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ABSTRACT

Randomized algorithms play a crucial role in efficiently solving large-scale opti-
mization problems. In this paper, we introduce Sketching for Regularized Opti-
mization (SRO), a fast sketching algorithm designed for least squares problems
with convex or nonconvex regularization. SRO operates by first creating a sketch
of the original data matrix and then solving the sketched problem. We establish
minimax optimal rates for sparse signal estimation by addressing the sketched
sparse convex and nonconvex learning problems. Furthermore, we propose a
novel Iterative SRO algorithm, which significantly reduces the approximation er-
ror geometrically for sketched convex regularized problems. To the best of our
knowledge, this work is among the first to provide a unified theoretical framework
demonstrating minimax rates for convex and nonconvex sparse learning problems
via sketching. Experimental results validate the efficiency and effectiveness of
both the SRO and Iterative SRO algorithms.

1 INTRODUCTION

Randomized algorithms for efficient optimization are a critical area of research in machine learning
and optimization, with wide-ranging applications in numerical linear algebra, data analysis, and sci-
entific computing. Among these, matrix sketching and random projection techniques have gained
significant attention for solving sketched problems at a much smaller scale (Vempala, 2004; Bout-
sidis & Drineas, 2009; Drineas et al., 2011; Mahoney, 2011; Kane & Nelson, 2014). These methods
have been successfully applied to large-scale problems such as least squares regression, robust re-
gression, low-rank approximation, singular value decomposition, and matrix factorization (Halko
et al., 2011; Lu et al., 2013; Alaoui & Mahoney, 2015; Raskutti & Mahoney, 2016; Yang et al.,
2015; Drineas & Mahoney, 2016; Oymak et al., 2018; Oymak & Tropp, 2017; Tropp et al., 2017).
Regularized optimization problems with convex or nonconvex regularization, such as the widely
used in regularized least squares such as Lasso and ridge regression, play a fundamental role in ma-
chine learning and statistics. While prior research has extensively explored random projection and
sketching methods for problems with standard convex regularization (Zhang et al., 2016b) or con-
vex constraints (Pilanci & Wainwright, 2016), there has been limited focus on analyzing regularized
problems with general convex or nonconvex regularization frameworks.

We would like to emphasize that while (Yang & Li, 2021) also studies sketching for regularized
optimization problem, the focus and results of this work are completely different from that in (Yang
& Li, 2021), with a detailed discussion deferred to Section 5. In particular, due to our novel result
in the approximation error bound (Theorem D.2-Theorem D.3), the proposed iterative sketching al-
gorithm, Iterative SRO, does not need to sample a new projection matrix and compute the sketched
matrix at every iteration, in a strong contrast to (Yang & Li, 2021). Moreover, the focus of this work
is to establish minimax optimal rates for sparse convex and nonconvex learning problems by sketch-
ing, which has not been addressed by existing works in the literature including (Yang & Li, 2021).
While (Yang & Li, 2021) only focuses on the optimization perspective, that is, approximating the
solution to the original optimization problem by the solution to the sketched problem, the focus of
this work needs much more efforts beyond the efforts made in (Yang & Li, 2021) for optimization
only: we need to show that the solution to the sketched problem can still enjoy the minimax optimal
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rates for estimation of the sparse parameter vector for both sparse convex and nonconvex learning
problems. Such efforts and results in minimax optimal rates for sparse convex and nonconvex learn-
ing problems by sketching have not been offered by previous works including (Yang & Li, 2021),
which are provided in Section 4 of this paper. Such minimax optimal results are established in a
highly non-trivial manner. For example, to the best of our knowledge, Theorem 4.1 is among the
first in the literature which uses an iteratively sketching algorithm to achieve the minimax optimal
rate for sparse convex learning. Furthermore, Theorem 4.5 shows that sketching can also lead to the
minimax optimal rate even for sparse nonconvex problems, while sketching for nonconvex problems
is still considered difficult and open in the literature.

In this paper, we study efficient sketching algorithm for the optimization problem of regularized
least squares with convex or nonconvex regularization, which is presented as follows:

min
β∈Rd

f(β) =
1

2
∥y −Xβ∥22 + hλ(β). (1)

Here X ∈ Rn×d is the data matrix or design matrix for regression problems, hλ : Rd → R is a reg-
ularizer function and λ is a positive regularization weight. When hλ(·) = λ∥·∥22 or hλ(·) = λ∥·∥1,
(1) is the optimization problem for ridge regression or ℓ1 regularized least square estimation (Lasso).
Section 4.2 provides more examples for nonconvex hλ. We focus on sparsity-inducing regularizers,
and the solution to the sketched problem (1) can provably approximate the true parameter vector for
sparse signal estimation to be detailed in Section 4.

We study the regime that n ≫ r = rank(X) where r is the rank of X in most results of this
paper, and it is a popular setting for large-scale problems such as fast least square estimation by
sketching (Drineas et al., 2011). For example, matrix X in sparse linear regression is usually low-
rank or approximately low-rank in practice. However, our results for sparse nonconvex learning in
Subsection 4.2 hold for X not necessarily low-rank.

Optimization for (1) is time consuming when n is large, and such large-scale regularized optimiza-
tion problems are important due to the increasing interest in massive data. To this end, we propose
Sketching for Regularized Optimization (SRO) in this paper as an efficient randomized algorithm
for problem (1). With ñ < n where ñ is the target row number of a sketch of the data matrix X
which is also termed the sketch size, SRO first generates a sketched version of X by X̃ = PX, then
solves the following sketched problem,

min
β∈Rd

f̃(β) =
1

2
β⊤X̃⊤X̃β − ⟨y,Xβ⟩+ hλ(β). (2)

One hopes that the optimization result of the sketched problem (2), denoted by β̃∗, is a good ap-
proximation to that of the original problem (1), denoted by β∗. The optimization and theoretical
computer science literature are particulary interested in the solution approximation measure defined
as the semi-norm induced by the data matrix X, that is,

∥∥∥β̃∗ − β∗
∥∥∥
X

=
∥∥∥X(β̃∗ − β∗)

∥∥∥
2

where

∥u∥X := ∥Xu∥2 for any vector u. Existing research, such as Iterative Hessian Sketch (IHS) (Pilanci
& Wainwright, 2016), prefers relative-error approximation to the solution of the original problem in
the following form: ∥∥∥β̃∗ − β∗

∥∥∥
X
≤ ρ∥β∗∥X, (3)

where 0 < ρ < 1 is a positive constant. With the relative-error approximation (3), IHS proposes an
interesting iterative sketching method to reduce the approximation error

∥∥∥β̃∗ − β∗
∥∥∥
X

geometrically

in the iteration number. Sketching the matrix X only in the quadratic term ∥Xβ∥22 is proposed in
(Pilanci & Wainwright, 2016) for constrained least square problems with convex constraints. SRO
adopts this idea for regularized least square problems admitting a broad range of regularizers.

1.1 CONTRIBUTIONS AND MAIN RESULTS

We study the sparse signal estimation problem by sketching in Section 4. For sparse convex or
nonconvex learning problems where hλ is convex or nonconvex, we obtain the minimax optimal
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rate of the order O
(√

s̄ log d/n
)

for the parameter estimation error in sparse signal estimation by
solving the sketched problem (2) where s̄ is the support size of the unknown sparse parameter vector
to be estimated. To the best of our knowledge, our analysis provides the first unified theoretical result
for the minimax optimal error rate for sparse signal estimation using sketching based optimization
method.

In order to obtain such minimax optimal rate for sparse signal estimation by solving the sketched
sparse convex learning problems, we propose an iterative sketching algorithm termed Iterative SRO
in Section 3, which provably reduces the approximation error

∥∥∥β̃∗ − β∗
∥∥∥
X

geometrically in an
iterative manner. Albeit being bounded, the approximation error of one-time SRO is still not small
enough for various applications. To this end, Iterative SRO iteratively applies SRO to approximate
the residual of the last iteration so as to further reduce the approximation error, given the relative-
error approximation (3). More details are introduced in Section 3 and Section 7.

There are two key differences between Iterative SRO and IHS (Pilanci & Wainwright, 2016). First,
using the subspace embedding as the projection matrix P, Iterative SRO does not need to sample
P and compute the sketched matrix X̃ = PX at each iteration, in contrast with IHS where a
separate P is sampled and X̃ is computed at each iteration. This advantage saves considerable
computation and storage for large-scale problems. Second, while IHS is restricted to constrained
least-square problems with convex constraints, SRO and Iterative SRO are capable of handling all
convex regularization and certain nonconvex regularization in a unified framework. For example, we
show that Generalized Lasso (Tibshirani & Taylor, 2011) can be efficiently and effectively solved
by Iterative SRO in Section 7.

1.2 NOTATIONS

Throughout this paper, we use bold letters for matrices and vectors, regular lower letters for scalars.
The bold letter with subscript indicates the corresponding element of a matrix or vector, and the
bold letter with superscript indicates the corresponding column of a matrix, i.e. Xi indicates the
i-th column of matrix X. ∥·∥p denotes the ℓp-norm of a vector, or the p-norm of a matrix. σt(·) is
the t-th largest singular value of a matrix, and σmin(·) and σmax(·) indicate the smallest and largest
singular value of a matrix respectively. tr(·) is the trace of a matrix. f1(n) = Θ(f2(n)) if there
exist constants k1, k2 > 0 and n0 such that k1f(n) ≤ f1(n) ≤ k2f2(n). We use X ≽ Y to indicate
that X −Y is a positive semi-definite matrix, and Id indicates the d × d identity matrix. rank(X)
means the rank of a matrix X. N denotes the set of all the natural numbers, and we use [m. . . n]
to indicate numbers between m and n inclusively, and [n] denotes the natural numbers between 1
and n inclusively. nnz(X) indicates the number of nonzero elements of a matrix X. |·| denotes the
cardinality of a set, and supp (·) denotes the set of indices of nonzero elements for a vector.

2 THE SRO ALGORITHM

In order to improve the efficiency of optimization for (1), we propose Regularized Optimization by
Sketching (SRO) in this section. The key idea is to sketch matrix X in the quadratic term of (1) by
random projection. It consisits of two steps:

Step 1. Project the matrix X onto a lower dimensional space by a linear transformation P ∈ Rñ×n

with ñ < n, i.e. X̃ = PX. ñ is named the sketch size.
Step 2. Solve the sketched problem (2).

The linear transformation P is required to be a subspace embedding (Woodruff, 2014) defined in
Definition 2.1. The literature (Frankl & Maehara, 1987; Indyk & Motwani, 1998; Zhang et al.,
2016a) extensively studies such random transformation which is also closely related to the proof of
the Johnson-Lindenstrauss lemma (Dasgupta & Gupta, 2003).
Definition 2.1. Suppose P is a distribution over ñ × n matrices, where ñ is a function of n, d, ε,
and δ. Suppose that with probability at least 1− δ, for any fixed n× d matrix X, a matrix P drawn
from distribution P has the property that P is a (1± ε) ℓ2-subspace embedding for X, that is,

(1− ε)∥Xβ∥22 ≤ ∥PXβ∥22 ≤ (1 + ε)∥Xβ∥22 (4)
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holds for all β ∈ Rd. Then we call P an (ε, δ) oblivious ℓ2-subspace embedding.
Definition 2.2 (Gaussian Subspace Embedding, (Woodruff, 2014, Theorem 2.3)). Let 0 < ε, δ < 1,
P = P′

√
ñ

where P
′ ∈ Rñ×n is a matrix whose elements are i.i.d. samples from the standard

Gaussian distribution N (0, 1). Then if ñ = O((r + log 1
δ )ε

−2), for any matrix X ∈ Rn×d with
r = rank(X), with probability 1 − δ, P = P′

√
ñ

is a (1 ± ε) ℓ2-subspace embedding for X. P is
named a Gaussian subspace embedding.
Definition 2.3 (Sparse Subspace Embedding). Let P ∈ Rñ×n. For each i ∈ [n], h(i) ∈ [ñ]
is uniformly chosen from [ñ], and σ(i) is a uniformly random element of {1,−1}. We then set
Ph(i)i = σ(i) and set Pji = 0 for all j ̸= i. As a result, P has only a single nonzero element per
column, and it is called a sparse subspace embedding.

Lemma 2.1 below, also presented in (Clarkson & Woodruff, 2013), shows that the sparse subspace
embedding defined above is indeed a subspace embedding with a high probability.
Lemma 2.1. (Clarkson & Woodruff, 2013, Theorem 2.1). Let P ∈ Rñ×n be a sparse embedding
matrix with ñ = O(r2/(δε2)) rows. Then for any fixed n × d matrix X with r = rank(X), with
probability 1− δ, P is a (1± ε) ℓ2-subspace embedding for X. Furthermore, PX can be computed
in O(nnz(X)) time, where nnz(X) is the number of nonzero elements of X.

2.1 ERROR BOUNDS

The solutions to the original problem (1) and the sketched problem (2) by typical iterative optimiza-
tion algorithms, such as gradient descent for smooth h or proximal gradient method for non-smooth
h, are always critical points of the corresponding objective functions under mild conditions (Bolte
et al., 2014). Therefore, the analysis in the gap between β̃∗ and β∗ amounts to the analysis in the
distance between critical points of the objective functions of (2) and that of (1), which is presented
in Section 5. In the sequel, β̃∗ is a critical point of the objective function (2) and β∗ is a critical point
of the objective function (1), if no confusion arises. More details about optimization algorithms are
deferred to appendix.

3 ITERATIVE SRO

Algorithm 1 Iterative SRO

Input: Initialize β(0) = 0, iteration number N > 0, t = 0.
for t← 1 to N
Set

β(t) = argmin
β∈Rd

1

2

∥∥∥X̃(β − β(t−1)
)∥∥∥2

2
−
〈
y −Xβ(t−1),Xβ

〉
+ hλ(β) (5)

end for
Return β(N)

Inspired by Iterative Hessian Sketch (Pilanci & Wainwright, 2016), we introduce an iterative sketch-
ing method for SRO, termed Iterative SRO, so that the gap between solutions to the original problem
and the sketched problem can be geometrically reduced compared to the one-time SRO. Iterative
SRO will be used to solve the sketched Lasso problem with hλ(β) = λ∥β∥1 in the sketched prob-

lem (2), and obtain the minimax rate of the order O
(√

s̄ log d/n
)

for the parameter estimation
error in sparse signal estimation to be detailed in Section 4.

The key idea is to iteratively apply SRO to generate a sequence {β(t)}Nt=1 such that β(t) is a more
accurate approximation to β∗, the solution to the original problem (1), than β(t−1). Consider the
optimization problem

min
β∈Rd

1

2

∥∥∥X(β + β(t−1))
∥∥∥2
2
− y⊤Xβ + hλ(β + β(t−1)), (6)
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then β∗ − β(t−1) is an optimal solution to (6). We apply SRO to problem (6) and suppose β̂ is an
solution to the sketched problem, i.e.

β̂ = argmin
β∈Rd

1

2

∥∥∥X̃β
∥∥∥2
2
−
〈
y −Xβ(t−1),Xβ

〉
+ hλ(β + β(t−1)). (7)

It is noted that β(t−1) is moved from the quadratic term in (6) to the linear term in (7). β̂ is supposed
to be an approximation to β∗−β(t−1). If β̂ admits the relative-error approximation bound (3), then
β(t) = β̂ + β(t−1) becomes a more accurate approximation to β∗ than β(t−1) by a factor of ρ.
This can be verified by noting that

∥∥β(t) − β∗
∥∥
X

=
∥∥∥β̂ − (β∗ − β(t−1))

∥∥∥
X
≤ ρ
∥∥β∗ − β(t−1)

∥∥
X

.
By mathematical induction, we have Theorem 3.1 below showing that the approximation error of
Iterative SRO, which is formally described by Algorithm 1, drops geometrically in the iteration
number. It should be emphasized that Theorem 3.1 also handles certain nonconvex regularization.

Theorem 3.1. Suppose β̃∗ is any critical point of the objective function in (2), and β∗ is any critical
point of the objective function in (1). Suppose 0 < ε < ε0 < 1 where ε0 is a small positive constant,
0 < δ < 1, P is drawn from an (ε, δ) oblivious ℓ2-subspace embedding over ñ× n matrices. Then
with probability at least 1− δ with δ ∈ (0, 1), the output of Iterative SRO described by Algorithm 1
satisfies ∥∥∥β(N) − β∗

∥∥∥
X
≤ ρN∥β∗∥X (8)

for a constant 0 < ρ < 1 if h is convex, or the Frechet subdifferential of h is Lh-smooth and
X has full column rank with Lh

σ2
min(X)

< (1 − ε). Frechet subdifferential of h is Lh-smooth if
supu∈∂̃h(x),v∈∂̃h(y) ∥u − v∥2 ≤ Lh∥x − y∥2 for a positive number Lh. In particular, if P is a
Gaussian subspace embedding, then ñ = O

((
r + log 1

δ

)
· (ρ+ 1)2/ρ2

)
. If P is a sparse subspace

embedding, then ñ = O
(
r2/δ · (ρ+ 1)2/ρ2

)
. Here r = rank(X).

Section 5 presents necessary theoretical results for the proof of Theorem 3.1.

4 SKETCHING FOR SPARSE SIGNAL ESTIMATION

We study sparse signal estimation by sketching in this section. We consider the linear model widely
used in the sparse signal estimation literature, ȳ = X̄β̄ + ε where ε is a noise vector of i.i.d.
sub-gaussian elements with variance proxy σ2, and β̄ is the sparse parameter vector of interest.
Following the standard analysis for parameter estimation in the literature such as (Yang et al., 2016;
Zhang, 2010b), we assume maxi∈[d]

∥∥X̄i
∥∥
2
≤
√
n, and it follows that maxi∈[d]

∥∥Xi
∥∥
2
≤ 1. The

statistical learning literature has extensively studied the approximation to β̄ by the M-estimator
obtained as a globally or locally optimal solution to problem (1) with X = X̄/

√
n, y = ȳ/

√
n.

That is, one hopes to approximate β̄ by the globally or locally optimal solution to problem (1)
with a suitable sparsity-inducing regularizer hλ. In Subsection 4.1, we show that the Iterative SRO
described in Algorithm 1 achieves the minimax parameter estimation error of the order

√
s̄ log d/n

where s̄ =
∥∥β̄∥∥

0
. In Subsection 4.2, we prove that SRO achieves the minimax parameter estimation

error of the order
√

s̄ log d/n for sparse nonconvex learning, where the nonconvex regularizer hλ is
the sum of a concave penalty function qλ and λ∥·∥1. In Section 4.1, β̃∗ is obtained by Algorithm 1
through β̃∗ = β(N). In Section 4.2, β̃∗ is the optimization result of the sketched problem (2).

4.1 SKETCHING FOR SPARSE CONVEX LEARNING

We define L(β) := 1/2 · β⊤X⊤Xβ − y⊤Xβ and L̃(β) := 1/2 · X̃⊤
X̃β − y⊤Xβ. We introduce

the following definition of sparse eigenvalues widely used in sparse signal estimation literature.
Definition 4.1. (Sparse Eigenvalues) Let s be a positive integer. The largest and smallest s-sparse
eigenvalues of the Hessian matrix∇2L(β) = X⊤X is

ρL,+(s) := sup
{
v⊤X⊤Xv : ∥v∥0 ≤ s, ∥v∥2 = 1,v ∈ Rd

}
, (9)

ρL,−(s) := inf
{
v⊤X⊤Xv : ∥v∥0 ≤ s, ∥v∥2 = 1,v ∈ Rd

}
. (10)

ρL̃,+(·) and ρL̃,−(·) are defined in a similar manner with X replaced by X̃.
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The following assumption is frequently used in the sparse signal estimation literature with the convex
sparsity-inducing penalty, λ∥·∥1.
Assumption 1. (Assumption in (Yang et al., 2016; Zhang, 2010b) for sparse signal estimation)
ρL,+(s) < ∞, ρL,−(s) > 0 are positive constants. Moreover, for s̄ =

∥∥β̄∥∥
0
, there exists a k∗ ∈ N

such that k∗ ≥ 2s̄ and
ρL,+(k

∗)/ρL,−(2k
∗ + s̄) ≤ 1 + 0.5k∗/s̄. (11)

We study the sparse signal estimation problem by solving the sketched Lasso problem with hλ(β) =
λ∥β∥1 in the original problem (1) and the sketched problem (2) using our Iterative SRO algorithm.
We have the following sharp bound for the parameter estimation error.
Theorem 4.1. Suppose Assumption 1 holds. Let λ = cσ

√
log d/n where c is a positive constant.

Suppose Algorithm 1 returns β̃∗ = β(N) with ρ ∈ (0, 1) in (8) and the sketch size ñ, and the iteration
number N is chosen as N = 1+log (∥X∥2∥β∗∥X/(λµ)) / log(1/ρ). Then with probability at least
1− δ − 2/d with δ ∈ (0, 1),∥∥∥β̃∗ − β̄

∥∥∥
2
≤ (1 + γ) (c+ µc+ 2)σ

ρL,−(s̄+ k∗) ·
(
1− γ

√
0.5
)√ s̄ log d

n
, (12)

where µ is a positive constant, γ = (1 + µ + 2/c)/(1 − µ − 2/c), and µ and c are
chosen such that γ

√
0.5 < 1. In particular, if P is a Gaussian subspace embedding,

then ñ = O
((
r + log 1

δ

)
· (ρ+ 1)2/ρ2

)
. If P is a sparse subspace embedding, then ñ =

O
(
r2/δ · (ρ+ 1)2/ρ2

)
. Here r = rank(X).

Theorem 4.1 shows that our Iterative ROS described in Algorithm 1 applied on the sketched problem
(2) achieves the parameter estimation error, which is

∥∥∥β̃∗ − β̄
∥∥∥
2
, of the order

√
s̄ log d/n. Such

estimation error rate is not improvable and it is the minimax error rate for standard Lasso. With the
rank r ≪ n, Iterative ROS obtains the solution β̃∗ = β(N) efficiently with a small sketch size ñ and
the iteration number N is only of a logarithmic order.

4.2 SKETCHING FOR SPARSE NONCONVEX LEARNING

We now study sparse signal estimation by sparse nonconvex learning where the regularizer hλ is
nonconvex in the original problem (1) and the sketched problem (2), that is, hλ(β) = λ∥β∥1 +

Qλ(β) where Qλ(β) :=
d∑

j=1

qλ(βj), qλ is a concave function and βj is the j-th element of β. We

have hλ(β) =
d∑

j=1

(λ |βj |+ qλ(βj)). Following the analysis of sparse parameter vector recovery

in (Wang et al., 2014), λ |·| + qλ(·) is a nonconvex function which can be either smoothly clipped
absolute deviation (SCAD) (Fan & Li, 2001) or minimax concave penalty (MCP) (Zhang, 2010a).
More details about the nonconvex regularizer hλ are deferred to Section A of the appendix. The
following regularity conditions on the concave function qλ are used in (Wang et al., 2014).
Assumption 2. (Regularity Conditions on Nonconvex Penalty in (Wang et al., 2014) for sparse
signal recovery)
(a) q′λ(βj) is monotone and Lipschitz continuous. For β′

j > βj , there exist two constants ζ− ≥
0, ζ+ ≥ 0 such that −ζ− ≤

q′λ(β
′
j)−q′λ(βj)

β′
j−βj

≤ −ζ+.

(b) qλ(−βj) = qλ(βj) for all βj ∈ R. Also, qλ(0) = q′λ(0) = 0.

(c) q′λ(βj) ≤ λ for all βj ∈ R, and
∣∣q′λ1

(βj)− q′λ2
(βj)

∣∣ ≤ |λ1 − λ2| for all λ1 > 0, λ2 > 0.

The following assumption is the standard assumption in (Wang et al., 2014) for sparse signal esti-
mation with the minimax error rate, that is,

∥∥β∗ − β̄
∥∥
2
≤ O

(√
s̄ log d/n

)
.

Assumption 3. (Assumption in (Wang et al., 2014) for sparse signal estimation) Let s̄ =
∥∥β̄∥∥

0
.

There exist an integer s̃ such that s̃ > Cs̄ such that ρL,+(s̄ + 2s̃) < ∞, ρL,−(s̄ + 2s̃) > 0 are two
absolute constants. The concavity parameter ζ− in Assumption 2 satisfies ζ− ≤ C ′ρL,−(s̄+2s̃) with
constant C ′ ∈ (0, 1). Here C = 144κ2+250κ with κ = (ρL,+(s̄+2s̃)−ζ+)/(ρL,−(s̄+2s̃)−ζ−).
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The following corollary shows that when the support size of β̃∗ − β∗ is bounded by s0, then the
nonconvex sparse learning problem (1) with hλ being the nonconvex regularizer specified in this
subsection still enjoys relative-error approximation. Corollary 4.2 is employed to prove our main
result of minimax estimation error rate by sketching in Theorem 4.5.
Corollary 4.2. Suppose Assumption 3 holds, and let P ∈ Rñ×n be a Gaussian subspace embedding
and suppose that

∣∣∣supp
(
β̃∗ − β∗

)⋃
supp (β∗)

⋃
supp

(
β̃∗
)∣∣∣ ≤ s0 for some integer s0 ∈ [d]. Let

ñ ≥ c0ε
−2 (log(2/δ) + s0 log d+ s0 log 5) for δ ∈ (0, 1) and ε ∈ (0, 1−C ′) where c0 is a positive

constant. Then with probability at least 1− δ,∥∥∥β̃∗ − β∗
∥∥∥
2
≤

ε
√
ρL,+(s0)

(1− ε)ρL,−(s0)− ζ−
∥β∗∥X. (13)

The following assumption, Assumption 4, is necessary to achieve the minimax parameter estimation
error by sketching, and the subsequent Remark 4.3 explains that Assumption 4 is mild. That is, if
Assumption 3 holds, then Assumption 4 also holds under mild conditions.
Assumption 4. (Assumption in (Wang et al., 2014) for sparse signal estimation) Let s̃, C ′ be
the parameters specified in Assumption 3 such that Assumption 3 holds. Then it is assumed that
ρL̃,+(s̄ + 2s̃) < ∞, ρL̃,−(s̄ + 2s̃) > 0 are two absolute constants. In addition, ζ− satisfies
ζ− ≤ C ′ρL̃,−(s̄ + 2s̃), and s̃ > C̃s̄ where C̃ = 144κ̃2 + 250κ̃ with κ̃ := (ρL̃,+(s̄ + 2s̃) −
ζ+)/(ρL̃,−(s̄+ 2s̃)− ζ−).

Remark 4.3 (Assumption 4 is mild). We provide theoretical justification that Assumption 4 is mild.
The following theorem, Theorem 4.4, shows that if the standard Assumption 3 holds, then As-
sumption 4 also holds with high probability under very mild conditions: either ε is set to the order
of
√
log d/n with sufficiently large n, or the Restricted Isometry Property (RIP) (Candes & Tao,

2005b) holds. It is well known that RIP holds for various choices of the design matrix X, and
(Wang et al., 2014) also uses RIP to justify that the standard Assumption 3 is weaker than RIP.
Theorem 4.4. Suppose Assumption 3 holds with s̃ and C ′ specified in Assumption 3, and let
s0 = s̄ + 2s̃. Let 0 < ε, δ < 1, P ∈ Rñ×n be a Gaussian subspace embedding defined in
Definition 2.2, and ñ ≥ c0ε

−2
(
log(2/δ) + s0 log d+ s0 log 5 + 1/ds0−1

)
where c0 is a positive

constant. If ρL,−(s0) > ε
√
s0, ζ− ≤ C ′ (ρL,−(s0)− ε

√
s0
)

and
(
144κ′2 + 250κ′) s̄ < s̃ with

κ′ = (ρL,+(s0) + ε
√
s0 − ζ+)/(ρL,−(s0)− ε

√
s0 − ζ−), then with probability at least 1− δ, As-

sumption 4 holds. In particular, Assumption 4 holds with probability at least 1− δ if any one of the
following two conditions holds:
(a) log d/n

n→∞−→ 0, ε = C1

√
log d/n with C1 being a positive constant and n sufficiently large;

(b) There exists s′ ≥ s0 such that RIP(δ, s′) holds for δ ∈ (0, 1), ζ+ = 0,
ζ− = C2ρL,−(s0), ε

√
s0 ≤ C3ρL,−(s0), s̃ >

(
144κ2

0 + 250κ0

)
s̄ with κ0 =

((1 + C3)(1 + δ)) / ((1− C2 − C3)(1− δ)). Here the positive constants C2, C3 satisfy C2 +
C3 < 1 and C2 ≤ C ′(1 − C3). RIP(δ, s) for δ ∈ (0, 1) and s ∈ N is the Restricted Isometry
Property (RIP) (Candes & Tao, 2005b) under which 1−δ ≤ ρL,−(s) ≤ ρL,+(s) ≤ 1+δ holds.

It is shown in Section A that ζ+ = 0 and ζ− = C2ρL,−(s0) can be easily achieved by setting the
hyperparameter of MCP when MCP is used as the nonconvex regularizer hλ. We have the following
sharp bound for the parameter estimation error with sparse nonconvex learning by sketching in
Theorem 4.5. We note that the approximate path following method described in (Wang et al., 2014,
Algorithm 1) is used to solve the original problem (1) and the sketched problem (2) to obtain β̃∗

and β̃∗ such that β∗ is an critical point of problem (1) and β̃∗ is an critical point of (2). We use
λ = Θ

(√
s̄ log d/n

)
for both (1) and (2) at the final stage of the path following method (Wang

et al., 2014, Algorithm 1).
Theorem 4.5. Let δ ∈ (0, 1) and P ∈ Rñ×n be a Gaussian subspace embedding defined in
Definition 2.2, and ε = min

{
C1

√
log d/n, ε0

}
with C1, ε0 being positive constants and ε ∈

(0, (1 − C ′)/2). Suppose β̃∗ is the optimization result of the sketched problem (2) with sketch
size ñ ≥ n/C2

3 for n ≥ Θ(1), Assumption 3 and Assumption 4 hold, d ≥ 5, and let s0 = s̄ + 2s̃.
Then with probability 1− δ,, with probability at least 1− 4/d,∥∥∥β̃∗ − β̄

∥∥∥
2
≤

C1

∥∥β̄∥∥
2

√
(1 + s̃/s̄)ρL,+(s0)

(1 + C ′)/2 · ρL,−(s0)− ζ−

√
s̄ log d

n
+

22
(
C1

√
s̄
∥∥β̄∥∥

2
+ 2σ

)
ρL,−(s0)− ζ−

√
s̄ log d

n
. (14)
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Moreover, let C1 =
√
c0792s0/789C3 with C3 > 1 being a positive constant.

It is noted that we can choose s̃ = Θ(s̄). When
∥∥β̄∥∥

2
is a constant, we have the parameter estimation

error
∥∥∥β̃∗ − β̄

∥∥∥
2
≤ O

(√
s̄ log d/n

)
, which is the minimax estimation error according to (Wang

et al., 2014). Moreover, with C1 = 4
√
792s0/789C3, we can enjoy a small sketch size ñ = n/C2

3
with a potentially large C3 > 1, and this is at the expense of having a large constant factor C1 in the
parameter estimation error O

(√
s̄ log d/n

)
.

5 APPROXIMATION ERROR BOUNDS FOR THE PROOF OF THEOREM 3.1

In this section, we present an introduction to the theoretical results, Theorem D.2 and Theorem D.3
deferred to Section D.2 of the appendix, which are necessary for the proof of Theorem 3.1. First,
a novel universal approximation error bound for SRO on the general problem (1) is given by Theo-
rem D.2. Based on such universal approximation error bound, relative-error approximation bounds
for regularized least squares with convex regularization and nonconvex regularization under certain
conditions are derived in Theorem D.2. Before introducing these results, we present the definitions
of Frechet subdifferential and critical point below, which are crucial for our analysis.
Definition 5.1. (Subdifferential and critical points) Given a nonconvex function f : Rd → R ∪
{+∞} which is a proper and lower semi-continuous function,

• for a given x ∈ domf , its Frechet subdifferential of f at x, denoted by ∂̃f(x), is the set of all
vectors u ∈ Rd which satisfy lim inf

y ̸=x,y→x

f(y)−f(x)−⟨u,y−x⟩
∥y−x∥2

≥ 0.

• The limiting-subdifferential of f at x ∈ Rd, denoted by ∂f(x), is defined by ∂f(x) = {u ∈
Rd : ∃xk → x, f(xk) → f(x), ũk ∈ ∂̃f(xk) → u}. The point x is a critical point of f if
0 ∈ ∂f(x).

It is noted that the Frechet subdifferential generalizes the notions of Frechet derivative and subdiffer-
ential of convex functions. When f is convex, then ∂̃f(x) is the subdifferential of f at x. Moreover,
∂̃f(x) = {∇f(x)} when f is differentiable. In order to derive the relative-error approximation
bounds in this section, we need the following definition of the degree of nonconvexity of a function.
The univariate degree of nonconvexity is first introduced in (Zhang & Zhang, 2012) for the analysis
of the consistency of nonconvex sparse estimation models with concave regularization, and Defini-
tion 5.2 is an extension of such univariate degree of nonconvexity, which is also employed in the
analysis of sketching for regularized optimization in (Yang & Li, 2021).
Definition 5.2. The degree of nonconvexity of a function h : Rd → R at a point t ∈ Rd is defined
as

θh(t, κ) := sup
s∈Rd,s̸=t,u∈∂̃h(s),v∈∂̃h(t)

−(s− t)⊤(u− v)− κ∥s− t∥22
∥s− t∥2

, (15)

where κ ∈ R. We abbreviate (15) as θh(t, κ) ≜ sups∈Rd,s ̸=t{− 1
∥s−t∥2

(s− t)⊤(∂̃h(s)− ∂̃h(t))−
κ∥s− t∥2} in the following text.

Remark 5.1. If h is convex, then −(s− t)⊤(u−v) ≤ 0, so that the degree of nonconvexity of any
convex function h is θh(t, κ) ≤ 0 for any with κ ≥ 0. Moreover, the degree of nonconvexity of a
second-order differentiable function h satisfies θh(t, κ) ≤ 0 if h is “more PSD” than −κ∥·∥22, that
is, the smallest eigenvalue of its Hessian is not less than −κ.

Let β̃∗ be any critical point of the objective function in (2), β∗ be any critical point of the objective
function in (1), and 0 < ε < ε0 < 1 where ε0 is a small positive constant, 0 < δ < 1. Suppose P
is drawn from an (ε, δ) oblivious ℓ2-subspace embedding over ñ × n matrices. Then Theorem D.2
asserts that with probability 1− δ,

(1− ε)
∥∥∥β̃∗ − β∗

∥∥∥2
X
− ε
∥∥∥β̃∗ − β∗

∥∥∥
X
∥β∗∥X ≤ θhλ

(β∗, κ)
∥∥∥β̃∗ − β∗

∥∥∥
2
+ κ
∥∥∥β̃∗ − β∗

∥∥∥2
2
. (16)
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In particular, if P is a Gaussian subspace embedding, then ñ = O((r+ log 1
δ )ε

−2). If P is a sparse
subspace embedding, then ñ = O(r2/(δε2)).
Furthermore, Theorem D.3 states that if hλ is convex, then with probability 1 − δ, then∥∥∥β̃∗ − β∗

∥∥∥
X
≤ ε

1−ε∥β
∗∥X. If the Frechet subdifferential of h is Lh-smooth (h can be noncon-

vex), then
∥∥∥β̃∗ − β∗

∥∥∥
X
≤ ε

(1−ε)− λLh
σ2
min

(X)

∥β∗∥X.

Novelty and Our Results and Their Significant Difference from (Yang & Li, 2021) and (Pi-
lanci & Wainwright, 2016). It is remarked that our results, including the Iterative SRO algorithm
in Algorithm 1 and its theoretical guarantee in Theorem 3.1, Theorem D.2-Theorem D.3, and the
minimax optimal rates by sketching for sparse convex learning in Theorem 4.1 and sparse noncon-
vex learning in Theorem 4.5, are all novel and significantly different from (Yang & Li, 2021) in the
following two aspects, although (Yang & Li, 2021) also presents an iterative sketching algorithm
for regularized optimization problems. First, Iterative SRO does not need to sample a projection
matrix P ∈ Rñ×n and compute the sketched matrix X̃ = PX at every iteration, while the iterative
sketching algorithm in (Yang & Li, 2021) samples a different projection matrix and computes the
sketched matrix at every iteration which incurs considerable computational cost for large-scale prob-
lem with large data size n. Such advantage of Iterative SRO over (Yang & Li, 2021) is attributed to
the novel theoretical results in Theorem D.2 and Theorem D.3. In contrast with (Yang & Li, 2021,
Theorem 1), the approximation error bound Theorem D.2 is derived for sketching low-rank data
matrix by oblivious ℓ2-subspace embedding with the sketched size ñ clearly specified. As a result,
Theorem D.3 presents the approximation error bounds for convex and certain nonconvex regular-
ization by sketching with oblivious ℓ2-subspace embedding. Based on such results, Theorem 3.1
shows that a single projection matrix suffices for the iterative sketching process. Second, minimax
optimal rates for convex and nonconvex sparse learning problems by sketching are established by
our results, while there are no such minimax optimal rates by a sketching algorithm in (Yang & Li,
2021). Theorem 4.1, to the best of our knowledge, is among the first in the literature which uses
an iteratively sketching algorithm to achieve the minimax optimal rate for sparse convex learning.
Furthermore, Theorem 4.5 shows that sketching can also lead to the minimax optimal rate even for
sparse nonconvex problems, while sketching for nonconvex problems is still considered difficult and
open in the literature.

Our results are also significantly different from those in (Pilanci & Wainwright, 2016). It is re-
marked that (Pilanci & Wainwright, 2016) only handles convex constrained least square problems
of the form minx∈C ∥xβ − y∥22 where the constraint set C is a convex set, while our results cover
regularized convex and nonconvex problems with minimax optimal rates. It is emphasized that the
techniques in (Pilanci & Wainwright, 2016) can never be applied to the regularized problems con-
sidered in this paper. (Pilanci & Wainwright, 2016) heavily relies on certain complexity measure
of the constraint set C, such as the Gaussian width. It shows that the complexity of such constraint
set C is bounded, so that sketching with such constraint set C of limited complexity only incurs
a relatively small approximation error. However, there is never such constraint set in the original
problem (1) or the sketched problem (2), so that such complexity based analysis for sketching can
not be applied to this work. Furthermore, as mentioned in Section 1.1, Iterative SRO does not need
to sample the projection matrix and compute the sketched matrix at each iteration, in contrast with
IHS (Pilanci & Wainwright, 2016) where a separate projection matrix is sampled and the sketched
matrix is computed at each iteration. As evidenced by Table 1 in Section 7.1, Iterative SRO is more
efficient than its “IHS” counterpart where sketching is performed at every iteration while enjoying
comparable approximation error.

6 TIME COMPLEXITY

We compare the time complexity of solving the original problem (1) to that of solving the sketched
problem (2) with Iterative SRO, which is deferred to Section B of the appendix.

7 EXPERIMENTAL RESULTS

We provide empirical results in this section to justify the effectiveness of the proposed SRO and
Iterative SRO.
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7.1 GENERALIZED LASSO

We study the performance of Iterative SRO for Generalized Lasso (GLasso) (Tibshirani & Tay-
lor, 2011) in this subsection. The optimization problem of an instance of GLasso studied here is

β∗ = argminβ∈Rd
1
2∥y −Xβ∥22 + λ

d−1∑
i=1

|βi − βi+1|, which is solved by Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) (Beck & Teboulle, 2009), an accelerated version of PGD. X̄ =√
nX ∈ Rn×d has i.i.d. standard Gaussian entries with n = 80000 and d = 600, and all the ele-

ments of ȳ =
√
ny are also i.i.d. Gaussian samples. Figure 4 in Section C.2 of the appendix illus-

trates the approximation error of SRO and Iterative SRO, which are
∥β(1)−β∗∥2

X

n and
∥β(N)−β∗∥2

X

n
respectively, for different choices of sketch size ñ with ñ = γ̄d. We set N = 10 and employ
either sparse subspace embedding or Gaussian subspace embedding. The average approximation
errors are reported over 100 trials of data sampling for each γ̄. It can be observed that Iterative
SRO significantly reduces the approximation error and its approximation error is roughly 1

3 of that
of SRO, demonstrating the effectiveness of Iterative SRO. In our experiment, due to the signifi-
cant reduction in the sample size, for example, γ̄d

n = 0.0225 when γ̄ = 3, the running time of
Iterative SRO is always less than half of that required to solve the original problem with small γ̄.

Table 1: Running time (in seconds) of SRO,
Iterative SRO with γ̄ = 3 and Iterative SRO-
IHS for GLasso. The number in the bracket is
the approximation error.

SRO Iterative SRO Iterative SRO-IHS
11.04s 4.71s(0.036) 5.11s(0.036)

We also report the running time of GLasso with
sparse subspace embedding in Table 1. Let M be
the maximum number of iterations for FISTA, and
we set M = 10000 for SRO and set M = 2000
for Iterative SRO, and the running time is reported
for γ̄ = 3 on a CPU of Intel i5-11300H. Iterative
SRO-IHS is the “IHS” version of Iterative SRO
where a new sketch matrix P is sampled and the
sketched data X̃ = PX is computed at each it-
eration. We observed that both Iterative SRO-IHS
and Iterative SRO achieve the same approximation error, while Iterative SRO is faster than Itera-
tive SRO-IHS because the former only samples the linear transformation P once and computes the
sketched matrix X̃ once. We also note that the maximum iteration number of FISTA for Iterative
SRO is much smaller than that for SRO. This is because Iterative SRO uses an iterative sketching
process where the approximation error is geometrically reduced with respect to the iteration number
t in Algorithm 1, so that each iteration of Iterative SRO is only required to have a moderate ap-
proximation error which can be larger than the approximation error of SRO thus a smaller iteration
number of FISTA suffices for Iterative SRO. Such analysis also explains the fact that Iterative SRO
is much faster than SRO, and in our experiment the maximum iteration number N for Iterative SRO
in Algorithm 1 is always not greater than 5.

7.2 ADDITIONAL EXPERIMENTS

We defer more experimental results to the Section C of the appendix. In particular, experimental
results for ridge regression and sparse signal estimation by Lasso are in Section C.1 and Section C.3
respectively, and more details about GLasso are in Section C.2. We further apply SRO to subspace
clustering using Lasso in Section C.4, and presents performance of SRO for sparse nonconvex learn-
ing with capped-ℓ1 regularization in Section C.5.

8 CONCLUSION

We present Sketching for Regularized Optimization (SRO) which efficiently solves general reg-
ularized optimization problems with convex or nonconvex regularization by sketching. We further
propose Iterative SRO to reduce the approximation error of SRO geometrically, and provide a unified
theoretical framework under which the minimax rates for sparse signal estimation are obtained for
both convex and nonconvex sparse learning problems. Experimental results evidence that Iterative
SRO can effectively and efficiently approximate the optimization result of the original problem.
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A NONCONVEX PENALTY

We introduce more details about the nonconvex regularizer hλ for sparse nonconvex learning in
Subsection 4.2. hλ =

∑d
j=1 pλ(βj), and pλ can be either smoothly clipped absolute deviation

(SCAD) (Fan & Li, 2001) or minimax concave penalty (MCP) (Zhang, 2010a). When pλ is SCAD,
we have

pλ(βj) = λ

∫ |βj |

0

(
1I{z≤λ} +

(aλ− z)+
(a− 1)λ

1I{z>λ}

)
dz, a > 2.

When pλ is SCAD, we have

pλ(βj) = λ

∫ |βj |

0

(
1− z

λb

)
+
dz, b > 0.

B TIME COMPLEXITY

We compare the time complexity of solving the original problem (1) to that of solving the sketched
problem (2) with Iterative SRO. We employ Proximal Gradient Descent (PGD) or Gradient De-
scent (GD) in our analysis, which are widely used in the machine learning and optimization lit-
erature. If P is a Gaussian subspace embedding in Definition 2.2, it takes O(ñnd) operations to
compute the sketched matrix X̃ = PX and then form the sketched problem (2). Let C(ñ, d)
be the time complexity of solving the sketched problem (2), and suppose iterative sketching is
performed for N iterations, then the overall time complexity of Iterative SRO in Algorithm 1 is
O (ñnd+NC(ñ, d)). If P is a sparse subspace embedding in Definition 2.3, then it only takes
O (nnz(X)) operations to compute the sketched matrix X̃. In this case, the overall time complexity
of Iterative SRO is O (nnz(X) +NC(ñ, d)). Suppose PGD, such as that analyzed in (Bolte et al.,
2014), or GD, is used to solve problem (1) and (2) with maximum number of iterations being M .
Then C(ñ, d) = O (Mñd). If a sparse subspace embedding is used for sketching, then the overall
time complexity of Iterative SRO is O (nnz(X) +NMñd). In contrast, because IHS (Pilanci &
Wainwright, 2016) needs to sample an independent sketch matrix at each iteration, the time com-
plexity of IHS using the fast Johnson-Lindenstrauss sketches (that is, the fast Hadamard transform)
is O (Nnd log ñ+NMñd) which is higher than that of Iterative SRO with sparse subspace em-
bedding. Noting that N ≤ log n (Pilanci & Wainwright, 2016) and in many practical cases N is
bounded by a constant, and ñ ≪ n, the complexity of Iterative SRO, O (nnz(X) +NMñd), is
much lower than that of solving the original problem (1) with the complexity of O(Mnd).
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C COMPLETE EXPERIMENTAL RESULTS

We demonstrate complete experimental results of SRO and Iterative SRO in this section for three
instances of the general optimization problem (1), which include ridge regression where h(β) =

∥β∥22, Generalized Lasso where h(β) =
d−1∑
i=1

|βi − βi+1|, and Lasso where h(β) = ∥β∥1. We

further show the application of SRO in subspace clustering.
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Figure 1: Approximation Error of Iterative SRO with respect to different sketch size ñ for ridge
regression. The first row corresponds to sparse subspace embedding defined in Definition 2.3 and
the second row is produced by Gaussian subspace embedding defined in Definition 2.2.
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Figure 2: Logarithm of approximation error of Iterative SRO with respect to different sketch size ñ
for ridge regression. The first row corresponds to sparse subspace embedding and the second row is
produced by Gaussian subspace embedding.
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Figure 3: Approximation error of Iterative SRO with respect to different sketch size ñ for ridge
regression. The first row corresponds to sparse subspace embedding and the second row is produced
by Gaussian subspace embedding.

C.1 RIDGE REGRESSION OF LARGER SCALE

We employ Iterative SRO to approximate solution to Ridge Regression in this subsection, whose
optimization problem is β∗ = argminβ∈Rd

1
2∥y −Xβ∥22 + λ∥β∥2. We assume a linear model

ȳ = X̄β̄ + w where X = X̄/
√
n, y = ȳ/

√
n, w ∼ N (0, In) is the Gaussian noise with unit

variance. The unknown regression vector β̄ is sampled according toN (0, Id). We randomly sample
X̄ ∈ Rn×d of rank r = n

100 with n = 5000 and d = 10000. Let X̄ = UΣV⊤ be the Singular
Value Decomposition of X̄ where Σ ∈ Rr×r is a diagonal matrix whose diagonal elements are the
singular values of X̄. U ∈ Rn×r is sampled from the uniform distribution over the Stiefel manifold
Vr(Rn), V ∈ Rd×r is sampled from the uniform distribution over the Stiefel manifold Vr(Rd),
the diagonal elements of Σ are i.i.d. standard Gaussian samples. We set λ =

√
log d/n. Figure 1

illustrates the logarithm of approximation error
∥β(i)−β∗∥2

X

n with respect to the iteration number i of
Iterative SRO for different choices of sketch size ñ, and the maximum iteration number of Iterative
SRO is set to N = 10. We let ñ = γ̄rank(X) where γ̄ ranges over {12, 14, 16, 18, 20}, and sample
X̄, ȳ and w 100 times for each γ̄. The average approximation errors are illustrated in Figure 1. It can
be observed from Figure 1 that the convergence rate of approximation error drops geometrically, or
its logarithm drops linearly, evidencing our Theorem 3.1 for Iterative SRO. Moreover, as suggested
by Theorem D.2, larger ñ leads to smaller approximation error.

We present more experimental results for ridge regression with larger-scale data where n = 10000
and d = 100000, and other settings remain the same. We let ñ = γ̄rank(X̄) where γ̄ ranges over
{12, 14, 16, 18, 20}, and sample X̄, β̄ and w 100 times for each γ̄. Figure 2 illustrates the logarithm

of approximation error, which is log
∥β(i)−β∗∥2

X

n , with respect to the iteration number i of Iterative
SRO for different choices of sketch size ñ, and the maximum iteration number of Iterative SRO is
set to N = 10. It can be observed that the logarithm of approximation error drops linearly with
respect to the iteration number in most cases, evidencing our theory that the approximation error of
Iterative SRO drops geometrically in the iteration number.

Figure 3 illustrates the approximation error of Iterative SRO in red curve for ridge regression, which

is
∥β(i)−β∗∥2

X

n . The blue bar represents standard deviation caused by the random data sampling and
the random sketching. A single projection matrix P is sampled for each sampled data, and this
projection matrix is used throughout all the iterations of Iterative SRO, in contrast with Iterative
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Hessian Sketch (IHS) (Pilanci & Wainwright, 2016) which samples a projection matrix matrix for
each iteration of the iterative sketch procedure.

C.2 GENERALIZED LASSO

Figure 4: Approximation error of Iterative SRO vs. SRO for GLasso with respect to different sketch
size ñ. Iterative SRO and SRO are equipped with either sparse subspace embedding (left) or Gaus-
sian Subspace Embedding (right).

In this subsection, we add more details to Section 7.1 of the paper for Generalized Lasso
(GLasso) (Tibshirani & Taylor, 2011). The optimization problem of GLasso studied here is

β∗ = argminβ∈Rd
1
2∥y −Xβ∥22 + λ

d−1∑
i=1

|βi − βi+1|, which is solved by Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) (Beck & Teboulle, 2009). We construct D ∈ R(d−1)×d by

setting Di,i = −1, Di,i+1 = 1 for all i ∈ [d − 1], then
d−1∑
i=1

|βi − βi+1| = ∥Dβ∥1. Let

Dext =

[
D

0, . . . , 1

]
with Dext

dd = 1. Denote u = Dextβ, then β = (Dext)
−1

β be-

cause Dext is nonsingular. The instance of GLasso considered above is then rewritten as β∗ =

argminβ∈Rd
1
2n

∥∥∥y −X (Dext)
−1

u
∥∥∥2
2
+ λ

d−1∑
i=1

|ui| which can be solved by FISTA.

C.3 SIGNAL RECOVERY BY LASSO

We present experimental results for signal recovery/approximation by Lasso in this subsection. In
this experiment we assume a linear model ȳ = X̄β̄ + w where X = X̄/

√
n, y = ȳ/

√
n, w ∼

N (0, In) is the Gaussian noise with unit variance. The optimization problem of Lasso considered
here is β∗ = argminβ∈Rd

1
2∥y −Xβ∥22 + λ∥β∥1. We set λ = 0.1 ·

√
s̄ log d/n, sparsity s̄ =

⌊3 log d⌋, and choose the unknown regression vector β̄ with its support uniformly sampled with
entries ± 1√

s
with equal probability. We randomly sample X̄ ∈ Rn×d of rank not greater than

r = n
100 with n = 5000 and d = 100000 using (48) so that X̄ is a low-rank matrix satisfying RIP.

That is, X = UU⊤Ω with U ∈ Rn×r and Ω ∈ Rn×d. U is sampled from the uniform distribution
over the Stiefel manifold Vr(Rn), the elements of Ω are i.i.d. Gaussian random variables with
Ωij ∼ N (0, 1/r) for i ∈ [n], j ∈ [d]. We let ñ = γ̄rank(X̄) where γ̄ ranges over {12, 14, 16, 18},
and sample X̄, β̄ and w 100 times for each γ. Figure 5 illustrates the approximation error of SRO

and Iterative SRO, i.e.
∥β(1)−β∗∥2

X

n and
∥β(N)−β∗∥2

X

n respectively, for different choices of sketch
size ñ with different γ̄. It can be observed that Iterative SRO significantly and constantly reduces
approximation error of SRO.

Table 2 shows the error of approximation to the true unknown regression vector β̄ by SRO, Itera-
tive SRO and the solution β∗ to the original problem (1). The error of approximation to β̄ is the
ℓ2-distance to β̄, for example, the error of approximation to β̄ for β∗ is

∥∥β∗ − β̄
∥∥
2
. Standard de-

viation is caused by random data sampling and random sketching. It can be seen that Iterative SRO
approximates the true regression vector much better than SRO with the sketch size ñ being a frac-
tion of n, especially with Gaussian subspace embedding. More importantly, Iterative SRO and β∗

have very close error of approximation to β̄, justifying our theoretical analysis. This is because that
our theoretical prediction in Theorem 4.1 for the error of approximation to β̄ by Iterative SRO is
Θ
(√

s̄ log d/n
)

, which is the same order as the error by β∗.
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Figure 5: Approximation error of Iterative SRO and SRO for Lasso with respect to different sketch
size ñ = γrank(X). Iterative SRO and SRO are equipped with either sparse subspace embedding
(left) or Gaussian Subspace Embedding (right).

Table 2: Approximation error to the true unknown regression vector β̄ by SRO, Iterative SRO and the solution
β∗ to the original problem (1) for Lasso.

PPPPPPPError
γ̄

12 14 16 18

Sparse Subspace Embedding
SRO 0.115± 0.149 0.063± 0.023 0.059± 0.010 0.025± 0.054

Iteratie SRO 0.010± 0.017 0.009± 0.009 0.004± 0.002 0.008± 0.005
β∗ 0.008± 0.002 0.007± 0.006 0.003± 0.001 0.006± 0.004

Gaussian Subspace Embedding
SRO 0.067± 0.092 0.043± 0.066 0.044± 0.038 0.046± 0.030

Iteratie SRO 0.008± 0.003 0.008± 0.007 0.004± 0.002 0.003± 0.004
β∗ 0.007± 0.001 0.006± 0.003 0.003± 0.001 0.002± 0.002

C.4 APPLICATION IN LASSO SUBSPACE CLUSTERING

We demonstrate application of SRO in subspace clustering in this subsection. Given a data matrix
X̄ ∈ Rn×d comprised of d data points in Rn which lie in a union of subspaces in Rn, classical
subspace clustering methods using sparse codes, such as Noisy Sparse Subspace Clustering (Noisy
SSC) (Wang & Xu, 2013), recovers the subspace structure by solving the Lasso problem

βi = argmin
β∈Rd

1

2n

∥∥X̄i − X̄β
∥∥2
2
+ λ∥β∥1, βi = 0, (17)

for each i ∈ [d]. X̄i is the i-th column of X̄, which is also the i-th data point, λ > 0 is the
weight for the ℓ1 regularization. Under certain conditions on X̄ and the underlying subspaces, it is
proved by (Soltanolkotabi & Candés, 2012; Wang & Xu, 2013) that nonzero elements of β∗ cor-
respond to data points lying in the same subspace as X̄i, and in this case β∗ is said to satisfy the
Subspace Detection Property (SDP). It has been proved that SDP is crucial for subspace recovery
in the subspace clustering literature. By solving (17) for all i ∈ [d], we have a sparse code matrix
β = [β1,β2, . . . ,βd] ∈ Rd×d, and a sparse similarity matrix W is constructed by W = |X|+|X⊤|

2 .
Spectral clustering is performed on W to produce the final clustering result of Noisy SSC. Two mea-
sures are used to evaluate the performance of different clustering methods, i.e. the Accuracy (AC)
and the Normalized Mutual Information (NMI) (Zheng et al., 2004). In this experiment, we employ
SRO to solve the sketched version of problem (17) with ñ = n

15 . Note that SRO is equivalent to It-
erative SRO with N = 1, and we do not incur more iterations by Iterative SRO since SRO produces
satisfactory results. Figure 6 and Figure 7 illustrate the accuracy (left) and NMI (right) of sketched
Noisy SSC by SRO with respect to various choices of the regularization weight λ on the Extended
Yale-B Dataset. The Extended Yale-B Dataset contains face images for 38 subjects with about 64
frontal face images of size 32 × 32 taken under different illuminations for each subject, and X̄ is
of size 1024× 2414. SRO-GSE stands for SRO with Gaussian subspace embedding, and SRO-SSE
stands for SRO with sparse subspace embedding. We compare SRO-GSE and SRO-SSE to K-means
(KM), Spectral Clustering (SC), Sparse Manifold Clustering and Embedding (SMCE) (Elhamifar &
Vidal, 2011) and SSC by Orthogonal Matching Pursuit (SSC-OMP) (Dyer et al., 2013). It can be
observed that SRO-GSE and SRO-SSE outperform other competing clustering methods by a notable
margin, and they perform even better than the original Noisy SSC for most values of λ, due to the
fact that sketching potentially reduces the adverse effect of noise in the original data.
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Figure 6: Accuracy with respect to different
values of λ on the Extended Yale-B Dataset
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ues of λ on the Extended Yale-B Dataset

C.5 SKETCHING FOR SPARSE NONCONVEX LEARNING WITH CAPPED-ℓ1 REGULARIZATION
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Figure 8: Illustration of the parameter estimation errors of SRO for sparse nonconvex learning with
capped-ℓ1 regularization.

We study the performance of SRO for sparse nonconvex learning with capped-ℓ1 regularization in
this subsection. The optimization problem considered here is β∗ = argminβ∈Rd

1
2∥y −Xβ∥22 +

λ
d−1∑
i=1

min {|βi| , α}, which is solved by the proximal gradient descent. X̄ =
√
nX ∈ Rn×d has

i.i.d. standard Gaussian entries with n = 10000 and d = 40000. Following the setup in (Zhang,
2010b), the true parameter vector β̄ is generated with s̄ nonzero elements uniformly distributed
from [10, 10]. The response vector ȳ is generated by ȳ = X̄β̄ + ε where ε is a noise vector of
i.i.d. Gaussian elements with variance σ2 = 1, and ȳ =

√
ny. We set α = 10λ, the sketch size

ñ = n/5, and repeat the experiment for 100 times. The ℓ2-norm parameter estimation errors for
different values of λ are illustrated in Figure 8.

D PROOFS

We present proofs of theoretical results of the original paper in this section.

D.1 PROOFS FOR SECTION 5 AND SECTION 3

Before presenting the proof of Theorem D.2, the following lemma is introduced which shows that
subspace embedding approximately preserves inner product with high probability.
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Lemma D.1. Suppose P is a (1±ε) ℓ2-subspace embedding for X, and let C(X) denote the column
space of X. Then with probability 1− δ, for any two vectors u ∈ C(X), v ∈ C(X),∣∣u⊤P⊤Pv − u⊤v

∣∣ ≤ ∥u∥2∥v∥2ε. (18)

Proof. If u = 0 or v = 0, then (18) holds trivially. Otherwise, let u′ = u
∥u∥2

, v′ = v
∥v∥2

,
and u′,v′ ∈ C(X). According to the definition of (1 ± ε) ℓ2-subspace embedding for X, with
probability 1− δ,

(1− ε)∥u′ + v′∥22 ≤ ∥P(u′ + v′)∥22 ≤ (1 + ε)∥u′ + v′∥22, (19)

(1− ε)∥u′ − v′∥22 ≤ ∥P(u′ − v′)∥22 ≤ (1 + ε)∥u′ − v′∥22. (20)

Subtracting (20) from (19), we have∣∣u′⊤P⊤Pv′ − u′⊤v′∣∣ ≤ ε, (21)

and (18) holds by scaling (21) by ∥u∥2∥v∥2.

D.2 GENERAL BOUND

Theorem D.2. Suppose β̃∗ is any critical point of the objective function in (2), β∗ is any critical
point of the objective function in (1), and 0 < ε < ε0 < 1 where ε0 is a small positive constant,
0 < δ < 1, P is drawn from an (ε, δ) oblivious ℓ2-subspace embedding over ñ× n matrices. Then
with probability 1− δ,

(1− ε)
∥∥∥β̃∗ − β∗

∥∥∥2
X
− ε
∥∥∥β̃∗ − β∗

∥∥∥
X
∥β∗∥X ≤ θhλ

(β∗, κ)
∥∥∥β̃∗ − β∗

∥∥∥
2
+ κ
∥∥∥β̃∗ − β∗

∥∥∥2
2
. (22)

In particular, if P is a Gaussian subspace embedding, then ñ = O((r+ log 1
δ )ε

−2). If P is a sparse
subspace embedding, then ñ = O(r2/(δε2)).

It can be verified that the degree of nonconvexity vanishes with κ = 0 when h is convex. As a result,
we have relative-error approximation bound for

∥∥∥β̃∗ − β∗
∥∥∥
X

shown in Theorem D.3 below.

Theorem D.3. If hλ is convex, then under the conditions of Theorem D.2, with probability 1− δ,∥∥∥β̃∗ − β∗
∥∥∥
X
≤ ε

1− ε
∥β∗∥X. (23)

Moreover, if the Frechet subdifferential of h is Lh-smooth (h can be nonconvex), then

∥β̃∗ − β∗∥X ≤
ε

(1− ε)− λLh

σ2
min(X)

∥β∗∥X. (24)

It can be observed from (23) that one-time SRO renders a (3) relative-error approximation (3). The
Iterative SRO algorithm takes advantage of such relative-error approximation, and it applies SRO
once at each iteration so as to approximate the residual of the last iteration with relative-error ap-
proximation so as to approximate the solution to the original problem geometrically. Detailed proof
of the theoretical guarantee of Iterative SRO, Theorem 3.1, along with the proofs of Theorem D.2
and Theorem D.3, are presented in the next parts of this appendix.

Proof of Theorem D.2. By the optimality of β̃∗, we have∥∥∥X̃⊤X̃β̃∗ − y⊤X+ v
∥∥∥
2
= 0 (25)

for some v ∈ ∂̃hλ(β̃
∗). In the sequel, we will also use ∂̃h(·) to indicate an element belonging to

∂̃hλ(·) if no special note is made.

By the optimality of β∗, we have ∥∥X⊤Xβ∗ − y⊤X+ u
∥∥
2
= 0, (26)
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where u ∈ ∂̃hλ(β
∗).

Define ∆ := β̃∗ − β∗, ∆̃ :=
(
∂̃hλ(β̃

∗)− ∂̃hλ(β
∗)
)
. By (25) and (26), we have∥∥∥X̃⊤X̃β̃∗ + v −X⊤Xβ∗ − u

∥∥∥
2
=
∥∥∥X̃⊤X̃β̃∗ −X⊤Xβ∗ + ∆̃

∥∥∥
2
= 0. (27)

It follows from (27) that

∆⊤
(
X̃⊤X̃β̃∗ −X⊤Xβ∗ + ∆̃

)
≤ ∥∆∥2

∥∥∥X̃⊤X̃β̃∗ −X⊤Xβ∗ + ∆̃
∥∥∥
2
= 0. (28)

On the other hand, the LHS of (28) can be written as

∆⊤
(
X̃⊤X̃β̃∗ −X⊤Xβ∗ + ∆̃

)
= ∆⊤

(
X̃⊤X̃β̃∗ − X̃⊤X̃β∗

)
+∆⊤

(
X̃⊤X̃β∗ −X⊤Xβ∗

)
+∆⊤∆̃. (29)

By (28) and (29), we have

∆⊤
(
X̃⊤X̃β̃∗ − X̃⊤X̃β∗

)
+∆⊤

(
X̃⊤X̃β∗ −X⊤Xβ∗

)
≤ −∆⊤∆̃ (30)

Now we derive lower bounds for the two terms on the LHS of (30). First, we have

∆⊤
(
X̃⊤X̃β̃∗ − X̃⊤X̃β∗

)
= ∆⊤X̃⊤X̃∆ =

∥∥∥X̃∆
∥∥∥2
2
≥ (1− ε)∥X∆∥22. (31)

Moreover,

∆⊤
(
X̃⊤X̃β∗ −X⊤Xβ∗

)
= ∆⊤

(
X̃⊤X̃−X⊤X

)
β∗ ≥ −ε∥X∆∥2∥Xβ∗∥2. (32)

Plugging (31) and (32) in (30), we have

(1− ε)∥X∆∥22 − ε∥X∆∥2∥Xβ∗∥2 ≤ −∆
⊤∆̃. (33)

Moreover, by the definition of degree of nonconvexity in (15),

−∆⊤∆̃ ≤ θh(β
∗, κ)

∥∥∥β̃∗ − β∗
∥∥∥
2
+ κ
∥∥∥β̃∗ − β∗

∥∥∥2
2
. (34)

(22) then follows by (33) and (34).

Proof of Theorem D.3. When hλ is convex, then its Frechet differential coincides with its subdif-
ferential. As a result, for any u ∈ ∂̃h(s) and v ∈ ∂̃h(t), we have (s − t)⊤(u − v) ≥ 0, and it
follows that

− (s− t)⊤(u− v) ≤ 0. (35)

With κ = 0, (35) suggests that

θhλ
(t, 0) = sup

s∈Rd,s̸=t

{− 1

∥s− t∥2
(s− t)⊤(∂̃hλ(s)− ∂̃hλ(t))} ≤ 0, (36)

By (22) in Theorem D.2 and (36), setting κ = 0, we have

(1− ε)
∥∥∥β̃∗ − β∗

∥∥∥2
X
− ε
∥∥∥β̃∗ − β∗

∥∥∥
X
∥β∗∥X ≤ θhλ

(β∗, κ)
∥∥∥β̃∗ − β∗

∥∥∥
2
≤ 0. (37)

If
∥∥∥β̃∗ − β∗

∥∥∥
X
̸= 0, it follows from (37) that∥∥∥β̃∗ − β∗

∥∥∥
X
≤ ε

1− ε
∥β∗∥X. (38)
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Because the Frechet subdifferential of h is Lh-smooth, namely supu∈∂̃h(x),v∈∂̃h(y) ∥u − v∥2 ≤
Lh∥x−y∥2, it can be veried that θh(x∗, κ) ≤ 0 with holds with κ = Lh. This is due to the fact that
for any u ∈ ∂̃h(x) and any v ∈ ∂̃h(y),

− (s− t)⊤(u− v)− Lh∥s− t∥22 ≤ ∥s− t∥2∥u− v∥2 − Lh∥s− t∥22
≤ Lh∥x− y∥22 − Lh∥s− t∥22 ≤ 0. (39)

Therefore,

θh(t, Lh) = sup
s∈Rd,s̸=t,u∈∂̃h(s),v∈∂̃h(t)

−(s− t)⊤(u− v)− Lh∥s− t∥22
∥s− t∥2

≤ 0 (40)

holds for arbitrary t, and it follows that θh(x∗, Lh) ≤ 0. Moreover, since X is nonsingular, ∥β̃∗ −
β∗∥22 ≤

∥β̃∗−β∗∥2
X

σ2
min(X)

. Plugging the above results in (22) of Theorem D.2 and setting κ to Lh, we have

(1− ε)∥β̃∗ − β∗∥2X − ε∥β̃∗ − β∗∥X∥β∗∥X ≤ λθh(β
∗, Lh)∥β̃∗ − β∗∥2 + Lh∥β̃∗ − β∗∥22

≤ Lh

σ2
min(X)

· ∥β̃∗ − β∗∥2X, (41)

and it follows from (41) that

∥β̃∗ − β∗∥X ≤
ε

(1− ε)− Lh

σ2
min(X)

∥β∗∥X.

Proof of Theorem 3.1. This proof mostly follows from the proof of our main Theorem D.2 and
Theorem D.3. We first consider the case that hλ is convex.

Let β̃∗ = β(t). Define ∆ := β̃∗ − β∗, ∆̃ :=
(
∂̃hλ(β̃

∗) − ∂̃hλ(β
∗)
)
. By repeating the proof of

Theorem D.2 and Theorem D.3, with probability 1− δ,

(1− ε)∥X∆∥22 − ε∥X∆∥2
∥∥∥X(β∗ − β(t−1))

∥∥∥
2
≤ −∆⊤∆̃. (42)

It follows by the proof of Theorem D.3 that λ∆⊤∆̃ ≤ 0. As a result, it follows by (42) that∥∥∥β̃∗ − β∗
∥∥∥
X
≤ ε

1− ε

∥∥∥β∗ − β(t−1)
∥∥∥
X

(43)

For a constant 0 < ρ < 1, by choosing ε ≤ ρ
ρ+1 in (43), we have∥∥∥β(t) − β∗
∥∥∥
X
≤ ρ
∥∥∥β∗ − β(t−1)

∥∥∥
X

(44)

for any t ≥ 1. It follows that ∥∥∥β(N) − β∗
∥∥∥
X
≤ ρN∥β∗∥X (45)

with β(0) = 0.

A similar proof is applied for the case that hλ is Lh-smooth and X has full column rank with
Lh

σ2
min(X)

< 1 − ε. It can be verified that (42) still holds, and it follows from (34) in the proof of
Theorem D.2, (39) and (40) in the proof of Theorem D.3 that

−∆⊤∆̃ ≤ θh(β
∗, Lh)

∥∥∥β̃∗ − β∗
∥∥∥
2
+ Lh

∥∥∥β̃∗ − β∗
∥∥∥2
2
≤ Lh

σ2
min(X)

· ∥X∆∥22. (46)

It follows from (42) and (46) that∥∥∥β̃∗ − β∗
∥∥∥
X
≤ ε

1− Lh

σ2
min(X)

− ε

∥∥∥β∗ − β(t−1)
∥∥∥
X
. (47)

For a constant 0 < ρ < 1, by choosing ε ≤ ρ(1−Lh/σ
2
min(X))

ρ+1 in (47), we still have
∥∥β(t) − β∗

∥∥
X
≤

ρ
∥∥β∗ − β(t−1)

∥∥
X

for any t ≥ 1. It follows that
∥∥β(N) − β∗

∥∥
X
≤ ρN∥β∗∥X.
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D.3 PROOFS FOR SECTION 4: SKETCHING FOR SPARSE CONVEX LEARNING

In Theorem 4.1, we showed that for a low-rank data matrix X with ran r ≪ n, then the Iterative
ROS described in Algorithm 1 applied on the sketched problem (2) achieves the parameter estima-
tion error of the order O

(√
s̄ log d/n

)
under Assumption 1. As explained in (Yang et al., 2016),

Assumption 1 is weaker than the Restricted Isometry Property (RIP) in compressed sensing (Candes
& Tao, 2005a). We show that there exists low-rank data matrix X satisfying Assumption 1. We
first show by Theorem D.4 that there exists a low-rank data matrix X which satisfies RIP(δ, s) for
δ ∈ (0, 1) and s ∈ N with RIP(δ, s) defined in Theorem 4.4(b).

We define the necessary notations in the following text. Let A be a matrix and S be a set, we denote
by AS the submatrix of A with columns indexed by S. Similarly, for a vector v, vS is a vector
formed by elements of v indexed by S.
Theorem D.4. Let δ ∈ (0, 1) and s ∈ N. There exists a data matrix X ∈ Rn×d with
rank not greater than c1n for c1 ∈ (0, 1) such that RIP(δ, s) holds with probability at least
1 − 2ds

(
1 + 8

δ

)s
exp (−nc1,2(δ)) − 2ds

(
1 + 8

δ

)s
exp (−nα0), where α0 ∈ (0, 1) is a arbitrary

positive constant, c1,2(δ) is a positive constant depending on c1 and δ. Here n ≥ (Θ(s log d))
1/α0 .

RIP(δ, s) means that for all v ∈ Rd, ∥v∥0 ≤ s,

(1− δ)∥v∥22 ≤ vX⊤Xv ≤ (1 + δ)∥v∥22.

Proof. We construct the data matrix by

X = UU⊤Ω, U ∈ Rn×r,Ω ∈ Rn×d, r = c1n, (48)

where U is an orthogonal matrix and U⊤U = Ir, all the elements of Ω are i.i.d. Gaussian random
variables with Ωij ∼ N (0, 1/r) for i ∈ [n], j ∈ [d]. It is clear that the rank of X is bounded by c1n.

We define the set

F :=
⋃

S⊆[d],|S|=s

FS, FS :=
{
u ∈ Rd | ∥u∥2 = 1, supp (u) ⊆ S

}
.

Given a set S ⊆ [d], |S| = s, let v ∈ FS , we define functions

F (v) :=
1

c1∥Av∥22

∥∥UU⊤Av
∥∥2
2
, g(x) :=

1

c1

∥∥UU⊤x
∥∥2
2
.

where A =
√
rΩ and the elements of A are i.i.d. standard Gaussian random variables. It is clear

that F (v) = g(Av/∥Av∥2), and g is a 2/c1-Lipschitz function. Moreover,

Ex∼Unif(Sn−1) [g(x)] =
1

c1
Ex∼Unif(Sn−1)

[
UU⊤xx⊤UU⊤]

=
c1n

c1n
= 1.

Let x = Av/∥Av∥2, then x ∼ Unif(Sn−1), and F (v) = g(x). It follows by Lemma D.9 that

Pr [|g(x)− E [g(x)]| > t] ≤ 2 exp
(
−nc21t2/8

)
, (49)

It follows by (49) that for a given v ∈ FS, Pr [|F (v)− 1| ≤ t] ≥ 1− 2 exp
(
−nc21t2/8

)
.

On the other hand, v⊤X⊤Xv = 1/r ·
∥∥UU⊤Av

∥∥2
2

and v⊤X⊤Xv = ∥Av∥22/n · F (v). Not-

ing that ∥Av∥22 is χ2, it follows by standard concentration on χ2 that
∣∣∣∥Av∥22/n− 1

∣∣∣ ≤ Θ(δ2)

when n ≥ n0(δ, α0), where n0(δ, α0) is a positive constant depending on δ and α0. Let
t = Θ(δ2) in (49) w.h.p. (with a high probability) , then |F (v)− 1| ≤ Θ(δ2) w.h.p. By
choosing proper constants in Θ(δ2) and choosing the constant n0(δ, α0) accordingly, we have∣∣∣∥Av∥22/n · F (v)− 1

∣∣∣ ≤ δ2/4 w.h.p. In particular, for a given v ∈ FS, with probability at least

1−2 exp (−nc1,2(δ))−2 exp (−nα0), we have
∣∣v⊤X⊤Xv − 1

∣∣ ≤ δ2/4, and |∥Xv∥2 − 1| ≤ δ/2.
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It follows from (Vershynin, 2012, Lemma 5.2) that there exists an δ/4-net Nδ/4(FS, ∥·∥2) ⊆ FS of
FS such that

∣∣Nδ/4(FS, ∥·∥2)
∣∣ ≤ (1 + 8

δ

)s
. Using the union bound, with probability at least 1 −

2
(
1 + 8

δ

)s
exp (−nc1,2(δ))− 2

(
1 + 8

δ

)s
exp (−nα0), the event that |∥Xv∥2 − 1| ≤ δ/2 holds for

all v ∈ Nδ/4(FS, ∥·∥2) happens. Define this event asAS, and the following argument is conditioned
on AS.

We define A > 0 as the smallest number such that ∥Xv∥2 ≤ 1+A for all v ∈ FS. For any v ∈ FS,
there exists v′ ∈ Nδ/4(FS, ∥·∥2) such that ∥v − v′∥2 ≤ δ/4. As a result,

∥Xv∥2 ≤ ∥Xv′∥2 + ∥X(v − v′)∥2 ≤ 1 +
δ

2
+ (1 +A)

δ

4
.

It follows by the definition of A that A ≤ δ/2 + (1 + A)δ/4, so A ≤ 3δ/4
1−δ/4 ≤ δ. We then have

∥Xv∥2 ≤ 1 + δ for all v ∈ FS. On the other hand,

∥Xv∥2 ≥ ∥Xv′∥2 − ∥X(v − v′)∥2 ≥ 1− δ

2
− (1 + δ)

δ

4
≥ 1− δ, ∀v ∈ FS.

As a result, conditioned on the event AS for a set S ⊆ [d], |S| = s, |∥Xv∥2 − 1| ≤ δ holds for
all v ∈ FS. Because |F| ≤ ds, using the union bound, with probability specified in this theorem,
|∥Xv∥2 − 1| ≤ δ holds for all v ∈ Rd, ∥v∥0 ≤ s.

Low-Rank Matrix X Satisfying Assumption 1. It is proved in Theorem D.4 that the low-rank data
matrix X constructed by (48) satisfies RIP(δ, s) for δ ∈ (0, 1) and s ∈ N. By making α0 → 1,
the lower bound for n is (Θ(s log d))

1/α0 which can be close to the sample optimal Θ(s log d). As
indicated by (Yang et al., 2016), The condition (11) in Assumption 1 is weaker than RIP. To see this,
(11) holds with k∗ = (s− s̄)/2 if RIP(δ, s) holds with s = 5s̄ and δ = 1/3.

An Alternative Construction of A Low-Rank Matrix Satisfying RIP(δ, s). It is remarked that
one can also construct the low-rank matrix X = UA where U ∈ Rn×m is sampled from the Stiefel
manifold Vm(Rn) comprising all the n × m matrices of orthogonal columns with n ≥ m, and
all the elements of A ∈ Rm×d are i.i.d. Gaussian random variables with Aij ∼ N (0, 1/m) for
i ∈ [m], j ∈ [d]. Then rank(X) ≤ m, and it follows by (Baraniuk et al., 2008, Theorem 5.2) that
when m ≥ Θ(s log d), then A satisfies RIP(δ, s). Since X⊤X = A⊤A, it follows that w.h.p. X
also satisfies RIP(δ, s). The latter construction can admit the optimal size n ≍ Θ(s log d). On the
other hand, rank(X)→∞ as d→∞ in latter construction, while the construction in Theorem D.4
allows for arbitrarily specified rank of the constructed X.

We need the following lemma for the proof of Theorem 4.1.
Lemma D.5 ((Yang et al., 2016, Lemma 5)). For any v ∈ Rd and any index set S ⊆ [d] with
|S| = s̄. Let J be the set of indices of the largest k∗ elements of vSc in absolute value and let
I = J

⋃
S. Here s̄ and k∗ are the same as those in Assumption 1. Assume that ∥vSc∥1 ≤ γ∥vS∥1

for some γ > 0. Then we have ∥v∥2 ≤ (1 + γ)∥vI∥2, and

vX⊤Xv ≥ ρL,−(s̄+ k∗) ·
(
∥vI∥2 − γ

√
s̄/k∗

√
ρL,+(k∗)/ρL,−(s̄+ 2k∗)− 1∥vS∥2

)
∥vI∥2.

(50)

Proof of Theorem 4.1. We consider the upper bound for the quadratic form〈
∇L(β̃∗)−∇L(β̄), β̃∗ − β̄

〉
= ∆⊤X⊤X∆, where β̃∗ = β(N) and ∆ := β̃∗ − β̄. We

define S = supp
(
β̄
)
. Let v be a vector, we denote by vS the vector formed by elements of v in the

set S.

We have

∆⊤X⊤X∆ =
〈
∇L(β̃∗)−∇L(β̄), β̃∗ − β̄

〉
≤
〈
∇L(β̃∗), β̃∗ − β̄

〉
+
∥∥∇L(β̄)∥∥∞∥∆∥1
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1⃝
≤
〈
∇L(β̃∗)−∇L(β∗), β̃∗ − β̄

〉
+
〈
∇L(β∗), β̃∗ − β̄

〉
+ 2σ

√
log d

n
∥∆∥1

≤
∥∥∥∇L(β̃∗)−∇L(β∗)

∥∥∥
∞
∥∆∥1 − λ∥∆Sc∥1 + λ∥∆S∥1 +

2

c
λ∥∆∥1

2⃝
≤ λµ∥∆∥1 − λ∥∆Sc∥1 + λ∥∆S∥1 +

2

c
λ∥∆∥1

= −λ
(
1− µ− 2

c

)
∥∆Sc∥1 + λ

(
1 + µ+

2

c

)
∥∆S∥1. (51)

Here 1⃝ follows by Lemma D.8, and ρN∥X∥2∥β∗∥X ≤ λµ in 2⃝.

It follows by (52) that ∥∆Sc∥1 ≤ ((1 + µ+ 2/c)/(1− µ− 2/c)) ∥∆S∥1.

We now apply Lemma D.5 with v = ∆ and γ = (1 + µ + 2/c)/(1 − µ − 2/c). It fol-
lows by Lemma D.5 that ∥∆∥2 ≤ (1 + γ)∥∆I∥2. Moreover, it follows by Assumption 1 that
ρL,+(k

∗)/ρL,−(2k
∗ + s̄) ≤ 1 + 0.5k∗/s̄. Plugging this inequality in (50), we have

∆X⊤X∆ ≥ ρL,−(s̄+ k∗) ·
(
∥∆I∥2 − γ

√
s̄/k∗

√
ρL,+(k∗)/ρL,−(s̄+ 2k∗)− 1∥∆S∥2

)
∥∆I∥2

≥ ρL,−(s̄+ k∗) ·
(
1− γ

√
0.5
)
∥∆I∥22. (52)

It follows from (51) that ∆⊤X⊤X∆ ≤ λ
(
1 + µ+ 2

c

)
∥∆S∥1 ≤ λ

(
1 + µ+ 2

c

)√
s̄∥∆I∥2. It

follows by this inequality and (52) that

∥∆∥2 ≤ (1 + γ)∥∆I∥2 ≤
(1 + γ)

(
1 + µ+ 2

c

)√
s̄λ

ρL,−(s̄+ k∗) ·
(
1− γ

√
0.5
) ,

which proves (12).

D.4 SKETCHING FOR SPARSE NONCONVEX LEARNING

Proof of Corollary 4.2. We have hλ(β) = λ∥β∥1 + Qλ(β). For any s ∈ Rd, t ∈ Rd, and let
u ∈ ∂̃hλ(s), v ∈ ∂̃hλ(t), then u = ξ1 +∇Qλ(s) and v = ξ2 +∇Qλ(t) with x1 ∈ ∂ (λ∥s∥1) and
x2 ∈ ∂ (λ∥t∥1). We have

−(s− t)⊤(u− v) = −(s− t)⊤(ξ1 − ξ2)− (s− t)⊤ (∇Qλ(s)−∇Qλ(t))

1⃝
≤ −(s− t)⊤ (∇Qλ(s)−∇Qλ(t))

2⃝
≤ ζ−∥s− t∥22, (53)

where 1⃝ follows from the convexity of λ∥·∥1, and 2⃝ follows from the regularity condition (b) in
Assumption 2.

It follows by (53) that the degree of nonconvexity θhλ
(t, ζ−) ≤ 0. Using the upper bound for ñ in

the given condition, plugging θhλ
(t, ζ−) ≤ 0 in (22) and setting κ to ζ−, we have

(1− ε)
∥∥∥β̃∗ − β∗

∥∥∥2
X
− ε
∥∥∥β̃∗ − β∗

∥∥∥
X
∥β∗∥X ≤ θh(β

∗, Lh)
∥∥∥β̃∗ − β∗

∥∥∥
2
+ ζ−

∥∥∥β̃∗ − β∗
∥∥∥2
2

≤ ζ−

∥∥∥β̃∗ − β∗
∥∥∥2
2
. (54)

By the definition of sparse eigenvalues in Definition 4.1, we have∥∥∥β̃∗ − β∗
∥∥∥2
X
≥ ρL,−(s)

∥∥∥β̃∗ − β∗
∥∥∥2
2
,∥∥∥β̃∗ − β∗

∥∥∥2
X
≤ ρL,+(s)

∥∥∥β̃∗ − β∗
∥∥∥2
2
.
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Applying the above inequalities in (54), we have

(1− ε)ρL,−(s)
∥∥∥β̃∗ − β∗

∥∥∥2
2
≤ ε
√
ρL,+(s)

∥∥∥β̃∗ − β∗
∥∥∥
2
∥β∗∥X + ζ−

∥∥∥β̃∗ − β∗
∥∥∥2
2

which leads to (13).

Definition D.1. (ε-net) Let (X, d) be a metric space and let ε > 0. A subset Nε(X, d) is called an
ε-net of X if for every point x ∈ X , there exists some point y ∈ Nε(X, d) such that d(x, y) ≤ ε.
The minimal cardinality of an ε-net of X , if finite, is called the covering number of X at scale ε.
Theorem D.6 (revised version of (Woodruff, 2014, Theorem 2.1) with explicit constant in the bound
for ñ). Let 0 < ε, δ < 1 and P ∈ Rñ×n be a Gaussian subspace embedding defined in Defini-
tion 2.2. Then if ñ ≥ 32ε−2 log(2f0/δ), P is a Johnson–Lindenstrauss Transform, or JLT(ε, δ, f0).
That is, for any set V with f0 elements and all v,v′ ∈ V , with probability at least 1− δ, it holds that
|⟨Pv,Pv′⟩ − ⟨v,v′⟩| ≤ ε∥v∥2∥v′∥2.

Lemma D.7. Let s ∈ [d], s ≥ 2, 0 < ε, δ < 1, and P ∈ Rñ×n be a Gaussian subspace embed-
ding defined in Definition 2.2. If ñ ≥ c0ε

−2
(
log(2/δ) + s log d+ s log 5 + 1/ds−1

)
where c0 is a

positive constant, then with probability at least 1− δ, the following inequalities hold:

ρL̃,+(s) ≤ ρL,+(s) + ε
√
s, ρL̃,−(s) ≥ ρL,−(s)− ε

√
s, (55)∥∥∥∇L̃(β̄)∥∥∥

∞
≤
∥∥∇L(β̄)∥∥∞ + ε

√
s̄
∥∥β̄∥∥

2
. (56)

Proof of Lemma D.7 . Define the set

F :=
⋃

S⊆[d],|S|=s

FS, FS :=
{
u ∈ Rd | supp (u) ⊆ S

}
.

Then |F| =
(
d
s

)
< ds. We now consider the subspace

US := {u = Xv | ∥u∥2 = 1,u = Xv for some v ∈ FS} , S ⊆ [d], |S| = s.

It can be verified that the dimension of US is not greater than s. Let γ > 0, it follows by (Vershynin,
2012, Lemma 5.2), there exists an γ-net Nγ(US, ∥·∥2) ⊆ US of US such that |Nγ(US, ∥·∥2)| ≤(
1 + 2

γ

)s
.

Define the set

Vs :=
⋃

S⊆[d],|S|=s

N1/2(US, ∥·∥2)
⋃⋃

i∈[d]

N1/2(e
(i), ∥·∥2)

 ,

where e(i) is the subspace spanned by
{
ei, β̄

}
where

{
ei
}d
i=1

is the standard basis of Rd. As a
result of the above argument, f0 := |Vs| ≤

(
d
s

)
· 5s + 25d. It follows by standard calculation that

log(2/δ) + s log d + s log 5 + 1/ds−1 ≥ log(2f0/δ). It then follows by Theorem D.6 that when
ñ ≥ c0ε

−2
(
log(2/δ) + s log d+ s log 5 + 1/ds−1

)
≥ c0ε

−2 log(2f0/δ) with c0 = 512, P is a
JLT(ε/4, δ, f0). Therefore, with probability at least 1− δ, P is a (1± ε/4) ℓ2-embedding for Vs.

For any u ∈ US, there exists a u′ ∈ Nγ(US, ∥·∥2) such that ∥u− u′∥2 ≤ γ. We now use the simpler
notation ⟨Pu′,Pv′⟩ = (1 ± ε) ⟨u′,v′⟩ to indicate |⟨Pu′,Pv′⟩ − ⟨u′,v′⟩| ≤ ε∥u′∥2∥v′∥2 for any
two numbers u′,v′ in the following text.

We follow the construction in the proof of (Woodruff, 2014, Theorem 2.3), that is, we build a 1/2-
net N1/2(US, ∥·∥2) ⊆ US of US. Given any S ⊆ [d], |S| = s, we now show in the sequel that if
P is a (1 ± ε/4) ℓ2-embedding for N1/2(US, ∥·∥2), that is, ⟨Pu′,Pv′⟩ = (1 ± ε/4) ⟨u′,v′⟩ for
all u′,v′ ∈ N1/2(US, ∥·∥2), then P is also a (1 ± ε) ℓ2-embedding for US, that is, ⟨Pu,Pv⟩ =
(1± ε) ⟨u,v⟩ for all u,v ∈ US. To see this, any u ∈ US can be expressed by

u =

∞∑
j=0

uj ,
∥∥uj

∥∥
2
≤ 1

2j
,uj ∈ N1/2(US, ∥·∥2). (57)
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(57) can be proved by induction. By the definition of 1/2-net, there exists u0 ∈ N1/2(US, ∥·∥2)
such that

∥∥u− u0
∥∥
2
≤ 1/2 and u = u0 + (u − u0). Also, there exists u′1 ∈ N1/2(US, ∥·∥2)

such that
∥∥((u− u0))/

∥∥(u− u0)
∥∥
2
− u′1

∥∥
2
≤ 1/2, so that u = u0 + u1 +

(
u− u0 − u1

)
with u1 =

∥∥(u− u0)
∥∥
2
u′1,

∥∥u1
∥∥
2
≤ 1/2, and

∥∥u− u0 − u1
∥∥
2
≤ 1/22. As the induc-

tion step, if u =
k∑

j=0

uj +

(
u−

k∑
j=1

uj

)
for k ≥ 1 such that

∥∥uj
∥∥
2
≤ 1

2j for all j ∈

[0, k] and

∥∥∥∥∥u− k∑
j=1

uj

∥∥∥∥∥
2

≤ 1/2k+1. Then there exists u′k+1 ∈ N1/2(US, ∥·∥2) such that∥∥∥∥∥
(
u−

k∑
j=1

uj

)
/

∥∥∥∥∥u− k∑
j=1

uj

∥∥∥∥∥
2

− u′k+1

∥∥∥∥∥
2

≤ 1/2. As a result, u =
k+1∑
j=0

uk+1 +

(
u−

k+1∑
j=1

uj

)

where uk+1 =

∥∥∥∥∥u− k∑
j=1

uj

∥∥∥∥∥
2

u′k+1,
∥∥uk+1

∥∥
2
≤

∥∥∥∥∥u− k∑
j=1

uj

∥∥∥∥∥
2

≤ 1/2k+1 and

∥∥∥∥∥u− k+1∑
j=1

uj

∥∥∥∥∥
2

≤

1/2k+2.

It follows by (57) that

∥Pu∥22 =

∥∥∥∥∥∥P
 ∞∑

j=0

uj

∥∥∥∥∥∥
2

2

=

∞∑
j=0

∥∥Puj
∥∥2
2
+ 2

∑
i<j

〈
Pui,Puj

〉
=

∞∑
j=0

(1± c)
∥∥uj

∥∥2
2
+ 2

∑
i<j

〈
ui,uj

〉
± ε

4

∑
i<j

∥∥ui
∥∥
2

∥∥uj
∥∥
2

=

 ∞∑
j=0

∥∥uj
∥∥2
2
+ 2

∑
i<j

〈
ui,uj

〉± ε

4

 ∞∑
j=0

∥∥uj
∥∥2
2
+ 2

∑
i<j

∥∥ui
∥∥
2

∥∥uj
∥∥
2


= ∥u∥22 ± ε∥u∥22 = 1± ε. (58)

It follows by (58) that P is a (1±ε) ℓ2-embedding for US. Recall that P is a (1±ε/4) ℓ2-embedding
for Vs ⊇

⋃
S⊆[d],|S|=s N1/2(US, ∥·∥2). By the above argument, P is also a (1 ± ε) ℓ2-embedding

for US for any S ⊆ [d], |S| = s.

For any v ∈ Rd such that ∥v∥0 ≤ s, ∥v∥2 = 1, there must exists a set S ⊆ [d], |S| = s such that
Xv/∥Xv∥2 ∈ US. As a result,∣∣∣v⊤X⊤Xv − v⊤X̃⊤X̃v

∣∣∣ ≤ ε∥Xv∥22 ≤ ε
√
s, (59)

where the last inequality follows by maxi∈[d]

∥∥Xi
∥∥
2
≤ 1. Therefore, ρL̃,+(s) ≤ ρL,+(s) + ε

√
s,

and ρL̃,−(s) ≥ ρL,−(s)− ε
√
s.

Because P is a (1 ± ε/4) ℓ2-embedding for Vs ⊇
⋃

i∈[d] N1/2(e
(i), ∥·∥2), P is also (1 ± ε) ℓ2-

embedding for e(i) for all i ∈ [d]. Therefore, we have

sup
i∈[d]

ei
⊤
(
X⊤Xβ̄ − X̃⊤X̃

)
β̄ ≤ ε∥Xei∥2

∥∥Xβ̄
∥∥
2
,

so that ∥∥∥∇L̃(β̄)−∇L̃(β̄)∥∥∥
∞

=
∥∥∥X⊤Xβ̄ − X̃⊤X̃β̄

∥∥∥
∞

= sup
i∈[d]

ei
⊤
(
X⊤Xβ̄ − X̃⊤X̃

)
β̄

≤ ε
∥∥Xei

∥∥
2

∥∥Xβ̄
∥∥
2
≤ ε
√
s̄
∥∥β̄∥∥

2
.
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Proof of Theorem 4.4 . It follows by (55) in Lemma D.7 that

ρL̃,−(s) ≥ ρL,−(s)− ε
√
s > 0

with s = s0 = s̄+ 2s̃. Moreover, it also follows by (55) that

C ′ρL̃,−(s̄+ 2s̃) ≥ C ′
(
ρL,−(s̄+ 2s̃)− ε

√
s̄+ 2s̃

)
≥ ζ−.

In addition, by (55) we have

κ′ =
ρL,+(s0) + ε

√
s0 − ζ+

ρL,−(s0)− ε
√
s0 − ζ−

≥
ρL̃,+(s0)− ζ+

ρL̃,+(s0)− ζ−
= κ̃

with κ̃ specified in Assumption 4. Therefore, if
(
144κ′2 + 250κ′) s̄ < s̃, we have(

144κ̃2 + 250κ̃
)
s̄ = C̃s̄ < s̃ which completes the first part of the claim.

Now we need to verify that either condition (a) or condition (b) can lead to the following conditions:

ρL,−(s0) > ε
√
s0, (60)

ζ− ≤ C ′ (ρL,−(s0)− ε
√
s0) , (61)(

144κ′2 + 250κ′) s̄ < s̃, κ′ = (ρL,+(s0) + ε
√
s0 − ζ+)/(ρL,−(s0)− ε

√
s0 − ζ−). (62)

For condition (a), with log d/n
n→∞−→ 0, ε = C1

√
log d/n, we have ε

n→∞−→ 0. It can be verified that
κ′ n→∞−→ κ, and (60)-(62) holds with sufficiently large n when Assumption 3 holds.

For condition (b), with ζ− = C2ρL,−(s0), ε
√
s0 ≤ C3ρL,−(s0), C2+C3 < 1 and C2 ≤ C ′(1−C3),

(60)-(61) hold. Moreover, we have

κ′ =
ρL,+(s0) + ε

√
s0 − ζ+

ρL,−(s0)− ε
√
s0 − ζ−

≤ (1 + C3)ρL,+(s0)

(1− C2 − C3)ρL,−(s0)
≤ (1 + C3)(1 + δ)

(1− C2 − C3)(1− δ)
= κ0.

As a result. s̃ >
(
144κ2

0 + 250κ0

)
s̄ leads to (62).

Proof of Theorem 4.5 . It follows by (56) in Lemma D.7 and Lemma D.8 that∥∥∥∇L̃(β̄)∥∥∥
∞
≤
∥∥∇L(β̄)∥∥∞ + ε

√
s̄
∥∥β̄∥∥

2
≤
(
C1

√
s̄
∥∥β̄∥∥

2
+ 2σ

)√ log d

n
. (63)

Let λtgt = 8
(
C1

√
s̄
∥∥β̄∥∥

2
+ 2σ

)√
log d
n . Because Assumption 4 holds, we can apply the approx-

imate path following method described in (Wang et al., 2014, Algorithm 1) to solve the original
problem (1) and the sketched problem (2) to obtain β̃∗ and β̃∗ such that β∗ is an critical point of
problem (1) and β̃∗ is an critical point of (2) with X̃ = PX and nonconvex regularizer hλtgt . Let
S = supp

(
β̄
)
. We can repeat the proof for (Wang et al., 2014, Theorem 5.5) and conclude that

∥β∗
Sc∥0 ≤ s̃,

∥∥∥β̃∗
Sc

∥∥∥
0
≤ s̃.

The above inequalities show that
∣∣∣supp

(
β̃∗ − β∗

)⋃
supp (β∗)

⋃
supp

(
β̃∗
)∣∣∣ ≤ s0 = s̄ + 2s̃. It

then follows by Corollary 4.2 that∥∥∥β̃∗ − β∗
∥∥∥
2
≤

ε
√
ρL,+(s0)

(1− ε)ρL,−(s0)− ζ−
∥β∗∥X. (64)

In addition, it follows by (Wang et al., 2014, Theorem 4.7, Theorem 4.8) that the parameter estima-
tion error of β∗ satisfies ∥∥β∗ − β̄

∥∥
2
≤ (21/8)/ (ρL,−(s0)− ζ−)

√
s̄λtgt. (65)
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It follows by (65) and (64) that∥∥∥β̃∗ − β∗
∥∥∥
2
≤

ε
√
(s̄+ s̃)ρL,+(s0)

(1 + C ′)/2 · ρL,−(s0)− ζ−
∥β∗∥2

≤
ε
√

(s̄+ s̃)ρL,+(s0)

(1 + C ′)/2 · ρL,−(s0)− ζ−

∥∥β̄∥∥
2
+

ε
√
(s̄+ s̃)ρL,+(s0)

(1 + C ′)/2 · ρL,−(s0)− ζ−
· (21/8)/ (ρL,−(s0)− ζ−)

√
s̄λtgt

≤
ε
√
(s̄+ s̃)ρL,+(s0)

(1 + C ′)/2 · ρL,−(s0)− ζ−

∥∥β̄∥∥
2
+

√
s̄λtgt

8 (ρL,−(s0)− ζ−)

≤
C1

∥∥β̄∥∥
2

√
(1 + s̃/s̄)ρL,+(s0)

(1 + C ′)/2 · ρL,−(s0)− ζ−

√
s̄ log d

n
+

√
s̄λtgt

8 (ρL,−(s0)− ζ−)
(66)

(14) then follows by (65) and (66).

Lemma D.8 ((Zhang, 2010c, Lemma 5)). Under the linear model in Section 4, that is, y = X̄β̄+ ε
where ε is a noise vector of i.i.d. sub-gaussian elements with variance proxy σ2. Let X = X̄/

√
n,

y = ȳ/
√
n, and L(β) = 1/2 · β⊤X⊤Xβ − y⊤Xβ. Then with probability at least 1 − η for any

η ∈ (0, 1),

∥∥∇L(β̄)∥∥∞ ≤ √2σ
√

log(2d/η)

n
. (67)

Lemma D.9 ((Aubrun & Szarek, 2017, Proposition 5.20)). Let d > 2. If f : Sd−1 → R is a 1-
Lipschitz function, then for any t > 0,

Pr [|f(x)− E [f(x)]| > t] ≤ 2 exp
(
−dt2/2

)
, (68)

where x is drawn uniformly from the unit sphere Sd−1 in Rd.

28


	Introduction
	Contributions and Main Results
	Notations

	The SRO Algorithm
	Error Bounds

	Iterative SRO
	Sketching for Sparse Signal Estimation
	Sketching for Sparse Convex Learning
	Sketching for Sparse Nonconvex Learning

	Approximation Error Bounds for the Proof of Theorem 3.1
	Time Complexity
	Experimental Results
	Generalized Lasso
	Additional Experiments

	Conclusion
	Nonconvex Penalty
	Time Complexity
	Complete Experimental Results
	Ridge Regression of Larger Scale
	Generalized Lasso
	Signal Recovery by Lasso
	Application in Lasso Subspace Clustering
	Sketching for Sparse Nonconvex Learning with Capped-1 Regularization

	Proofs
	Proofs for Section 5 and Section 3
	General Bound
	Proofs for Section 4: Sketching for Sparse Convex Learning
	Sketching for Sparse Nonconvex Learning


