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Abstract

To enhance group robustness to spurious correlations, prior work often relies
on auxiliary groups or features annotations and assumes identical sets of groups
across training and test domains. To overcome these limitations, we propose a
method that leverages the semantic structure inherent in class labels—specifically,
superclass information—to naturally reduce reliance on spurious features. Our
model employs gradient-based attention from a pretrained vision-language model to
disentangle superclass-relevant and irrelevant features. Then, by promoting the use
of all superclass-relevant features for prediction, our approach achieves robustness
to more complex spurious correlations without annotating any training samples.
Experiments across diverse datasets demonstrate that our method significantly
outperforms baselines in domain generalization tasks, with clear improvements in
both quantitative metrics and qualitative visualizations.

1 Introduction

Differences in the underlying group composition of training and test datasets may cause certain input
features to strongly correlate with the label during training but lose their predictive power at test time.
When training machine learning models, such spurious correlations often lead to degraded domain
generalization performance.

Many methods have been proposed to improve model robustness across different groups under
spurious correlations [26, 17, 5, 34, 19, 7] (we defer a more comprehensive discussion on related
work to Appendix C). However, these approaches typically fail or become less effective when (1)
both group labels and spurious feature information are unavailable, or (2) spurious correlations cannot
be clearly identified based on the group structure in the training data (e.g., when certain groups in the
test data are absent from training, or when the spurious features are perfectly correlated with labels
during training). To overcome these limitations, this paper seeks to address the following question:

What precisely constitutes the core features under spurious correlation that should be identified
independently of group information and spurious feature knowledge?

We propose that the answer lies within the semantic structure in class labels. Specifically, leveraging
superclass information of label—the knowledge about what we are classifying—is sufficient for
models to learn genuinely core features for prediction. Consider a training set where all waterbirds
appear on water backgrounds and all landbirds on land. In this case, whether the model classifies birds
or backgrounds, the labels remain the same and the outcome is identical. However, the background
features are spurious for bird classification but non-spurious for background classification. This
indicates that spurious features are fundamentally determined by the class label semantics—not by
the group annotations commonly used in prior work. From this observation, our first goal follows:
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Figure 1: Overview of SupER architecture. Each input image (x, y) is processed through four components: (1)
a β-VAE that disentangles the input into latent features z = [z1; z2] via LBeta

θ,ϕ(x); (2) two classifiers trained
separately on µ1 (mean of z1) and µ2 (mean of z2) via LCE

ϕ,ω1
(x, y) and LCE

ϕ,ω2
(x, y); (3) a CLIP-guided

attribution mechanism that aligns z1 with superclass-relevant features and z2 with class-irrelevant features via
LATT

ϕ,ω1,ω2
(x); (4) an L2 regularizer ∥ω1∥22 that encourages diverse use of superclass-relevant features.

Goal I. Eliminate Spurious Features: Disentangle the input features into superclass-relevant and
superclass-irrelevant features, and ignore superclass-irrelevant features when predicting.

Moreover, for different superclass-relevant features in bird classification, it might be true that beak
shape is more likely to be a distinguishing feature between waterbirds and landbirds than feather color,
but the model should use them jointly for prediction. The reason is that these superclass-relevant
features collectively constitute a complete bird, and using only specific features for prediction still
risks harming the model’s generalization ability [30, 29, 21]. This motivates our second goal:

Goal II. Enhance Feature Diversity: Encourage the model to use all the superclass-relevant features
for prediction.

In this work, we propose Superclass-guided Embedding Representation (SupER) to achieve these
two goals. We disentangle input features with a β-Variational Autoencoder (β-VAE) [8], and use a
pre-trained CLIP model [25] to provide superclass information. Based on gradient-based attribution
maps [27] and L2 regularization, we separately achieve both Goal I and Goal II, and therefore enhance
robustness to more complex spurious correlations under the sole guidance of superclass information.

2 Proposed Method

2.1 Problem Setup

We study a classification task with inputs X ∈ X and labels Y ∈ Y . The training dataset Ds (drawn
from Ps) and test dataset Dt (drawn from Pt) consist of groups collected in the sets Gs and Gt, with
each group specified by a label y ∈ Y and an attribute z ∈ Z . When the mixture weights of these
groups differ, Ps ̸= Pt, and z may correlate spuriously with y. Our goal is to learn a predictor on
Ds that maximizes worst group accuracy on Dt. Unlike prior work that often assumes Gs = Gt , we
consider a more general setting: (1) Gs and Gt may differ, allowing unseen groups at test time; (2) z
may be perfectly correlated with y in Ds; (3) no group information are available during training.

2.2 Implementation of Goal I and Goal II

Implementation of Goal I. As discussed in Section 1, any features unrelated to the superclass are
spurious and should be excluded from classification. Thus, the Goal I of our method is that for any
training sample (x, y) ∈ Ds, we disentangle its feature representation z into superclass-relevant
feature z1 and superclass-irrelevant feature z2, and use only z1 for prediction.
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We use β-VAE [8] to facilitate feature disentanglement of x by maximizing

LBeta
θ,ϕ (x) = Ez∼qϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)), (1)

where pθ(x|z) is the decoder, qϕ(z|x) approximates the posterior as N (z|µϕ(x),Σϕ(x)), and the
prior p(z) follows N (0, I). This objective promotes feature disentanglement by encouraging z to
capture independent generative factors of x. We then decompose z = [z1; z2], and guide z1 and z2
to encode superclass-relevant and irrelevant information, respectively.

We implement this by leveraging gradient-based attention [27, 3] from CLIP [25] to guide z1 and
z2 toward corresponding regions of the input x. Specifically, for any (x, y) ∈ Ds and text prompt
T, CLIP produces a normalized attribution map LT

CLIP(x) (see Appendix B.1), which highlights
regions that CLIP attends to when classifying x as T. To obtain CLIP’s attention guidance based on
superclass semantics, we use n prompts {T1, . . . ,Tn} similar to “a/an [superclass]" and average
their maps to obtain LT1

CLIP(x) = 1
n

∑n
i=1 L

Ti

CLIP(x), which can be used to guide the extraction of
superclass-relevant information. For attention guidance of superclass-irrelevant features from CLIP,
we instead define LT2

CLIP(x) = J− LT1

CLIP(x), where J is an all-ones matrix.

To align the CLIP attribution maps with the attribution maps derived from z1 and z2, we train two
different classifiers ω1 and ω2 on µ1 and µ2 (the means of z1 and z2), respectively, by minimizing
cross-entropy losses LCE

ϕ,ω1
(x, y) and LCE

ϕ,ω2
(x, y). Next, for each (x, y) ∈ Ds, we compute gradient-

based attribution maps Lϕ,ω1(x, y) and Lϕ,ω2(x, y) with respect to the true label y (see Appendix
B.2 for details). Finally, the goal that z1 captures superclass-relevant features and z2 captures
superclass-irrelevant features is fulfilled by minimizing the regularization loss::

LATT
ϕ,ω1,ω2

(x, y) = ∥LT1

CLIP(x)− Lϕ,ω1
(x, y)∥2F + ∥LT2

CLIP(x)− Lϕ,ω2
(x, y)∥2F . (2)

Implementation of Goal II. After incorporating superclass guidance, we avoid using superclass-
irrelevant features by relying only on µ1 for classification. For different features within the superclass
region, in the setting of Section 2.1, whether the correlation between a feature and the label remains
consistent across training and test distributions is uncertain, since this depends on prior knowledge of
the distributions. Therefore, following the idea of leveraging diverse features to mitigate shortcut
learning [29, 21], Goal II encourages the model to exploit all available superclass-relevant features.
In SupER, this is achieved by adding an L2 penalty ∥ω1∥22 on the classifier ω1.

To summarize, SupER achieves Goal I and Goal II by minimizing a weighted combination of the
following loss components for (x, y) ∈ Ds: the β-VAE loss −LBeta

θ,ϕ (x), the cross-entropy losses
LCE
ϕ,ω1

(x, y) and LCE
ϕ,ω2

(x, y), the attribution alignment loss LATT
ϕ,ω1,ω2

(x, y), and the L2 penalty on ω1.
The detailed training algorithm is presented in Appendix A, and the complete pipeline is illustrated in
Figure 1.

3 Experiments

3.1 Datasets and Baselines

We evaluate SupER on the following datasets: Waterbirds-95% [26], Waterbirds-100% [23], SpuCo
Dogs [9], MetaShift [16, 24], and Spawrious [18]. These datasets cover varying types of spurious
correlations caused by different group mixture proportions between training and test data. Details
on the specific types of spurious correlations and dataset split configurations are provided in Ap-
pendix D.1. For baselines, given that SupER does not use group labels during training, our primary
comparisons are with baselines that also avoid group annotations, including ERM, CVaR DRO [15],
LfF [20], JTT [17], CnC [34], and GALS [23]. For completeness, we also report results for methods
that require group labels, such as GroupDRO [26], UW [26], and DFR [10], as well as multi-source
domain methods like IRM [1].

3.2 Main Results

3.2.1 Comparison of Accuracy Across Groups

In line with the setting in Section 2.1, our primary interest is the worst group accuracy of SupER
compared to baseline methods without requiring group labels. We also report the average accuracy as
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Table 1: Mean ± standard deviation of worst and average group accuracy (%) for Waterbirds-95% and Waterbirds-
100% datasets. Bold indicates the best across all baselines; Underlined indicates the best among methods without
group information.

Method Group
Info

Train
Twice

Waterbirds-95% Waterbirds-100%

Worst Avg Worst Avg

ERM × × 64.9±1.5 90.7±1.0 46.4±6.9 74.8±3.0
CVaR DRO × × 73.1±7.1 90.7±0.7 58.0±2.2 79.0±1.2
LfF × × 79.1±2.5 91.9±0.7 61.5±2.8 80.6±1.2
GALS × × 75.4±2.2 89.0±0.5 55.0±5.5 79.7±0.4
JTT × ✓ 86.4±1.0 89.5±0.5 61.3±5.5 79.7±3.0
CnC × ✓ 86.5±5.9 91.0±0.5 62.1±0.9 81.9±1.5
SupER (Ours) × × 84.4±2.3 87.3±0.6 79.7±1.7 85.0±1.4

UW ✓ × 89.3±1.5 94.5±0.9 56.4±2.3 78.6±0.8
IRM ✓ × 76.2±6.3 89.4±0.9 57.0±5.4 80.5±5.0
GroupDRO ✓ × 87.2±1.3 93.2±0.4 56.5±1.4 79.4±0.3
DFR ✓ ✓ 89.7±2.4 93.6±0.6 48.2±0.4 76.4±0.2

Table 2: Mean ± standard deviation of worst group accuracy (%) on the Spawrious dataset using selected
baselines. Bold indicates the best among these methods.

Method Group
Info

One–To–One Many–To–Many Average
Easy Medium Hard Easy Medium Hard

ERM × 78.4±1.8 63.4±2.3 71.1±3.7 72.9±1.3 52.7±2.9 50.7±1.0 64.9±11.3
SupER (Ours) × 82.7±2.0 80.3±4.6 83.8±3.4 87.4±1.3 83.4±2.3 79.9±4.7 82.9±2.7

UW ✓ 87.4±1.1 67.9±2.1 75.9±2.9 72.9±1.3 52.7±2.9 50.7±1.0 67.9±14.1
IRM ✓ 78.4±1.0 64.5±3.2 64.9±2.2 77.9±3.7 57.1±2.9 50.7±1.1 65.6±11.1
GroupDRO ✓ 86.7±1.2 67.2±0.7 76.4±2.2 74.3±0.9 55.7±1.4 49.9±0.8 68.3±13.7
DFR ✓ 79.1±5.2 64.3±1.9 70.0±1.9 76.4±1.9 58.7±2.2 54.1±2.2 67.1±9.9

well as methods that require group annotations as a reference. (Due to space constraints, we present
selected main results here; the full results and ablation studies are reported in Appendix D.3–D.5.)

SupER achieves strong performance on worst group accuracy. Our proposed model demonstrates
strong performance across all experimental settings. As shown in Tables 1, 2, and 3, for almost all
datasets, SupER’s worst group accuracy exceeds that of all selected baseline methods regardless of
whether they require group information. For the remaining datasets, such as Waterbirds-95% and
MetaShift (a), SupER still outperforms the majority of the baselines that do not rely on group labels.

SupER demonstrates superior capability and robustness to complex spurious correlations. Our
model shows strong robustness across different levels of spurious correlations. As reported in Tables 1,
2, and 3, the standard deviation of worst group accuracy is only 2.7% across the six Spawrious datasets
and 3.7% across the four MetaShift datasets, both significantly lower than baselines. Moreover,
SupER performs especially well on datasets with highly complex correlations, exceeding the best
competing method by 17.6% on Waterbirds-100%, 11.9% on MetaShift (d), 25.8% on Spawrious
M2M-hard, and 7.4% on Spawrious O2O-hard.

3.2.2 Visualization Analysis of Feature Attention

SupER achieves effective disentanglement of superclass-relevant and irrelevant features. We
analyze the visualized gradient-based attribution maps from different test samples across ERM, CLIP,
and SupER to better understand each model’s focus areas and feature disentanglement quality. As
shown in the left five columns of Figure 2, while ERM tends to rely on spurious features for prediction,
the attribution maps derived from CLIP can be considered as suitable guidance for superclass semantic
information. Furthermore, in SupER, ω1 and ω2 exhibit clear attention to superclass-relevant and
superclass-irrelevant features respectively, which validates our approach.

SupER can adjust internal biases in CLIP. While CLIP’s attention in the left-hand (c) column
of Figure 2 can provide general guidance for superclass information, occasional cases from the
right-hand (c) column reveal that internal biases in CLIP may lead it to focus on incorrect or
incomplete features of the superclass. However, as shown in the right-hand (d) column, SupER’s
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Table 3: Mean ± standard deviation of worst group accuracy (%) for the MetaShift dataset using baselines that
do not require group information. Bold indicates the best among these methods.

Method Group
Info

Train
Twice

MetaShift Subsets Average
(a) d = 0.44 (b) d = 0.71 (c) d = 1.12 (d) d = 1.43

ERM × × 78.8±1.0 75.8±0.8 61.9±5.9 52.6±2.6 67.3±12.2
CVaR DRO × × 77.8±2.5 72.5±2.8 65.1±0.2 54.7±3.2 67.5±10.0
LfF × × 77.2±1.7 73.9±0.6 69.5±1.0 59.5±3.1 70.0±7.7
GALS × × 74.8±3.9 68.8±2.0 70.6±2.2 50.0±0.9 66.0±11.0
JTT × ✓ 76.7±2.3 73.2±0.8 67.1±4.6 53.0±1.6 67.5±10.4
CnC × ✓ 81.1±1.4 71.4±2.4 65.4±6.8 49.6±1.6 66.9±13.2
SupER (Ours) × × 79.8±3.6 78.4±1.9 77.6±2.1 71.4±2.1 76.8±3.7

(a) Original (b) ERM (c) CLIP (d) ω1 (e) ω2 (a) Original (b) ERM (c) CLIP (d) ω1 (e) ω2

Figure 2: Visualization of GradCAM maps across different models and datasets. Rows: (1) Waterbirds-95%, (2)
Waterbirds-100%, (3) MetaShift, (4) Spawrious. Each group of five columns ((a)–(e)) shows: original image,
GradCAM maps of ERM, CLIP, ω1, and ω2.

feature disentanglement and its emphasis on leveraging all relevant superclass features enable the
model to correct its biases to focus on more accurate and comprehensive superclass-relevant features.

4 Conclusion

In this work, we propose SupER that leverages superclass-level semantic information to mitigate the
learning of spurious features. Our method successfully disentangles superclass-relevant and irrelevant
features, and encourages the classifier to rely on all superclass-relevant features for prediction. Across
multiple benchmark datasets, SupER demonstrates strong performance under various and complex
spurious correlations, highlighting its strong generalization ability to diverse target domains, without
auxiliary information of group annotations or spurious features.
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A Training Algorithm

Algorithm 1 SupER Model Training

Input: Training data Ds, initial model parameters ϕ, θ, ω1, ω2, learning rate η, number of epochs
T , batch size B, hyperparameters λ1, λ2, λ3

for epoch t = 1 to T do
Shuffle Ds into mini-batches {B1,B2, . . . ,Bk}, where |Bi| ≤ B
for each mini-batch B ∈ {B1,B2, . . . ,Bk} do

for each sample (x, y) ∈ B do
Compute LBeta

θ,ϕ (x) according to Equation (1)
Compute cross-entropy losses LCE

ϕ,ω1
(x, y) and LCE

ϕ,ω2
(x, y)

Compute attribution alignment loss LATT
ϕ,ω1,ω2

(x, y) according to Equation (2)
end for
Compute the batch loss:∑

(x,y)∈B

(
LCE
ϕ,ω1

(x, y) + LCE
ϕ,ω2

(x, y)− λ1LBeta
θ,ϕ (x) + λ2LATT

ϕ,ω1,ω2
(x, y) + λ3∥ω1∥22

)
Update parameters: ϕ, θ, ω1, ω2 ← ϕ, θ, ω1, ω2 − η∇ϕ,θ,ω1,ω2

Lϕ,θ,ω1,ω2
(B)

end for
end for

B Algorithms for Gradient-based Attribution Maps

B.1 Gradient-based Attribution Map for CLIP

Algorithm 2 Gradient-based Attribution Map for CLIP

Input: Image x, text T, pre-trained ResNet50-based CLIP
Output: Normalized attribution map LT

CLIP(x)
Pass x through CLIP’s vision encoder to get the feature vector z and K feature maps Ak ∈ Rh×w

for k = 1, 2, . . . ,K, from the last convolutional layer of ResNet50
Pass T through CLIP’s text encoder to get text embedding t
Compute similarity score:

s(x,T) =
z · t
∥z∥∥t∥

for k = 1 to K do
for i = 1 to h do

for j = 1 to w do

Calculate gradient
∂s(x,T)

∂Aij
k

for spatial location (i, j)

end for
end for
Compute importance weight αT

k through global average pooling:

αT
k =

1

hw

h∑
i=1

w∑
j=1

∂s(x,T)

∂Aij
k

end for
Combine feature maps weighted by importance: LT

CLIP(x) = ReLU
(∑K

k=1 α
T
k Ak

)
Normalize LT

CLIP(x) to the range [0, 1] using min-max normalization
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B.2 Gradient-based Attribution Map for SupER’s ω1 and ω2

Algorithm 3 Gradient-based Attribution Map for SupER’s ω1 and ω2

Input: Image x, true label y, ResNet50-based encoder ϕ, classifiers ω1 (for z1) and ω2 (for z2)
Output: Normalized attribution maps Lϕ,ω1(x, y) and Lϕ,ω2(x, y)
Pass x through encoder to obtain latent feature z = [z1; z2] with mean µ = [µ1;µ2], and K
feature maps Ak ∈ Rh×w for k = 1, 2, . . . ,K, from the last convolutional layer of ResNet50
Compute logits g1 = ω1(µ1) and g2 = ω2(µ2)
for l = 1 to 2 do

Let sl(x, y) = gl[y]
for k = 1 to K do

for i = 1 to h do
for j = 1 to w do

Calculate gradient
∂sl(x, y)

∂Aij
k

for spatial location (i, j)

end for
end for
Compute importance weight αl

k through global average pooling:

αl
k =

1

hw

h∑
i=1

w∑
j=1

∂sl(x, y)

∂Aij
k

end for
Combine feature maps weighted by importance:

Lϕ,ωl
(x, y) = ReLU

(
K∑

k=1

αl
kAk

)

Normalize Lϕ,ωl
(x, y) to the range [0, 1] using min-max normalization

end for

C Related Work

Our work lies at the intersection of spurious correlation and domain generalization. To mitigate the
negative impact of spurious features and enhance model generalization to new domains, various
techniques have been developed, including invariant learning [22, 1, 4], distributionally robust
optimization [26, 11], causal relationship studies [19, 28], fine-tuning methods [10, 12], contrastive
learning [34], and the utilization of vision-language models [23, 35, 32]. Among these, two lines of
research are particularly relevant to our approach.

Group robustness to spurious correlation. The goal of group robustness is to improve the accuracy
on the worst-performing group. When group labels are accessible, various methods employ strategies
such as upweighting losses of minority groups [26], downsampling majority groups [5], group
distributionally robust optimization [26], and Progressive Data Expansion [5], with the shared goal of
balancing performance across groups. However, group information is not always available. Therefore,
another line of work attempts to infer group labels or identify biased samples without requiring group
annotations [20, 17, 34, 7]. Nevertheless, these methods become ineffective when the sets of groups
across source and target domains differ, as spurious correlations can no longer be reliably identified.

Feature learning through disentangled representation. Generally, disentangled representation
learning aim to separate distinct, independent, and informative generative factors of data variation [2].
Building on this principle, various approaches have sought to disentangle representations of X into
core and spurious features, and then use only core features for prediction [14, 33, 31]. Additionally,
sparsity-based methods [13, 6] and diverse classifier training [29, 21] have demonstrated effectiveness
in feature disentanglement and enhancing generalization. Similarly, these approaches still rely on
group or domain annotations, or become less effective when the target domain contains groups that
do not appear during training.
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Notably, all aforementioned methods except [23] become ineffective when spurious correlations
cannot be identified based on training groups or domains, or no auxiliary information on groups,
domains, or spurious features is available. While [23] also leverage gradient-based attribution from
CLIP to inform visual attention, their approach does not explicitly disentangle core and spurious
features, nor does it encourage the model to utilize a diverse set of core features for prediction. As a
result, it cannot effectively mitigate more subtle spurious correlations within a superclass or correct
inherent biases in CLIP guidance. As shown in subsequent sections, our model can overcome all
these limitations.

D Additional Experimental Details

D.1 Dataset Statistics

Waterbirds-95% statistics: Label set Y = {waterbird, landbird}. Attribute set Z = {water, land}.

Table 4: Dataset statistics for Waterbirds-95%.
Split (waterbird, water) (waterbird, land) (landbird, water) (landbird, land)

Train 1,057 56 184 3,498
Validation 133 133 466 467
Test 642 642 2,255 2,255

Waterbirds-100% statistics: Label set Y = {waterbird, landbird}. Attribute set Z = {water, land}.

Table 5: Dataset statistics for Waterbirds-100%.
Split (waterbird, water) (waterbird, land) (landbird, water) (landbird, land)

Train 1,101 0 0 3,694
Validation 133 133 466 467
Test 642 642 2,255 2,255

SpuCo Dogs statistics: Label set Y = {small dog, big dog}. Attribute set Z = {indoor, outdoor}.

Table 6: Dataset statistics for SpuCo Dogs.
Split (big dog, indoor) (big dog, outdoor) (small dog, indoor) (small dog, outdoor)

Train 500 10,000 10,000 500
Validation 25 500 500 25
Test 500 500 500 500

MetaShift statistics: Label set Y = {cat, dog}. Attribute set
Z = {sofa, bed, shelf, cabinet, bag, box, bench, bike, boat, surfboard}.

We consider four subsets in [16], each differing only in the two attributes paired with dog in the
training data. According to the distances to (dog, shelf) reported in [16], these subsets are:

(a) {cabinet, bed} d = 0.44,
(b) {bag, box} d = 0.71,
(c) {bench, bike} d = 1.12,
(d) {boat, surfboard} d = 1.43.

Larger d indicates a more challenging spurious correlation. We partition a portion of the test set into
a validation set following a 15 : 85 ratio, as in [24].

Table 10: Data statistics for MetaShift subset (d): boat & surfboard (d = 1.43).
Split (cat, sofa) (cat, bed) (dog, boat) (dog, surfboard) (cat, shelf) (dog, shelf)

Train 231 380 459 318 0 0
Validation 0 0 0 0 34 47
Test 0 0 0 0 201 259

3



Table 7: Data statistics for MetaShift subset (a): cabinet & bed (d = 0.44).
Split (cat, sofa) (cat, bed) (dog, cabinet) (dog, bed) (cat, shelf) (dog, shelf)

Train 231 380 314 244 0 0
Validation 0 0 0 0 34 47
Test 0 0 0 0 201 259

Table 8: Data statistics for MetaShift subset (b): bag & box (d = 0.71).
Split (cat, sofa) (cat, bed) (dog, bag) (dog, box) (cat, shelf) (dog, shelf)

Train 231 380 202 193 0 0
Validation 0 0 0 0 34 47
Test 0 0 0 0 201 259

Spawrious statistics: Label set Y = {Bulldog,Dachshund,Corgi,Labrador}. Attribute set

Z = {Beach,Desert,Dirt, Jungle,Mountain, Snow}.

The Spawrious dataset includes two modes of spurious correlation: (1) One-to-one (O2O): each class
is associated with exactly one attribute during training. At test time, the model encounters novel
class–attribute combinations. (2) Many-to-many (M2M): a subset of classes is correlated with a
subset of attributes during training, and this correlation is permuted in the test environment.

Each mode is divided into three subsets labeled as “easy,” “medium,” and “hard” following the
original paper’s naming convention, resulting in six subsets in total. For each subset, the original
Spawrious dataset provides two training domains and one test domain. To align with the setup of
other datasets, we merge the two training domains into a single training set, and for each group in the
test domain, we split 10% of the test samples into a validation set.

Table 14: Data statistics for Spawrious subset: M2M-Easy
Train I Train II Test

Bulldog 3,168 Desert 3,168 Mountain 3,168 Dirt 3,168 Jungle
Dachshund 3,168 Mountain 3,168 Desert 3,168 Dirt 3,168 Jungle
Corgi 3,168 Jungle 3,168 Dirt 3,168 Desert 3,168 Mountain
Labrador 3,168 Dirt 3,168 Jungle 3,168 Desert 3,168 Mountain

Table 15: Data statistics for Spawrious subset: M2M-Medium
Train I Train II Test

Bulldog 3,168 Beach 3,168 Snow 3,168 Desert 3,168 Mountain
Dachshund 3,168 Snow 3,168 Beach 3,168 Desert 3,168 Mountain
Corgi 3,168 Desert 3,168 Mountain 3,168 Beach 3,168 Snow
Labrador 3,168 Mountain 3,168 Desert 3,168 Beach 3,168 Snow

Table 9: Data statistics for MetaShift subset (c): bench & bike (d = 1.12).
Split (cat, sofa) (cat, bed) (dog, bench) (dog, bike) (cat, shelf) (dog, shelf)

Train 231 380 145 367 0 0
Validation 0 0 0 0 34 47
Test 0 0 0 0 201 259
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Table 11: Data statistics for Spawrious subset: O2O–Easy
Train I Train II Test

Bulldog 3,072 Desert 96 Beach 2,756 Desert 412 Beach 3,168 Dirt
Dachshund 3,072 Jungle 96 Beach 2,756 Jungle 412 Beach 3,168 Snow
Corgi 3,072 Snow 96 Beach 2,756 Snow 412 Beach 3,168 Jungle
Labrador 3,072 Dirt 96 Beach 2,756 Dirt 412 Beach 3,168 Desert

Table 12: Data statistics for Spawrious subset: O2O–Medium
Train I Train II Test

Bulldog 3,072 Mountain 96 Desert 2,756 Mountain 412 Desert 3,168 Jungle
Dachshund 3,072 Beach 96 Desert 2,756 Beach 412 Desert 3,168 Dirt
Corgi 3,072 Jungle 96 Desert 2,756 Jungle 412 Desert 3,168 Snow
Labrador 3,072 Dirt 96 Desert 2,756 Dirt 412 Desert 3,168 Beach

Table 16: Data statistics for Spawrious subset: M2M-Hard
Train I Train II Test

Bulldog 3,168 Dirt 3,168 Jungle 3,168 Snow 3,168 Beach
Dachshund 3,168 Jungle 3,168 Dirt 3,168 Snow 3,168 Beach
Corgi 3,168 Beach 3,168 Snow 3,168 Dirt 3,168 Jungle
Labrador 3,168 Snow 3,168 Beach 3,168 Dirt 3,168 Jungle

These datasets cover varying types of spurious correlations. Specifically, Waterbirds-95% exhibits a
strong correlation (approximately 95%) between background z and label y during training. SpuCo
Dogs is a larger dataset with similar correlation structure. Waterbirds-100% represents an extreme
setting where two groups (y, z) = (waterbird, land) and (y, z) = (landbird,water) are entirely
absent in training. MetaShift evaluates generalization under distribution shift, with each subset
introducing different degrees of spurious correlation and testing on group combinations unseen during
training. Spawrious is used to assess performance under two correlation regimes: one-to-one, where
each class correlates with a unique attribute, and many-to-many, where multiple classes correlate
with multiple attributes.

D.2 Hyperparameter Selection

SupER. Our SupER model employs a β-VAE encoder built upon the ResNet50 backbone architecture.
For consistency, the CLIP model also uses ResNet50. We perform a grid search to assess the
performance of SupER under different hyperparameter configurations and select the optimal values
for each dataset as summarized in Table 17. Specifically, the hyperparameters are as follows: β
denotes the weighting factor of β-VAE; λ1 is the weight for the loss LBeta

θ,ϕ (x); λ2 is the weight for the
loss LATT

ϕ,ω1,ω2
(x, y); λ3 controls the L2 regularization term ||ω1||22, where n1 denotes the number of

parameters in ω1; η is the learning rate; B is the batch size; T is the number of epochs; γ denotes the
weight decay coefficient used in the Adam optimizer; and d specifies the dimensionality of features
z1 and z2. Early stopping is adopted, and training is terminated when the worst group accuracy on
the validation set reaches its maximum. For the number of superclass-specific text prompts n, unless
stated otherwise, we set n = 1. The text prompts used for each dataset are detailed in Table 18.

Baselines. For baseline methods considered in our experiments, we similarly employ ResNet50
backbone architectures and determine their optimal hyperparameters via grid search. We specifically

Table 13: Data statistics for Spawrious subset: O2O–Hard
Train I Train II Test

Bulldog 3,072 Jungle 96 Beach 2,756 Jungle 412 Beach 3,168 Mountain
Dachshund 3,072 Mountain 96 Beach 2,756 Mountain 412 Beach 3,168 Snow
Corgi 3,072 Desert 96 Beach 2,756 Desert 412 Beach 3,168 Jungle
Labrador 3,072 Snow 96 Beach 2,756 Snow 412 Beach 3,168 Desert
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Table 17: SupER hyperparameter settings across datasets

Dataset β λ1 λ2 λ3 η B T γ d

Waterbirds-95% 1 1 40 1000/n1 10−5 32 100 10−4 256
Waterbirds-100% 1 1 40 1000/n1 10−5 32 100 10−4 256
SpuCo Dogs 1 1 40 100/n1 10−6 32 50 10−2 256
MetaShift (a) 5 1 1 100/n1 10−5 32 100 10−2 256
MetaShift (b) 5 1 1 100/n1 10−5 32 100 10−2 256
MetaShift (c) 5 1 20 100/n1 10−5 32 100 10−2 256
MetaShift (d) 10 1 20 100/n1 10−5 32 100 10−2 256
Spawrious O2O–Easy 10 1 10 100/n1 10−6 32 50 10−4 256
Spawrious O2O–Medium 1 1 80 100/n1 10−6 32 50 10−4 256
Spawrious O2O–Hard 1 1 80 100/n1 10−6 32 50 10−4 256
Spawrious M2M–Easy 10 1 50 100/n1 10−6 32 50 10−4 256
Spawrious M2M–Medium 1 1 50 100/n1 10−6 32 50 10−4 256
Spawrious M2M–Hard 1 1 50 100/n1 10−6 32 50 10−4 256

Table 18: Superclass text prompts for each dataset

Dataset Prompt

Waterbirds-95% a bird
Waterbirds-100% a bird
SpuCo Dogs a dog
MetaShift a cat or a dog
Spawrious a dog

evaluate learning rates η ∈
{
10−6, 10−5, 10−4

}
and weight decay γ ∈

{
10−4, 10−2

}
, with the

batch size and number of training epochs for each dataset as specified in Table 17. Note that for all
the above configurations, as well as additional model-specific hyperparameters, we directly use the
values provided or recommended in the original papers whenever available.

D.3 Full Worst Group Accuracy, Average Accuracy, and Group Accuracy Variance for All
Datasets

Worst group and average accuracy. Tables 19, 20, 21, 22, 23, and 24 summarize the worst
group accuracy and average accuracy for all datasets and selected baseline methods. Bold indicates
the best across all selected baselines; Underlined indicates the best among methods without group
information; “–" indicates omitted result due to consistently subpar or unstable performance, even
after comprehensive hyperparameter tuning using the original codebase.

Table 19: Worst and average group accuracy (%) for Waterbirds-95% and Waterbirds-100%.

Method
Group
Info

Train
Twice

Waterbirds-95% Waterbirds-100%

Worst Avg Worst Avg

ERM × × 64.9±1.5 90.7±1.0 46.4±6.9 74.8±3.0

CVaR DRO × × 73.1±7.1 90.7±0.7 58.0±2.2 79.0±1.2

LfF × × 79.1±2.5 91.9±0.7 61.5±2.8 80.6±1.2

GALS × × 75.4±2.2 89.0±0.5 55.0±5.5 79.7±0.4

JTT × ✓ 86.4±1.0 89.5±0.5 61.3±5.5 79.7±3.0

CnC × ✓ 86.5±5.9 91.0±0.5 62.1±0.9 81.9±1.5

SupER (Ours) × × 84.4±2.3 87.3±0.6 79.7±1.7 85.0±1.4

UW ✓ × 89.3±1.5 94.5±0.9 56.4±2.3 78.6±0.8

IRM ✓ × 76.2±6.3 89.4±0.9 57.0±5.4 80.5±5.0

GroupDRO ✓ × 87.2±1.3 93.2±0.4 56.5±1.4 79.4±0.3

DFR ✓ ✓ 89.7±2.4 93.6±0.6 48.2±0.4 76.4±0.2
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Table 20: Worst group accuracy (%) for the six Spawrious subsets.

Method
Group
Info?

Train
Twice?

One–To–One Many–To–Many Average
Easy Medium Hard Easy Medium Hard

ERM × × 78.4±1.8 63.4±2.3 71.1±3.7 72.9±1.3 52.7±2.9 50.7±1.0 64.9±11.3

CVaR DRO × × 81.7±0.5 66.4±1.4 61.2±1.6 69.7±0.8 50.3±3.9 45.9±0.2 62.5±13.1

LfF × × 74.6±7.7 – 62.9±3.6 72.7±3.5 50.0±4.0 48.6±3.7 –
GALS × × 89.1±1.9 60.0±5.4 81.0±3.0 74.0±4.8 44.9±0.3 46.9±2.4 66.0±18.3

JTT × ✓ 80.9±2.1 – 59.7±4.9 71.2±2.0 49.7±3.5 45.2±1.8 –
CnC × ✓ 90.0±1.4 73.5±4.6 81.3±3.1 82.8±2.1 62.5±5.2 78.7±4.9 78.1±9.4

SupER (Ours) × × 82.7±2.0 80.3±4.6 83.8±3.4 87.4±1.3 83.4±2.3 79.9±4.7 82.9±2.7

UW ✓ × 87.4±1.1 67.9±2.1 75.9±2.9 72.9±1.3 52.7±2.9 50.7±1.0 67.9±14.1

IRM ✓ × 78.4±1.0 64.5±3.2 64.9±2.2 77.9±3.7 57.1±2.9 50.7±1.1 65.6±11.1

GroupDRO ✓ × 86.7±1.2 67.2±0.7 76.4±2.2 74.3±0.9 55.7±1.4 49.9±0.8 68.3±13.7

DFR ✓ ✓ 79.1±5.2 64.3±1.9 70.0±1.9 76.4±1.9 58.7±2.2 54.1±2.2 67.1±9.9

Table 21: Average accuracy (%) for the six Spawrious subsets.

Method
Group
Info?

Train
Twice?

One–To–One Many–To–Many Average
Easy Medium Hard Easy Medium Hard

ERM × × 85.5±2.6 76.7±1.3 82.0±1.0 89.5±0.6 74.5±1.4 70.7±2.1 79.8±7.1

CVaR DRO × × 89.4±0.1 86.0±3.7 80.7±0.6 88.5±0.6 74.0±1.0 67.7±0.6 81.0±8.7

LfF × × 84.1±1.5 – 76.9±1.2 89.6±0.8 73.8±2.6 69.1±1.1 –
GALS × × 93.5±0.9 86.6±0.9 90.0±0.4 87.8±0.2 74.0±0.3 69.8±1.9 83.6±9.5

JTT × ✓ 86.1±1.3 – 77.5±1.7 89.2±0.5 72.8±0.9 66.6±0.8 –
CnC × ✓ 94.4±1.1 87.8±2.5 89.6±0.9 92.6±1.0 80.8±4.0 88.8±1.2 89.0±4.7

SupER (Ours) × × 90.9±0.5 90.1±3.2 90.5±2.0 94.9±0.9 91.6±1.8 91.4±1.5 91.6±1.7

UW ✓ × 93.5±0.3 82.6±0.7 86.5±0.6 89.5±0.6 74.5±1.4 70.7±2.1 82.9±8.8

IRM ✓ × 87.3±0.3 76.9±0.4 82.7±0.4 90.9±0.9 76.7±2.6 71.2±1.0 80.9±7.4

GroupDRO ✓ × 92.7±0.3 89.5±0.3 86.5±1.5 89.4±0.6 77.3±0.5 68.4±1.7 84.0±9.3

DFR ✓ ✓ 87.5±3.3 80.9±1.1 79.4±1.3 89.4±0.4 75.1±0.1 72.4±1.9 80.8±6.7

Table 22: Worst group accuracy (%) for the four MetaShift subsets.

Method
Group
Info?

Train
Twice?

MetaShift Subsets Average
(a) d = 0.44 (b) d = 0.71 (c) d = 1.12 (d) d = 1.43

ERM × × 78.8±1.0 75.8±0.8 61.9±5.9 52.6±2.6 67.3±12.2

CVaR DRO × × 77.8±2.5 72.5±2.8 65.1±0.2 54.7±3.2 67.5±10.0

LfF × × 77.2±1.7 73.9±0.6 69.5±1.0 59.5±3.1 70.0±7.7

GALS × × 74.8±3.9 68.8±2.0 70.6±2.2 50.0±0.9 66.0±11.0

JTT × ✓ 76.7±2.3 73.2±0.8 67.1±4.6 53.0±1.6 67.5±10.4

CnC × ✓ 81.1±1.4 71.4±2.4 65.4±6.8 49.6±1.6 66.9±13.2

SupER (Ours) × × 79.8±3.6 78.4±1.9 77.6±2.1 71.4±2.1 76.8±3.7

Table 23: Average accuracy (%) for the four MetaShift subsets.

Method
Group
Info?

Train
Twice?

MetaShift Subsets Average
(a) d = 0.44 (b) d = 0.71 (c) d = 1.12 (d) d = 1.43

ERM × × 80.5±0.8 78.0±0.2 73.6±0.5 69.2±1.3 75.3±5.0

CVaR DRO × × 80.7±1.2 78.2±0.3 74.6±0.5 69.8±2.1 75.8±4.7

LfF × × 79.2±0.9 77.2±1.4 74.8±1.1 69.1±0.7 75.1±4.4

GALS × × 80.5±1.8 77.4±1.2 78.3±0.7 69.1±1.3 76.3±5.0

JTT × ✓ 80.8±1.3 76.4±1.0 73.2±0.5 69.3±0.6 74.9±4.9

CnC × ✓ 82.1±1.4 77.0±2.2 74.4±1.6 66.7±1.4 75.1±6.4

SupER (Ours) × × 81.7±1.9 80.5±1.4 79.2±1.9 76.6±1.4 79.5±2.2
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Table 24: Worst and average group accuracy (%) for Spuco Dogs.

Method
Group
Info?

Train
Twice?

Spuco Dogs

Worst Avg

ERM × × 54.5±1.3 77.4±1.6

CVaR DRO × × 56.3±3.1 78.5±2.2

LfF × × 52.6±2.5 77.1±1.9

GALS × × – –
JTT × ✓ 50.4±0.2 77.9±0.1

CnC × ✓ 65.6±0.7 82.0±0.5

SupER (Ours) × × 69.7±4.4 76.0±2.3

UW ✓ × 84.7±2.0 87.4±0.5

IRM ✓ × 50.0±5.5 75.2±5.7

GroupDRO ✓ × 83.8±0.4 87.6±0.5

DFR ✓ ✓ 71.3±4.4 83.3±2.8

Variance of accuracy across groups. Tables 25, 26, and 27 summarize the variance of accuracy
across groups for all datasets and selected baseline methods. Bold indicates the smallest across all
selected baselines; Underlined indicates the smallest among methods without group information. ; “–"
indicates omitted result due to consistently subpar or unstable performance, even after comprehensive
hyperparameter tuning using the original codebase. Results shows that SupER not only demonstrates
robustness across datasets of varying difficulty but also exhibits more consistent accuracy across
different groups within the same dataset. This indicates that, under the guidance of superclass
information, the model consistently focuses on features with semantic meaning and becomes less
influenced by spurious features.

Table 25: Variance of accuracy across groups (%) for Waterbirds-95%, Waterbirds-100%, and SpuCo Dogs.

Method Waterbirds-95% Waterbirds-100% SpuCo Dogs

ERM 245.9 778.1 603.9
CVaR DRO 154.6 528.8 558.5
LfF 89.2 442.1 582.9
GALS 126.7 516.5 –
JTT 6.1 405.0 621.4
CnC 16.3 347.6 261.7
SupER (Ours) 6.0 16.0 28.4

UW 12.7 536.2 6.5
IRM 127.2 479.8 776.7
GroupDRO 28.0 495.1 10.0
DFR 14.2 573.0 282.9

Table 26: Variance of accuracy across groups (%) for the four MetaShift subsets.

Method (a) d = 0.44 (b) d = 0.71 (c) d = 1.12 (d) d = 1.43

ERM 10.3 14.2 411.8 722.1
CVaR DRO 21.3 97.5 237.7 599.7
LfF 15.3 30.3 73.3 258.8
GALS 82.1 197.7 157.7 955.6
JTT 31.2 24.9 128.6 699.8
CnC 2.3 71.5 262.5 769.6
SupER 9.3 13.1 7.7 49.4
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Table 27: Variance of accuracy across groups (%) for the six Spawrious subsets.

Method O2O-Easy O2O-Medium O2O-Hard M2M-Easy M2M-Medium M2M-Hard

ERM 50.9 109.8 101.1 92.6 246.3 373.8
CVaR DRO 63.3 261.0 241.4 109.4 323.0 469.0
LfF 88.1 – 254.2 80.9 290.2 413.8
GALS 12.6 490.8 61.3 161.6 563.8 584.9
JTT 31.4 – 310.2 108.3 293.2 473.2
CnC 19.2 169.2 62.9 48.1 129.1 47.1
SupER (Ours) 64.7 92.1 41.2 22.8 33.8 58.0

UW 29.3 109.8 99.6 92.6 246.3 373.8
IRM 76.5 107.8 183.8 70.0 291.2 383.4
GroupDRO 33.5 221.7 85.5 79.0 190.7 397.1
DFR 70.3 359.1 149.3 68.0 293.1 327.5

CLIP guidance. The goal of SupER is fundamentally different from extracting or replicating CLIP’s
features. Instead, CLIP only provides superclass guidance and does not contribute any information
useful for distinguishing class labels, since the superclass is shared across different class labels.
Moreover, in Table 28 we report the performance of directly using CLIP for prediction compared to
SupER. Directly applying CLIP leads to a noticeable drop in accuracy, which suggests that CLIP
itself may also rely on spurious correlations. Therefore, using CLIP as superclass guidance can both
give SupER enough autonomy to learn features on its own, and avoid the spurious correlations that
CLIP might exploit for fine-grained class prediction.

Table 28: Comparison of worst group accuracy (%) between CLIP and SupER on Waterbirds. CLIP (zero-shot)
means directly using the pretrained CLIP model for classification. CLIP (fine-tuned) denotes standard fine-tuning
of CLIP on the downstream dataset.

Method Waterbirds-95% Waterbirds-100%

CLIP (zero-shot) 41.6 47.9
CLIP (fine-tuned) 70.2 48.8
SupER 84.4 79.7

D.4 Visualization Results

SupER achieves effective disentanglement of superclass-relevant and irrelevant features. Fig-
ures 3 illustrates gradient-based attention visualizations from one representative samples per subset
across all datasets. For each sample, we present the original image, GradCAM attribution maps from
the ERM baseline, CLIP, SupER’s ω1 and ω2. The results show that SupER consistently succeeds in
separating superclass-relevant and superclass-irrelevant features by leveraging guidance from CLIP
across diverse datasets.

SupER can adjust internal biases in CLIP. Figure 4 illustrates gradient-based attention visualiza-
tions from one representative sample per subset across all datasets. Each sample includes the original
image, GradCAM attribution maps from CLIP, SupER’s classifiers (ω1, ω2), and an illustration of the
primary issue observed in CLIP’s attention (e.g., focusing on incomplete or incorrect features). The
results demonstrate that SupER, by emphasizing feature disentanglement, can effectively mitigate
internal biases in CLIP’s attention.
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Dataset (a) Original (b) ERM (c) CLIP (d) ω1 (e) ω2

Waterbirds-
95%

Waterbirds-
100%

SpuCo Dogs

MetaShift (a)

MetaShift (b)

MetaShift (c)

MetaShift (d)

Spawrious
O2O–Easy

Spawrious
O2O–Medium

Spawrious
O2O–Hard

Spawrious
M2M–Easy

Spawrious
M2M–Medium

Spawrious
M2M–Hard

Figure 3: Visualization of GradCAM maps across all datasets to assess feature disentanglement. Each row
corresponds to one representative sample per dataset subset. Columns (a)–(e) show: the original image,
GradCAM maps from ERM, CLIP, SupER’s classifier ω1 (superclass-relevant), and ω2 (superclass-irrelevant).
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Dataset (a) Original (b) CLIP (c) ω1 (d) ω2 (e) CLIP Issue

Waterbirds-
95% Incorrect

Waterbirds-
100% Incorrect

SpuCo Dogs Incomplete

MetaShift (a) Incorrect

MetaShift (b) Incomplete

MetaShift (c) Incorrect

MetaShift (d) Incorrect

Spawrious
O2O–Easy Incomplete

Spawrious
O2O–Medium Incorrect

Spawrious
O2O–Hard Incomplete

Spawrious
M2M–Easy Incorrect

Spawrious
M2M–Medium Incorrect

Spawrious
M2M–Hard Incorrect

Figure 4: Visualization of GradCAM maps highlighting CLIP’s internal bias and SupER’s correction. Each
row presents one representative sample per dataset subset. Columns (a)-(d) show: original image, GradCAM
maps from CLIP, SupER’s classifier ω1 (superclass-relevant), ω2 (superclass-irrelevant) and an illustration of the
primary CLIP bias.

D.5 Ablation Results

In this section, we examine the contributions of different components of SupER, including text
prompts, the strength of feature disentanglement, and the degree of superclass guidance. To better
isolate the effect of each factor, we keep all other hyperparameters fixed during each ablation study.
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This includes adopting a consistent protocol for random-seed selection across repeated trials, while in
Appendix D.3, we do not enforce fixed random seeds across runs.

Text prompt. To examine the impact of superclass information guidance, we conduct experiments
by varying the text prompts provided to CLIP. This analysis focuses on two aspects. First, although
our main experiments are based on a single text prompt, as described in Section 2.2, our general
framework allows for multiple prompts. Second, we are interested in understanding the effect of
prompt specificity, particularly in terms of superclass hierarchy. We evaluate the impact of text prompt
configurations across all datasets. Tables 30, 31,32, and 33 present the change in worst group accuracy
relative to the reference setting for the Spawrious, MetaShift, Waterbirds, and SpuCo Dogs datasets,
respectively. The exact text prompts used are listed in Table 29. Results show that using multiple
prompts generally hurts performance. This may occur because attention maps from different prompts
could highlight distinct non-superclass regions due to imperfect guidance, and averaging them mixes
biases from each prompt. Moreover, performance tends to degrade as the superclass becomes more
abstract, likely due to the coarser semantic alignment between the generalized superclass and the
visual features.

Feature disentanglement strength. We study how the strength of feature disentanglement, con-
trolled by the β coefficient in the β-VAE objective, affects model performance. Specifically, we
vary β to observe its impact on SupER’s worst group accuracy. Figure 5 shows the worst group
accuracy as β changes. Overall, both insufficient feature disentanglement (i.e., low β) and excessive
disentanglement (i.e., overly large β) can lead to degraded model performance. This trend indicates
that moderate feature disentanglement benefits semantic feature extraction and superclass-relevant
feature utilization, whereas overly strong disentanglement can distort task-relevant information.

Degree of superclass guidance. We study the effect of varying the weight λ2 of the alignment loss
LATT
ϕ,ω1,ω2

(x, y) in Algorithm 1, which governs the strength of superclass guidance from CLIP. Figure 6
reports the worst group accuracy under different values of λ2 across selected datasets. Overall, both
insufficient guidance (i.e., low λ2) and overly strong guidance (i.e., excessively large λ2) can lead to
degraded model performance. These results clearly reveal a trade-off between external guidance and
model autonomy: excessive reliance on superclass guidance may prevent the model from learning
discriminative features, while ignoring guidance altogether increases the risk of learning spurious
correlations between background and labels.

Table 29: Prompt variants used for different values of n. Each prompt includes the superclass placeholder,
formatted as a/an [superclass].

#Prompts (n) Prompt Variant

1 a/an [superclass]

2 a/an [superclass]
a photo of a/an [superclass]

5

a/an [superclass]
a photo of a/an [superclass]
a picture of a/an [superclass]
an image of a/an [superclass]
a/an [superclass] photograph

Table 30: Ablation results on Spawrious under different prompt configurations. All values indicate the change in
worst group accuracy (%) relative to the setting n = 1, superclass = dog.

#Prompts Superclass O2O-Easy O2O-Medium O2O-Hard M2M-Easy M2M-Medium M2M-Hard

1 dog 0.0 0.0 0.0 0.0 0.0 0.0
2 dog +0.7 -2.2 -2.3 +0.8 -9.6 -2.4
5 dog +0.3 -2.5 -2.9 -1.1 -9.4 +1.1
1 animal -4.0 -1.1 -5.6 -4.9 -7.5 -5.6
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Table 31: Ablation results on MetaShift under different prompt configurations. All values indicate the change in
worst group accuracy (%) relative to the setting n = 1, superclass = dog or cat.

#Prompts Superclass (a) d = 0.44 (b) d = 0.71 (c) d = 1.12 (d) d = 1.43

1 dog or cat 0.0 0.0 0.0 0.0
2 dog or cat -1.5 +0.4 -0.9 -2.4
5 dog or cat -0.8 -0.8 -2.5 -0.1
1 animal -1.1 -0.3 -8.3 -6.3

Table 32: Ablation results on Waterbirds-95% and Waterbirds-100% under different prompt configurations. All
values indicate the change in worst group accuracy (%) relative to the setting n = 1, superclass = bird.

#Prompts Superclass Waterbirds-95% Waterbirds-100%

1 bird 0.0 0.0
2 bird -2.6 +3.2
5 bird -1.1 -2.2
1 animal -29.2 -44.8

Table 33: Ablation results on SpuCo Dogs under different prompt configurations. All values indicate the change
in worst group accuracy (%) relative to the setting n = 1, superclass = dog.

#Prompts Superclass SpuCo Dogs

1 dog 0.0
2 dog -0.5
5 dog +0.9
1 animal -14.1
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(a) Effect of β on SpuCo Dogs relative to the β = 0.1 setting.
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(b) Effect of β on Waterbirds relative to the β = 0.1 setting.
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(c) Effect of β on Spawrious relative to the β = 0.1 setting.
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(d) Effect of β on MetaShift relative to the β = 0.1 setting.

Figure 5: Ablation of feature disentanglement strength β across all datasets.
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(a) Effect of λ2 on Waterbirds relative to the λ2 = 0 setting.
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(b) Effect of λ2 on MetaShift relative to the λ2 = 0 setting.

Figure 6: Ablation of the degree of superclass guidance λ2 on Waterbirds and MetaShift.

D.6 SupER under Internal Spurious Correlation

In Section 3, we have already demonstrated that SupER achieves significant generalization improve-
ments under various types and degrees of spurious correlations, in particular when new groups appear
at test time and when spurious features in the training data are perfectly correlated with the labels.
In this section, we further consider a special case where prior knowledge indicates that spurious
correlations arise entirely within the superclass. We examine this scenario because the superclass
guidance from CLIP is now less dominant compared to the contributions of the β-VAE and L2

regularization. On one hand, this does not contradict the core objective of SupER, which is designed
under the assumption that the sources of spurious correlation are unknown. We also show consistently
strong performance of SupER across a wide range of datasets under this general setting. On the
other hand, when prior knowledge is available and it is known that the spurious correlation originates
entirely from within the superclass, SupER can be further enhanced by integrating it with existing
approaches that do not require group annotations.

Table 34: Comparison of JTT and SupER + JTT on Color MNIST. SupER + JTT achieves improved worst group
accuracy. We use early stopping based on the highest validation worst group accuracy. When applicable, shared
hyperparameters are set to the same values across both methods, including: for the initial training phase used
to identify misclassified examples, a learning rate of 10−3 and 1 training epoch; and for the second phase of
re-training with upweighted loss, a learning rate of 10−4 and 30 training epochs with upweighting factor 100.

Method Worst Group Accuracy (%) Average Accuracy (%)

JTT 83.3±2.7 93.3±1.2

SupER + JTT 84.4±2.0 94.1±1.4

Specifically, we combine SupER with JTT by upweighting the loss LCE
ϕ,ω1

(x, y) for data points
identified in Step 1 of the original JTT procedure [17], where a standard ERM model is first trained
to identify potential samples with spurious correlations based on misclassification. As shown in
Table 34, we evaluate both JTT and our combined SupER + JTT method on the Color MNIST dataset
[34, 1], which introduces a spurious correlation between the color (a superclass-relevant feature) and
the label y. In this setting, the target label y ∈ Y = {(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)}, the spurious
attribute s takes one of five colors, and the spurious correlation ratio is 99.5% during training. In
our evaluation, both the validation and test sets use a mode where colors are assigned uniformly
at random to each sample. Results show that our combined method achieves higher worst group
accuracy compared to JTT alone. This suggests that the identification of samples with spurious
correlations by JTT complements SupER’s feature disentanglement and its emphasis on leveraging
all relevant superclass features for prediction.

It is important to reiterate that SupER is designed for the general case where spurious features are
unknown. This experiment is intended to demonstrate that SupER can be flexibly adapted to cases
where spurious features are fully internal to a superclass. A more detailed discussion of this special
case is left for future investigation.
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D.7 Compute Resources

We used a single NVIDIA A100-SXM4 GPU (40 GB VRAM), an Intel Xeon CPU @ 2.20 GHz with
12 cores, and 83 GB of system RAM. Table 35 shows the average time per epoch (in seconds) for
each dataset. For epoch counts and specific hyperparameters, see Appendix D.2.

Table 35: Average time per epoch (s) for each dataset

Dataset Time per epoch (s)

Waterbirds-95% & 100% 41
SpuCo Dogs 216
MetaShift 12
Spawrious 195

E Licenses for External Assets

We use the following publicly available datasets and pretrained models in our work:

• Pretrained models:
– CLIP, MIT, available at https://github.com/openai/CLIP.
– ResNet50, BSD-3-Clause, available at https://github.com/pytorch/vision/
blob/main/torchvision/models/resnet.py.

• Datasets:
– Waterbirds-95% and Waterbirds-100%, MIT, available at https://github.com/
kohpangwei/group_DRO and https://github.com/spetryk/GALS.

– SpuCo Dogs, MIT, available at https://github.com/BigML-CS-UCLA/SpuCo.
– MetaShift, MIT, available at https://github.com/Weixin-Liang/MetaShift.
– Spawrious, CC BY 4.0, available at https://github.com/aengusl/spawrious.
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