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Abstract

In this study, we explore the unsupervised learn-
ing based on private/shared factor decomposition,
which decomposes the latent space into private
factors that vary only in a specific domain and
the shared factors that vary in all domains. We
study when/how we can force the model to re-
spect the true private/shared factor decomposition
that underlies the dataset. We show that, when
we train a masked decoder and an encoder with
sparseness regularization in the latent space, we
can identify the correct private/shared decompo-
sition up to mixing within each component. We
empirically confirm this result and study the effi-
cacy of this training strategy as a representation
learning method.

1. Introduction
Finding a few common factors that consistently explain
different phenomena is a fundamental challenge for unsu-
pervised learning. For example, consider two datasets of
car images. One consists of synthetic images of 3D ob-
jects generated with realistic optical rules (physically based
rendering), and the another consists of real images. Their
appearance should be different, for example, in the details of
images and the texture of the objects. However, their physi-
cal properties, such as the positioning of objects and the way
the image changes with respect to camera positions, shall all
be the same between the synthetic and real datasets. Many
of these physical properties explain the structure within each
dataset; abstractly, they correspond to the axis A,B and C
in the visualization in Figure 1.

Unfortunately, however, the mechanism of finding such
commonalities has not been fully established. For the above
datasets, let us consider applying principal component analy-
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Figure 1. Example of unsupervised representation learning on two
domains. Left: observations from the domain 1 (green) depend on
latent factors A and C while the observations from the domain 2
(blue) depend on B and C. Right: The principal vectors of PCA
do not align with A,B, and C.

sis (PCA). PCA extracts the subspace in which the variation
of the data in the observation space is maximized. If the
variation across the two datasets is larger than the varia-
tion within each dataset, PCA would first extract the axis
that is specialized in explaining the difference between the
two datasets.1 However, this might cause some problems
because this principal axis might be highly correlated to
important factors of variation in each dataset (A, B, C in
Figure 1). Thus, simply removing the factor of the largest
difference might lose the important structural information
within each dataset. Also, because of this entanglement be-
tween the first principal component and A, B, and C, it will
not be possible to align the rest of the principal components
to these structural factors of variations.

To obtain the desired latent structure, we have to choose
an appropriate inductive bias (Locatello et al., 2019). PCA
does not work well in the previous example because the
objective of PCA is based on the belief that the axis with the
largest variance corresponds to the most important structural
factor. One way to resolve this problem is to introduce the
shared-private decomposition of latent space (Bousmalis
et al., 2016; Liu et al., 2017; Cao et al., 2018; Peng et al.,
2019; Chattopadhyay et al., 2020; Bui et al., 2021). In
this framework, the domain-private factors consist of the
factors that vary only in one individual domain, whereas the
shared-domain factors consist of the factors that vary in all

1Another plausible direction is applying a mixture model to
each domain. In that case, feature extraction is completed within
the domain, and the PCA-like across domain axis does not occur.
However, such approach yields multiple independent subspaces
and it is not trivial to know which axes are shared among the
domains and how to align them.
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domains. By introducing such a structure in the generating
process, this strategy imposes the inductive bias that the set
of data-describing structural factors includes the features
shared by all domains (e.g., C in Figure 1.) However, even
if we introduce such an inductive bias, it is not entirely clear
if the trained model would identify the true private/shared
structure in the dataset.

In this work, we investigate when we can use the pri-
vate/shared inductive bias to extract the true private/shared
factors so that we can use them for improvement on repre-
sentation learning and extrapolation tasks. We provide an
empirical and basic theoretical result indicating that, when
the decoder uses a domain-specific mask function, we can
align the feature space to the private-vs-shared decompo-
sition by encouraging the sparsity in the latent space. We
provide an empirical and basic theoretical result indicating
that we can align the feature space to the private-vs-shared
decomposition by encouraging the sparsity in the latent
space.

2. Method
In this paper, we consider the multi-domain setting in which
the domain membership of each datum is known. Therefore
we assume that each observation is a pair (x, k), where
x ∈ Rd is the raw observation and k ∈ {1, . . . , L} is the
domain label from which x was drawn. Our goal is to
recover the latent factors z ∈ Rm when the true generating
process has private factors and shared factors.

We elaborate the assumed generating process below. In our
setting, the latent factors are separated into L+ 1 parts as
z = [z1, . . . , zL, zshared] where each zk ∈ Rmk represents
the private factor of the domain k and zshared ∈ Rmshared

represents the shared factor so that m = mshared +
∑

k mk.
For brevity, let Ik represent the set of coordinate indices
in Rm corresponding to the kth domain, and let Ishared
represent the set of coordinate indices for the shared factors.
We prepare such a structure in the latent space so that the
features that will be trained by the encoder will not entangle
the domain-specific features.

The generative process of each observation in the domain k
is then written as

p(x | z, k) = p(x | zk, zshared). (1)

Based on this model, we train an autoencoder to seek the
underlying structure of the observation that aligns with our
decomposition. Let f : Rd → Rm be the encoder and
g : Rm → Rd be the decoder. We define the objective
function as

1

2
∥x− g(uk ⊙ z)∥2 + βr(z) with z = f(x), (2)
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Figure 2. Overview of the proposed method.

where ⊙ denotes the element-wise multiplication, r(·) is
a sparsity regularizer for z, and β ≥ 0 controls the spar-
sity. Here, uk ∈ {0, 1}m is the binary mask such that
uki = 1 whenever i ∈ Ik ∪ Ishared. The masks uk are
not trainable parameters in our objective. If there are two
domains to be studied, then the masks shall therefore look
like u1 = [1,0,1] and u2 = [0,1,1] where 1 indicates
the all-one vector with appropriate dimension (Figure 2).
In other words, the mask uk is used to switch between the
different domains. For example, if the images are colored in
the domain k and monocolor in all other domains, then zk
may contain color features. Mask uk is an integral part of
the decoder because zk won’t be used in decoding x from z
when x is in the domain k′ ̸= k.

We note that the mask is a structure that is included in the de-
coder but not in the encoder. Thus, even for an observation
x from domain k, our encoder f may have nonzero outputs
on Ik′ (thus, zk′ is not necessarily 0) for k ̸= k′. However,
the sparsity regularizer r(·) encourages the encoder to par-
simoniously use each dimension in the latent space so that
there won’t be much redundancy in the representation. We
will show that an appropriately-designed sparsity regularizer
can encourage the use of shared factor.

2.1. Identifiability

We show that, when the decoding process in (1) is linear,
an autoencoder trained in our approach can identify the
true private and shared factors up to linear transformations.
Although our proof is done for L = 2, the strategy should
be extendable to the case with L > 2.

Proposition 2.1. Suppose that the datasets in two domains

Xk = [x
(1)
k ;x

(2)
k ; ...;x

(n1)
k ] ∈ Rnk×d, k = 1, 2 (3)

are generated from the latents Zk ∈ Rnk×m as(
X1

X2

)
=

(
Z1

Z2

)
W :=

(
A 0 C1

0 B C2

)
W (4)

where W ∈ Rm×d maps (A,C1) and (B,C2) invertibly to
X1 and X2 repsectively , while Ker(C1) = Ker(C2) and
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col(A) ⊥ col(C1) as well as col(B) ⊥ col(C2). Consider
training another representation X = ẐŴ in the same form
by minimizing the reconstruction loss as well as the sparsity
loss

r(Z) = ∥Â∥nzc + ∥B̂∥nzc + λ∥Ĉ∥nzc, 0 < λ < 2, (5)

where ∥ · ∥nzc is the number of nonzero columns in the
matrix. Then the trained factors (Â, B̂, Ĉ1, Ĉ2) identifies
(A,B,C1, C2) upto mixing within each component.

What does this proposition mean in terms of (2)? We
note that the relation x = W⊤z describes the nonpara-
metric encoder f : x ∈ Rd → z ∈ Rm and the linear
decoder g : z → WT z. Thus, in the stacked represen-
tation Z ∈ R(n1+n2)×m that appears in the relation (4),
each column represents the latent coordinate dimension.
If A ∈ Rn1×ma , B ∈ Rn2×mb , Ck ∈ Rnk×mc so that
ma +mb +mc = m, then ma corresponds to the private
factor dimension for X1, mb corresponds to the private fac-
tor dimension for X2, and mc corresponds to the shared
factor dimension(mshared in the previous section). Thus,
the column sparseness regularization (5) encourages the la-
tent space to be sparse in each factor dimension. We note
that, in (4), the mask used in (2) is included the form of Zk

itself. Also, the factor orthogonality is analogous to inde-
pendency. Therefore, this result suggests a learning strategy
that encourages independencies as well as sparseness in the
encoded latent space while using a masked decoder that
respects the private/shared structure.

2.2. Implementation by VAE

We would like to train an autoencoder based on our find-
ing in Proposition 2.1. Unfortunately, however, ∥ · ∥nzc
is a variation of the ℓ0 norm and its direct optimization is
NP-hard (Feng et al., 2018) in general. In our experiment,
we propose to kill two birds with one stone by combining
(2) with β-VAE (Higgins et al., 2016), which is known to
encourage the sparsity as well as factor independencies (Ro-
linek et al., 2019; Zietlow et al., 2021). We put the details
of VAE implementation in Appendix B.

3. Related Work
The idea of separating the latent space into private and
shared ones has a long history. Canonical correlation analy-
sis (Hotelling, 1936) captures a linear subspace where two
random variables are mostly correlated, and the captured
subspace can be seen as the space of shared factors. (Salz-
mann et al., 2010) extended this idea by simultaneously
finding the private spaces. In the literature on domain adap-
tation and generalization, a lot of studies have used the
shared-private representation, based on various approaches
such as linear orthogonality (Bousmalis et al., 2016), adver-
sarial frameworks (Bousmalis et al., 2016; Liu et al., 2017;

Cao et al., 2018; Peng et al., 2019), and meta learning (Bui
et al., 2021). Zhang et al. (2020) generalized the VAE frame-
work to cover a broad family of graphical models where
the variable relationships are described by the mask. As the
closest work, Chattopadhyay et al. (2020) adopted the bi-
nary mask for the shared-private decomposition. Unlike us,
they incorporate the space separation by learning the masks.
Binary mask is often used in the literature of OOD and ex-
trapolation (Zhou et al., 2019; Huang et al., 2020; Zhang
et al., 2021). Zhang et al. (2020) generalized VAE to cover
a broad family of graphical models where the variable rela-
tionships are described by the mask. Similarly, Yang et al.
(2021) used the mask to take into account the causal relation-
ships among the latent factors. In this study, we empirically
and theoretically explore how the sparseness regularization
helps the identification of the true private/shared structure
in an unsupervised manner.

Some recent studies have utilized the sparseness in deep gen-
erative models as a form of domain knowledge in datasets
such as videos (Klindt et al., 2020) and texts (Moran et al.,
2021). Locatello et al. (2020) developed a weakly super-
vised framework where each observation is given as a pair
(x1,x2) that differs only in a few latent factors, and estab-
lish an identifiability result. Their assumption related to our
study because they essentially assume that the feature of
z1 − z2 is sparse. We are however different in that we do
not assume that the dataset is aligned as in Locatello et al.
(2020). Khemakhem et al. (2020) show that nonlinear VAE
is identifiable when the prior distribution cleverly leverages
auxiliary information such as class labels. Our case is re-
lated to this study if we see the domain label as auxiliary
information. Unfortunately, we cannot directly compare
their analysis to ours because they assume m to be smaller
than the number of domains.

4. Experiments
As a proof of concept, we use two datasets; MNIST as do-
main 1 and Fashion MNIST (FMNIST) as domain 2. To
ensure that they share some common factors, we apply ran-
dom 2D translation to both domains. As the private factors,
we apply random rotation to MNIST and color randomiza-
tion to FMNIST. The data augmentations are summarized
in Figure 3. We train our model for 100 epochs by Adam
of batch size 32 and learning rate 2e − 4. For β-VAE, we
set β = 3 and the total number of factors to 30 so that we
have 10 for each private and shared factor. We employ a
three-layer convolution network as the encoder and spatial
broadcasting (Watters et al., 2019) as the decoder.

4.1. Latent Traversal

First, we study the active/inactive coordinates of the learned
features for the observations in each domain. Figure 3 shows
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Figure 3. Left: empirical standard deviation of z. Right: data
augmentation used for training data, where rot means rotation and
trans means translation.

Figure 4. Latent traversals corresponding to rotation, color, x-
translation, and y-translation (from top to bottom) for an MNIST
input (left) and a FashionMNIST input (right).

the domain-wise standard deviation of z for the test data. It
clearly shows 1) roughly half of the features do not vary on
both datasets and 2) the encoder learns the active/inactive
patterns enforced by the mask used for the decoder. Fig-
ure 4 depicts the latent traversals over the factors that are
relevant to the four augmentations we used to generate the
dataset.2 As expected, the 2D translation is captured as the
shared factors while rotation and colorization are captured
as private factors.

Next, we compare how the masking affects the learned repre-
sentation. We train the vanilla β-VAE with the same setting
and obtain the latent factors that are the most sensitive in
reconstruction. To select the features based on sensitivity,
we approximate the Jacobian of the decoder by the finite
difference method and select the top-two factors in terms of
the ℓ2 norm. Figure 5 compares the two-dimensional latent
traversals of an encoded MNIST input for our method and
β-VAE. We see that the variations in the proposed latent
subspace are closed within MNIST, while β-VAE inadver-
tently captures the across-domain axis that connects digits
and clothing shapes, exhibiting the same faulty behavior of
PCA explained in the introduction.

4.2. Counterfactual Generation

If the proposed method succeeds in identifying the private
and shared factors, we shall be able to use the private factor
of domain 1 to alter a dataset in domain 2 to produce coun-
terfactual data without corrupting the contextual meaning

2The full results are shown in Appendix C

Figure 5. Two-dimensional latent traversals of the top-two
reconstruction-sensitive latent factors. Left: proposed. Right:
vanilla β-VAE.

Figure 6. Counterfactual generation for MNIST (left) and FM-
NIST (right) inputs. From top to bottom: raw inputs, recon-
structions with the (MNIST-private+shared) mask, (FMNIST-
private+shared) mask, MNIST-private-only mask , and FMNIST-
private-only mask.

of the domain1-private factor. To validate this, we study
how the image transforms when we change the mask in the
reconstruction process. For example, let ums = [1,0,1] be
the mask for MNIST. If we apply ums to z of an FMNIST in-
put, the appearance of the reconstruction should look like
FMNIST while keeping the position, since position is used
as the shared factors in the generation process. The third
row of Figure 6 shows the reconstruction results with ums.
As expected, while the private information (FMNIST shapes
and color) is overwritten, the shared information (position)
is preserved. Similarly, the fourth and fifth rows show the re-
constructions when we use the mask that deletes the shared
factors and preserves the private factors. The positional
information is lost in these figures, again confirming our
hypothesis.

4.3. Domain Adaptation

Finally, we check how the obtained representation is use-
ful in a domain adaptation situation. Here we consider an
unsupervised case where we have many data in the source
domain but a few in the target domain. We first train the
VAE, and use the trained encoder as the fixed feature ex-
tractor. We then evaluate the classification accuracy by a
linear probe setting, i.e., add a linear layer and minimize the
softmax cross-entropy loss. We use MNIST as the source
and FMNIST as the target, where we apply random augmen-
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tations in the form of horizontal translation to MNIST and
vertical translation to FMNIST. We apply random rotation
to both datasets. We conducted a FMNIST classification
task on two settings: IID and OOD. In IID, we only ap-
ply the random rotation and random horizontal translation
to the test set of FMNIST. In OOD, We apply all random
transformations ( rotation, horizontal translation, vertical
translation) to the test set of FMNIST. Figure 7 compares
the accuracy of the vanilla β-VAE and the proposed method
for different proportions of FMNIST used in the training of
the VAE. The proposed method outperforms the original
VAE in both IID and OOD settings, especially when the
number of target domain data is small.
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Figure 7. Linear probe performance. The test accuracy on
FMNIST is plotted against the data proportion #FMNIST/ #MNIST
in the training set.

5. Discussion
In this paper, we explored the way to enforce the pri-
vate/shared decomposition in the latent space by using the
masked decoder and sparsity-regularized encoder. The em-
pirical and theoretical results in this paper suggest that there
is much more room left to research on the way of enforcing
the desired structure in unsupervised learning. Future works
include the extension of the theory to a nonlinear decoder
and a similar investigation of the other forms of structures
that are useful in domain adaptation.

We now turn to the experiment in Section 4.3. The augmen-
tations used in the experiments can be seen as synthetically
assigned latent factors, which are correlated with a specific
data set, as shown in Figure 3. Specifically, we see cor-
relations between MNIST and rotation, and FMNIST and
color. This is a typical example of that a spurious correlation
occurs, where two independent factors are captured by the
model as a single entangled factor (Träuble et al., 2021).
In fact, we can see that in Figure 9 the shape information
of FMNIST and color information are mixed in the latent
space.

What will happen if a model learns a latent space that re-
flects a particular correlation? One possible problem is that
it does not generalize well in OOD situations where differ-
ent correlations are applied. In the example above, color
information is indeed captured in the latent space, but it is

highly likely that the model did not learn color in a generic
sense that can be applied to various objects, but rather a
limited color that is applied only to FMNIST. The setting of
the experiments in Section 4.3 exactly corresponds to that
case, and the results suggest that the proposed method is
robust to such OOD problems.
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Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem,
O., and Tschannen, M. Weakly-supervised disentangle-
ment without compromises. In International Conference
on Machine Learning, pp. 6348–6359. PMLR, 2020.

Moran, G. E., Sridhar, D., Wang, Y., and Blei, D. M. Identi-
fiable deep generative models via sparse decoding. arXiv
preprint arXiv:2110.10804, 2021.

Peng, X., Huang, Z., Sun, X., and Saenko, K. Domain
agnostic learning with disentangled representations. In
International Conference on Machine Learning, pp. 5102–
5112. PMLR, 2019.

Rolinek, M., Zietlow, D., and Martius, G. Variational autoen-
coders pursue pca directions (by accident). In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12406–12415, 2019.

Salzmann, M., Ek, C. H., Urtasun, R., and Darrell, T. Fac-
torized orthogonal latent spaces. In Proceedings of the
thirteenth international conference on artificial intelli-
gence and statistics, pp. 701–708. JMLR Workshop and
Conference Proceedings, 2010.
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A. Proof and the formal statement of 2.1
Proof of Proposition 2.1. Let U+ denote the pseudo inverse of matrix U . Put WŴ+ = P so that

(
A 0 C
0 B C

)Paa Pab Pac

Pba Pbb Pbc

Pca Pcb Pcc

 =

(
APaa + C1Pca APab + C1Pcb APac + C1Pcc

BPba + C2Pca BPbb + C2Pcb BPcb + C2Pcc

)
=

(
Â 0 Ĉ

0 B̂ Ĉ

)
(6)

We will show that all but diagonal blocks of P are zero. Since WŴ+ is invertible on its restriction to both (A,C) and
(B,C),

rank(A) + rank(C1) = rank(Â) + rank(Ĉ1)

rank(B) + rank(C2) = rank(B̂) + rank(Ĉ2)
(7)

Also, the rank agrees with ∥ · ∥0 in its sparsest form for A,B, and this applies to C as well because λ > 0. Thus, by the
minimality assumption,

rank(A) + rank(B) + λrank(C1) ≥ rank(Â) + rank(B̂) + λrank(Ĉ1). (8)

Put
∆a = rank(A)− rank(Â) ,∆b = rank(B)− rank(B̂), ∆ck = rank(Ck)− rank(Ĉk)

Since rank(C2) = rank(C1), we use ∆c to denote ∆ck. then note that

(rank(A) + λrank(C1))− (rank(Â) + λrank(Ĉ1)) (9)

= (rank(A) + rank(C1))− (rank(Â) + rank(Ĉ1)) + (λ− 1)∆c (10)
= (rank(A) + rank(C1))− (rank(A) + rank(C1)) + (λ− 1)∆c (11)
= (λ− 1)∆c (12)

Using this relation we obtain

rank(A) + rank(B) + λrank(C) ≥ rank(Â) + rank(B̂) + λrank(Ĉ) (13)

(λ− 1)∆c = rank(B̂)− rank(B) (14)
≥ −∆b ≥ ∆c (15)

λ∆c ≥ 2∆c (16)

If λ < 2, this holds only if ∆c = 0. By (7), this forces ∆a = 0, ∆b = 0. Recall that we have

APT
ac + C1P

T
cc = Ĉ1, BPT

bc + C2P
T
cc = Ĉ2

Now, by assumption, Ker(C1) = Ker(C2). Thus, for exactly k0 number of nonzero v, we have

Ĉ1v = (APT
ac + C1P

T
cc)v = 0

Ĉ2v = (BPT
bc + C2P

T
cc)v = 0

(17)

However this implies that
APT

acv = −C1P
T
ccv BPT

bcv = −C2P
T
ccv

But since col(A) ⊥ col(C1) as well as col(B) ⊥ col(C2), this would take place only if

C1P
T
ccv = 0, C2P

T
ccv = 0

Combining this result with ∆c = 0, we therefore have

rank(C1) = rank(Ĉ1) = rank(C1P
T
cc)
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Because the presence of APT
ac only increases the rank in the (17) by orthogonality, rank(C1P

T
cc) = rank(C1) implies

APT
ac = 0. Most importantly, col(C1) = col(Ĉ1) as spaces. Likewise, BPT

bc = 0 and col(C2) = col(Ĉ2).

Finally, recall that

Â = APT
aa + C1P

T
ca

B̂ = BPT
bb + C2P

T
cb

(18)

Baecause col(C1) = col(Ĉ1), the column space of Â cannot intersect with col(C1) by the orthogonality relation col(Ĉ1) ⊥
col(Â). Thus C1P

T
ca = 0. Likewise, C2P

T
cb = 0 with symmetrical argument. Alltogether,(

Â 0 Ĉ

0 B̂ Ĉ

)
=

(
APaa + C1Pca APab + C1Pcb APac + C1Pcc

BPba + C2Pca BPbb + C2Pcb BPcb + C2Pcc

)
(19)

=

(
APaa 0 C1Pcc

0 BPbb C2Pcc

)
(20)

=

(
A 0 C
0 B C

)Paa 0 0
0 Pbb 0
0 0 Pcc

 (21)

And the claim follows.

B. Detail of VAE implementation
VAE employs the variational distribution q(z | x) = N(µ,diag(σ2)) as a posterior, where the mean and the variance are
obtained by the encoders fµ, fσ2 as µ = fµ(x) and σ2 = fσ2(x). By using the reparametrization trick z = µ+ σϵ with a
random Gaussian ϵ ∼ N(0, I), the β VAE objective with the Gaussian likelihood is given by Eq. 2 where the regularization
term corresponds to the KL divergence: r(z) = KL(p(z)∥q(z|x)) = 1

2

∑m
i=1(µ

2
i +σ2

i − log σ2
i −1). The KL term measures

the distance between the standard Gaussian prior p(z) = N(0, I) and the variational distribution. Essentially, we simply
use this KL term as the choice of r in (2). We do not use the masking structure for the encoder itself because the mask in
the decoding process would make sure that the reconstruction loss of the domain k is not affected by z′k with k ̸= k′. For
example, suppose that z2 is nonzero for the generation of domain 1. In this case, z2 does not contribute to the reconstruction
loss in (2), so the derivative of the reconstruction with respect to z2 is 0 and q(z2|x) = p(z2). Thus, optimizing the mean
and variance parameter with respect domain 1 alone would automatically prefer µ2 = 0 and σ2

2 = 1 as the optimal solution.

C. Full results of latent traversals
Figure 8 shows the latent traversals of the proposed method for all the latent factors where the standard deviation of z is
larger than 0.5. Similarly, Figure 9 shows the latent traversals of β-VAE.
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Figure 8. Latent traversals of the proposed method for an MNIST input (left) and a FashionMNIST input (right).

Figure 9. Latent traversals of β-VAE for an MNIST input (left) and a FashionMNIST input (right).


