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Tango 2: Aligning Diffusion-based Text-to-Audio Generative
Models through Direct Preference Optimization

Anonymous Authors

ABSTRACT

Generative multimodal content is increasingly prevalent in much
of the content creation arena, as it has the potential to allow artists
and media personnel to create pre-production mockups by quickly
bringing their ideas to life. The generation of audio from text
prompts is an important aspect of such processes in the music
and film industry. Many of the recent diffusion-based text-to-audio
models focus on training increasingly sophisticated diffusion mod-
els on a large set of datasets of prompt-audio pairs. These models
do not explicitly focus on the presence of concepts or events and
their temporal ordering in the output audio with respect to the
input prompt. Our hypothesis is focusing on how these aspects of
audio generation could improve audio generation performance in
the presence of limited data. As such, in this work, using an existing
text-to-audio model Tango, we synthetically create a preference
dataset where each prompt has a winner audio output and some
loser audio outputs for the diffusion model to learn from. The loser
outputs, in theory, have some concepts from the prompt missing
or in an incorrect order. We fine-tune the publicly available Tango
text-to-audio model using diffusion-DPO (direct preference opti-
mization) loss on our preference dataset and show that it leads to
improved audio output over Tango and AudioLDM2, in terms of
both automatic- and manual evaluation metrics.

CCS CONCEPTS

• Computing methodologies → Natural language processing;
• Information systems→Multimedia information systems.

KEYWORDS

Multimodal AI, Text-to-Audio Generation, Diffusion Models, Large
Language Models, Preference Optimization

1 INTRODUCTION

Generative AI is increasingly turning into a mainstay of our daily
lives, be it directly through using ChatGPT [24], GPT-4 [23] in an
assistive capacity, or indirectly by consuming AI-generated memes,
generated using models like StableDiffusion [27], DALL-E 3 [1,
22], on social media platforms. Nonetheless, there is a massive
demand for AI-generated content across industries, especially in
the multimedia sector. Quick creation of audio-visual content or
prototypes would require an effective text-to-audio model along
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with text-to-image and -video models. Thus, improving the fidelity
of such models with respect to the input prompts is paramount.

Recently, supervised fine-tuning-based direct preference opti-
mization [26] (DPO) has emerged as a cheaper and more robust
alternative to reinforcement learning with human feedback (RLHF)
to align LLM responses with human preferences. This idea is sub-
sequently adapted for diffusion models by Wallace et al. [32] to
align the denoised outputs to human preferences. In this work, we
employ this DPO-diffusion approach to improve the semantic align-
ment between input prompt and output audio of a text-to-audio
model. Particularly, we fine-tune the publicly available text-to-audio
latent diffusion model Tango [5] on our synthesized preference
dataset with DPO-diffusion loss. This preference dataset contains
diverse audio descriptions (prompts) with their respective preferred
(winner) and undesirable (loser) audios. The preferred audios are
supposed to perfectly reflect their respective textual descriptions,
whereas the undesirable audios have some flaws, such as some miss-
ing concepts from the prompt or in an incorrect temporal order
or high noise level. To this end, we perturbed the descriptions to
remove or change the order of certain concepts and passed them to
Tango to generate undesirable audios. Another strategy that we
adopted for undesirable audio generation was adversarial filtering:
generate multiple audios from the original prompt and choose the
audio samples with CLAP-score below a certain threshold. We call
this preference dataset Audio-alpaca. To mitigate the effect of
noisy preference pairs stemming from automatic generation, we
further choose a subset of samples for DPO fine-tuning based on
certain thresholds defined on the CLAP-score differential between
preferred and undesirable audios and the CLAP-score of the un-
desirable audios. This likely ensures a minimal proximity to the
input prompt, while guaranteeing a minimum distance between
the preference pairs.

We experimentally show that fine-tuning Tango on the pruned
Audio-alpaca yields Tango 2 that significantly surpasses Tango
and AudioLDM2 in both objective and human evaluations. More-
over, exposure to the contrast between good and bad audio outputs
during DPO fine-tuning likely allows Tango 2 to better map the se-
mantics of the input prompt into the audio space, despite relying on
the same dataset as Tango for synthetic preference data-creation.

The broad contributions of this paper are the following:

(1) We develop a cheap and effective heuristics for semi au-
tomatically creating a preference dataset for text-to-audio
generation;

(2) On the same note, we also share the preference dataset
Audio-alpaca for text-to-audio generation that may aid in
the future development of such models;

(3) Despite not sourcing additional out-of-distribution text-
audio pairs over Tango, our model Tango 2 outperforms
both Tango and AudioLDM2 on both objective and sub-
jective metrics;

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(4) Tango 2 demonstrates the applicability of diffusion-DPO
in audio generation.

2 RELATEDWORK

Text-to-audio generation has garnered serious attention lately thanks
to models like AudioLDM [17], Make-an-Audio [9], Tango [5], and
Audiogen [14]. These models rely on diffusion architectures for
audio generation from textual prompts. Recently, AudioLM [2] was
proposed which utilizes the state-of-the-art semantic model w2v-
Bert [4] to generate semantic tokens from audio prompts. These
tokens condition the generation of acoustic tokens, which are de-
coded using the acoustic model SoundStream [34] to produce audio.
The semantic tokens generated by w2v-Bert are crucial for condi-
tioning the generation of acoustic tokens, subsequently decoded
by SoundStream.

AudioLDM [17] is a text-to-audio framework that employs CLAP
[33], a joint audio-text representation model, and a latent diffusion
model (LDM). Specifically, an LDM is trained to generate latent
representations of melspectrograms obtained using a Variational
Autoencoder (VAE). During diffusion, CLAP embeddings guide the
generation process. Tango [6] utilizes the pre-trained VAE from
AudioLDM and replaces the CLAP model with a fine-tuned large
language model: FLAN-T5. This substitution aims to achieve compa-
rable or superior results while training with a significantly smaller
dataset.

In the realm of aligning generated audio with human percep-
tion, Liao et al. [16] recently introduced BATON, a framework that
initially gathers pairs of audio and textual prompts, followed by
annotating them based on human preference. This dataset is subse-
quently employed to train a reward model. The reward generated
by this model is then integrated into the standard diffusion loss
to guide the network, leveraging feedback from the reward model.
However, our approach significantly diverges from this work in two
key aspects: 1) we automatically construct a pairwise preference
dataset, referred to as Audio-alpaca, utilizing various techniques
such as LLM-guided prompt perturbation and re-ranking of gen-
erated audio from Tango using CLAP scores, and 2) we then train
Tango on Audio-alpaca using diffusion-DPO to generate audio
samples preferred by human perception.

3 BACKGROUND

3.1 Overview of Tango

Tango, proposed by Ghosal et al. [5], primarily relies on a latent
diffusion model (LDM) and an instruction-tuned LLM for text-to-
audio generation. It has three major components:

(1) Textual-prompt encoder
(2) Latent diffusion model (LDM)
(3) Audio VAE and Vocoder

The textual-prompt encoder encodes the input description of the
audio. Subsequently, the textual representation is used to construct
a latent representation of the audio or audio prior from standard
Gaussian noise, using reverse diffusion. Thereafter, the decoder
of the mel-spectrogram VAE constructs a mel-spectrogram from
the latent audio representation. This mel-spectrogram is fed to a
vocoder to generate the final audio.

3.1.1 Textual Prompt Encoder. Tango utilizes the pre-trained LLM
Flan-T5-Large (780M) [3] as the text encoder (𝐸𝑡𝑒𝑥𝑡 ) to acquire
text encoding 𝜏 ∈ R𝐿×𝑑𝑡𝑒𝑥𝑡 , where 𝐿 and 𝑑𝑡𝑒𝑥𝑡 represent the token
count and token-embedding size, respectively.

3.1.2 Latent Diffusion Model. For ease of understanding, we briefly
introduce the LDM of Tango in this section. The latent diffusion
model (LDM) [27] in Tango is derived from thework of Liu et al. [18],
aiming to construct the audio prior 𝑥0 guided by text encoding 𝜏 .
This task essentially involves approximating the true prior 𝑞(𝑥0 |𝜏)
using parameterized 𝑝𝜃 (𝑥0 |𝜏).

LDM achieves this objective through forward and reverse diffu-
sion processes. The forward diffusion represents a Markov chain of
Gaussian distributions with scheduled noise parameters 0 < 𝛽1 <

𝛽2 < · · · < 𝛽𝑁 < 1, facilitating the sampling of noisier versions of
𝑥0:

𝑞(𝑥𝑛 |𝑥𝑛−1) = N(
√︁

1 − 𝛽𝑛𝑥𝑛−1, 𝛽𝑛I), (1)

𝑞(𝑥𝑛 |𝑥0) = N(
√︁
𝛼𝑛𝑥0, (1 − 𝛼𝑛)I), (2)

where 𝑁 is the number of forward diffusion steps, 𝛼𝑛 = 1 − 𝛽𝑛 ,
and 𝛼𝑛 =

∏𝑛
𝑖=1 𝛼𝑛 . Song et al. [29] show that Eq. (2) conveniently

follows from Eq. (1) through reparametrization trick that allows
direct sampling of any 𝑥𝑛 from 𝑥0 via a non-Markovian process:

𝑥𝑛 =
√︁
𝛼𝑛𝑥0 + (1 − 𝛼𝑛)𝜖, (3)

where the noise term 𝜖 ∼ N(0, I). The final step of the forward
process yields 𝑥𝑁 ∼ N(0, I).

The reverse process denoises and reconstructs 𝑥0 through text-
guided noise estimation (𝜖𝜃 ) using loss

L𝐿𝐷𝑀 =

𝑁∑︁
𝑛=1

𝛾𝑛E𝜖𝑛∼N(0,I),𝑥0 | |𝜖𝑛 − 𝜖
(𝑛)
𝜃

(𝑥𝑛, 𝜏) | |22, (4)

where 𝑥𝑛 is sampled according to Eq. (3) using standard normal
noise 𝜖𝑛 , 𝜏 represents the text encoding for guidance, and𝛾𝑛 denotes
the weight of reverse step 𝑛 [8], interpreted as a measure of signal-
to-noise ratio (SNR) relative to 𝛼1:𝑁 . The estimated noise is then
employed for the reconstruction of 𝑥0:

𝑝𝜃 (𝑥0:𝑁 |𝜏) = 𝑝 (𝑥𝑁 )
𝑁∏
𝑛=1

𝑝𝜃 (𝑥𝑛−1 |𝑥𝑛, 𝜏), (5)

𝑝𝜃 (𝑥𝑛−1 |𝑥𝑛, 𝜏) = N(𝜇 (𝑛)
𝜃

(𝑥𝑛, 𝜏), 𝛽 (𝑛) ), (6)

𝜇
(𝑛)
𝜃

(𝑥𝑛, 𝜏) =
1

√
𝛼𝑛

[𝑥𝑛 − 1 − 𝛼𝑛√
1 − 𝛼𝑛

𝜖
(𝑛)
𝜃

(𝑥𝑛, 𝜏)], (7)

𝛽 (𝑛) =
1 − 𝛼𝑛−1
1 − 𝛼𝑛

𝛽𝑛 . (8)

The parameterization of noise estimation 𝜖𝜃 involves utilizing U-
Net [28], incorporating a cross-attention component to integrate
the textual guidance 𝜏 .

3.1.3 Audio VAE and Vocoder. The audio variational auto-encoder
(VAE) [11] compresses the mel-spectrogram of an audio sample,
𝑚 ∈ R𝑇×𝐹 , into an audio prior 𝑥0 ∈ R𝐶×𝑇 /𝑟×𝐹/𝑟 , where𝐶 ,𝑇 , 𝐹 , and
𝑟 denote the number of channels, time-slots, frequency-slots, and
compression level, respectively. The latent diffusion model (LDM)
reconstructs the audio prior 𝑥0 using input-text guidance 𝜏 . Both
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the encoder and decoder consist of ResUNet blocks [13] and are
trained by maximizing the evidence lower-bound (ELBO) [11] and
minimizing adversarial loss [10]. Tango utilizes the checkpoint of
the audio VAE provided by Liu et al. [18].

As a vocoder to convert the audio-VAE decoder-generated mel-
spectrogram into audio, Tango employs HiFi-GAN [12] which is
also utilized by Liu et al. [18].

Finally, Tango utilizes a data augmentation method that merges
two audio signals while considering human auditory perception.
This involves computing the pressure level of each audio signal
and adjusting the weights of the signals to prevent the dominance
of the signal with higher pressure level over the one with lower
pressure level. Specifically, when fusing two audio signals, the
relative pressure level is computed using the following equation:

𝑝 = (1 + 10
𝐺1−𝐺2

20 )−1, (9)

Here 𝐺1 and 𝐺2 are the pressure levels of signal 𝑥1 and 𝑥2. Then
the audio signals are mixed using the equation below:

mix(𝑥1, 𝑥2) =
𝑝𝑥1 + (1 − 𝑝)𝑥2√︁
𝑝2 + (1 − 𝑝)2

. (10)

The denominator is to account for the fact that the energy of a
sound wave is proportional to the square of its amplitude as shown
in Tokozume et al. [30]. Note that in this augmentation, textual
prompts are also concatenated.

3.2 Preference Optimization for Language

Models

Tuning Large Language Models (LLMs) to generate responses ac-
cording to human preference has been a great interest to the ML
community. The most popular approach for aligning language mod-
els to human preference is reinforcement learning with human
feedback (RLHF). It comprises the following steps [26]:

Supervised Fine Tuning (SFT). First, the pre-trained LLM un-
dergoes supervised fine-tuning on high-quality downstream tasks
to obtain the fine-tuned model 𝜋𝑆𝐹𝑇 .

Reward Modeling. Next, 𝜋𝑆𝐹𝑇 is prompted with an input 𝜏
to generate multiple responses. These responses are then shown
to human labelers to rank. Once such a rank is obtained, 𝑥𝑤 ≻
𝑥𝑙 | 𝜏 indicating 𝑥𝑤 is preferred over 𝑥𝑙 , the task is to model
these preferences. Among several popular choices of preference
modeling, Bradley-Terry (BT) is the most popular one which relies
on the equation below:

𝑝∗ (𝑥𝑤 ≻ 𝑥𝑙 | 𝜏) = exp(𝑟∗ (𝜏, 𝑥𝑤))
exp(𝑟∗ (𝜏, 𝑥𝑤)) + exp(𝑟∗ (𝜏, 𝑥𝑙 ))

(11)

The overall idea is to learn the human preference distribution
𝑝∗. 𝑟∗ (𝜏, 𝑥) is a latent reward function that generates the prefer-
ences. With a static dataset created by human annotators, D ={(
𝜏 (𝑖 ) , 𝑥

𝑤
(𝑖 ) , 𝑥

𝑙
(𝑖 )

)}𝑁
𝑖=1

, one can train a reward model 𝑟𝜙 (𝜏, 𝑥) using
maximum likelihood estimation. The negative log-likelihood loss
of this training can be written as follows:

L𝑅 (𝑟𝜙 ,D) = −E(𝜏,𝑥𝑤 ,𝑥𝑙 )∼D
[
log𝜎 (𝑟𝜙 (𝜏, 𝑥𝑤) − 𝑟𝜙 (𝜏, 𝑥𝑙 ))

]
(12)

This formulation considers framing the problem as a binary classi-
fication problem.

RL Optimization. The final step is to leverage 𝑟𝜙 (𝜏, 𝑥) to feed-
back the language model. As explained by Rafailov et al. [26], this
can be embedded into the following learning objective:

max
𝜋𝜃
E𝜏∼D,𝑥∼𝜋𝜃 (𝑥 |𝜏 )

[
𝑟𝜙 (𝜏, 𝑥)

]
− 𝛽𝐷𝐾𝐿 [𝜋𝜃 (𝑥 |𝜏) ∥ 𝜋ref (𝑥 |𝜏)]

(13)

Here, 𝜋ref represents the reference model, which in this context is
the supervised fine-tuned model denoted as 𝜋SFT. 𝜋𝜃 stands for the
policy language model, intended for enhancement based on feed-
back from 𝑟𝜙 (𝜏, 𝑥). 𝛽 governs 𝜋𝜃 to prevent significant divergence
from 𝜋ref. This control is crucial as it ensures that the model stays
close to the distributions upon which 𝑟𝜙 (𝜏, 𝑥) was trained. Since the
outputs from LLM are discrete, Eq. (13) becomes non-differentiable,
necessitating reinforcement learning methods like PPO to address
this objective.

4 METHODOLOGY

The two major parts of our approach (i) creation of preference
dataset Audio-alpaca and (ii) DPO for alignment are outlined in
Fig. 1.

4.1 Creation of Audio-alpaca
4.1.1 Audio Generation from Text Prompts. Our first step is to
create audio samples from various text prompts with the pre-trained
Tango model. We follow three different strategies as follows:

Strategy 1: Multiple Inferences from the same Prompt. In
the first setting, we start by selecting a subset of diverse captions
from the training split of the AudioCaps dataset. We use the sen-
tence embedding model gte-large1 [15] to compute dense embed-
ding vectors of all the captions in the training set. We then perform
K-Means clustering on the embedded vectors with 200 clusters.
Finally, we select 70 samples from each cluster to obtain a total of
14,000 captions. We denote the selected caption set as T1.

The captions selected through the above process constitute the
seed caption set. Now, we follow two settings to generate audio
samples from these captions:

(1) Strategy 1.1: Prompt Tango-full-FT with the caption to
generate four different audio samples with 5, 25, 50, and
100 denoising steps. All samples are created with a guidance
scale of 3.

(2) Strategy 1.2: Prompt Tango-full-FT with the caption to
generate four different audio samples each with 50 denois-
ing steps. All samples are created with a guidance scale of
3.

In summary, we obtain (𝜏, 𝑥1, 𝑥2, 𝑥3, 𝑥4) from Strategy 1, where
𝜏 denotes the caption from T1 and 𝑥𝑖 denotes the audios generated
from 𝜏 .

Strategy 2: Inferences from Perturbed Prompts. We start
from the selected set T1 and make perturbations of the captions
using the GPT-4 language model [23]. For a caption 𝜏 from T1, we
denote 𝜏1 as the perturbed caption generated from GPT-4. We add
1hf.co/thenlper/gte-large

3

hf.co/thenlper/gte-large
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Tango

A person burps as people laugh

Strategy 1

Prompt: Preferred Audio:

,

       GPT-4

Strategy 2 (and 3)

Candidate 
Undesirable 

Audios:

(Temporally) Perturbed 
Prompts:

Candidate 
Undesirable 

Audios:

A person yawns as 
people laugh

A person burps and 
people laugh

A baby burps as 
people laugh

Ta
ng

o

CLAP (τ, xw, xl)
Audio-
Alpaca

CLAP

1. Preference Dataset Creation 2. DPO Alignment

ℒDPO-Diff

  Tango
1. Pre-training
2. Instruction Tuning

  Tango 2 3. Alignment

k-MeansStrategy 1

Strategy 2, 3 Temporal-keyword 
Heuristics

Filtering

Figure 1: An illustration of our pipeline for text-to-audio alignment. The left part depicts the preference dataset creation where three strategies

are deployed to generate the undesirable audio outputs to the input prompts. These samples are further filtered to form Audio-alpaca. A part

of this preference dataset is finally used to align Tango using DPO-diffusion loss (Eq. (17)), resulting Tango 2.

specific instructions in our input prompt to make sure that 𝜏1 is
semantically or conceptually close to 𝜏 . We show an illustration of
the process in Table 1. In practice, we create five different perturbed
𝜏1 for each 𝜏 from GPT-4, as shown in Table 1.

We then prompt Tango-full-FT with 𝜏 and 𝜏1 to generate audio
samples 𝑥𝜏 and 𝑥𝜏1 . We use 50 denoising steps with a guidance scale
of 3 to generate these audio samples.

To summarize, we obtain (𝜏, 𝑥𝜏 , 𝑥𝜏1 ) from Strategy 2. Note that,
we considered 𝜏1 only to generate the audio sample 𝑥𝜏1 . We do not
further consider 𝜏1 while creating the preference dataset.

Strategy 3: Inferences fromTemporally Perturbed Prompts.

This strategy is aimed at prompts that describe some composition
of sequence and simultaneity of events. To identify such prompts
in AudioCaps’ training dataset, as a heuristics, we look for the
following keywords in a prompt: before, after, then, or followed. We
denote the set of such prompts as T2.

For each caption 𝜏2 in T2, we then prompt GPT-4 to create a set of
temporal perturbations. The temporal perturbations include chang-
ing the order of the events in the original caption, or introducing
a new event or removing an existing event, etc. We aim to create
these temporal perturbations by providing specific instructions to
GPT-4, which we also illustrate in Table 1.

We denote the temporally perturbed caption as 𝜏2. We then
follow the same process as mentioned earlier in Strategy 2 to create
the audio samples 𝑥𝜏 and 𝑥𝜏2 . Finally, we pair the (𝜏, 𝑥𝜏 , 𝑥𝜏2 ) samples
from this strategy. Analogous to the previous strategy, the 𝜏2 is only
used to create the 𝑥𝜏2 , and is not used anywhere else for preference
data creation.

We collect the paired text prompt and audio samples from the
three strategies and denote it overall as (𝜏, ⟨𝑥⟩), where ⟨𝑥⟩ indicates
the set of 4 or 2 generated audio samples depending upon the
corresponding strategy.

4.1.2 Ranking and Preference-Data Selection. We first create a pool
of candidate preference data for the three strategies as follows:
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Table 1: Prompts used in GPT-4 for creating the perturbations and the corresponding output.

Strategy and Original Caption Prompt to GPT-4 Output from GPT-4

Strategy 2: Perturbed Prompts I have an audio clip for which the original caption is as follows: People
cheering and race cars racing by. Can you generate five candidate
captions that would satisfy the following requirements:

1. Crowd applauding and bicycles speeding past.

People cheering and race cars racing by. i) Would be closely related to the audio clip and the original caption. 2. Spectators clapping and trains rushing by.
ii) Would contain inaccuracies in terms of describing the audio clip i.e.
they would be somewhat wrong captions for the audio clip.

3. Audience cheering and horses galloping past.

iii) However, the new captions should not be completely unrelated.
Always keep some concepts from the original caption in the new one.

4. Fans shouting and airplanes flying by.

iv) Would be of similar length to the original caption. 5. Group celebrating and motorcycles revving past.
Generate only the captions in separate lines so that I can programmati-
cally extract them later.

Strategy 3: Temporally-Perturbed Prompts I have an audio clip for which the original caption is as follows: A
man is speaking then a sewing machine briefly turns on and off. Can
you generate five candidate captions that would satisfy the following
requirements:

1. A sewing machine briefly starts, then a man begins speaking.

A man is speaking then a sewing machine briefly
turns on and off.

i) Would be closely related to the audio clip and the original caption. 2. The sound of a sewing machine is heard after a man’s voice.

ii) Would have a change of order of the events described in the original
caption.

3. A man’s voice is followed by the noise of a blender.

iii) Would contain inaccuracies in terms of describing the audio clip i.e.
they would be somewhat wrong captions for the audio clip.

4. A woman speaks and then a sewing machine is turned on.

iv) However, the new captions should not be completely unrelated.
Always keep some concepts from the original caption in the new one.

5. The noise of a sewing machine is interrupted by a man
talking.

v) Would be of similar length to the original caption.
Generate only the captions in separate lines so that I can programmati-
cally extract them later.

For Strategy 1. Let’s assume we have an instance (𝜏, ⟨𝑥⟩) from
Strategy 1. We first compute the CLAP matching score following
Wu et al. [33] between 𝜏 and all the four audio samples in ⟨𝑥⟩. We
surmise that the sample in ⟨𝑥⟩ that has the highest matching score
with 𝜏 is most aligned with 𝜏 , compared to the other three audio
samples that have a relatively lower matching score. We consider
this audio with the highest matching score as the winning sample
𝑥𝑤 and the other three audio samples as the losing sample 𝑥𝑙 . In
this setting, we can thus create a pool of three preference data
points: (𝜏, 𝑥𝑤 , 𝑥𝑙 ), for the three losing audio samples 𝑥𝑙 .

For Strategy 2 and 3. Let’s assume we have an instance (𝜏, ⟨𝑥⟩)
from Strategy 2 or 3.We compute the CLAPmatching score between
i) 𝜏 with 𝑥𝜏 , and ii) 𝜏 with the 𝑥𝜏1 or 𝑥𝜏2 , corresponding to the
strategy. We consider only those instances where the CLAP score
of i) is higher than the CLAP score of ii). For these instances, we
use 𝑥𝜏 as the winning audio 𝑥𝑤 and 𝑥𝜏1 or 𝑥𝜏2 as the losing audio
𝑥𝑙 to create the preference data point: (𝜏, 𝑥𝑤 , 𝑥𝑙 ).

Final Selection. We want to ensure that the winning audio
sample 𝑥𝑤 is strongly aligned with the text prompt 𝜏 . At the same
time, the winning audio sample should have a considerably higher
alignment with the text prompt than the losing audio sample. We
use the CLAP score as a measurement to fulfill these conditions.
The CLAP score is measured using cosine similarity between the
text and audio embeddings, where higher scores indicate higher
alignment between the text and the audio.We thus use the following
conditions to select a subset of instances from the pool of preference
data:

(1) The winning audio must have a minimum CLAP score of 𝛼 with
the text prompt to ensure that the winning audio is strongly
aligned with the text prompt.

(2) The losing audio must have a minimum CLAP score of 𝛽 with
the text prompt to ensure that we have semantically close neg-
atives that are useful for preference modeling.

(3) The winning audio must have a higher CLAP score than the
losing audio w.r.t to the text prompt.

(4) We denote Δ to be the difference in CLAP score between the
text prompt with the winning audio2 and the text prompt with
the losing audio. The Δ should lie between certain thresholds,
where the lower bound will ensure that the losing audio isn’t
too close to the winning audio, and the upper bound will ensure
that the losing audio is not too undesirable.
We use an ensemble filtering strategy based on two different

CLAP models: 630k-audioset-best and 630k-best [33]. This can
reduce the effect of noise from individual CLAP checkpoints and
increase the robustness of the selection process. In this strategy,
samples are included in our preference dataset if and only if they
satisfy all the above conditions based on CLAP scores from both
of the models. We denote the conditional scores mentioned above
as 𝛼1, 𝛽1,Δ1, and 𝛼2, 𝛽2,Δ2 for the two CLAP models, respectively.
Based on our analysis of the distribution of the CLAP scores as
shown in Figure 2, we choose their values as follows: 𝛼1 = 0.45, 𝛼2 =

0.60, 𝛽1 = 0.40, 𝛽2 = 0.0, 0.05 ≤ Δ1 ≤ 0.35, and 0.08 ≤ Δ2 ≤ 0.70.
Finally, our preference dataset Audio-alpaca has a total of ≈

15k samples after this selection process. We report the distribution
of Audio-alpaca in Table 2.

4.2 DPO for Preference Modeling

As opposed to RLHF, recently DPO has emerged as a more robust
and often more practical and straightforward alternative for LLM
alignment that is based on the very same BT preference model
(Eq. (11)). In contrast with supervised fine-tuning (SFT) that only
optimizes for the desirable (winner) outputs, the DPO objective also
allows the model to learn from undesirable (loser) outputs, which
is key in the absence of a high-quality reward model, as required
for RLHF. To this end, the DPO objective is derived by substituting

2In our paper, we employ the terms "winner" and "preferred" interchangeably. Likewise,
we use "loser" and "undesirable" interchangeably throughout the text.
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Table 2: Statistic of Audio-alpaca

Strategy # Samples Avg. Winner Score Avg. Loser Score Avg. Delta

Inference w/ Different Denoising Steps (Strategy 1.1) 3004 0.645 0.447 0.198
Inference w/ Same Denoising Steps (Strategy 1.2) 2725 0.647 0.494 0.153
GPT-4 Perturbed Prompts (Strategy 2) 4544 0.641 0.425 0.216
GPT-4 Temporally Perturbed Prompts (Strategy 3) 4752 0.649 0.458 0.191

Overall 15025 0.645 0.452 0.193
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Figure 2: The distribution of 𝛼1 and Δ1 scores in the unfiltered

dataset. We see that for an unfiltered dataset: i) the winner audio

sample is not always strongly aligned to the text prompt in the 𝛼1
plot; ii) winner and loser audio samples can be too close in the Δ1
plot. We thus choose the values of our 𝛼1, Δ1 and other selection

parameters to ensure the filtered dataset is less noisy with more

separation between the winner and loser audios.

the globally optimal reward—obtained by solving Eq. (13)—in the
negative log-likelihood (NLL) loss (Eq. (12)).

This success spurred on Wallace et al. [32] to bring the same
benefits of DPO to diffusion networks. However, unlike DPO, the
goal for diffusion networks is to maximize the following learning
objective (Eq. (14)) with a reward (Eq. (15)) defined on the entire
diffusion path 𝑥0:𝑁 :

max
𝜋𝜃
E𝜏∼D,𝑥0:𝑁 ∼𝜋𝜃 (𝑥0:𝑁 |𝜏 ) [𝑟 (𝜏, 𝑥0)]

−𝛽𝐷KL [𝜋𝜃 (𝑥0:𝑁 |𝜏) | |𝜋ref (𝑥0:𝑁 |𝜏)] . (14)
𝑟 (𝜏, 𝑥0) := E𝜋𝜃 (𝑥1:𝑁 |𝑥0,𝜏 ) [𝑅(𝜏, 𝑥0:𝑁 )], (15)

Solving this objective and substituting the optimal reward in the
NLL loss (Eq. (12)) yields the following DPO objective for diffusion:

LDPO-Diff = −E(𝜏,𝑥𝑤0 ,𝑥𝑙0 )∼Dpref
log𝜎 (

𝛽E𝑥∗1:𝑁 ∼𝜋𝜃 (𝑥∗1:𝑁 |𝑥∗0 ,𝜏 ) [log
𝜋𝜃 (𝑥𝑤0:𝑁 |𝜏)
𝜋ref (𝑥𝑤0:𝑁 |𝜏) − log

𝜋𝜃 (𝑥𝑙0:𝑁 |𝜏)
𝜋ref (𝑥𝑙0:𝑁 |𝜏)

]). (16)

Now, applying Jensen’s inequality by taking advantage of the con-
vexity of − log𝜎 allows the inner expectation to be pushed outside.
Subsequently, approximating the denoising process with the for-
ward process yields the following final form in terms of the L2
noise-estimation losses from LDM (Eq. (4)):

LDPO-Diff := − E𝑛,𝜖𝑤 ,𝜖𝑙 log𝜎 (−𝛽𝑁𝜔 (𝜆𝑛) ( | |𝜖𝑤𝑛 − 𝜖
(𝑛)
𝜃

(𝑥𝑤𝑛 , 𝜏) | |22
− ||𝜖𝑤𝑛 − 𝜖

(𝑛)
ref (𝑥

𝑤
𝑛 , 𝜏) | |22

− (||𝜖𝑙𝑛 − 𝜖
(𝑛)
𝜃

(𝑥𝑙𝑛, 𝜏) | |22 − ||𝜖𝑙𝑛 − 𝜖
(𝑛)
ref (𝑥

𝑙
𝑛, 𝜏) | |22)),

(17)

whereDpref := {(𝜏, 𝑥𝑤0 , 𝑥𝑙0)} is our preference dataset Audio-alpaca,
𝜏 , 𝑥𝑤0 , and 𝑥𝑙0 being the input prompt, preferred, and undesirable
output, respectively. Furthermore, 𝑛 ∼ U(0, 𝑁 ) is the diffusion step,
𝜖∗𝑛 ∼ N(0, I) and 𝑥∗𝑛 are noise and noisy posteriors, respectively, at
some step 𝑛. 𝜆𝑛 is the signal-to-noise ratio (SNR) and 𝜔 (𝜆𝑛) is a
weighting function defined on SNR. We use Tango-full-FT as our
reference model through its noise estimation 𝜖ref.

5 EXPERIMENTS

5.1 Datasets and Training Details

We fine-tuned our model starting from the Tango-full-FT check-
point on our preference dataset Audio-alpaca. As mentioned ear-
lier in Section 4.1.2, we have a total of 15,025 preference pairs in
Audio-alpaca, which we use for fine-tuning. We use AdamW [20]
with a learning rate of 9.6e-7 and a linear learning-rate scheduler
for fine-tuning. Following Wallace et al. [32], we set the 𝛽 in DPO
loss (Eq. (17)) to 2000. We performed 1 epoch of supervised fine-
tuning on the prompt and the preferred audio as training samples,
followed by 4 epochs of DPO. The entirety of the fine-tuning was
executed on two A100 GPUs which takes about 3.5 hours in total.
We use a per GPU batch size of 4 and a gradient accumulation step
of 4, resulting in an effective batch size of 32.

5.2 Baselines

We primarily compare Tango 2 to three strong baselines:
(1) AudioLDM [17]: A text-to-audio model that uses CLAP [33],

a joint audio-text representation model, and a latent diffusion
model (LDM). Specifically, the LDM is trained to generate the
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latent representations of melspectrograms obtained from a
pre-trained Variational Autoencoder (VAE). During diffusion,
CLAP text-embeddings guide the generation process.

(2) AudioLDM2 [19]: An any-to-audio framework which uses
language of audio (LOA) as a joint encoding of audio, text,
image, video, and other modalities. Audio modality is encoded
into LOA using a self-supervised masked auto-encoder. The
remaining modalities, including audio again, are mapped to
LOA through a composition of GPT-2 [25] and ImageBind [7].
This joint encoding is used as a conditioning in the diffusion
network for audio generation.

(3) Tango [5]: Utilizes the pre-trained VAE from AudioLDM but
replaces the CLAP text-encoder with an instruction-tuned
large language model: FLAN-T5. As compared to AudioLDM,
its data-augmentation strategy is also cognizant of the audio
pressure levels of the source audios. These innovations attain
comparable or superior results while training on a signifi-
cantly smaller dataset.

Baton [16] represents another recent approach in human pref-
erence based text-to-audio modeling. It trains a reward model to
maximize rewards through supervised fine-tuning, aiming to maxi-
mize the probability of generating audio from a textual prompt. As
discussed in Section 2, Baton’s reward model is not trained using
the pairwise preference objective presented in Equation (12). In
this approach, each text (𝜏) and audio (𝑥 ) pair is classified as 1 or 0,
indicating whether human annotators favored the text-audio pair
or not. Subsequently, this reward is incorporated into the genera-
tive objective function of the diffusion. This methodology stands in
contrast to the prevailing approach in LLM alignment research. As
of now, neither the dataset nor the code has been made available
for comparison.

5.3 Evaluation Metrics

Objective Metrics. We evaluated the text-to-audio generation
using the standard Frechet Audio Distance (FAD), KL divergence, In-
ception score (IS), and CLAP score [17]. FAD is adapted from Frechet
Inception Distance (FID) and measures the distribution-level gap
between generated and reference audio samples. KL divergence is
an instance-level reference-dependent metric that measures the
divergence between the acoustic event posteriors of the ground
truth and the generated audio sample. FAD and KL are computed
using PANN, an audio-event tagger. IS evaluates the specificity and
coverage of a set of samples, not needing reference audios. IS is
inversely proportional to the entropy of the instance posteriors
and directly proportional to the entropy of the marginal posteriors.
CLAP score is defined as the cosine similarity between the CLAP
encodings of an audio and its textual description. We borrowed the
AudioLDM evaluation toolkit [17] for the computation of FAD, IS,
and KL scores.

Subjective Metrics. Our subjective assessment examines two
key aspects of the generated audio: overall audio quality (OVL) and
relevance to the text input (REL), mirroring the approach outlined
in the previous works, such as, [5, 31]. The OVL metric primarily
gauges the general sound quality, clarity, and naturalness irrespec-
tive of its alignment with the input prompt. Conversely, the REL
metric assesses how well the generated audio corresponds to the

given text input. Annotators were tasked with rating each audio
sample on a scale from 1 (least) to 5 (highest) for both OVL and
REL. This evaluation was conducted on a subset of 50 randomly-
selected prompts from the AudioCaps test set, with each sample
being independently reviewed by at least four annotators. Please re-
fer to the supplementary material for more details on the evaluation
instructions and evaluators.

5.4 Main Results

We report the comparative evaluations of Tango 2 against the
baselines Tango [5] and AudioLDM2 [19] in Table 3. For a fair
comparison, we used exactly 200 inference steps in all our experi-
ments. Tango and Tango 2 were evaluated with a classifier-free
guidance scale of 3 while AudioLDM2 uses a default guidance scale
of 3.5. We generate only one sample per text prompt.

Objective Evaluations. Tango 2 achieves notable improve-
ments in objective metrics, with scores of 2.69 for FAD, 1.12 for
KL, 9.09 for IS, and 0.57 for CLAP. While FAD, KL, and IS assess
general naturalness, diversity, and audio quality, CLAP measures
the semantic alignment between the input prompt and the gener-
ated audio. As documented in Melechovsky et al. [21], enhancing
audio quality typically relies on improving the pre-training process
of the backbone, either through architectural modifications or by
leveraging larger or refined datasets. However, in our experiments,
we observe enhanced audio quality in two out of three metrics,
specifically KL and IS. Notably, Tango 2 also significantly outper-
forms various versions of AudioLDM and AudioLDM2 on these
two metrics.

On the other hand, we note a substantial enhancement in the
CLAP score. CLAP score is particularly crucial in our experimental
setup as it directly measures the semantic alignment between the
textual prompt and the generated audio. This outcome suggests that
DPO-based fine-tuning on the preference data from Audio-alpaca
yields superior audio generation to Tango and AudioLDM2.

Subjective Evaluations. In our subjective evaluation, Tango 2
achieves high ratings of 3.99 in OVL (overall quality) and 4.07 in REL
(relevance), surpassing both Tango and AudioLDM2. This suggests
that Tango 2 significantly benefits from preference modeling on
Audio-alpaca. Interestingly, our subjective findings diverge from
those reported byMelechovsky et al. [21]. In their study, the authors
observed lower audio quality when Tangowas fine-tuned on music
data. However, in our experiments, the objective of preference
modeling enhances both overall sound quality and the relevance of
generated audio to the input prompts. Notably, in our experiments,
AudioLDM2 performed the worst, with the scores of only 3.56 in
OVL and 3.19 in REL, significantly lower than both Tango and
Tango 2.

5.5 Analyses

Results on Temporal and Multi-concept Prompts. We ana-
lyze the performance of Tango and AudioLDM2 models in au-
dio generation when text prompts contain multiple sequential
events. For instance, “Two gunshots followed by birds flying away
then a boy laughing” consists of three distinct events in a sequence.
In contrast, “A man is snoring” lacks any temporal sequence. We
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Table 3: Text-to-audio generation results on AudioCaps evaluation set. Due to time and budget constraints, we could only

subjectively evaluate AudioLDM 2-Full-Large and Tango-full-FT. Notably these two models are considered open-sourced SOTA

models for text-to-audio generation as reported in [31].

Model #Parameters Objective Subjective
FAD ↓ KL ↓ IS ↑ CLAP ↑ OVL ↑ REL ↑

AudioLDM-M-Full-FT 416M 2.57 1.26 8.34 0.43 − −
AudioLDM-L-Full 739M 4.18 1.76 7.76 0.43 − −
AudioLDM 2-Full 346M 2.18 1.62 6.92 0.43 − −
AudioLDM 2-Full-Large 712M 2.11 1.54 8.29 0.44 3.56 3.19

Tango-full-FT 866M 2.51 1.15 7.87 0.54 3.81 3.77
Tango 2 866M 2.69 1.12 9.09 0.57 3.99 4.07

Table 4: Objective evaluation results for audio generation in the presence of multiple concepts or a single concept in the text

prompt in the AudioCaps test set.

Model
Multiple Concepts Single Concept

Objective Subjective Objective Subjective
FAD ↓ KL ↓ IS ↑ CLAP ↑ OVL ↑ REL ↑ FAD ↓ KL ↓ IS ↑ CLAP ↑ OVL ↑ REL ↑

AudioLDM 2-Full 1.93 1.52 6.93 0.42 − − 2.68 2.03 6.55 0.46 − −
AudioLDM 2-Full-Large 2.40 1.43 7.14 0.43 3.54 3.16 2.70 1.96 6.60 0.47 3.65 3.41
Tango-full-FT 2.77 1.00 6.83 0.54 3.83 3.80 3.06 1.69 6.41 0.55 3.67 3.49
Tango 2 3.20 0.94 7.73 0.56 3.99 4.07 2.58 1.77 7.47 0.57 3.95 4.10

Table 5: Objective evaluation results for audio generation in the presence of temporal events or non-temporal events in the text

prompt in the AudioCaps test set.

Model
Temporal Events Non Temporal Events

Objective Subjective Objective Subjective
FAD ↓ KL ↓ IS ↑ CLAP ↑ OVL ↑ REL ↑ FAD ↓ KL ↓ IS ↑ CLAP ↑ OVL ↑ REL ↑

AudioLDM 2-Full 1.95 1.71 6.37 0.41 − − 2.38 1.56 7.38 0.44 − −
AudioLDM 2-Full-Large 2.39 1.65 6.10 0.42 3.35 2.82 2.68 1.46 8.12 0.46 3.79 3.62
Tango-full-FT 2.55 1.16 5.82 0.55 3.83 3.67 3.04 1.15 7.70 0.53 3.78 3.88
Tango 2 3.29 1.07 6.88 0.58 3.92 3.99 2.84 1.16 8.62 0.55 4.05 4.16

partition the AudioCaps test set based on temporal identifiers such
as "while," "as," "before," "after," "then," and "followed," creating two
subsets: one with multiple sequential events and the other with no
temporality. Our objective evaluation results for these subsets are
shown in Table 5. Tango 2 achieves the highest scores of KL, CLAP,
and IS on both temporal and non-temporal events, indicating a
consistent trend of performance improvement. Similar trends are
observed in subjective evaluations. We attribute this improvement
to the augmentation of both temporal and non-temporal inputs in
constructing Audio-alpaca.

Additionally, we partition the prompts based on the presence
of multiple concepts, such as “A woman speaks while cooking”. In
general, Tango 2 outperforms AudioLDM2 and Tango across most
objective and subjective metrics.

6 CONCLUSION

In this work, we propose aligning text-to-audio generative models
through direct preference optimization. To the best of our knowl-
edge, this represents the first attempt to advance text-to-audio

generation through preference optimization. We achieve this by
automatically generating a preference dataset using a combination
of Large Language Models (LLMs) and adversarial filtering. Our
preference dataset, Audio-alpaca, comprises diverse audio descrip-
tions (prompts) paired with their respective preferred (winner) and
undesirable (loser) audios. The preferred audios are expected to
accurately reflect their corresponding textual descriptions, while
the undesirable audios exhibit flaws such as missing concepts, in-
correct temporal order, or high noise levels. To generate undesirable
audios, we perturb the descriptions by removing or rearranging
certain concepts and feed them to Tango. Additionally, we employ
adversarial filtering, generating multiple audios from the original
prompt and selecting those with CLAP scores below a specified
threshold. Subsequently, we align a diffusion-based text-to-audio
model, Tango, on Audio-alpaca using DPO-diffusion loss. Our
results demonstrate significant performance leap over the previous
models, both in terms of objective and subjective metrics. We an-
ticipate that our dataset, Audio-alpaca, and the proposed model,
Tango 2, will pave the way for further advancements in alignment
techniques for text-to-audio generation.
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