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ABSTRACT

Constrained synthesizability is an unaddressed challenge in generative molecular
design. In particular, designing molecules satisfying multi-parameter optimization
objectives, while simultaneously being synthesizable and enforcing the presence of
specific building blocks in the synthesis. This is practically important for molecule
re-purposing, sustainability, and efficiency. In this work, we propose a novel re-
ward function called TANimoto Group Overlap (TANGO), which uses chemistry
principles to transform a sparse reward function into a dense reward function – cru-
cial for reinforcement learning (RL). TANGO can augment molecular generative
models to directly optimize for constrained synthesizability while simultaneously
optimizing for other properties relevant to drug discovery. Our framework is
general and addresses starting-material, intermediate, and divergent synthesis con-
straints. Contrary to many existing works in the field, we show that incentivizing a
general-purpose model with RL is a productive approach to navigating challenging
synthesizability optimization scenarios. We demonstrate this by showing that the
trained models explicitly learn a desirable distribution. Our framework is the first
generative approach to successfully address constrained synthesizability.

1 INTRODUCTION

Synthesizable generative molecular design is becoming increasingly prevalent (Gao & Coley, 2020;
Stanley & Segler, 2023), paralleling the rise in the number of experimentally validated generative
design case studies (Du et al., 2024). Controlling how generated molecules can be synthesized offers
great potential for the push towards closed-loop discovery (Coley et al., 2020a;b) as molecules that
can be made from specific reagents or reactions are naturally more amenable to robotic synthesis
automation, which can be specialized for certain chemistries (Tom et al., 2024; Strieth-Kalthoff et al.,
2024; Sin et al., 2024). Moving beyond methods that optimize for synthesizability heuristics (Stanley
& Segler, 2023; Neeser et al., 2023), approaches that explicitly assess synthesizability can be broadly
categorized into forward- or retro-synthesis which builds molecules from simple building blocks, or
recursively decomposes a target molecule into constituent building blocks, respectively. An example
of forward-synthesis in the context of molecular design is synthesizability-constrained molecular
generation. These methods anchor molecular generation in viable chemical transformation rules,
thus promoting synthesizability (Gao et al., 2022; 2024). On the other hand, retrosynthesis planning
(Liu et al., 2017; Segler & Waller, 2017; Coley et al., 2017; Segler et al., 2018) proposes viable
synthetic routes to a target molecule, and these models are often used as stand-alone tools to assess
synthesizability. Such models have become increasingly adopted and are now routinely used to filter
generated molecules (Shields et al., 2024). Recent work has shown that generative models can directly
generate molecules deemed synthesizable by retrosynthesis models by treating them as another oracle
(computational prediction) to optimize for (Guo & Schwaller, 2024c). Subsequently, constrained
synthesis planning has become a research focus, whereby proposed synthetic routes incorporate
enforced building blocks. This is especially relevant for sustainability and efficiency and examples
include semi-synthesis (Vollmann et al., 2022) (start from reagents isolated from natural sources) and
divergent-synthesis (Li et al., 2018) (pass through common intermediates). More examples include
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Figure 1: TANGO guides the generation of molecules directly optimized for constrained synthesiz-
ability with enforced building blocks while simultaneously optimizing other properties. Our method
generalizes across starting-material, intermediate, and divergent synthesis constraints.

starting-material constrained synthesis (Granda et al., 2018; Wołos et al., 2020), which can also
re-purpose waste to valuable molecules (Wołos et al., 2022; Żądło-Dobrowolska et al., 2024). More
recently, constrained retrosynthesis algorithms have been proposed (Johnson et al., 1992; Yu et al.,
2022; 2024). However, to date, there are no molecular generative models that can enforce specific
building blocks in the proposed routes.

In this work, we show that a general-purpose molecular generative model, without any constraints,
can be incentivized to generate synthesizable molecules that satisfy multi-parameter optimization
(MPO) objectives while jointly enforcing a set of building blocks. Our contribution is as follows: (1)
We leverage chemistry principles and propose the TANimoto Group Overlap (TANGO) reward
function to generate molecules deemed synthesizable by retrosynthesis models with the presence of
enforced building blocks using reinforcement learning (RL). (2) We show that generated molecules
satisfy MPO objectives, and by design, enable the construction of synthesis networks where common
intermediates branch towards diverse, high-reward molecules. (3) We show that letting a general
purpose model freely learn (using incentives), can be a productive approach to optimizing challenging
synthesizability objectives. In Appendix A, we discuss related works categorized into retrosynthesis
models and synthesizability-constrained molecular generative models. Our work differs as we propose
the first generative approach that jointly tackles constrained synthesizability and MPO.

2 METHODS

Constrained Synthesizability Problem Formulation. In synthesis planning, the goal is to propose
a valid synthetic route to a target molecule using (commercially) available building blocks, B, and
a set of reaction rules, R. We define a synthesis graph, G(M,R), where each node represents an
intermediate molecule, m, that need not necessarily be an available building block, b, and the edges
represent reactions, r ∈ R. The depth of a node is the number of edges from the root node (the
target molecule). A valid synthetic route requires that all leaf nodes correspond to commercially
available building blocks, b ∈ B. We further define enforced building blocks, Benf ⊆ B. In practice,
|Benf | << |B|, and in this work, we consider |Benf | ∈ {10, 100}. We address three cases of
constrained synthesis in this work:

Constrained Synthesizability Cases. A synthesis graph is considered starting-material constrained
if at least one leaf node, m ∈ G(M,R), satisfies both of the following conditions: (1) m = b ∈ Benf ,
and (2) depth(m) = max depth. The general intermediate constrained case is when depth(m)
can be any depth. A synthesis graph is considered divergent if at least one intermediate node,
m ∈ G(M,R), satisfies both of the following conditions: (1) m = b ∈ Benf , and (2) all b ∈ Benf

are non-commercial. The nuance of non-commercial is that they can be highly specific building
blocks and potentially much larger in size than common commercial building blocks, which can
enable late-stage functionalization (Castellino et al., 2023).

TANGO Reward Function. See Appendix 3 for a schematic of the reward function. TANimoto
Group Overlap (TANGO) leverages chemistry inductive bias to transform the sparse reward
environment associated with constrained synthesis, to a dense reward environment. Specifically,
for every synthesizable molecule, TANGO provides a signal on whether the model is "closer" to
incorporating Benf . Given G(M,R), this is achieved by a notion of similarity between every node,
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m, and Benf . We draw inspiration from previous works that leverage Tanimoto similarity (sub-
graph similarity) for retrosynthesis (Coley et al., 2017; Zhang et al., 2024). However, Tanimoto
similarity alone is insufficient as chemical reactivity is often associated with functional groups
and their neighborhoods which dictate incompatibilities (Molga et al., 2019). Correspondingly,
we augment Tanimoto similarity with Fuzzy Matching Substructure (FMS) (what is the maximum
substructure overlap by atom count to Benf?). In Appendix H, we systematically evaluated various
TANGO formulations and their ability to distinguish "goodness" and conclude that equal weighting
(0.5) of Tanimoto similarity (TS) and FMS yields the best learnable signal: TANGO(m,Benf ) =
TS(m,Benf ) ·0.5+FMS(m,Benf ). We note that since the maximum value of Tanimoto similarity
and FMS is 1, TANGO is by design already normalized ∈ [0, 1]. The TANGO reward is the
maximum value between all non-root nodes, m ∈ G(M,R) (Algorithm G). It follows that the type
of constrained synthesizability can be controlled by a simple toggle of whether only nodes at max
depth (starting-material) be considered or any node (intermediate or divergent).

Molecular Generative Model. Here, we build on Saturn (Guo & Schwaller, 2024b) which is a
general-purpose autoregressive language-based model operating on SMILES strings (Weininger,
1988). Saturn uses the Mamba (Gu & Dao, 2023) architecture and performs goal-directed generation
using RL. In the original work, the authors found that aggressive local sampling in chemical space
improves sample efficiency across various drug discovery case studies. By contrast, we show that the
constrained synthesizability setting necessitates a more exploratory behavior. We pre-train Saturn on
PubChem (Kim et al., 2023) after data pre-processing (see Appendix C for details).

Retrosynthesis Model. In this work, we integrate Syntheseus (Maziarz et al., 2023), which is a wrap-
per around various retrosynthesis models and search algorithms, into Saturn. Through Syntheseus, we
use MEGAN (graph-edits based) (Sacha et al., 2021) as the single-step retrosynthesis model coupled
with the Retro* (Chen et al., 2020) search algorithm with default hyperparameters. The building
block stock, B is comprised of the ‘Fragment‘ and ‘Reactive‘ subsets of ZINC (Sterling & Irwin,
2015) (17,721,980). The enforced block sets, Benf ⊂ B are simple building blocks (see Appendix
D. We consider |Benf | ∈ {10, 100} and denote these Benf−10 and Benf−100, respectively.

Drug Discovery Case Study. The MPO optimization task is to generate molecules with optimized
QuickVina2-GPU-2.1 (Trott & Olson, 2010; Alhossary et al., 2015; Tang et al., 2023) docking scores
against ATP-dependent Clp protease proteolytic subunit (ClpP) (Mabanglo et al., 2023) (implicated
in cancer), high QED (Bickerton et al., 2012), and are synthesizable with either the starting-material,
intermediate, or divergent synthesis constraints.

Experimental Details. For method development (see Appendix H for all experimental results), we
ran every experiment across 5 seeds (0-4 inclusive) with varying oracle budgets. Once we identified
optimal hyperparameters, we ran all main result experiments across 10 seeds (0-9 inclusive) with a
10,000 oracle budget, and reported the wall time to promote practical application. As our framework
is, to the best of our knowledge, the first generative approach that tackles constrained synthesizability,
we focus our investigation on the optimization dynamics and implications of TANGO.

Metrics. We report Non-solved and Solved (Enforced) as the number of generated molecules that
the retrosynthesis model deems unsynthesizable (no route returned) and is synthesizable with the
presence of an enforced building block, respectively. Note that Solved (Enforced) is a much more
challenging metric than just synthesizable, which previous work has shown is directly learnable (Guo
& Schwaller, 2024c). We further report N as the number of replicates out of 10 seeds where Solved
(Enforced) > 0, and the mean and standard deviation for the # Unique Enforced Blocks, denoting
how many unique enforced building blocks are in the routes for the Solved (Enforced) molecules.
Next, we pool all Solved (Enforced) molecules and report the mean and standard deviation of the
# Reaction Steps. Similarly, we report the mean and standard deviation of docking scores and
QED values across varying intervals. Jointly optimizing for constrained synthesizability, minimizing
docking scores, and maximizing QED values is the MPO objective and a robust model should be able
to achieve this.

3 RESULTS AND DISCUSSION

Constrained Synthesizability Results. Table 1 shows the results with Benf−10 and Benf−100 using
TANGO (equal weighting). We make the following observations: firstly, all constraints can be learned
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Table 1: Constrained synthesizability results. "SM" denotes starting-material constrained. "Uncon-
strained" denotes the experiment without enforcing building blocks, as a comparison. The mean and
standard deviation across 10 seeds (0-9 inclusive) are reported. N is the number of replicates (out of
10) with at least 1 generated molecule satisfying the constraint. The number of molecules (pooled
across all successful replicates) is denoted M and partitioned into different docking score thresholds
and QED reported. # Reaction Steps is also reported for the pooled generated molecules that have an
enforced block. For the docking score intervals, we report the scores and QED values.
a Denotes how many molecule are solvable by the retrosynthesis model. There is no notion of
enforced in the unconstrained setting.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

100 Blocks 2288 ± 305 2111 ± 1169 -10.36 ± 0.28 (M=487) -9.42 ± 0.24 (M=3096) -8.47 ± 0.26 (M=5904)

(N=10) 0.79 ± 0.09 0.82 ± 0.09 0.81 ± 0.09

100 Blocks (SM) 1879 ± 186 1524 ± 502 -10.41 ± 0.31 (M=120) -9.41 ± 0.24 (M=985) -8.43 ± 0.25 (M=3156)

(N=10) 0.78 ± 0.09 0.81 ± 0.09 0.81 ± 0.09

10 Blocks 2425 ± 288 984 ± 1181 -10.38 ± 0.30 (M=659) -9.46 ± 0.25 (M=3981) -8.57 ± 0.25 (M=2419)

(N=6) 0.79 ± 0.10 0.83 ± 0.09 0.83 ± 0.10

10 Blocks (SM) 2228 ± 182 1004 ± 925 -10.37 ± 0.27 (794) -9.46 ± 0.24 (M=3881) -8.54 ± 0.25 (M=2790)

(N=9) 0.80 ± 0.09 0.83 ± 0.09 0.84 ± 0.10

Divergent Blocks 2166 ± 202 651 ± 1238 -10.36 ± 0.26 (M=187) -9.41 ± 0.24 (M=1311) -8.48 ± 0.25 (M=2694)

(N=4) 0.84 ± 0.10 0.86 ± 0.07 0.86 ± 0.07

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solveda DS < -10 -10 < DS < -9 -9 < DS < -8

Unconstrained 1827 ± 191 8127 ± 196 -10.36 ± 0.28 (M=5489) -9.42 ± 0.24 (M=20099) -8.47 ± 0.26 (M=26710)

(N=10) 0.87 ± 0.07 0.88 ± 0.07 0.87 ± 0.08

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
100 Blocks 2.37 ± 1.27 (M=21115) 2 ± 0.63 10,000 (8h 31m ± 40m)
100 Blocks (SM) 1.49 ± 0.91 (M=15247) 1.9 ± 0.7 10,000 (8h 33m ± 30m)
10 Blocks 2.70 ± 1.20 (M=9845) 1 ± 0 10,000 (8h 29m ± 30m)
10 Blocks (SM) 2.59 ± 1.04 (M=10040) 1 ± 0 10,000 (8h 39m ± 24m)
Divergent Blocks 3.68 ± 1.08 (M=6512) 1.75 ± 0.83 10,000 (8h 52m ± 42m)

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Unconstrained 1.86 ± 1.19 (M=81829) N/A 10,000 (5h 34m ± 39m)

within the 10,000 oracle budget (approximate 8.5 hours wall time). Secondly, all runs generate
non-solvable molecules and many solvable molecules do not contain the enforced blocks, as expected
(see Non-solved and Solved (Enforced)). Nonetheless, generated molecules can achieve docking
scores < -10 (considered optimal in previous works and is better than the reference ligand (Koziarski
et al., 2024; Guo & Schwaller, 2024c)) and optimal QED values. This demonstrates the capability to
perform MPO while also optimizing for constrained synthesizability. Thirdly, # Unique Enforced
Blocks is relatively low as we observed that once the model incorporates one enforced building block,
it focuses on generating molecules whose syntheses can be decomposed to that specific block, since
the reward it obtains is high and there is a degree of exploitation. Fourthly, the starting-material
constraint is more difficult for Benf−100 but unexpectedly, not for Benf−10. We speculate the reason
for this is exactly due to exploitation behavior. Since TANGO returns the max reward in the synthesis
tree (comparing to all Benf ), it is possible that more blocks can be a hindrance when there are specific
blocks that are particularly favorable. We emphasize that across different seeds, the enforced building
blocks can be different, which is important as one could run multiple experiments in parallel and pool
the results. Fifthly, we ran the same experiments without the QED objective and the optimization
task becomes easier (as expected), with higher Solved (Enforced) and molecules with docking
scores < -10 (Appendix H.6). We ran these sets of experiments for completeness and comparison
only, as particularly low QED can result in lipophilic molecules that can be promiscuous binders
(Arnott & Planey, 2012). We highlight that the # Reaction Steps is generally short, which shows
that optimizing for constrained synthesizability does not lead to inefficient synthesis plans. We note
that the # Reaction Steps in the divergent synthesis results are longer because it takes one step in the
first place, to arrive at the divergent blocks. Finally, all runs only took on average, 8.5 hours on a
single GPU, which is reasonable, as many commercial drug discovery projects run their generative
experiments for 24-72 hours (Livne et al., 2024).
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Figure 2: Example generated molecules under the starting-material and divergent synthesis (one-
step synthesis from a non-commercial common intermediate to diverse, high-reward molecules)
constraints. The docking scores and QED values are annotated. For the divergent synthesis graph, the
∆ docking score (negative is better) and QED (positive is better) are additionally annotated.

Synthesis Networks. Next, we tackle divergent synthesis by incorporating larger, non-commercial
molecules in the enforced building blocks set. We curated a set of 10 non-commercial blocks from
solved synthesis routes (Fig. 2) and ran the same experimental set-up. Table 1 shows that this is also
learnable within the oracle budget, albeit much less consistently as only 4/10 seeds were successful.
We still argue that our framework is robust as this is a much more challenging task (one can also
increase the oracle budget which leads to more successful seeds, as we show in Appendix H.9) and we
wanted to show the model can learn to enforce these large building blocks from scratch. This opens
up practical applications for late-stage functionalization, commonly employed in drug discovery
(Castellino et al., 2023). Correspondingly, Fig. 2 shows example synthesis networks using results
from the starting-material and divergent synthesis constrained experiments. All generated molecules
achieve optimal docking scores (although starting-material constrained resulted in slightly worse
scores) and QED values. In the divergent synthesis case, a one-step amide coupling reaction from
the enforced block leads to notably improved docking scores, though sometimes with lower QED.
Examples of full synthesis routes are shown in Appendix I.

4 CONCLUSION

In this work, we proposed a novel reward function called TANimoto Group Overlap (TANGO)
that can guide a general-purpose molecular generative model towards constrained synthesizability.
We tackle various degrees of constraints that are practically important in real-world applications:
starting-material, intermediate, and divergent synthesis constraints (Fig. 2). The results show that the
generative model, Saturn Guo & Schwaller (2024b), when augmented with TANGO, can generate
optimal molecules for a drug discovery case study involving molecular docking (Table 1). Moreover,
the results show that our framework can learn to enforce building block sets as small as 10 and
even 5 (Appendix H.8), which is practically relevant for re-purposing building blocks into useful
molecules (Granda et al., 2018; Wołos et al., 2020; 2022). From a generative model perspective,
we have shown that optimizing for constrained synthesizability necessitates a better exploration-
exploitation trade-off, providing practical insights into MPO in these settings. Furthermore, our
results show that incentivizing an unconstrained model can lead to productive learning even in
challenging synthesizability MPO settings. However, "true synthesizability" depends on the accuracy
of the retrosynthesis model and they are not perfect. It is likely that some routes generated are not
synthetically feasible and/or lack regio- or stereo-selectivity (Molga et al., 2019). This is a limitation
of current retrosynthesis models and is an ongoing challenge for improved synthesis planning.
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A RELATED WORK

Retrosynthesis Models. Retrosynthesis planning aims to find a set of commercial building blocks and
viable chemical transformations that can be combined to synthesize a target molecule. Existing works
encode chemically plausible transformations either as reaction templates (coded patterns) (Chen &
Jung, 2021; Xie et al., 2023) or template-free approaches (learn from data) operating on SMILES
strings (Liu et al., 2017; Segler & Waller, 2017; Schwaller et al., 2020; Thakkar et al., 2023; Han
et al., 2024) or graphs (Sacha et al., 2021; Zhong et al., 2023). Subsequently, multi-step retrosynthesis
planning is tackled by coupling a search algorithm such as Monte Carlo tree search (Segler et al.,
2018), Retro* (Chen et al., 2020), Planning with Dual Value Networks (PDVN) (Liu et al., 2023), or
the recent Double-Ended Synthesis Planning (DESP) (Yu et al., 2024). With retrosynthesis planning
being a ubiquitous task in molecular discovery, many platform solutions exist, including SYNTHIA
(Szymkuć et al., 2016; Grzybowski et al., 2018), AiZynthFinder (Genheden et al., 2020; Saigiridharan
et al., 2024), ASKCOS (Coley et al., 2019; Tu et al., 2025), Eli Lilly’s LillyMol (Watson et al., 2019),
Molecule.one’s M1 platform (Molecule.one), and IBM RXN (Schwaller et al., 2020). In the context
of generative molecular design, retrosynthesis models are usually used for post-hoc filtering due
to their inference cost, but recent work has shown that with a sample-efficient model, they can be
incorporated directly as an optimization objective (Guo & Schwaller, 2024c).

Synthesizability-constrained Molecular Generation. Bridging concepts from retrosynthesis,
synthesizability-constrained models anchor molecular generation by enforcing a set of valid chemical
transformations (Vinkers et al., 2003; Hartenfeller et al., 2012; Ghiandoni et al., 2022; 2024; Bradshaw
et al., 2019; 2020; Korovina et al., 2020; Gao et al., 2022; Seo et al., 2023; Koziarski et al., 2024; Gao
et al., 2024; Cretu et al., 2024; Luo et al., 2024; Gottipati et al., 2020; Horwood & Noutahi, 2020;
Fialková et al., 2021; Jocys et al., 2024; Seo et al., 2024). To date, there are no molecular generative
models that can enforce the presence of specific building blocks in the synthesis graph and the closest
works are SynNet (Gao et al., 2022) and the very recent SynFormer (Gao et al., 2024) models which
can condition on a target molecule to propose a synthetic route. Current synthesizability-constrained
approaches cannot reliably (or are sample-inefficient) satisfy MPO objectives which is a necessary
requirement for practical applications. In this work, we show that a general-purpose model, can
generate synthesizable molecules that satisfy MPO objectives while enforcing the presence of a small
set of building blocks either at the start of the synthesis (starting-material constrained), as a common
intermediate (intermediate-constrained), or non-commercial building blocks that diverge to diverse,
favorable generated molecules (divergent synthesis) (Fig. 1). To our knowledge, there are only several
works Johnson et al. (1992); Yu et al. (2022; 2024); Szymkuć et al. (2016); Grzybowski et al. (2018)
that enable some notion of building block-constrained synthesis planning. In particular, the very
recent DESP (Yu et al., 2024) retrosynthesis search algorithm proposes a bidirectional search that can
constrain on a starting-material. Our work differs in that we are not proposing a search algorithm,
but rather the first generative approach that jointly tackles constrained synthesizability and MPO.
Moreover, our framework can consider the constraint of many building blocks simultaneously.

B TANGO REWARD SCHEMATIC

Fig. 3 shows a schematic of the reward function. Each intermediate node in the synthesis graph is
assessed by TANGO and the maximum value is the reward.
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Figure 3: TANGO reward function: the maximum similarity between every non-root node (generated
molecule) molecule and the set of enforced building blocks. Every synthesizable generated molecule
returns a non-zero reward.

C PUBCHEM PRE-PROCESSING AND SATURN PRE-TRAINING

This section contains the full data pre-processing and pre-training pipeline starting from the
raw PubChem which was downloaded from https://ftp.ncbi.nlm.nih.gov/pubchem/
Compound/Extras/. The exact file is "CID-SMILES.gz".

The exact pre-processing steps along with the SMILES remaining after each step are:

1. Raw PubChem - 118,563,810

2. De-duplication - 118,469,904

3. Standardization (charge and isotope handling) based on https://github.com/
MolecularAI/ReinventCommunity/blob/master/notebooks/Data_
Preparation.ipynb. All SMILES that could not be parsed by RDKit were removed -
109,128,315

4. Tokenize all SMILES based on REINVENT’s tokenizer: https://github.
com/MolecularAI/reinvent-models/blob/main/reinvent_models/
reinvent_core/models/vocabulary.py

5. Keep SMILES ≤ 80 tokens, 150 ≤ molecular weight ≤ 650, number of heavy atoms ≤
40, number of rings ≤ 8, Size of largest ring ≤ 8, longest aliphatic carbon chain ≤ 4 -
97,667,549

6. Removed SMILES containing the following tokens (due to undesired chemistry, low token
frequency, and redundancy): [Br+2], [Br+3], [Br+], [C+], [C-], [CH+], [CH-], [CH2+],
[CH2-], [CH2], [CH], [C], [Cl+2], [Cl+3], [Cl+], [ClH+2], [ClH2+2], [ClH3+3], [N-],
[N@+], [N@@+], [NH+], [NH-], [NH2+], [NH3+], [NH], [N], [O+], [OH+], [OH2+], [O],
[S+], [S-], [S@+], [S@@+], [S@@], [S@], [SH+], [SH-], [SH2], [SH4], [SH], [S], [c+],
[c-], [cH+], [cH-], [c], [n+], [n-], [nH+], [nH], [o+], [s+], [sH+], [sH-], [sH2], [sH4], [sH],
[s] - 88,618,780
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The final vocabulary contained 35 tokens (2 extra tokens were added, indicating <START> and
<END>) and carbon stereochemistry tokens were kept. Saturn (Guo & Schwaller, 2024b) uses the
Mamba (Gu & Dao, 2023) architecture and we used the default hyperparameters in the code-base.
With the vocabulary size of 35, the model has 5,265,408 parameters. Saturn was pre-trained for
5 steps, with each step consisting of a full pass through the dataset. The model was pre-trained
on a workstation with an NVIDIA RTX 3090 GPU and AMD Ryzen 9 5900X 12-Core CPU. The
pre-training parameters were:

1. Training steps = 5

2. Seed = 0

3. Batch size = 512

4. Learning rate = 0.0001

5. Randomize (Bjerrum, 2017) every batch of SMILES

Relevant metrics of the pre-trained model (final model checkpoint) are:

1. Average negative log-likelihood (NLL) = 30.914

2. Validity (10k) = 98.74%

3. Uniqueness (10k) = 98.73%

4. Wall time = 106 hours (takes a relatively long time, though we only used 1 GPU for training.
Pre-training also only needs to be done once.)

D RETROSYNTHESIS DETAILS

This section contains details on the retrosynthesis model, the commercial building blocks, and the
enforced building blocks.

D.1 RETROSYNTHESIS FRAMEWORK

In this work, we use Syntheseus (Maziarz et al., 2023) (benchmark platform and wrapper around
retrosynthesis models and search algorithms) to run retrosynthesis. We integrate Syntheseus into
Saturn (Guo & Schwaller, 2024b) and run the MEGAN (Sacha et al., 2021) single-step model with
the Retro* (Chen et al., 2020) search algorithm. In the Syntheseus work, the authors standardize
and benchmark many retrosynthesis models and configurations, reporting the inference time and
accuracy (across various metrics). We chose MEGAN because it has the fastest inference time,
although the top-k accuracies were lower than other models. We note that top-k single-step accuracy
does not necessarily equate to better performance on multi-step retrosynthesis. Faster inference time
allowed us to iterate experiments and hypotheses faster and is the main reason we chose MEGAN.
Our framework is model-agnostic and any retrosynthesis model could be used in place of MEGAN.
All MEGAN hyperparameters were tuned by the Syntheseus authors and we use them as is.

D.2 COMMERCIAL BUILDING BLOCKS

All retrosynthesis models require commercial building blocks, B. In this work, we use the ‘Fragment‘
and ‘Reactive‘ sub-sets of ZINC (Sterling & Irwin, 2015), equating to 17,721,980 building blocks.
These sub-sets were obtained from the commercial building block stock used in AiZynthFinder
(Genheden et al., 2020; Saigiridharan et al., 2024). Next, we consider two sets of enforced building
blocks, Benf−10 ⊂ Benf−100 ⊂ B. The enforced building block sets (10 or 100) are sub-sets of B
and were randomly sampled following the criteria:

1. 150 < molecular weight < 200

2. No aliphatic carbon chains longer than 3

3. Exclude charged building blocks

4. If rings are present, enforce size ∈ {5, 6}
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Figure 4: Reward shaping function for docking.

5. All building blocks must contain at least one nitrogen, oxygen, or sulfur atom

The criteria we defined are based on enforcing building blocks that are "simple, common, and relevant
for drug-like molecules". While there is an inherent bias here, we emphasize that our TANGO
framework is general and the set of enforced building blocks can be freely changed. Finally, we want
to highlight an important implication when considering the commercial building blocks, B, and the
generative model. Due to intentional data pre-processing of PubChem, which was used to pre-train
Saturn, the generative model cannot generate all the atom types present in B. The specific atom types
are phosphorus and silicon. We removed these atoms due to their seldom presence in "drug-like"
molecules (although phosphorus is common in pro-drugs). The effect of this is that some commercial
building blocks are not relevant, but we did not purge these and used the ZINC sub-sets as is. Similar
to the enforced building blocks set, the set of commercial building blocks can also freely be changed.
The sets of enforced building blocks are provided in the code-base.

E COMPUTE DETAILS

Every experiment (except pre-training Saturn) was run on a cluster equipped with NVIDIA L40S
GPUs. As we used a SLURM queuing system, many jobs could be allocated the same GPU to run
simultaneously. This makes the wall time for each individual run slower, but the total time to finish
experiments is faster. We report the wall times as is.

F DOCKING REWARD SHAPING

Saturn expected every property to be optimized to have a normalized reward ∈ [0, 1]. TANGO and
QED are already by design normalized but QuickVina2-GPU docking needs to be reward shaped.
This is done by the shaping function shown here.

G TANGO PSEUDO-CODE

H TANGO DEVELOPMENT AND ABLATIONS

In this section, we present the systematic development of TANGO, all ablation studies, and additional
results. The section will be divided sequentially into sub-sections detailing our hypotheses, the
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Algorithm 1: TANGO Reward Calculation
Input:
G(M,R) Synthesis graph of generated molecule
Benf Enforced building blocks
max depth Graph depth of terminal leaf nodes
enforce start Boolean flag for starting-material constraint

Output: reward

reward← 0
// Traverse all non-root nodes in the synthesis graph
foreach node m ∈ G(M,R) and depth(m) > 0 do

// Starting-material constrained or not
if enforce start then

if depth(m) ̸= max depth then
continue

end
end
reward← max(reward,TANGONodeReward(m,Benf ))

end
Function TANGONodeReward(node, Benf):

node_reward← 0
// Loop through all enforced building blocks
foreach benf ∈ Benf do

// Compute current block’s reward
TanSim← ComputeTanimotoSimilarity(node, benf )

FMS ← ComputeFMS(node, benf )

block_reward← TanSim · 0.50 + FMS · 0.50
node_reward← max(node_reward, block_reward)

end
return node_reward

return TANGO_reward
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experiments we ran to study them, and the observations we made. All development experiments
were run across 5 seeds (0-4 inclusive) while main result experiments were run across 10 seeds (0-9
inclusive). This information will be noted. The MPO objective is:

1. Minimize QuickVina2-GPU-2.1 (Trott & Olson, 2010; Alhossary et al., 2015; Tang et al.,
2023) docking scores against ATP-dependent Clp protease proteolytic subunit (ClpP) (Ma-
banglo et al., 2023) (implicated in cancer)

2. Maximize QED (Bickerton et al., 2012)
3. Constrained Synthesizable, as deemed by the MEGAN (Sacha et al., 2021) retrosynthesis

model coupled with Retro* search (Chen et al., 2020)

Next, throughout TANGO development, we change the hyperparameters of Saturn, which directly
control for the exploration-exploitation trade-off. We briefly summarize the key hyperparameters and
their effect:

1. Batch Size: Lower is more exploitative
2. Augmentation Rounds: Higher is more exploitative

Finally, for all sets of experiments, we report metrics averaged across either 5 (0-4 inclusive) or 10
(0-9 inclusive) seeds. The number of seeds will be explicitly noted. The metrics are:

1. Non-solved: Number of generated molecules that do not have a solved synthetic route
2. Solved: Number of generated molecules that have a synthetic route with at least 1 enforced

building block
3. Docking Scores - QED: Average and standard deviation of docking scores and QED values

across various docking score thresholds. The rationale for this is because we want to
optimize all objectives and analyzing different partitions is more informative

4. Oracle Budget: Number of oracle calls permitted
5. Wall Time: Compute time for the run

Constrained Synthesizability denotes either start-material constrained (enforced building blocks
appearing at the max depth nodes in the synthesis graph), intermediate-constrained (enforced building
blocks appearing anywhere in the synthesis graph), or divergent synthesis (enforced non-commercial
building blocks appearing anywhere in the synthesis graph). This information will be explicitly noted.
Finally, for brevity, we will write "synthesizable" to mean synthesizable, as deemed by the MEGAN
retrosynthesis model.

H.1 HOW CAN CONSTRAINED SYNTHESIZABILITY BE MADE LEARNABLE?

The starting point of TANGO development drew inspiration from (Coley et al., 2017; Zhang et al.,
2024) which used Tanimoto similarity for retrosynthesis problems. We hypothesized that Tanimoto
similarity alone is insufficient to inform chemical reactivity. Therefore, very initial experiments
tried to "filter" nodes by matching for functional groups. Specifically, for every molecule generated
that was synthesizable, there is a corresponding synthesis graph whose nodes are every intermediate
molecule. The very first reward function traverses these nodes and computes the max Tanimoto
similarity to the set of enforced building blocks, provided that the node overlaps 75% of the functional
groups with at least one of the enforced building blocks, and returns this as the reward. With this
initial reward formulation, we used Saturn’s (Guo & Schwaller, 2024b) default hyperparameters of
batch size 16 and 10 augmentation rounds. These parameters make the model perform local sampling
in chemical space aggressively. We had run this experiment across 5 seeds (0-4 inclusive) with an
oracle budget of 3,000 and only one seed was successful in generating some synthesizable molecules
with the enforced building blocks. All seeds showed some learning, in that the average Tanimoto
similarity of the synthesis graphs to the enforced building blocks was increasing (though it always
stagnated). At the time, this was highly irreproducible, considering only 1/5 runs were successful.
However, these failed runs gave us sets of molecules possessing various Tanimoto similarity to the
enforced building blocks which we used to investigate various reward shaping functions. Specifically,
we took the set of all generated molecules from one of the seeds and partitioned all the molecules
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Figure 5: Reward distributions of different reward function formulations.

that were synthesizable into the following Tanimoto similarity thresholds (to the enforced building
blocks):

1. Low: 0.0 < TanSim < 0.2 (N = 237)

2. Med: 0.2 <= TanSim < 0.3 (N = 438)

3. Med-High: 0.3 <= TanSim < 0.4 (N = 734)

4. High: 0.4 <= TanSim < 0.5 (N = 38)

5. Very-High: 0.5 <= TanSim > 1.0 (N = 712)

The reward distributions of these sets of molecules were visualized under different reward formu-
lations (Fig. 5). All comparison are to the set of enforced building blocks:

1. Functional Groups (FG): Mean or max functional groups overlap

2. Tanimoto Similarity (TanSim): Mean or max Tanimoto Similarity

3. Fuzzy Matching Substructure (FMS): Mean or max fraction of atoms in the maximum
matching substructure

4. TANGO-FG: Max TanSim + Mean FG

5. TANGO-FMS: Max TanSim + Max FMS

6. TANGO-All: Max TanSim + Mean FG + Max FMS

Based on Fig 5, Max TanSim, Max FMS, and TANGO-FMS are able to separate the partitioned
Tanimoto similarity intervals the best. These reward formulations are promising because they can
distinguish between "closeness" to incorporating the enforced building blocks and enables a gradient
for learning. It is important to know that this analysis has an explicit bias: we are assuming that
Tanimoto similarity does in fact equate to being "closer", since we partitioned the generated set based
on this. However, this gave us the first hypotheses to work with.

Hypotheses:
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1. The initial run with 1/5 successful seeds used Batch Size = 16 and Augmentation Rounds =
10. This is likely too exploitative. Try a more exploratory sampling behavior with Batch
Size = 32 and Augmentation Rounds = 5.

2. Try the most promising reward functions: Max TanSim, Max FMS, and TANGO-FMS.

Fixed Parameters:

1. Oracle Budget = 3,000

2. Batch Size = 32

3. Augmentation Rounds = 5

4. Enforced Building Blocks = 100

Observations: Table 2 shows the results with the mean and standard deviation across 5 seeds (0-4
inclusive). We make the following observations:

1. All reward functions can yield successful runs.

2. FMS and TanSim are inconsistent with 3/5 runs unsuccessful.

3. FMS finds very few molecules satisfying constrained synthesizability

4. TANGO-FMS yields the best average performance.

Table 2: Results for Section 1: How can Constrained Synthesizability be made Learnable? The mean
and standard deviation across 5 seeds (0-4 inclusive) are reported. The number of replicates (out
of 5) with at least 1 generated molecule that is synthesizable with an enforced building block is
reported with N. The number of molecules (pooled across all successful replicates) are partitioned
into different docking score thresholds and statistics reported. # Reaction Steps is also reported for
the pooled generated molecules that have an enforced block. The total number of molecules in each
pool across the 5 seeds is denoted by M. For the docking score intervals, we report the scores and
QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

TanSim 577 ± 32 333 ± 408 None -9.35 ± 0.24 (M=20) -8.38 ± 0.25 (M=248)

(N=2) N/A 0.70 ± 0.08 0.73 ± 0.10

FMS 578 ± 30 9 ± 12 None None -8.36 ± 0.26 (M=20)

(N=2) N/A N/A 0.85 ± 0.04

TANGO-FMS 643 ± 23 476 ± 377 -10.36 ± 0.25 (M=10) -9.40 ± 0.24 (M=146) -8.42 ± 0.25 (M=596)

(N=5) 0.70 ± 0.03 0.70 ± 0.09 0.77 ± 0.10

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
TanSim 2.53 ± 1.3 (M=1665) 2 ± 0 3,000 (5h 3m ± 24m)
FMS 2 ± 1.07 (M=48) 1.5 ± 0.5 3,000 (4h 29m ± 17m)
TANGO-FMS 2.27 ± 1.28 (M=2382) 1.2 ± 0.4 3,000 (5h 28m ± 45m)

H.2 FUZZY MATCHING SUBSTRUCTURE IS AN ASYMMETRIC REWARD FUNCTION

The FMS results from the previous section yielded false positives: A maximum reward (1.0) was
assigned to many generated molecules, yet these molecules did not contain any of the enforced
building blocks in its synthesis graphs. The reason for this is due to the asymmetric nature of the
designed FMS reward function. We refer to Fig. 6. The FMS reward function computes the maximum
substructure overlap and then divides the number of atoms in this overlap by the number of atoms in
the enforced building block. Fig. 6 illustrates an edge case where the intermediate node contains
the enforced building block as a substructure, but the overall structures do not exactly match. The
result was that FMS assigned a perfect reward (1.0). This edge case can be handled by an additional
check for exact match, and returning the asymmetric FMS otherwise. This is one possible solution to
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Figure 6: Fuzzy Matching Substructure (FMS) is asymmetric depending on whether the number of
matching atoms is divided by the number of atoms in the enforced building block or the intermediate
node.

avoid false positives, yet still reward the model since the overall node and enforced building block
structures are similar. Therefore, for all FMS reward function results, we used this formulation.

However, we note that false positives only occur in the FMS reward function case, as TANGO-FMS
cannot yield perfect reward. Since TANGO-FMS is comprised of both FMS and Tanimoto similarity:
even if FMS is a false positive, Tanimoto similarity cannot equal 1.0, and thus TANGO-FMS cannot
equal 1.0. We hypothesized that this false positive can actually be beneficial, as a perfect reward
biases the model towards generating molecules that yield a synthesis graph with an intermediate node
similar to an enforced building block. This exploitation behavior could be advantageous. In the next
section, we investigate the exploration-exploitation trade-off of the generative model when using
TANGO-FMS as the reward function. Once we identified optimal hyperparameters, we performed an
ablation study in the section after to quantitatively study this asymmetric FMS behavior. We sought to
answer whether it is actually advantageous to return a "perfect reward (1.0)" for the FMS component
in these situations?

H.3 CAN WE CIRCUMVENT REWARD STAGNATION?

The results from the first section identified TANGO-FMS as the most stable reward function. However,
during RL, we observed that the reward improvement often stagnates.

Hypotheses:

1. Further relax the local sampling behavior of Saturn which may help reward stagnation

Fixed Parameters:

1. Oracle Budget = 5,000
2. Batch Size = 32 or 64
3. Augmentation Rounds = Varied
4. Enforced Building Blocks = 100

Observations: Table 3 shows the results with the mean and standard deviation across 5 seeds (0-4
inclusive). We make the following observations:

1. Batch32, AR5 is the most successful but imposes a much longer wall time. This is due to
Saturn’s local sampling behavior at low batch sizes and high augmentation rounds.
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2. Batch64, AR0 is essentially completely unsuccessful. This affirms that some degree of
exploitation is beneficial.

3. Batch64, AR10 is somewhat inconsistent, suggesting too much exploitation.
4. Batch64, AR2 and AR5 performs well with the latter notably better, suggesting AR5 may

be a good balance between exploration-exploitation.

Table 3: Results for Section 2: Can we Circumvent Reward Stagnation? The mean and standard
deviation across 5 seeds (0-4 inclusive) are reported. The number of replicates (out of 5) with at
least 1 generated molecule that is synthesizable with an enforced building block is reported with N.
Batch denotes "Batch Size" and AR denotes "Augmentation Rounds". The number of molecules
(pooled across all successful replicates) is partitioned into different docking score thresholds and
statistics are reported. # Reaction Steps is also reported for the pooled generated molecules that have
an enforced block. The total number of molecules in each pool across the 5 seeds is denoted by M.
For the docking score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

Batch32, AR5 1125 ± 110 960 ± 871 -10.34 ± 0.23 (M=11) -9.41 ± 0.25 (M=220) -8.41 ± 0.25 (1093)

(N=4) 0.82 ± 0.08 0.79 ± 0.11 0.80 ± 0.09

Batch64, AR10 954 ± 90 674 ± 706 -10.43 ± 0.38 (M=78) -9.46 ± 0.25 (M=208) -8.41 ± 0.25 (484)

(N=3) 0.68 ± 0.07 0.71 ± 0.10 0.81 ± 0.09

Batch64, AR5 1029 ± 78 857 ± 529 -10.3 ± 0.25 (M=14) -9.37 ± 0.21 (M=274) -8.44 ± 0.25 (M=1210)

(N=4) 0.73 ± 0.11 0.78 ± 0.10 0.81 ± 0.09

Batch64, AR2 1175 ± 89 33 ± 47 -10.7 ± 0 (M=1) -9.21 ± 0.10 (M=8) -8.39 ± 0.25 (M=49)

(N=4) 0.75 ± 0 0.82 ± 0.15 0.77 ± 0.11

Batch64, AR0 1921 ± 72 0.60 ± 0.49 None None -8.70 ± 0 (M=1)

(N=3) N/A N/A 0.55 ± 0

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Batch32, AR5 2.76 ± 1.41 (M=4800) 1 ± 0 5,000 (11h 44m ± 1h 38m)
Batch64, AR10 2.76 ± 1.12 (M=3370) 2 ± 0.82 5,000 (5h 56m ± 25m)
Batch64, AR5 2.13 ± 1.21 (M=4286) 1.25 ± 0.43 5,000 (4h 21m ± 18m)
Batch64, AR2 1.60 ± 0.82 (M=1234) 2 ± 1 5,000 (3h 20m ± 7m)
Batch64, AR0 1 ± 0 (M=3) 1 ± 0 5,000 (2h 52m ± 2m)

H.4 RE-VISITING REWARD FUNCTION FORMULATION FOR ABLATION STUDIES

The results from the previous section identified tentative hyperparameters with agood balance between
exploration-exploitation. With this "better" sampling behavior, we wanted to re-visit the reward
function formulations as an extensive ablation to affirm that TANGO-FMS is the best formulation.

Hypotheses:

1. TANGO-FMS may not be the best reward function formulation now that better exploration-
exploitation parameters have been identified. Try all reward function formulations.

2. In the previous section, Batch64, AR5 worked much better than Batch64, AR2, but it might
be too exploitative when we consider moving to a smaller set of enforced blocks and/or
starting-material constraints.

3. More thoroughly study the effect of the sampling behavior by increasing the oracle budget.

Fixed Parameters:

1. Oracle Budget = 10,000
2. Batch Size = 64
3. Augmentation Rounds = 2 or 5
4. Enforced Building Blocks = 100
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Observations: Table 4 shows the results with the mean and standard deviation across 5 seeds (0-4
inclusive). We make the following observations:

1. Surprisingly, Brute-force is sometimes successful but is inconsistent, as expected. Notably
many molecules are non-solved (no retrosynthesis route found).

2. FG poorly distinguishes between "goodness" and is essentially unsuccessful, as expected.
3. FMS can distinguish between "goodness" but is not very successful, somewhat unexpectedly.
4. TamSim continues to be successful but is inconsistent, mirroring initial results.
5. TANGO with components of FG are more unsuccessful, in agreement with FG being a poor

reward function formulation.
6. TANGO-FMS is most stable, mirroring initial results.
7. TANGO-FMS with the "Asymmetric FMS" implementation (Appendix H.2) performs worse

than without. The variance for Solved (Enforced) is higher and much fewer molecules with
good docking scores and QED are generated. For this reason, from here on, the original
FMS implementation is used, as detailed in Appendix H.2.

8. TANGO-FMS (but with AR5) can outperform TANGO-FMS (AR2) but is notably more
inconsistent. This affirms our hypothesis that AR5 might be too exploitative. Importantly,
the runs with AR5 also have a much longer wall time, again, due to Saturn’s local sampling
behavior. Based on these results, AR2 is likely a better balance between exploration-
exploitation.

H.5 IN TANGO-FMS, IS EITHER FMS OR TANIMOTO SIMILARITY MORE IMPORTANT?

The results from the previous section identified hyperparameters with good balance between
exploration-exploitation. Thus far, all TANGO formulations weight each component equally. The
next question we asked was whether certain components were more important?

Hypotheses:

1. FMS should be more informative than Tanimoto similarity to inform chemical reactivity.
Test the effect of components weighting.

Fixed Parameters:

1. Oracle Budget = 10,000
2. Batch Size = 64
3. Augmentation Rounds = 2
4. Enforced Building Blocks = 100

Observations: Table 5 shows the results with the mean and standard deviation across 5 seeds (0-4
inclusive). "High" indicates 0.75 weighting while the other component is 0.25. TANGO-FMS has
equal weighting (0.5 FMS, 0.5 Tanimoto). We make the following observations:

1. TANGO-FMS with equal weighting performs the best in the context of MPO as docking
scores are better.

2. TANGO-FMS-High-TanSim generates more solved molecules but docking scores are worse.
These suggests suggest that MPO is better with TANGO-FMS (equal weighting) and is the
reward function we use from here on.

H.6 INVESTIGATING ROBUSTNESS

With optimal hyperparameters identified, we expand to robustness studies and run every experiment
across 10 seeds (0-9 inclusive) and investigate enforcing a smaller set of building blocks. We also
probe whether the starting-material constraint is also learnable within the oracle budget. Finally, we
also perform a set of experiments without the QED objective.

Fixed Parameters:
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Table 4: Results for Section 3: Re-visiting Reward Function Formulation for Ablation Studies. The
mean and standard deviation across 5 seeds (0-4 inclusive) are reported. The number of replicates
(out of 5) with at least 1 generated molecule that is synthesizable with an enforced building block is
reported with N. AR denotes "Augmentation Rounds". The number of molecules (pooled across all
successful replicates) is partitioned into different docking score thresholds and statistics are reported.
# Reaction Steps is also reported for the pooled generated molecules that have an enforced block.
The total number of molecules in each pool across the 5 seeds is denoted by M. For the docking
score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

Brute-force 5547 ± 1554 2175 ± 1954 -10.36 ± 0.25 (M=25) -9.33 ± 0.22 (M=529) -8.43 ± 0.25 (M=3196)

(N=3) 0.46 ± 0.16 0.60 ± 0.19 0.69 ± 0.19

TanSim 2275 ± 143 1863 ± 1827 -10.36 ± 0.24 (M=30) -9.36 ± 0.23 (M=487) -8.43 ± 0.25 (M=2389)

(N=3) 0.72 ± 0.09 0.76 ± 0.10 0.79 ± 0.09

FG 2144 ± 263 1 ± 1 None -9.20 ± 0 (M=1) -8.50 ± 0.28 (M=2)

(N=4) N/A 0.87 ± 0 0.85 ± 0.03

FMS 1693 ± 174 114 ± 205 -10.36 ± 0.40 (M=5) -9.41 ± 0.25 (M=53) -8.48 ± 0.25 (M=173)

(N=5) 0.75 ± 0.15 0.85 ± 0.09 0.85 ± 0.07

TANGO-FG 1957 ± 203 658 ± 967 -10.20 ± 0.10 (M=9) -9.27 ± 0.18 (M=205) -8.48 ± 0.25 (M=1280)

(N=5) 0.74 ± 0.07 0.78 ± 0.10 0.82 ± 0.09

TANGO-FMS 2229 ± 325 1743 ± 715 -10.34 ± 0.25 (M=218) -9.44 ± 0.25 (M=1606) -8.49 ± 0.26 (M=2206)

(N=5) 0.77 ± 0.11 0.83 ± 0.10 0.82 ± 0.10

TANGO-FMS 2249 ± 323 1866 ± 1083 -10.36 ± 0.27 (M=59) -9.39 ± 0.25 (M=513) -8.40 ± 0.25 (M=2049)

Asymmetric-FMS (N=5) 0.71 ± 0.10 0.79 ± 0.10 0.80 ± 0.09

TANGO-FMS (AR5) 2157 ± 182 2521 ± 2060 -10.29 ± 0.18 (M=11) -9.33 ± 0.22 (M=382) -8.40 ± 0.24 (M=2881)

(N=4) 0.71 ± 0.12 0.80 ± 0.11 0.83 ± 0.09

TANGO-All 2049 ± 93 147 ± 245 -10.43 ± 0.27 (M=31) -9.41 ± 0.26 (M=227) -8.53 ± 0.25 (M=283)

(N=3) 0.74 ± 0.08 0.82 ± 0.09 0.84 ± 0.09

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Brute-force 3 ± 1.54 (M=10876) 1.33 ± 0.47 10,000 (7h 29m ± 2h 11m)
TanSim 2.18 ± 1.16 (M=9319) 1.33 ± 0.47 10,000 (9h 11m ± 48m)
FG 3.33 ± 1.80 (M=9) 1.75 ± 0.83 10,000 (7h 23m ± 16m)
FMS 1.78 ± 1.04 (M=570) 1.8 ± 0.75 10,000 (7h 50 ± 26)
TANGO-FG 2.21 ± 1.15 (M=3237) 1.8 ± 0.75 10,000 (8h 29m ± 25m)
TANGO-FMS 2.35 ± 1.24 (M=8719) 2.2 ± 0.75 10,000 (8h 12m ± 15m)
TANGO-FMS (Asymmetric-FMS) 2.24 ± 1.19 (M=9334) 2.2 ± 0.4 10,000 (8h 42m ± 26m)
TANGO-FMS (AR5) 2.58 ± 1.17 (M=12608) 1.5 ± 0.5 10,000 (12h 36m ± 52m)
TANGO-All 2.74 ± 1.18 (M=714) 2 ± 0.82 10,000 (8h 11m ± 12m)

1. Oracle Budget = 10,000

2. Batch Size = 64

3. Augmentation Rounds = 2

4. Reward Function = TANGO-FMS (equal weighting)

5. Enforced Building Blocks = 100

Observations: Table 6 shows the results with the mean and standard deviation across 10 seeds (0-9
inclusive). We make the following observations:

1. All constraints are learnable.

2. When not enforcing QED, the model generates many more molecules with "good" docking
scores, and expectedly, at the expense of QED. This affirms that the MPO is tunable, allowing
tailored design of molecules that are also constrained by synthesis.

3. As expected, when not enforcing QED, the average reaction steps is longer, since QED
constrains molecular weight.
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Table 5: Results for Section 4: In TANGO-FMS, is either FMS or Tanimoto Similarity more
Important? The mean and standard deviation across 5 seeds (0-4 inclusive) are reported. The number
of replicates (out of 5) with at least 1 generated molecule that is synthesizable with an enforced
building block is reported with N. The number of molecules (pooled across all successful replicates)
is partitioned into different docking score thresholds and statistics are reported. # Reaction Steps is
also reported for the pooled generated molecules that have an enforced block. The total number of
molecules in each pool is denoted by M. For the docking score intervals, we report the scores and
QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

TANGO 2229 ± 325 1743 ± 715 -10.34 ± 0.25 (M=218) -9.44 ± 0.25 (M=1606) -8.49 ± 0.26 (M=2206)

(0.50 FMS, 0.50 TanSim) (N=5) 0.77 ± 0.11 0.83 ± 0.10 0.82 ± 0.10

TANGO 1962 ± 166 1725 ± 747 -10.30 ± 0.17 (M=23) -9.32 ± 0.22 (M=498) -8.44 ± 0.25 (M=2554)

(0.75 FMS, 0.25 TanSim) (N=5) 0.78 ± 0.06 0.83 ± 0.07 0.85 ± 0.07

TANGO 2464 ± 437 2737 ± 1038 -10.31 ± 0.24 (M=84) -9.39 ± 0.25 (M=837) 8.43 ± 0.25 (M=3468)

(0.25 FMS, 0.75 TanSim) (N=5) 0.75 ± 0.10 0.78 ± 0.10 0.80 ± 0.10

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
TANGO (0.5 FMS, 0.5 TanSim) 2.35 ± 1.24 (M=8719) 2.2 ± 0.75 10,000 (8h 12m ± 15m)
TANGO (0.75 FMS, 0.25 TanSim) 2.39 ± 1.24 (M=8625) 1.6 ± 0.49 10,000 (8h 36m ± 16m)
TANGO (0.25 FMS, 0.75 TanSim) 2.30 ± 1.30 (M=13688) 1.6 ± 0.49 10,000 (8h 51m ± 26m)

H.7 LUCKY BUILDING BLOCKS?

From the previous set of experiments, we noticed that the generative model was always incorporating
the same 3 enforced building blocks. One in particular was especially common, such that most runs
using the set of 10 enforced blocks, use it. We questioned whether TANGO’s success was due to luck
in having "suitable" building blocks. Therefore, we perform further ablation experiments that purge
these 3 building blocks. Similar to the previous set of experiments, we run every configuration here
across 10 seeds (0-9 inclusive).

Fixed Parameters:

1. Oracle Budget = 10,000

2. Batch Size = 64

3. Augmentation Rounds = 2

4. Reward Function = TANGO-FMS (equal weighting)

5. Purged Enforced Building Blocks = 97 (Purged the 3 common enforced building blocks
from the set of 100)

Observations: Table 7 shows the results with the mean and standard deviation across 10 seeds (0-9
inclusive). We make the following observations:

1. Other building blocks can be enforced.

2. The runs become less consistent (less successful seeds out of 10). Runs without QED are
consistently succcessful, suggesting that the commonly enforced blocks were chosen due to
being able to jointly satisfy QED and docking.

H.8 5 ENFORCED BLOCKS

We next push our framework further by curating 5 building blocks (Fig. 7) that are dissimilar and/or
can be involved in different reaction chemistries. Our objective was to investigate whether the model
can learn to incorporate such a small set of blocks and whether other chemical reactions can be
enforced.

Fixed Parameters:
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Table 6: Results for Section 5: Investigating Robustness. "SM" denotes starting-material constrained.
The mean and standard deviation across 10 seeds (0-9 inclusive) are reported. The number of
replicates (out of 10) with at least 1 generated molecule that is synthesizable with an enforced
building block is reported with N. TThe number of molecules (pooled across all successful replicates)
is partitioned into different docking score thresholds and statistics are reported. # Reaction Steps is
also reported for the pooled generated molecules that have an enforced block. The total number of
molecules in each pool across the 10 seeds is denoted by M. For the docking score intervals, we
report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

100 Blocks 2288 ± 305 2111 ± 1169 -10.36 ± 0.28 (M=487) -9.42 ± 0.24 (M=3096) -8.47 ± 0.26 (M=5904)

(N=10) 0.79 ± 0.09 0.82 ± 0.09 0.81 ± 0.09

100 Blocks (no QED) 1848 ± 158 3723 ± 681 -10.74 ± 0.55 (M=8649) -9.48 ± 0.26 (M=10633) -8.53 ± 0.25 (M=9771)

(N=10) 0.23 ± 0.06 0.27 ± 0.11 0.32 ± 0.15

100 Blocks (SM) 1879 ± 186 1524 ± 502 -10.41 ± 0.31 (M=120) -9.41 ± 0.24 (M=985) -8.43 ± 0.25 (M=3156)

(N=10) 0.78 ± 0.09 0.81 ± 0.09 0.81 ± 0.09

100 Blocks (SM, no QED) 1734 ± 172 1189 ± 963 -10.50 ± 0.40 (M=685) -9.43 ± 0.25 (M=2357) -8.49 ± 0.25 (M=4121)

(N=10) 0.31 ± 0.15 0.38 ± 0.17 0.45 ± 0.18

10 Blocks 2425 ± 288 984 ± 1181 -10.38 ± 0.30 (M=659) -9.46 ± 0.25 (M=3981) -8.57 ± 0.25 (M=2419)

(N=6) 0.79 ± 0.10 0.83 ± 0.09 0.83 ± 0.10

10 Blocks (no QED) 1967 ± 211 2640 ± 1066 -10.51 ± 0.39 (M=3453) -9.47 ± 0.25 (M=8402) -8.54 ± 0.25 (M=8332)

(N=9) 0.35 ± 0.16 0.39 ± 0.16 0.41 ± 0.16

10 Blocks (SM) 2228 ± 182 1004 ± 925 -10.37 ± 0.27 (794) -9.46 ± 0.24 (M=3881) -8.54 ± 0.25 (M=2790)

(N=9) 0.80 ± 0.09 0.83 ± 0.09 0.84 ± 0.10

10 Blocks (SM, no QED) 1753 ± 147 1563 ± 1111 -10.57 ± 0.45 (M=2439) -9.47 ± 0.25 (M=5120) -8.54 ± 0.25 (M=4649)

(N=8) 0.35 ± 0.15 0.43 ± 0.17 0.44 ± 0.17

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
100 Blocks 2.37 ± 1.27 (M=21115) 2 ± 0.63 10,000 (8h 31m ± 40m)
100 Blocks (no QED) 3.24 ± 1.20 (M=37231) 1.8 ± 0.75 10,000 (7h 27m ± 13m)
100 Blocks (SM) 1.49 ± 0.91 (M=15247) 1.9 ± 0.7 10,000 (8h 33m ± 30m)
100 Blocks (SM, no QED) 2.34 ± 1.18 (M=11890) 1.7 ± 0.64 10,000 (8h 3m ± 33m)
10 Blocks 2.70 ± 1.20 (M=9845) 1 ± 0 10,000 (8h 29m ± 30m)
10 Blocks (no QED) 3.18 ± 1.25 (M=26403) 1.22 ± 0.42 10,000 (7h 51m ± 33m)
10 Blocks (SM) 2.59 ± 1.04 (M=10040) 1 ± 0 10,000 (8h 39m ± 24m)
10 Blocks (SM, no QED) 2.65 ± 0.88 (M=15632) 1 ± 0 10,000 (8h 9m ± 27m)

Figure 7: 5 Enforced Building Blocks Set. The circled block is the Suzuki coupling reagent used in
all the successful runs without QED (N=2/10 seeds).

1. Oracle Budget = 10,000 or 15,000

2. Batch Size = 64

3. Augmentation Rounds = 2

4. Reward Function = TANGO-FMS (equal weighting)

5. Enforced Building Blocks = 5 (dissimilar to the ones used thus far)

Observations: Table 8 shows the results with the mean and standard deviation across 10 seeds (0-9
inclusive). We make the following observations:

1. The task is challenging under the 10,000 oracle budget when QED is also optimized for.

2. Without optimizing for QED and increasing the oracle budget to 15,000 results in some
successes (2/10 seeds).
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Table 7: Results for Section 6: Lucky Building Blocks? "SM" denotes starting-material constrained.
The mean and standard deviation across 10 seeds (0-9 inclusive) are reported. The number of
replicates (out of 10) with at least 1 generated molecule that is synthesizable with an enforced
building block is reported with N. The number of molecules (pooled across all successful replicates)
is partitioned into different docking score thresholds and statistics are reported. # Reaction Steps is
also reported for the pooled generated molecules that have an enforced block. The total number of
molecules in each pool across the 10 seeds is denoted by M. For the docking score intervals, we
report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

100 Blocks Purged 2322 ± 233 77 ± 229 -10.56 ± 0.37 (M=17) -9.38 ± 0.24 (M=117) -8.48 ± 0.25 (M=376)

(N=4) 0.85 ± 0.03 0.87 ± 0.05 0.89 ± 0.04

100 Blocks Purged (no QED) 1794 ± 193 1553 ± 1211 -10.65 ± 0.49 (M=2649) -9.47 ± 0.26 (M=4345) -8.52 ± 0.25 (M=4648)

(N=9) 0.25 ± 0.11 0.30 ± 0.15 0.36 ± 0.17

100 Blocks Purged (SM) 2179 ± 298 166 ± 333 -10.30 ± 0.17 (M=6) -9.39 ± 0.25 (M=128) -8.44 ± 0.24 (M=636)

(N=5) 0.83 ± 0.08 0.83 ± 0.09 0.87 ± 0.07

100 Blocks Purged (SM, no QED) 1688 ± 239 1456 ± 1112 -10.49 ± 0.38 (M=1032) -9.43 ± 0.25 (M=3871) -8.52 ± 0.25 (M=5624)

(N=8) 0.34 ± 0.11 0.36 ± 0.13 0.37 ± 0.15

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
100 Blocks Purged 5.97 ± 1.17 (M=769) 1.25 ± 0.43 10,000 (8h 54m ± 20m)
100 Blocks Purged (no QED) 3.35 ± 1.19 (M=15525) 1.44 ± 0.50 10,000 (7h 15m ± 12m)
100 Blocks Purged (SM) 4.12 ± 2.29 (M=1660) 1.2 ± 0.4 10,000 (8h 41m ± 28m)
100 Blocks Purged (SM, no QED) 3.30 ± 1.28 (M=14562) 1.62 ± 0.70 10,000 (7h 40m ± 25m)

3. The two successful replicates both enforced only the Suzuki block (Boron containing) which
is circled in Fig. 7.

4. The results here show that learning to enforce such a small set of building blocks is possible.
In practice, one could further increase the oracle budget which we did not explore due to
time limits on the cluster we used. The two successful replicates (with a 15,000 oracle
budget) took about 12.5 hours which we believe is still very reasonable.

Table 8: Results for Section 7: 5 Enforced Blocks. The mean and standard deviation across 10 seeds
(0-9 inclusive) are reported. The number of replicates (out of 10) with at least 1 generated molecule
that is synthesizable with an enforced building block is reported with N. The number of molecules
(pooled across all successful replicates) is partitioned into different docking score thresholds and
statistics are reported. # Reaction Steps is also reported for the pooled generated molecules that have
an enforced block. The total number of molecules in each pool is denoted by M. For the docking
score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

5 Blocks 2639 ± 186 0 ± 0 N/A N/A N/A

(N=0) N/A N/A N/A

5 Blocks (no QED, 15k Budget) 3333 ± 437 972 ± 2112 -11.73 ± 0.93 (M=7044) -9.51 ± 0.26 (M=1419) -8.59 ± 0.24 (M=670)

(N=2) 0.29 ± 0.07 0.38 ± 0.13 0.39 ± 0.16

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
5 Blocks N/A N/A 10,000 (9h 24m ± 25m)
5 Blocks (no QED, 15k Budget) 3.79 ± 0.83 (M=9723) 1 ± 0 15,000 (12h 33m ± 34m)

H.9 DIVERGENT SYNTHESIS

Often, divergent synthesis (Li et al., 2018) is desirable, whereby intermediates (usually non-
commercially available) are enforced in the synthesis path. This can be used for late-stage functional-
ization (Castellino et al., 2023) which is particularly relevant in drug discovery to explore SAR. In
this section, we select intermediate non-commercial blocks from solved paths. We note that this is
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artificial in the sense that these selected intermediates were taken from solved routes, and are likely
"favorable". However, we were interested in whether a model can learn from scratch to enforce
relatively large building blocks. For this reason, we curated 10 selected intermediates and investigate
the ability of TANGO to learn divergent synthesis constraints.

Fixed Parameters:

1. Oracle Budget = 10,000 or 15,000
2. Batch Size = 64
3. Augmentation Rounds = 2
4. Reward Function = TANGO-FMS (equal weighting)
5. Divergent Enforced Building Blocks = 10 (Curated from successful runs)

Observations: Table 9 shows the results with the mean and standard deviation across 10 seeds (0-9
inclusive). We make the following observations:

1. Divergent blocks can be enforced but the runs are less consistently successful than with the
original sets of enforced building blocks, under a 10,000 oracle budget.

2. The runs do not necessarily take longer which means that in practical applications, one could
increase the oracle budget. We believe that the wall times of all our experiments (7-9 hours)
are reasonable and that much longer is tolerable in real-world applications (<= 24h and even
> 24h if the model can truly solve the MPO task).

3. Increasing the oracle budget to 15,000 results in more successful seeds. Therefore, simply
using more compute (within reason) is a straightforward solution.

Table 9: Results for Section 8: Divergent Synthesis. The mean and standard deviation across 10 seeds
(0-9 inclusive) are reported. The number of replicates (out of 10) with at least 1 generated molecule
that is synthesizable with an enforced building block is reported with N. The number of molecules
(pooled across all successful replicates) is partitioned into different docking score thresholds and
statistics are reported. # Reaction Steps is also reported for the pooled generated molecules that have
an enforced block. The total number of molecules in each pool across the 10 seeds is denoted by M.
For the docking score intervals, we report the scores and QED values.

Configuration
Synthesizability Docking Score Intervals (QED Annotated)

Non-solved Solved (Enforced) DS < -10 -10 < DS < -9 -9 < DS < -8

Divergent Blocks 2166 ± 202 651 ± 1238 -10.36 ± 0.26 (M=187) -9.41 ± 0.24 (M=1311) -8.48 ± 0.25 (M=2694)

(N=4) 0.84 ± 0.10 0.86 ± 0.07 0.86 ± 0.07

Divergent Blocks (15k Budget) 3720 ± 631 1519 ± 2321 -10.36 ± 0.25 (M=538) -9.44 ± 0.25 (M=3191) -8.47 ± 0.25 (M=6324)

(N=5) 0.82 ± 0.08 0.85 ± 0.08 0.87 ± 0.08

Divergent Blocks (no QED) 1937 ± 210 540 ± 1259 -10.61 ± 0.47 (M=1099) -9.48 ± 0.25 (M=1894) -8.56 ± 0.26 (M=1518)

(N=3) 0.29 ± 0.11 0.41 ± 0.18 0.52 ± 0.22

Divergent Blocks (no QED, 15k Budget) 2866 ± 523 839 ± 1972 -10.57 ± 0.42 (M=1861) -9.48 ± 0.26 (M=3058) -8.55 ± 0.22 (M=2154)

(N=4) 0.32 ± 0.13 0.40 ± 0.18 0.48 ± 0.21

Configuration # Reaction Steps # Unique Enforced Blocks Oracle Budget (Wall Time)
Divergent Blocks 3.68 ± 1.08 (M=6512) 1.75 ± 0.83 10,000 (8h 52m ± 42m)
Divergent Blocks (15k Budget) 3.61 ± 1.11 (M=15190) 1.80 ± 0.17 15,000 (15h 54m ± 1h 30m)
Divergent Blocks (no QED) 4.14 ± 1.36 (M=5397) 1 ± 0 10,000 (7h 39m ± 23m)
Divergent Blocks (no QED, 15k Budget) 4.30 ± 1.36 (M=8393) 1.75 ± 0.83 15,000 (12h 41m ± 25m)

H.10 LEARNING A DESIRABLE DISTRIBUTION

Fundamentally, generative models learn to model distributions. In this section, we further demonstrate
that TANGO is a learnable reward function and that the modeled distribution shifts to satisfy the MPO
objective. To do so, we take each final model checkpoint (across the 10 seeds) from the experiment
in Table 1 with 100 enforced building blocks (and with QED) and sample 1,000 unique molecules.
Fig. 8a shows that a considerable number of sampled molecules are jointly synthesizable with an
enforced building block (Solved (Enforced)). The distribution shift is apparent when compared to
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Figure 8: The model learns a distribution of molecules that satisfy the MPO objective. The final
model checkpoint from the 100 enforced building blocks experiment (all 10 seeds) was used to
sample 1,000 unique molecules. a. Counts of solvable molecules from the checkpoints with the
mean and standard deviation reported (non-bolded). 1/10 final model checkpoints was unable to yield
"Solved (enforced)" molecules. The pre-trained model (before RL) generates mostly unsynthesizable
molecules and no synthesizable molecules with enforced blocks (metrics are bolded). b. Docking
Score (DS) and QED values of the pooled Solved (Enforced) molecules across all seeds. c, d, e uses
1,000 unique molecules sampled from one final model checkpoint. c. UMAP of sampled molecules
compared to the pre-trained model. d. Negative log-likelihoods (NLLs) of the sampled molecules. It
is much more likely to generate the sampled molecules under the final model checkpoint. e. Top-10
(by docking score) molecules with the enforced building block highlighted. The NLLs are similar.

1,000 unique molecules sampled from the pre-trained model (before RL), which mostly generates
unsynthesizable molecules (Non-solved). Fig 8b pools (across the 10 seeds) all the Solved (Enforced)
molecules and shows the density of docking and QED scores which have shifted towards favorable
values. Next, we take the sampled molecules from one seed and plot a UMAP (McInnes et al., 2018)
embedding comparing to the molecules sampled from the pre-trained model. It is clear that the
checkpoint sampled molecules are dissimilar but we show that the learned distribution is not perfect,
as the final checkpoint still sometimes samples ill-suited (based on the MPO objective) molecules
that are similar to the pre-trained model. Subsequently, we take the sampled molecules from the
final model checkpoint and compare the negative log-likelihoods as measured by this checkpoint
and the pre-trained model. We make two observations: firstly, the molecules are much more likely
under the checkpoint, unsurprisingly. But secondly, and more importantly, the likelihoods from the
checkpoint puts more probability mass in a narrower region. We now cross-reference Fig. 8e which
shows the top-10 sampled molecules (by docking score) which all share the same enforced building
block. The likelihoods are not drastically different, and shows that some exploitation during RL is
advantageous as the likelihoods of molecules which share a common structure can be quite similar.
Very specifically, given a favorable molecule represented as a SMILES, Saturn’s (Guo & Schwaller,
2024b;a) mechanism of optimization involves making it likely to generate any SMILES form of
the same molecular graph. If it is likely to generate any SMILES sequences of the same favorable
molecule, small changes to the generated sequence amounts to small chemical changes, which can
be advantageous, as similar molecules, on average, have similar properties. The model learns to
use the building blocks in a way that performs local exploration and assigns a relatively similar
likelihood to the neighborhood of molecules. Overall, the results show that taking a general-purpose
model and incentivizing the learning process with TANGO, can shift the modeled distribution to
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Figure 9: 100 Enforced Blocks example routes. The enforced block is boxed.

one that captures constrained synthesizability while simultaneously satisfying MPO objectives. This
is practically useful, as one could simply sample molecules from model checkpoints to get more
desirable molecules (5 seconds to sample 1,000 unique molecules).

I RETROSYNTHESIS MODEL: SYNTHESIS ROUTES

In this section, we show examples of synthetic routes from the MEGAN (Sacha et al., 2021) ret-
rosynthesis model with enforced building blocks. The synthesis graph images were taken as is from
Syntheseus’ (Maziarz et al., 2023) output. Each figure in this section is from an experiment with a
different enforced block set (100, 100 with "lucky" blocks purged, 10, 5, and divergent). Moreover,
all routes will be shown for molecules with docking score < -10.5 since these are the most optimal.
In addition, for the 5 Enforced Blocks, the routes shown were from the runs without QED. This is
because these were the only seeds that were successful under the oracle budget. The enforced block
is boxed. We also try to show some diversity in the route lengths to highlight that path length was not
explicitly optimized for. QED implicitly encourages shorter paths due to constraining the molecular
weight, but even so, longer synthetic routes can still be observed (for example in Fig. 10). Future
work could also reward shorter paths.
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Figure 10: 100 Enforced Blocks Purged example routes. The enforced block is boxed.
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Figure 11: 10 Enforced Blocks example routes. The enforced block is boxed.

30



Published at the GEM workshop, ICLR 2025

Figure 12: 5 Enforced Blocks example routes. Note that QED was not enforced here as the QED
experiments did not successful generate any enforced blocks under the oracle budget. The enforced
block is boxed.
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Figure 13: Divergent Enforced Blocks example routes. The enforced block is boxed.
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