.

Finally, the V-kernel is

V (z; z′) = lim
P→∞

F

P
Dt Ez′′

{
λ2t′′

E[λt]2
k(z; z′′)C(z′′)k(z′′; z′)

}
Dt′ (101)

provided that the limit exists and is finite. Since F ∝ N , this can happen if N ∝ P .

Also note that the form of this V-kernel is identical to that of the V-kernel for linear models (c.f.
Prop. 5.1), with the only difference being the feature kernel that appears.

1We have run out of letters, and unfortunately will use k to denote this quantity. Note that it is different
from both K and k.
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The infinite training time limit is of particular interest, since in this limit we expect the model to
interpolate all of its (noisy) samples. In this limit, we have

Cov[ŝi(z), ŝj(z′)] =
1

P

∫
λ2t′′

Et[λt]2
ϕ(z)Tϕ(z′′)ϕ(z′′)Tϕ(z′)Cij(z

′′) p(z′′) dz′′

=
1

P

∫
λt′′

Et[λt]
ϕ(z)Tϕ(z′′)

[
λt′′

Et[λt]
ϕ(z′′)Tϕ(z′)p(z′′)

]
Cij(z

′′) dz′′

=
1

P

∫
λt′′

Et[λt]
ϕ(z)Tϕ(z′′)δ(z′′ − z′)Cij(z

′′) dz′′

=
1

P

λt′

Et[λt]
ϕ(z)Tϕ(z′)Cij(z

′)

(102)

where we have exploited the completeness relation. Now we encounter a subtle technical point.
Since F ̸= P in general, in the F, P → ∞ limit the quantity

d(z, z′) :=
1

P

λt′

Et[λt]
Φ(z)TΦ(z′) (103)

is not quite equal to the Dirac delta function, but is instead proportional to it. We need to work out
the constant of proportionality. To do this, observe that

∑
n

d(z(n), z(n)) =
1

P

∑
n

λ(n)

Et[λt]
Φ(z(n))TΦ(z(n)) →

F∑
k=1

∫
λt

Et[λt]
ϕk(z)ϕk(z) p(z) dz = F .

On the other hand, for the Dirac delta function, we would have∑
n

δ(0) =
P

∆z
, (104)

where ∆z is some small bin size. This implies

d(z, z′) =
F∆z

P
δ(z − z′) . (105)

If we define κ := (F∆z)/P , and assume κ remains constant as both parameters approach infinity,
we finally obtain

V (z; z′) = κDtC(z)Dt δ(z − z′) . (106)
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H RESULTS FOR NOISE PREDICTION FORMULATION

In the main text, we present the problem of training a diffusion model in terms of learning a param-
eterized score function estimator (see Eq. 4). In practice, one often does not try to directly estimate
the score, but the quantity E(x, t) := σts(x, t) (Rombach et al., 2022), since it can be somewhat
better-behaved. In this appendix, we note that it is straightforward to port our results to this slightly
different setting.

For simplicity, assume that the forward process involves isotropic noise, so that Dt =
g2
t

2 ID and
St = σ2

t ID. The DSM objective (Eq. 4) becomes

J1(θ) = Et,x0,x

{
λt
2σ2

t

∥σtŝθ(x, t)− σts̃(x, t;x0)∥22
}

= Et,x0,x

{
λt
2σ2

t

∥Êθ(x, t)− E∥22
}
.

(107)

Since E := (αtx0−x)/σt by definition, E is normally distributed with mean zero and variance one.
The function Ê can be viewed as taking a noisy sample x as input and outputting the (standardized)
noise that was added to the original sample x0.

Importantly, the objective has the same form as before (i.e., a mean-squared error objective compar-
ing an estimator to a target), but the time-weighting function is now λ̃t := λt/σ

2
t .

In this formulation, the PF-ODE reads

ẋt = −βtxt −
g2t
2σt

E(x, t)

= −βtxt − D̃tE(x, t)
(108)

where we define

D̃t :=
g2t
2σt

. (109)

Hence, the PF-ODE also has the same form as before. We conclude that our results apply once one
makes these identifications, and also makes the slight change

C(x, t) := σ2
t Covx0|x,t(s̃) (110)

since the learning target is now a scaled version σts̃ of the proxy score.
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I RESULTS FOR DENOISER FORMULATION

In the main text, we present the problem of training a diffusion model in terms of learning a param-
eterized score function estimator (see Eq. 4). An alternative approach formulates the problem in
terms of learning a ‘denoiser’ function, which takes a noise-corrupted sample x as input and outputs
a noise-free sample x0. These formulations are mathematically equivalent, but their implementa-
tions slightly differ in practice; in this appendix, we note that it is straightforward to port our results
to this slightly different setting.

Define the ‘optimal’ denoiser2 D in terms of the true score s via

D(x, t) :=
1

αt
[St s(x, t) + x] s(x, t) = S−1

t [αtD(x, t)− x] . (111)

Parameterized estimators of the denoiser and score, which we will denote by D̂ and ŝ, are related
in the same way. This means that the DSM objective (Eq. 4) becomes

J1(θ) = Et,x0,x

{
λt
2
∥ŝθ(x, t)− s̃(x, t;x0)∥22

}
= Et,x0,x

{
λt
2
∥S−1

t [αtD̂θ(x, t)− x]− S−1
t [αtx0 − x]∥22

}
= Et,x0,x

{
λtα

2
t

2
[D̂θ(x, t)− x0]

TS−2
t [D̂θ(x, t)− x0]

}
.

(112)

For simplicity, we will assume the diffusion tensor of the forward process is isotropic (Dt =
g2
t

2 ID),
which implies St = σ2

t ID. Then

J1(θ) = Et,x0,x

{
λtα

2
t

2σ4
t

∥D̂θ(x, t)− x0∥22
}

= Et,x0,x

{
λ̃t
2
∥D̂θ(x, t)− x0∥22

}
(113)

where λ̃t := λtα
2
t /σ

4
t . Hence, the objective has the same form as before (a mean-squared error

objective comparing an estimator to a target, with a particular time-weighting function).

In this formulation, the PF-ODE reads

ẋt = −βtxt −
g2t
2σ2

t

[αtD(xt, t)− x]

= −
(
βt −

g2t
2σ2

t

)
xt −

g2t
2σ2

t

αtD(xt, t)

= −β̃txt − D̃tD(xt, t)

(114)

where we define

β̃t := βt −
g2t
2σ2

t

D̃t :=
g2t
2σ2

t

αt . (115)

Hence, the PF-ODE also has the same form as before. We conclude that our results apply once one
makes these identifications, and also makes the slight change

C(x, t) := Covx0|x,t(x0) (116)

since the learning target is now x0 rather than the proxy score.

2There is an unfortunate collision of notation here, with D being used to denote both the diffusion tensor
and the denoiser, but it should be fairly clear from context which is which.
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J BENIGN PROPERTIES OF GENERALIZATION THROUGH VARIANCE

A priori, one may worry that generalization through variance can happen in an ‘uncontrolled’ fash-
ion, and hence produce generalizations of the data distribution that are somehow ‘bad’ or ‘unrea-
sonable’. In this appendix, we collect properties of generalization through variance that help ensure
that this does not happen.

Most of these properties relate to the proxy score covariance, which when the data distribution
consists of M examples has the form (see Appendix B)

C(x, t) := Covx0|x,t(s̃) = α2
tS

−1
t CovM(µ)S−1

t (117)

where

p(x0 = µm|x, t) = N (x;αtµm,St)∑
m′ N (x;αtµm′ ,St)

. (118)

For the sake of this appendix, we will focus mainly on the case where the forward process is
isotropic, which meansGt = gtID,Dt =

g2
t

2 ID, and St = σ2
t ID. In this case,

C(x, t) =
α2
t

σ4
t

Covx0|x,t(x0)

p(x0 = µm|x, t) = N (x;αtµm, σ
2
t ID)∑

m′ N (x;αtµm′ , σ2
t ID)

= softmax
(
−∥x− αtµm∥22

2σ2
t

)
.

(119)

J.1 SINGLE POINTS ARE NOT GENERALIZED

Suppose that the data distribution consists of a single point at x0 = µ, so that M = 1. How do
diffusion models generalize a single point? Since

p(x0 = µ|x, t) = N (x;αtµ, σ
2
t ID)

N (x;αtµ, σ2
t ID)

= 1 , (120)

the covariance of x0 is zero. This makes sense, since given a pair (x, t), there is no uncertainty
about the training example x0 that generated it.

This implies that the covariance of x0 given x and t is zero, and hence (if the forward process is
isotropic) that the proxy score covariance is zero. For the naive score estimator and NTK-regime
neural network, this implies that the V-kernel is always zero, and hence that generalization through
variance does not occur. This is reasonable, among other reasons because there is no reason to
introduce anisotropy if it is not present in the data.

J.2 DIMENSIONALITY OF DATA DISTRIBUTION IS PRESERVED

Suppose that the data distribution lies entirely within a subspace of dimension r < D, so that the
components of each µm along the non-subspace dimensions are equal (to µ′

k along dimension k,
say). It seems intuitively reasonable not to substantially modify probability mass outside of this
subspace. We clearly have

Ex0|x,t[x0k] = µ′
k (121)

for all non-subspace directions k. This has the following consequence. Let ℓ denote some other
(possibly within the subspace, possibly not) direction of state space. The k-ℓ covariance is

Covx0|x,t[(x0k − µ′
k)(x0ℓ − Ex0|x,t[x0ℓ ])] = 0 (122)

since x0k is always equal to µ′
k. Hence, Cij (and by extension, Vij) is only nonzero if i and j are

directions along which the data distribution varies, which means generalization through variance
only happens along the ‘data manifold’.

J.3 VARIANCE IS NOT ADDED FAR FROM DATA DISTRIBUTION EXAMPLES

Since p(x0|x, t) has the form of a softmax function, taking x extremely large is analogous to taking
the temperature parameter of a typical softmax to be extremely small. For x far from the support
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of the data distribution, to good approximation p(x = µm|x, t) = δm,mC(x,t), where mC(x, t)
denotes the index of the data point closest (in terms of Euclidean distance) to x. Since p(x0|x, t)
collapses to a Kronecker delta function, its covariance goes to zero, and hence the V-kernel also goes
to zero.

J.4 FOLLOWING AVERAGE SCORE FIELD IS MOST LIKELY

A straightforward consequence of the effective reverse process (Eq. 8) is that

d

dt
⟨x⟩ = ⟨f(x, t)⟩ (123)

where the angular brackets here denote averages with respect to [q(x, t)]. Hence, although the
effective reverse process involves noise, that noise has zero mean, so on average the system follows
PF-ODE dynamics that use the ensemble-averaged score estimator. If the estimator is unbiased, this
is just the usual PF-ODE. In other words, even in our setting, on average PF-ODE dynamics will
reproduce training examples.

There is a slight technical subtlety here, which is the fact that ⟨f(x, t)⟩ ≠ f(⟨x⟩, t) in general,
but this distinction becomes unimportant for very small noise scales, which most strongly influence
whether memorization occurs.

J.5 TRAINING DATA ARE MORE LIKELY TO BE SAMPLED WHEN NOISE IS SMALL

Similar to the previous point, if the prefactor κ that controls the size of the V-kernel is not too large,
trajectories that follow PF-ODE dynamics are more likely than trajectories that do not. Note that
there is a distinction between the most likely trajectories of a stochastic process, and the average
trajectory associated with that process, although here one expects them to be fairly similar.

This idea can be formalized in the context of a semiclassical analysis (see Appendix ??), which
shows that the probability of a given path goes like exp(−S/κ), where

S[xt] :=

∫ T

ϵ

∫ T

ϵ

1

2
[ẋt − f(xt, t)]

T
Q(xt, t;xt′ , t

′) [ẋt′ − f(xt′ , t
′)] dtdt′ (124)

for some matrix Q that functions as the inverse of V . The point we would like to make here
corresponds to the observation that this action attains its smallest value when ẋt = f(xt, t) for all
times t. That is, trajectories which follow PF-ODE dynamics are more likely than those that deviate
from it, with deviations being penalized more harshly as κ is made smaller.
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K MEMORIZATION AND THE V-KERNEL IN THE SMALL NOISE LIMIT

It’s clear how the V-kernel affects a given sampling time step, but how does it affect the overall
learned distribution? This question is difficult to answer analytically, since in general the effective
reverse process is not exactly solvable. Even without the difficulties related to state-dependent noise
and nontrivial temporal autocorrelations that the V-kernel introduces, PF-ODE dynamics are only
exactly solvable in special circumstances, e.g., when the data distribution is Gaussian (Wang &
Vastola, 2023; 2024).

It is slightly easier to relate the V-kernel to the (average) learned distribution [q(x0)] when the overall
magnitude of the V-kernel is small, since in this limit one can invoke a semiclassical approximation
(Kleinert, 2006), which is the path integral analogue of a saddlepoint approximation. This limit
plausibly applies if the prefactor κ (which is proportional to the ratio F/P for the latter two kinds
of models we consider) is small, or equivalently if the model is somewhat underparameterized.

A proper treatment of this topic involves the careful manipulation of notoriously tricky mathematical
objects like functional determinants; to sidestep these issues, and be somewhat more brief, we will
proceed in a somewhat heuristic fashion here. If one of the following steps appears unclear, we
advise the reader to examine it in discrete rather than continuous time, where the associated issues
are less severe.

K.1 SETTING UP THE SEMICLASSICAL APPROXIMATION

First, define the prefactor-divided V-kernel Ṽ as

Ṽ (z; z′) := V (z; z′)/κ , (125)

and define the ‘inverse’Q of the V-kernel as the vector-valued matrix satisfying∫ T

ϵ

Q(xt, t;xt′′ , t
′′)Ṽ (xt′′ , t

′′;xt′ , t
′) dt′′ =

∫ T

ϵ

Ṽ (xt, t;xt′′ , t
′′)Q(xt′′ , t

′′;xt′ , t
′) dt′′ = ID δ(t−t′) .

Our path integral expression for [q(x0)] has the form (see Appendix D)

[q(x0)] =

∫
D[xt]D[pt] exp {−S[xt,pt]}N (xT ;0,ST ) , (126)

where the ‘action’ S is

S[xt,pt] :=

∫ T

ϵ

−ipTt [ẋt − f(xt, t)] dt+
κ

2

∫ T

ϵ

∫ T

ϵ

pTt Ṽ (xt, t;xt′ , t
′)pt′dtdt

′ , (127)

and where the functional integral is over all paths x(t) which have x(0) = x0 and x(T ) = xT , and
all possible p(t) paths. The explicit form of f is

f(x, t) := −βtx−Dtsavg(x, t) , (128)

although for this analysis it is not relevant.

Since the action is quadratic in the ‘momenta’ variables pt, we can perform the associated Gaussian
integrals exactly to obtain a reduced path integral with

[q(x0)] =

∫
D[xt]D[pt] exp {−S[xt]/κ} F ({xt}) N (xT ;0,ST )

S[xt] =

∫ T

ϵ

∫ T

ϵ

[ẋt − f(xt, t)]
T
Q(xt, t;xt′ , t

′) [ẋt′ − f(xt′ , t
′)] dtdt′

(129)

where the factor F involves a functional determinant

F ({xt}) :=
1√

detV
(130)

due to the Hessian of the action. Note that Q is positive semidefinite since V is, and hence the
minimum possible value of S is zero.
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K.2 SEMICLASSICAL APPROXIMATION OF THE LEARNED DISTRIBUTION

One can now invoke the semiclassical approximation of this path integral assuming κ is sufficiently
small. Relevant to this approximation is the ‘classical’ action Scl(x0,xT ), which quantifies the
likelihood of xt following the most likely (i.e., ‘classical’) path from xT to x0:

Scl(x0,xT ) := minx(t):x(0)=x0,x(T )=xT
S[xt] . (131)

Also relevant is the Hessian of this quantity evaluated at the least action path, which reads

H =
1

κ

δ2S
δxtδxt′

=
1

κ

(
d

dt
− Jf

)T

Q

(
d

dt
− Jf

)
+ additional terms (132)

where Jf is the Jacobian of f . The additional terms will vanish after we make one more approxi-
mation, so we ignore them. The (functional) determinant of this Hessian is

detH(x0,xT ) = det

[
1

κ

(
d

dt
− Jf

)T

Q

(
d

dt
− Jf

)
+ additional terms

]
. (133)

Although our notation here is deliberately somewhat vague to sidestep various technical details, the
above quantity depends on the entire path {xt}, and the values of the Jacobian andQ along it.

The semiclassical approximation says that

[q(x0)] ≈
∫

dxT√
(2π)D

exp {−Scl(x0,xT )/κ}
N (xT ;0,ST )√

detH(x0,xT ) detV (x0,xT )
. (134)

We can invoke Laplace’s method in order to approximately evaluate the xT integral, and hence
obtain an expression for the (average) learned distribution that does not involve any integrals. The
classical action S can be expanded with respect to x∗

T (x0), the most likely (in terms of minimizing
Scl) noise seed xT given the endpoint x0:

Scl(x0,xT ) ≈ Scl(x0,x
∗
T (x0)) +

1

2
[xT − x∗

T ]
T ∂2Scl(x0,x

∗
T (x0))

∂xT∂xT
[xT − x∗

T ] . (135)

But the classical action takes its minimum possible value—i.e., zero—when xT is chosen to be the
unique noise seed that corresponds to deterministic PF-ODE dynamics (i.e., ẋt = f(xt, t) at all
times t), so we just have

Scl(x0,xT ) ≈
1

2
[xT − x∗

T ]
T ∂2Scl(x0,x

∗
T (x0))

∂xT∂xT
[xT − x∗

T ] . (136)

By Laplace’s method, which is also usable due to the smallness of κ, we obtain

[q(x0)] ≈
1√

det
(

1
κ

∂2Scl(x0,x∗
T (x0))

∂xT ∂xT

) N (x∗
T (x0);0,ST )√

detH(x0,x∗
T (x0)) detV (x0,x∗

T (x0))
. (137)

If we only consider ‘classical’ paths with ẋt = f(xt, t), as in this approximation, the additional
terms in Eq. 132 vanish. This means

detH(x0,x
∗
T (x0)) = det

[
1

κ

(
d

dt
− Jf

)T

Q

(
d

dt
− Jf

)]

= det

(
Q

κ

)
det

(
d

dt
− Jf

)2
(138)

where this manipulation can be more formally justified if one works in discrete time. But sinceQ/κ
is the inverse of V , and since

det

(
d

dt
− Jf

)
≈ det

(
T∏

t=1

[I − Jt∆t]

)
≈ det exp

{
−
∫ T

ϵ

Jf (t) dt

}
, (139)
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where we have used a discrete time argument to compute the determinant, we have

detH(x0,x
∗
T (x0)) detV (x0,x

∗
T (x0)) = detV detV −1 det exp

{
−2

∫ T

ϵ

Jf (t) dt

}

= det exp

{
−2

∫ T

ϵ

Jf (t) dt

}
.

(140)

Note that this determinant can be simplified somewhat:

log det exp

{
−2

∫ T

ϵ

Jf (t) dt

}
= −2

∫ T

ϵ

tr[Jf (t)] dt = −2

∫ T

ϵ

∇xt
· f(xt, t) dt (141)

where the xt that appears in the expression above follows deterministic PF-ODE dynamics. Finally,

[q(x0)] ≈
1√

det
(

1
κ

∂2Scl(x0,x∗
T (x0))

∂xT ∂xT

) exp

{
logN (x∗

T (x0);0,ST ) +

∫ T

ϵ

∇xt · f(xt, t) dt

}
.

(142)
At this point, we can make a crucial observation: the argument of the exponential is precisely the
instantaneous change of variables formula that can be used to compute the log-likelihood p(x0|ϵ)
(Song et al., 2021; Chen et al., 2018). This immediately implies

[q(x0)] ≈ p(x0|ϵ)
1√

det
(

1
κ

∂2Scl(x0,x∗
T (x0))

∂xT ∂xT

) . (143)

We conclude that, at least in the small κ regime, the learned distribution is equal to the memorized (ϵ-
noise-corrupted) data distribution, times the determinant of a Hessian that quantifies the likelihood
of deviating from PF-ODE dynamics. This Hessian depends on the V-kernel, since the classical
action depends on its inverseQ, so it is precisely here that the V-kernel can influence generalization.

The required Hessian appears difficult to compute in general. Incidentally, since the relevant action
(Eq. 129) is generically not local in time, it is also hard to derive a Hamilton-Jacobi-type differential
equation satisfied by this Hessian.

K.3 QUANTIFYING MEMORIZATION IN THE SEMICLASSICAL REGIME

Suppose we quantify memorization by computing the Kullback-Leibler (KL) divergence between
the data distribution pdata and the (average) learned distribution [q]:

Emem := DKL(pdata∥[q]) =
∫
pdata(x0) log

pdata(x0)

[q(x0)]
dx0 . (144)

By our semiclassical approximation result (Eq. 143), this is just

Emem = DKL(pdata∥pϵ) +
1

2

∫
pdata(x0) log det

(
1

κ

∂2Scl(x0,x
∗
T (x0))

∂xT∂xT

)
dx0 , (145)

where pϵ := p(x0|ϵ). Hence, the curvature of the classical action near x∗
T (x0) strongly controls the

extent to which the data distribution is memorized, especially when ϵ is taken to be small, in which
case the first term is negligible.
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