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Abstract

Objective. In this article, we present data and
methods for decoding speech articulations using
surface electromyogram (EMG) signals. EMG-
based speech neuroprostheses offer a promising
approach for restoring audible speech in individ-
uals who have lost the ability to speak intelligi-
bly due to laryngectomy, neuromuscular diseases,
stroke, or trauma-induced damage (e.g., from ra-
diotherapy) to the speech articulators.

Approach. To achieve this, we collect EMG sig-
nals from the face, jaw, and neck as subjects ar-
ticulate speech, and we perform EMG-to-speech
translation.

Main results. Our findings reveal that the man-
ifold of symmetric positive definite (SPD) ma-
trices serves as a natural embedding space for
EMG signals. Specifically, we provide an alge-
braic interpretation of the manifold-valued EMG
data using linear transformations, and we analyze
and quantify distribution shifts in EMG signals
across individuals.

Significance. Overall, our approach demon-
strates significant potential for developing neu-
ral networks that are both data- and parameter-
efficient—an important consideration for EMG-
based systems, which face challenges in large-
scale data collection and operate under limited
computational resources on embedded devices.
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1. Introduction
Electromyogram (EMG) signals gathered from the orofa-
cial neuromuscular system during the silent articulation of
speech in an alaryngeal manner can be synthesized into per-
sonalized audible speech, potentially enabling individuals
without vocal function to communicate naturally. EMG
based speech neuroprostheses show great promise as such
systems can work in many realistic environments, e.g. in
noisy backgrounds or with visual occlusion, where tradi-
tional methods based on video (such as generating audio
from lip movements) may fail. In addition, neural inter-
faces encode rich information in multiple sensor nodes at
different spatial locations and can detect subtle movements
and gestures which may not be discernible with video or
residual audio signals.

In this article, we present methods for decoding speech
articulation using EMG, focusing on the geometric structure
of the data. We demonstrate that EMG signals are naturally
embedded on a manifold of SPD matrices. Furthermore,
we provide an algebraic interpretation of manifold-valued
EMG data and show that EMG signals can be interpreted as
a linear transformation of a Euclidean space of dimension
|V|, where |V| denotes the number of EMG sensor nodes.

We show that all articulations from a given individual result
in similar transformations of this space, such that these trans-
formations can be equivalently described using a common
approximate eigenbasis matrix. Notably, different individu-
als have distinct eigenbases. Thus, the distribution shift of
EMG signals across individuals can be characterized as a
change of basis.

Additionally, we open-source EMG data from 16 subjects
performing various orofacial gestures and speech articu-
lations, constituting the largest publicly available speech
EMG dataset to date. The data can be downloaded from this
open REPOSITORY, and the code is available on GITHUB.

1.1. Prior work

A substantial body of prior work (Jou et al., Schultz & Wand,
Kapur et al., Meltzner et al., Toth et al., Janke & Diener, and
Diener et al.) has laid the groundwork for the development
of silent speech interfaces. While these studies have been
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instrumental in shaping the field, they place less emphasis
on understanding the data structure and the implementation
of parameter and data-efficient approaches.

The current benchmark in silent speech interfaces is estab-
lished by Gaddy & Klein; Gaddy & Klein. Using elec-
tromyogram (EMG) signals collected during silently artic-
ulated speech (ES) and audibly articulated speech (EA),
along with corresponding audio signals (A), they develop
a recurrent neural transduction model to map time-aligned
features of EA or ES with A. In their baseline model, joint
representations between EA and A are learned during train-
ing, and the model is tested on ES . To improve performance,
a refined model aligns ES with EA and subsequently uses
the aligned features to learn joint representations with A.
The methods described above have significant shortcomings
that limit their practicality for real-world deployment. They
are, 1⃝ the unavailability of good quality EA and A in indi-
viduals who have lost vocal and articulatory functions and
2⃝ the need for a 2x sized training corpus for learning x

representations (both EA and ES).

Unlike the works of Gaddy & Klein; Gaddy & Klein, the
goal of EMG-based neuroprostheses is to achieve EMG-
to-language translation using only ES , without requiring
corresponding EA or A, mimicking standard speech-to-text
decoding (Hori et al., 2017). For example, we should be
able to decode a silently articulated sentence, <IT’S KIND
OF FUN>, into its corresponding phonemic sequence, <IH-
T-S SPACE K-AY-N-D SPACE AH-V SPACE F-AH-N>, using only
ES . This task is particularly challenging due to the complex
multivariate nature of ES and the absence of timestamps,
as the sentence is articulated silently, making it unclear
when a particular word is produced. To accomplish this, we
need robust representations of EMG signals. This article
describes foundational methods that enable such an EMG-
to-language translation. Using the methods described in
this article, we demonstrate for the first time that EMG-to-
language translation is possible using only ES , as shown in
Gowda et al.

Finally, none of the previous works have explored whether
EMG signals are capable of distinguishing different oro-
facial movements underlying speech articulation (such as
various positions of the tongue and jaw) or whether EMG
signals can span the entire English language phonemic space.
This article provides data and methods to investigate these
fundamental open questions. In the following sections, we
detail methods for obtaining informative and discrimina-
tive representations of EMG signals and demonstrate that
EMG embeddings on the manifold of SPD matrices are
meaningful. We show that different orofacial movements,
phoneme articulations, and word articulations exhibit struc-
tured representations that enable straightforward decoding.
Additionally, we analyze and quantify EMG signal distribu-

tion shifts across individuals.

2. Methods and materials
A total of 16 subjects (12 female, 4 male) participated in
our study. Please refer to the ethical statement for details
on subject selection criteria. Below, we provide a detailed
explanation of the data acquisition protocols and EMG pro-
cessing methods. The same 12 subjects participated in the
experiments described in sections 2.1.1, 2.1.2, and 2.1.3.

2.1. EMG data acquisition setup

We collect EMG signals from twenty-two sites on the neck,
chin, jaw, cheek, and lips using monopolar electrodes. An
ACTICHAMP PLUS amplifier and associated active elec-
trodes from BRAIN VISION (Brain Vision) are used to
record EMG signals at 5000 Hertz. To ensure proper con-
tact between the skin surface and electrodes, we use SU-
PERVISC, a high-viscosity electrolyte gel from EASYCAP
(Easycap). We develop a software suite in a PYTHON en-
vironment to provide visual cues to subjects and to collate
and store timestamped data. For time synchronization, we
use lab streaming layer (LSL). See figures 1 and 2 for elec-
trode placement. Besides 22 data electrodes, we also have a
GROUND electrode and a REFERENCE electrode. GROUND
electrode is placed on the left ear lobe and the REFERENCE
electrode is placed on the right ear lobe. Electrode positions
and labels are identical for all participants.
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Figure 1. Placement of electrodes on the neck region.

Before signal acquisition, participants were briefed on the
experimental protocol and seated comfortably in a chair.
They were instructed to perform the articulations naturally,
as they would in everyday speech. For silent articula-
tions, participants were asked to speak naturally but inaudi-
bly. Each articulation (or orofacial gesture) was performed
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Figure 2. Placement of electrodes on cheek and lip regions. Elec-
trode 1 is above the upper lip and electrode 3 is below the lower
lip.

within a 1.5-second window, during which the correspond-
ing text was displayed on a graphical user interface (GUI).
In the following sections, we provide a detailed description
of the various parts of the experiment.

2.1.1. EMG OF DIFFERENT OROFACIAL MOVEMENTS

The aim of this experiment is to verify if different orofacial
movements underlying speech articulation can be distin-
guished using EMG. 12 subjects performed 13 different
orofacial movements, each repeated 10 times. The orofa-
cial movements are: <CHEEKS - PUFF OUT>, <CHEEKS -
SUCK IN>, <JAW - DROPDOWN>, <JAW - MOVE BACKWARD>,
<JAW - MOVE FORWARD>, <JAW - MOVE LEFT>, <JAW -
MOVE RIGHT>, <LIPS - PUCKER>, <LIPS - SMILE>, <LIPS -
TUCK AS IF BLOTTING>, <TONGUE - BACK OF LOWER TEETH>,
<TONGUE - BACK OF UPPER TEETH>, <TONGUE - THE ROOF

OF THE MOUTH>.

These movements are chosen because they encompass a
broad range of muscle activations involved in natural speech
production, spanning articulation mechanisms such as lip
rounding, jaw positioning, and tongue placement, which are
crucial for forming different phonemes. These movements
correspond to critical articulatory gestures involved in both
audible and silent speech. Understanding their distinct EMG
signatures will help determine whether EMG-based decod-
ing can differentiate between phonemic elements, even in
the absence of acoustic output.

2.1.2. EMG OF INDIVIDUAL PHONEME ARTICULATIONS

The aim of this experiment is to verify if all English lan-
guage phonemes can be decoded using EMG when articu-
lated in both audible and silent manners. 12 subjects articu-
lated 38 different phonemes, with each phoneme repeated
10 times in both audible and silent manners. Phonemes are
broadly classified as consonants or vowels. Based on the

placement of articulation, consonants are further classified
into bilabial, labiodental, dental, alvelor, post vaelor, and
approximant consonants. We list all the phonemes below.

Bilabial consonants: <BAA>, <PAA>, <MAA>; Labio-
dental consonants: <FAA>, <VAA>; Dental conso-
nants: <THAA>, <DHAA>; Alvelor consonants: <TAA>,
<DAA>, <NAA>, <SAA>, <ZAA>; Post vaelor conso-
nants: <CHAA>, <SHAA>, <JHAA>, <ZHAA>; Velar con-
sonants: <KAA>, <GAA>, <NGAA>; Approximant con-
sonants: <YAA>, <RAA>, <LAA>, <WAA>; Vowels and
Diphthongs: <OY> as in bOY, <OW> as in nOW, <AO> as
in OUght, <AA> as in fAther, <AW> as in cOW, <AY> as
in mY, <AE> as in At, <EH> as in mEt, <EY> as in mAte,
<IY> as in mEET, <IH> as in It, <AH> as in HUt, <UW>

as in fOOD, <ER> as in hER, <UH> as in hOOD. In total,
we have 23 consonants and 15 vowels.

Verifying that EMG signals can span the entire English
language phonemic space is important because we aim to
build a system in which naturally (but inaudibly) articulated
speech is decoded using ES into a corresponding phonemic
sequence, similar to standard audio-to-text translation. We
demonstrate such a system in Gowda et al., and this work
lays the foundation for it.

2.1.3. EMG OF INDIVIDUAL WORD ARTICULATIONS

The aim of this experiment is to verify if we can de-
code individual words spanning the entire English lan-
guage phonemic space when words are articulated in
both audible and silent manners. 12 subjects articu-
lated 36 different words that span the entire English
language phonemic space, with each word repeated 10
times in both audible and silent manners. The 36
words are: <EAGER>, <LIFT>, <EIGHT>, <EDGE>,
<CAP>, <MATTED>, <TUB>, <BOX>, <RUNE>, <ROOK>,
<FOLDER>, <BLOCK>, <FUN>, <MOP>, <POD>, <VERY>,
<WENT>, <THROAT>, <THIS>, <TANGO>, <DOUBT>,
<NOT>, <PRETTY>, <XEROX>, <RODENT>, <LIMB>,
<BATCH>, <JEEP>, <SHIP>, <BEIGE>, <YES>, <ECHO>,
<GOLD>, <SING>, <UH-OH>, <HICCUP>.

Verifying that we can decode words is important because
words are composed of a sequence of phonemes (for ex-
ample, the word <EAGER> can be decomposed into the
phoneme sequence <IY-G-ER>) and decoding them with
high fidelity (e.g., using a recurrent network) demonstrates
the potential for decoding continuously articulated sen-
tences.

2.1.4. GENERALIZABLE LANGUAGE-SPELLING MODEL
USING NATO PHONETIC CODES

In this experiment, 4 subjects articulate English lan-
guage sentences using NATO phonetic codes in a silent
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manner. For instance, the word <RAINBOW> is ar-
ticulated as <ROMEO-ALFA-INDIA-NOVEMBER-BRAVO-
OSCAR-WHISKEY>. Although this approach does not repli-
cate natural speech, it provides a practical mode of limited
communication for individuals who have lost speech artic-
ulation capabilities. The experiment is divided into two
stages.

In the first stage, subjects silently articulate each of the 26
NATO phonetic codes, repeating each code 20 times. In the
second stage, subjects articulate the phonemically balanced
RAINBOW (Fairbanks, 1960) and GRANDFATHER (Reilly
& Fisher, 2012) passages in a spelled-out manner using
NATO phonetic codes. Together, both passages contain
1968 NATO code articulations. Data from the first stage is
used for training and validating the decoding models, while
data from the second stage is used for testing.

During the second stage, sentences from the passages are
displayed word by word, and each character in a word is
articulated using the corresponding NATO phonetic code
within a 1.5-second articulation window.

2.2. EMG data preprocessing

The data collection environment was carefully controlled to
eliminate AC electrical interference. EMG signals under-
went minimal preprocessing. The signal from the REFER-
ENCE channel (the electrode located on the right earlobe)
was subtracted from all other EMG data channels. The
resulting signals were then bandpass filtered using a third-
order Butterworth filter between 80 and 1000 Hz and z-
normalized along the time dimension for each channel (i.e.,
each channel is standardized by subtracting its mean and
dividing by its standard deviation: x−µ

σ , where x denotes
the raw signal, µ is the mean, and σ is the standard deviation,
all computed along the time dimension). The preprocessed
EMG signals were subsequently used to construct a fully
connected sensor graph, whose edge matrices are analyzed
on the manifold of symmetric positive definite (SPD) matri-
ces. We detail the EMG analysis methods in the following
section.

2.3. EMG data analysis

EMG signals are collected by a set of sensors V and are
functions of time t. A sequence of EMG signals ES (or EA)
corresponding to silently (or audibly) articulated speech,
is represented as ES/A = fv(t) for all v ∈ V . Here, fv(t)
denotes the EMG signal captured at a sensor node v as a
function of time t.

We construct a complete graph G = (V, E(τ)) to repre-
sent the functional connectivity of EMG signals, where
E(τ) denotes the set of edges over a time window τ =
[tSTART, tEND]. The edge weight between two nodes v1 and

v2 ∈ V in a time window is defined as e12 = e21 = fTv1 fv2 ,
which corresponds to the covariance of the signals at those
nodes during the time interval. Consequently, the edge (adja-
cency) matrix E(τ) is symmetric and positive semi-definite.
We convert semi-definite adjacency matrices into definite
ones by computing E ← (1 − η)E + ηtrace(E)I. Here,
I is an identity matrix whose dimensions are the same as
E and we empirically found that η = 0.1 suffices for all
our data. Directly working with SPD matrices using affine-
invariant or log-Euclidean metrics (Arsigny et al., 2007)
involves computationally expensive operations, such as ma-
trix exponential and matrix logarithm calculations. These
operations make mappings between the manifold space and
the tangent space, and vice versa, computationally intensive.
To address this, Lin proposed methods to operate on SPD
matrices using Cholesky decomposition. They established a
diffeomorphism between the Riemannian manifold of SPD
matrices and Cholesky space. In Cholesky space, the com-
putational burden is significantly reduced: logarithmic and
exponential computations are restricted to the diagonal ele-
ments of the matrix, making them element-wise operations.
Additionally, the Fréchet mean (centroid) is derived in a
closed form. For an SPD edge matrix E , the corresponding
Cholesky decomposition L = CHOLESKY(E) is such that
E = LLT . A matrix ⌊L⌋ is the strictly lower triangular part
of the matrix L, and a matrix D(L) is the diagonal part of
the matrix L. In the following section, we explain in detail,
the methods used to analyze SPD matrices.

2.3.1. DISTANCE BETWEEN TWO SPD MATRICES E1
AND E2

The geodesic distance between two SPD matrices E1 and E2
is same as the distance between the corresponding Cholesky
matrices L1 and L2 and is calculated as

d(L1,L2) =
{
||⌊L1⌋ − ⌊L2⌋||2F

+ || logD(L1)− logD(L2)||2F
}1/2

, (1)

where ||.||F denotes the Frobenius norm.

2.3.2. FRÉCHET MEAN (CENTROID) OF SPD MATRICES

Given a set of (n) SPD edge matrices E , we first calcu-
late their corresponding Cholesky decompositions L =
CHOLESKY(E), such that E = LLT . Then, the Fréchet
mean of the Cholesky decomposed matrices L is given by

FCHOLESKY =
1

n

n∑
i=1

⌊Li⌋ +

exp

(
1

n

n∑
i=1

log(D(Li)

)
. (2)
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2.3.3. k-MEDOIDS CLUSTERING ALGORITHM

Given a set of (n) SPD edge matrices, E , from different
orofacial movements, if the edge matrices E corresponding
to the same movement cluster together while those from
different movements remain separate, we can conclude that
treating EMG signals as graphs and representing covariance
edge matrices E on the manifold of SPD matrices provides
a robust signal representation. This would suggest that such
an embedding space is meaningful for naturally distinguish-
ing different orofacial movements. In the results section,
we test whether this is the case for different orofacial move-
ments described in section 2.1.1.

To identify such natural clusters in an unsupervised manner,
we implement the classic k-medoids algorithm (Kaufman
& Rousseeuw, 1990) using partitioning around medoids
(PAM) heuristic by replacing the Euclidean distance with
the geodesic distance defined in equation 1.

Whenever we use k-medoids clustering algorithm, edge ma-
trices E(τ) are created using the entire articulation duration
of 1.5 seconds.

2.3.4. MINIMUM DISTANCE TO MEAN ALGORITHM
(MDM)

Given a set of (n) SPD edge matrices, E , from different
speech articulations, these matrices may exhibit a structured
representation on the manifold of SPD matrices. However,
such a structure may not be sufficiently distinct for unsu-
pervised algorithms like k-medoids clustering to effectively
discern. In such cases, supervised algorithms like MDM
may be more useful.

Given m classification classes and n training samples, SPD
matrices in the training set {Eji }, where i ∈ {1, 2, ..., n}and
j ∈ {1, 2, ..., m} are used to construct centroids for each of
the m classes such that the centroid of class j is,

Cj = E({CHOLESKY(Ej)}), (3)

where the Fréchet mean E is calculated according to equa-
tion 2. Given a test dataset of SPD matrices {T }, T ∈
T is assigned to that class whose centroid is nearest to
CHOLESKY(T ). That is, the class of T is

argmin
j

d(CHOLESKY(T ), Cj), (4)

where d(.) is calculated according to equation 1.

Whenever we use MDM, edge matrices E(τ) are created
using the entire articulation duration of 1.5 seconds.

In all cases, when using MDM, we apply the following
train-test data split: out of the 10 total articulation instances
of each word or phoneme, 6 are used for training the model,
and 4 are used for testing. The articulations in the test set
are not present in the training set.

2.3.5. t-SNE FOR EMG DATA VISUALIZATION

We use the t-SNE (t-Stochastic Neighbor Embedding) al-
gorithm, adapted from Van der Maaten & Hinton, for data
visualization. Unlike standard t-SNE, which takes vectors as
input and uses Euclidean distance, we input edge matrices
E and employ the distance defined in equation 1.

2.3.6. A NEURAL NETWORK FOR SPD MATRIX
LEARNING

We use k-medoids (defined in section 2.3.3) and MDM (de-
fined in section 2.3.4) to test whether EMG signals, when
interpreted as a graph arising from the underlying func-
tional connectivity of the neuromuscular system, give rise
to edge matrices, E , that are naturally distinguishable on
the embedding manifold of SPD matrices (see the results
section). However, to learn more expressive representations
of the edge matrices E , we use a neural network as defined
in Huang & Van Gool. This neural network takes SPD
matrices E as input and outputs a classification of the matri-
ces. We describe this neural network in detail in appendix
A.1. Succinctly, the neural network learns a new matrix,
E(1), from E(0) via the transformation E(1) = WTE(0)W ,
where W is a full-rank, semi-orthogonal matrix learned by
the neural network (when E(0) is an SPD matrix, W is an
orthogonal matrix such that WT = W−1).

Given a set of SPD edge matrices, {E(0)} (corresponding,
for instance, to different speech articulations), if the neu-
ral network learns a transformation W such that the trans-
formed set of matrices, {E(1)}, are all approximately diago-
nal, then we can conclude that all SPD matrices in {E(0)}
result in a similar linear transformation of the space R|V|.
That is, this transformation can be equivalently expressed in
the corresponding approximate eigenbasis W such that any
E(0) can be expressed as

WE(1)WT ,

where E(1) is approximately diagonal. Therefore, this de-
composition can be interpreted as an approximate eigende-
composition, with W representing the approximate eigenba-
sis vectors and E(1) representing the corresponding approxi-
mate eigenvalues.

In the results section, we test whether this holds true. If
so, all articulations from a given individual would share
an approximate common eigenbasis. Furthermore, if such
an eigenbasis is distinct from those of other individuals,
it would suggest that the shift in the EMG signal distribu-
tion across individuals arises from a transformation in the
underlying basis.

Whenever we use this method, edge matrices E(τ) are cre-
ated using the entire articulation duration of 1.5 seconds.

For phoneme articulations (as described in section 2.1.2)
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and word articulations (as described in section 2.1.3), when
using this method, we apply the following train-test data
split: out of the 10 total articulation instances of each word
or phoneme, 6 are used for training the model, and 4 are
used for testing. The articulations in the test set are not
present in the training set.

For the generalizable language-spelling articulations using
NATO phonetic codes (as described in section 2.1.4), we
apply the following train-validation-test data split when
using this method.

• Train set: A subset of the articulations from the first
stage of the experiment, where each of the 26 NATO
phonetic codes was articulated 20 times. We use 16
repetitions of each of the 26 codes, resulting in a total
of 416 training instances.

• Validation set: A subset of the articulations from the
first stage of the experiment, where each of the 26
NATO phonetic codes was articulated 20 times. We
use 4 repetitions (not included in the train set) of each
of the 26 codes, resulting in a total of 104 validation
instances.

• Test set: The second stage of the experiment, which
consists of 1968 NATO code articulations from both
the RAINBOW and GRANDFATHER passages.

The model is trained on the train set, and the weights that
achieve the best accuracy on the validation set are used for
testing on the test set.

2.3.7. A RECURRENT NEURAL NETWORK FOR SPD
MATRIX LEARNING

The ultimate goal is to translate continuously articulated
speech in a silent manner by afflicted individuals (such as
those who have undergone a laryngectomy) into audible
speech using EMG signals (ES). This is very similar to
audio-to-text translation, with a key difference: while audio
is a univariate signal that can be modeled as the application
of a time-varying filter to a time-varying source signal, EMG
signals are multivariate and result from a purely additive
combination of muscle activation patterns. Here, we test
whether EMG signals contain informative features at a fine-
scale resolution of 30 ms by training a GRU to classify
various phonemes (as described in section 2.1.2), words (as
described in section 2.1.3), and a generalizable language-
spelling model using NATO phonetic words (as described
in section 2.1.4). This serves as a foundational verification
paradigm for the full-fledged EMG-to-language translation
framework, which we describe in Gowda et al.

Standard speech-to-text models (Hori et al., 2017) use recur-
rent neural networks that process vectorized representations

of audio signals. Here, we adapt a recurrent neural net-
work to accept SPD matrices E as inputs instead of vectors.
Specifically, we use the gated recurrent unit (GRU) model
described in Jeong et al. This method modifies the stan-
dard Euclidean GRU to accept SPD matrices as input by
incorporating techniques from Chen et al. and Lou et al.

We provide a detailed description of the recurrent model in
appendix A.2.

Whenever we use this method, edge matrices E(τ) are gen-
erated by slicing the EMG signals using a sliding window
with a context size of 150 ms and a step size of 30 ms. For
an articulation lasting 1.5 seconds, this results in a sequence
of 46 edge matrices, which are treated as 46 time steps in
the input sequence to the GRU.

The train-validation-test split is same as described in section
2.3.6.

3. Results
Here, we present results demonstrating that EMG signals
exhibit structured representations on the manifold of SPD
matrices. We show that embeddings of different orofacial
movements, words, and phonemes on this manifold are
meaningful, such that EMG signals corresponding to dif-
ferent articulations naturally form distinct clusters. Further-
more, we apply the methods described in section 2.3.6 and
section 2.3.7 to the generalizable language-spelling corpus
using NATO phonetic codes (see section 2.1.4) and demon-
strate that high-fidelity decoding of speech articulation is
achievable using EMG data.

3.1. EMG shows structured representation on the
manifold of SPD matrices

When EMG signals are interpreted as graphs defined by the
underlying functional connectivity of the orofacial neuro-
muscular system, the corresponding graph edge matrices
exhibit structured representations on the manifold of SPD
matrices. Orofacial movements underlying critical articula-
tory gestures involved in both audible and silent speech ar-
ticulations demonstrate highly structured clustering, which
is discernible even using unsupervised algorithms such as
k-medoids clustering (section 2.3.3). While complex articu-
lations, such as phonemes and words, are more challenging
to distinguish using unsupervised methods, they still ex-
hibit meaningful representations and achieve high decoding
accuracy using MDM (section 2.3.4). Decoding accuracy
using both k-medoids and MDM is significantly higher than
chance levels, as shown in the following sections.
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3.1.1. DECODING OROFACIAL GESTURES

We decode 13 orofacial gestures, as described in section
2.1.1, using the k-medoids algorithm (section 2.3.3) and
present the average decoding accuracy across all 12 subjects
in table 1. A detailed subject-wise decoding accuracy is
provided in appendix B.1.

Average decoding accuracy
of orofacial gestures using

k-medoids algorithm
0.736

Table 1. Different orofacial gestures are naturally distinguishable
on the manifold of SPD matrices. Classification accuracy of 13
orofacial movements described in section 2.1.1. Chance accuracy
is merely 1

13
= 0.077.

3.1.2. VISUALIZING OROFACIAL GESTURES USING
t-SNE

Here, we visualize SPD edge matrices corresponding to dif-
ferent orofacial gestures using t-SNE (see section 2.3.5). As
shown in figure 3, different gestures are naturally separated
on the manifold.
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Figure 3. Different orofacial gestures are naturally distinguishable
on the manifold of SPD matrices. t-SNE of edge matrices of
various orofacial movements described in section 2.1.1 for subject
1. Embedding is colored according to gestures (a.u. - arbitrary
units).

3.1.3. DECODING INDIVIDUAL PHONEME AND WORD
ARTICULATIONS

Individual phoneme articulations (as described in section
2.1.2) and individual word articulations (as described in
section 2.1.3) exhibit a structured representation that is in-
sufficient for k-medoids clustering but distinguishable us-
ing MDM. This is because speech articulations are more
complex compared to orofacial movements. We report the

average decoding accuracy using MDM across all subjects
for both silent and audible articulations in tables 2 and 3,
respectively. A detailed subject-wise decoding accuracy is
provided in appendix B.2.1.

Furthermore, we demonstrate that phonemes and words can
be classified with higher accuracy using neural networks
described in sections 2.3.6 and 2.3.7, with results presented
in appendices B.2.2 and B.2.3, respectively.

Train-test split for MDM is outlined in section 2.3.4.

Decoding accuracy of
audible phonemes

Decoding accuracy of
silent phonemes

A C V A C V
0.36 0.36 0.45 0.36 0.34 0.49

Table 2. Phoneme articulations are naturally distinguishable on the
manifold of SPD matrices. Classification accuracy of phoneme
articulations using MDM. It is a 38-way classification problem
with chance accuracy of 1

38
= 0.026. We also show classification

accuracy for 23 consonant phonemes and 15 vowel phonemes
separately. A-all phonemes, C-consonants only, V-vowels only.

Decoding accuracy of
audible words

Decoding accuracy of
silent words

0.544 0.439

Table 3. Word articulations are naturally distinguishable on the
manifold of SPD matrices. Classification accuracy of word artic-
ulations using MDM. It is a 36-way classification problem with
chance accuracy of 1

36
= 0.028.

3.2. Generalizable language-spelling paradigm

Now, we present the results for the generalizable language-
spelling paradigm described in section 2.1.4. Here, we train
the neural networks described in sections 2.3.6 and 2.3.7
and report the results. Notably, our training set consists of
only about 10 minutes of data, yet we test on a much larger
test set and still achieve decoding accuracies significantly
higher than chance level.

We train the models on 416 NATO phonetic code articula-
tions, validate them on 104 NATO phonetic code articula-
tions, and test them on 1968 articulations from the RAIN-
BOW and GRANDFATHER passages. The top-5 decoding
accuracies are presented in table 4. As observed, these
accuracies are significantly higher than the chance-level
top-5 decoding accuracy. The recurrent network described
in section 2.3.7 outperforms the network in section 2.3.6.
This improved performance can be attributed to the recur-
rent network’s ability to model articulations as sequences.
A detailed subject-wise decoding accuracy is provided in
appendix B.3.
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Decoding accuracy using
model in

section 2.3.6

Decoding accuracy using
model in

section 2.3.7
0.631 0.773

Table 4. Top-5 decoding accuracy of spelled-out RAINBOW and
GRANDFATHER passage articulations using NATO phonetic codes.
It is a 26-way classification problem with chance top-5 accuracy
of 0.178.

3.3. EMG signal distribution shift across individuals

EMG signals are significantly affected by distributional
shifts across individuals due to inter-subject differences in
neural drive and muscle properties (Farina et al., 2014),
(Farina et al., 2004). Factors such as subcutaneous fat thick-
ness, the spatial distribution of muscle fibers, variations in
muscle fiber conduction velocity (Farina et al., 2014), and
contextual elements like electrode placement (which we
have ensured is consistent across all subjects to the extent
allowed by anatomical and physiological constraints) con-
tribute to this variability. Additionally, neural properties,
such as the discharge characteristics of the neural drive, fur-
ther amplify inter-individual differences in EMG signals
(Farina et al., 2014).

Here, we demonstrate that the aforementioned factors lead to
covariate signal distribution shifts across individuals, which
can be quantified as a change of basis. Specifically, any edge
matrix E (corresponding to any articulation) from a given
individual can be expressed using a common approximate
eigenbasis. That is, E can be decomposed as E = WσWT ,
where σ is approximately diagonal.

We validate this by training an SPD matrix learning neural
network separately for each individual (see section 2.3.6 and
appendix A.1). For instance, we train the neural network
to classify different words articulated in an audible man-
ner (section 2.1.3: 36 different words spanning the entire
phonemic space of the English language, with each word
articulated 10 times) and analyze the learned weights that
yield the best accuracy on the test set. The input to the
neural network consists of edge matrices corresponding to
different word articulations, denoted as E(0). In the first
layer, the network learns a transformation matrix W (1) such
that

E(1) = W (1)T E(0)W (1)

is approximately diagonal for all E(0). Consequently, any
E(0) can be decomposed as

E(0) = W (1)E(1)W (1)T ,

where σ = E(1) is approximately diagonal. This demon-
strates that all SPD matrices can be represented using an

approximate common eigenbasis. However, such an approx-
imate eigenbasis varies across individuals. In figure 4, we
show that matrices E(1) are more diagonal compared to E(0)
and in figure 5, we show that the transformation matrix W (1)

learned by the neural network is different across subjects.
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Figure 4. All edge matrices within an individual can be
approximately diagonalized. Blue: average value of
max(ABS((NON DIAG(E(0)))

max(DIAG(E(0)))
for all word articulations. Red: average

value of max(ABS((NON DIAG(E(1)))

max(DIAG(E(1))
for all word articulations. As we

can see, E(1) are approximately diagonal compared to E(0).
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Figure 5. EMG embeddings of speech articulations on the manifold
differ substantially across individuals. Approximate eigenbasis
vectors (Q = W (1)) are different for different individuals.

θ = cos−1

(
trace(QiQ

T
j )√

trace(QiQ
T
i )

√
trace(QjQ

T
j )

)

)
between approximate eigenbasis matrices Qi and Qj of different
individuals i and j.

3.3.1. VISUALIZING EMG DATA DISTRIBUTION SHIFT
USING t-SNE

Here, we visualize SPD edge matrices corresponding to
words articulated in an audible manner (section 2.1.3) across
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different subjects using t-SNE (section 2.3.5). We observe
that, instead of similar words clustering together - for exam-
ple, the word <EAGER> from different subjects does not
form a distinct cluster - instead, each subject’s embeddings
exhibit a stronger within-subject similarity. Specifically,
the embedding of the word <EAGER> from subject A is
more similar to other words articulated by subject A (e.g.,
<LIFT> or <EIGHT>) than to the same word <EAGER>
articulated by any other subject.

We discuss the implications of this observation on the gen-
eralization capability of neural networks in the discussion
section. Furthermore, in appendix C, we demonstrate that
this effect persists even for naturally articulated continuous
speech when analyzed at a fine phonemic temporal resolu-
tion of 100 ms. This finding has significant implications
for the architectural design of EMG-to-language transla-
tion models, which we further elucidate in the discussion
section.

In figure 6, we show the t-SNE embedding of audible word
articulations across all 12 subjects. As observed, the em-
beddings cluster together according to subjects rather than
words.
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Figure 6. Articulations from different subjects cluster separately
on the manifold of SPD matrices. t-SNE of edge matrices of word
articulations. Embedding is colored according to subjects (a.u. -
arbitrary units).

4. Observations and discussions
1⃝We show that EMG signals, when interpreted as a graph

arising from the underlying neuromuscular system, give
rise to edge matrices that exhibit a structured representa-
tion on the manifold of SPD matrices. We demonstrate this
structured representation for orofacial movements underly-
ing speech articulations, as well as for individual word and
phoneme articulations (using k-medoids and MDM algo-
rithms).

Given that EMG signals exhibit such a structured represen-

tation on the manifold, we analyze classification accuracy
using more expressive manifold neural networks, including
recurrent networks, as described in sections 2.3.6 and 2.3.7.
Using these methods, we show that it is possible to develop
limited communication speech neuroprostheses, where sen-
tences are spelled out using NATO codes. These models are
easy to train and require only a small amount of data, laying
the foundation for a more generalizable EMG-to-language
spelling model.

2⃝ Building on the methods discussed here, we demon-
strate—for the first time—that EMG-to-language transla-
tion is feasible at the phonemic level with a fine tempo-
ral resolution of 20 ms, comparable to standard speech-
to-text systems, using only EMG signals collected during
silent speech articulations, as shown in Gowda et al. On
a small-vocabulary dataset containing 67 words, our ap-
proach achieves nearly a 2.4× reduction in word error rate
(WER) using a model that is 25× smaller. On a large,
general-vocabulary dataset, our method yields a 3.5 percent-
age point improvement in WER, again with a 25× smaller
model—all while relying solely on ES , without access to
EA or A. Furthermore, our models are computationally
efficient, requiring approximately 30 minutes to train on the
large-vocabulary dataset and just 2 minutes on the small-
vocabulary dataset, in contrast to the 12 hours reported by
Gaddy & Klein (2020; 2021).

3⃝While EMG-based translation operates on multichannel
biosignals reflecting neuromuscular activity, speech process-
ing relies on a fundamentally different signal modality -
audio. Audio signals are univariate, with all articulatory
content captured in a single channel. Therefore, they can be
viewed as functions sampled on a one-dimensional temporal
grid, making deep convolutional neural networks well-suited
for learning audio features (Baevski et al., 2020; Hsu et al.,
2021), as they capture hierarchical representations using
varying receptive fields.

In contrast, EMG signals are multivariate, as they capture
muscle activations across multiple sensor nodes. Unlike
audio, which is well-represented as a one-dimensional se-
quence, EMG data is better interpreted as a transformation
of the space R|V|, where |V| denotes the number of sen-
sors. This distinction arises because EMG captures spatially
distributed bioelectrical activity rather than a single wave-
form. Consequently, instead of treating EMG as a simple
sequence, it is more naturally analyzed using structured rep-
resentations, such as those found on the manifold of SPD
matrices.

We believe this fundamental difference between audio and
EMG modalities has important implications for feature ex-
traction and model design, necessitating approaches that go
beyond standard convolutional architectures. While direct
comparisons for articulatory gestures are lacking - since
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this work serves as the first such benchmark - previous re-
search (Gowda & Miller) has demonstrated that decoding
hand gestures using EMG on the SPD manifold outperforms
deep learning counterparts defined in the Euclidean domain.
Furthermore, by employing the manifold methods described
here, we demonstrate that EMG collected from silently ar-
ticulated speech (ES) can be translated at a phonemic level
without relying on corresponding EA (EMG collected dur-
ing audible speech) or A (audio) in Gowda et al. This rep-
resents a significant improvement in the training paradigm
compared to previous works by Gaddy & Klein; Gaddy &
Klein which required both ES and EA for model training.

4⃝We analyzed the representations learned by the neural
network model in section 2.3.6 to determine whether the
model had learned meaningful representations with respect
to the placement and manner of articulation. To this end,
we examined phoneme errors to assess whether the model’s
learned representations correlated well with place and man-
ner of articulation.

Based on placement and manner of articulation, consonant
phonemes are classified into seven groups: bilabial, labio-
dental, dental, alveolar, post-velar, velar, and approximant
consonants. During audible phoneme consonant classifica-
tion, approximately 44 percent of the errors made by the
model in section 2.3.6 involved misclassifications within the
same phoneme group (for example, classifying the bilabial
<PAA> as <BAA> or <MAA>, or misclassifying the velar
<ZHAA> as <CHAA>, <SHAA>, or <JHAA>).

When such misclassifications are considered acceptable,
the average consonant phoneme classification accuracy in-
creases from 0.53 (section 2.1.2) to 0.74, representing a
nearly 40 percent improvement. This increase is practically
significant, as such systematic errors can be corrected using
language models.

5⃝ Given that the transformation of the space R|V| induced
by the edge matrices of EMG from different individuals
varies - which can be quantified as a change of basis trans-
formation - and since R|V| can be represented by infinitely
many such bases, zero-shot generalization, where a model
trained on one group of individuals generalizes to unseen
individuals, appears challenging. In future work, we would
like to explore if we can design efficient zero-shot or few-
shot learning strategies.

5. Conclusion
We present an efficient data representation for multivariate
orofacial EMG signals and demonstrate that the manifold
of SPD matrices provides a meaningful embedding space.
Furthermore, we present methods to decode speech articula-
tions using EMG. The open-sourced data and code presented
here constitute the largest such dataset to date, establishing

a strong foundation for further advancements in the field.

Several open questions remain to be addressed, including
the generalizability of models across individuals - whether
such models can be built at all, and if so, what the most
efficient strategy for building them would be.
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A. Neural networks for learning SPD matrices
Here, we describe in detail the neural networks presented in
sections 2.3.6 and 2.3.7.

A.1. A neural network on Stiefel manifold

The neural network based on the methods described by
Huang & Van Gool is shown in figure 7. A brief description
of this network was provided in section 2.3.6.

Figure 7. Neural network architecture for SPD matrix learning.

The neural network architecture for learning discriminative
SPD matrix representations is made of three layer types.
First, a layer is defined by Ek = WT

k Ek−1Wk, where an
SPD edge matrix Ek−1 of dimensions ck−1 × ck−1 is input
to k-th layer. Wk is of dimensions ck−1 × ck giving rise
to Ek of dimensions ck × ck. Wk is constrained to be a
full-rank semi-orthogonal matrix on a compact Stiefel
manifold such that WT

k Wk = I . Second, a non-linear

layer is defined by Ek = Uk−1 max(ϵI,Σk−1)U
T
k−1

(ReEig layer). Third, a layer to map SPD matrices
from the manifold space to its tangent space (so that
the Euclidean operations can be applied) is defined by
Ek = Uk−1 log(Σk−1)U

T
k−1 (LogEig layer). Uk−1, Σk−1

are obtained by eigendecomposition of matrix Ek−1 and ϵ
is a small constant > 0.

For backpropagation, the gradient of the loss function L
with respect to Wk, when restricted to the tangent space of
the Stiefel manifold (denoted by Rck−1×ck , the space of all
full-rank matrices of dimension ck−1 × ck) is given by

∇L(k)
Wk

= ∇L(k)
Wk(Euclidean)

−Wk∇LT (k)

Wk(Euclidean)
Wk.

The gradient is updated as

Wk ←Wk − λ∇L(k)
Wk

,

where λ is the learning rate. Wk is then mapped back to the
Stiefel manifold (from the tangent space) via orthogonaliza-
tion. We use Gram-Schmidt method for matrix orthogonal-
ization. Refer to Huang & Van Gool for backpropagation
formulae through non-linear and tangent space mapping
layers.

A.2. Manifold recurrent neural network

The recurrent neural network based on the methods de-
scribed by Jeong et al. is integrated with the methods given
by Huang & Van Gool and is shown in figure 8. A brief
description of this network was provided in section 2.3.7.

Given a set of SPD edge matrices E(τ) over different
time windows τ , we first calculate their corresponding
Cholesky decompositions L(τ) = CHOLESKY(E(τ)), such
that E(τ) = L(τ)L(τ)T .

Gates of GRU as defined by Jeong et al. are given below.

Update-gate zτ at time-step τ is

zτ = SIGMOID(wz⌊Lτ⌋+ uz⌊hτ−1⌋+ bz)+

SIGMOID(bz′ [exp(wz′ log(D(Lτ ))+

uz′ log(D(hτ−1))]), (5)

where wz , uz , bz , wz′ , and uz′ are real weights and bz′ is a
real positive weight.

Reset-gate rτ at time-step τ is

rτ = SIGMOID(wr⌊Lτ⌋+ ur⌊hτ−1⌋+ br)+

SIGMOID(br′ [exp(wr′ log(D(Lτ ))+

ur′ log(D(hτ−1))]), (6)

where wr, ur, br, wr′ , and ur′ are real weights and br′ is a
real positive weight.
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Figure 8. Recurrent neural network architecture for SPD matrix
learning.

Candidate-activation vector ĥτ is

ĥτ = TANH(wh⌊Lτ⌋+ uh(⌊rτ⌋ ∗ ⌊hτ−1⌋) + bh)+

SOFTPLUS(bh′ exp(wh′ log(D(Lτ ))

+ uh′ log(D(rτ ) ∗ D(hτ−1)))), (7)

where wh, uh, bh, wh′ , and uh′ are real weights and bh′ is a
real positive weight.

Output vector hτ is

hτ = (1− ⌊zτ⌋) ∗ ⌊hτ−1⌋+ ⌊zτ⌋ ∗ ⌊ĥτ⌋+
exp((1− D(zτ )) ∗ log(D(hτ−1))+

D(zτ ) ∗ log(D(ĥτ ))). (8)

In the above equations, hτ−1 is the hidden-state at time-step
τ − 1.

We define an implicit layer solved using neural ordinary
differential equations. The dynamics f of EMG data is
modeled by a neural network with parameters Θ. The output
state hτ is updated as,

hτ−1 ← ODESOLVE(fΘ, L̃OG(hτ−1), (τ − 1, τ))

hτ = GRU(Lτ , ẼXP(hτ−1)), (9)

where L̃OG is the logarithm mapping from the manifold
space of SPD matrices to its tangent space and ẼXP is its in-

verse operation as defined by Lin. GRU is a gated recurrent
unit whose gates are given by equations 5 - 8.

B. Detailed results
Here, we present detailed subject-wise results.

B.1. Orofacial gesture decoding

In table 5, we present the subject-wise decoding accuracy for
13 different orofacial gestures (described in section 2.1.1)
using the k-medoids algorithm, as described in section 2.3.3.
As observed, the edge matrices corresponding to different
gestures exhibit a structured representation on the manifold
of SPD matrices across subjects.

Subject number
Decoding accuracy of

orofacial gestures using
k-medoids algorithm

1 0.877
2 0.862
3 0.677
4 0.638
5 0.654
6 0.915
7 0.554
8 0.515
9 0.846
10 0.854
11 0.731
12 0.715

Mean 0.736

Table 5. Different orofacial gestures are naturally distinguishable
on the manifold of SPD matrices. Classification accuracy of 13
orofacial movements described in section 2.1.1. Chance accuracy
is merely 1

13
= 0.077.

B.2. Phoneme and word articulation decoding

Here, we present the decoding accuracy of phoneme and
word articulations using methods described in sections 2.3.4,
2.3.6, and 2.3.7.

B.2.1. PHONEMES AND WORDS DECODING USING MDM

In table 6, we present the decoding accuracy of phoneme
articulations (described in section 2.1.2), and in table 7, we
present the decoding accuracy of word articulations (de-
scribed in section 2.1.3), using MDM (described in section
2.3.4). As observed, the edge matrices corresponding to dif-
ferent word and phoneme articulations exhibit a structured
representation on the manifold of SPD matrices across sub-
jects. Phoneme articulations from subject 11 were corrupted
and are unavailable.

13
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Subject
number

Decoding accuracy
of audible phonemes

Decoding accuracy
of silent phonemes

A C V A C V
1 0.38 0.34 0.52 0.5 0.47 0.57
2 0.51 0.47 0.67 0.49 0.42 0.63
3 0.26 0.18 0.45 0.28 0.29 0.3
4 0.20 0.23 0.25 0.33 0.38 0.43
5 0.47 0.52 0.53 0.45 0.41 0.58
6 0.5 0.46 0.58 0.45 0.41 0.58
7 0.19 0.25 0.2 0.27 0.28 0.33
8 0.33 0.46 0.33 0.30 0.33 0.42
9 0.36 0.26 0.6 0.23 0.17 0.5
10 0.41 0.41 0.48 0.31 0.23 0.63
12 0.35 0.41 0.38 0.32 0.39 0.4

Mean 0.36 0.36 0.45 0.36 0.34 0.49

Table 6. Phoneme articulations are naturally distinguishable on the
manifold of SPD matrices. Classification accuracy of phoneme
articulations using MDM. It is a 38-way classification problem
with chance accuracy of 1

38
= 0.026. We also show classification

accuracy for 23 consonant phonemes and 15 vowel phonemes
separately. A-all phonemes, C-consonants only, V-vowels only.

Subject
number

Decoding accuracy
of audible words

Decoding accuracy
of silent words

1 0.632 0.389
2 0.660 0.590
3 0.389 0.264
4 0.264 0.243
5 0.632 0.708
6 0.688 0.569
7 0.382 0.125
8 0.549 0.472
9 0.611 0.382

10 0.625 0.444
11 0.587 0.674
12 0.5 0.403

Mean 0.544 0.439

Table 7. Word articulations are naturally distinguishable on the
manifold of SPD matrices. Classification accuracy of word artic-
ulations using MDM. It is a 36-way classification problem with
chance accuracy of 1

36
= 0.028.
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B.2.2. PHONEMES AND WORDS DECODING USING METHOD IN section 2.3.6

While we use MDM (described in section 2.3.4) to demonstrate that phoneme and word articulations exhibit a structured
representation on the manifold of SPD matrices, we can leverage the neural network described in section 2.3.6 to learn more
expressive and distinguishable features. As shown here, decoding accuracy using the neural network is higher than that of
MDM for both word and phoneme articulations. Table 8 presents the decoding accuracy of phoneme articulations, while
table 9 reports the decoding accuracy of word articulations. Phoneme articulations from subject 11 were corrupted and are
unavailable.

Subject number Decoding accuracy of phoneme articulations using model in section 2.3.6
Audible phonemes Silent phonemes

A C V A C V
1 0.574±0.012 0.632±0.015 0.725±0.013 0.574±0.012 0.647±0.016 0.678±0.013
2 0.679±0.012 0.645±0.012 0.857±0.008 0.679±0.012 0.575±0.011 0.798±0.016
3 0.404±0.008 0.428±0.013 0.632±0.014 0.404±0.008 0.393±0.009 0.412±0.008
4 0.310±0.014 0.370±0.015 0.487±0.023 0.310±0.014 0.467±0.014 0.670±0.015
5 0.637±0.007 0.715±0.008 0.660±0.008 0.637±0.007 0.566±0.013 0.667±0.017
6 0.577±0.012 0.542±0.011 0.748±0.019 0.577±0.012 0.550±0.012 0.688±0.013
7 0.313±0.007 0.386±0.007 0.373±0.011 0.313±0.007 0.334±0.014 0.408±0.013
8 0.348±0.036 0.518±0.021 0.563±0.026 0.348±0.036 0.390±0.010 0.605±0.021
9 0.522±0.009 0.479±0.014 0.738±0.017 0.522±0.009 0.305±0.009 0.723±0.013

10 0.603±0.015 0.620±0.014 0.762±0.027 0.603±0.015 0.390±0.017 0.755±0.011
12 0.485±0.011 0.550±0.012 0.577±0.019 0.485±0.011 0.455±0.012 0.597±0.015

Mean 0.496 0.535 0.647 0.447 0.461 0.636

Table 8. Classification accuracy of phoneme articulations using model in section 2.3.6. We also show classification accuracy for 23
consonant phonemes and 15 vowel phonemes separately. A-all phonemes, C-consonants only, V-vowels only. It is a 38-way classification
problem with chance accuracy of 1

38
= 0.026. Accuracies are averaged over 10 random seeds.

Subject number
Decoding accuracy of word
articulations using model in

section 2.3.6
Audible words Silent words

1 0.747±0.010 0.529±0.010
2 0.883±0.009 0.765±0.008
3 0.599±0.010 0.443±0.008
4 0.340±0.011 0.423±0.010
5 0.821±0.012 0.792±0.012
6 0.807±0.011 0.692±0.014
7 0.421±0.010 0.260±0.006
8 0.694±0.012 0.578±0.012
9 0.722±0.007 0.458±0.010
10 0.803±0.010 0.722±0.011
11 0.708±0.008 0.772±0.006
12 0.634±0.012 0.570±0.014

Mean 0.681 0.584

Table 9. Classification accuracy of word articulations using model in section 2.3.6. It is a 36-way classification problem with chance
accuracy of 1

36
= 0.028. Accuracies are averaged over 10 random seeds.
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B.2.3. PHONEMES AND WORDS DECODING USING METHOD IN section 2.3.7

While we use MDM (described in section 2.3.4) to demonstrate that phoneme and word articulations exhibit a structured
representation on the manifold of SPD matrices, we can leverage the neural network described in section 2.3.7 to learn more
expressive and distinguishable features. As shown here, decoding accuracy using the neural network is higher than that of
MDM for both word and phoneme articulations. Table 10 presents the decoding accuracy of phoneme articulations, while
table 11 reports the decoding accuracy of word articulations. Phoneme articulations from subject 11 were corrupted and are
unavailable.

Subject
number Decoding accuracy of word articulations using model in section 2.3.7

Audible phonemes Silent phonemes
A C V A C V

1 0.651±0.030 0.699±0.033 0.637±0.027 0.574±0.014 0.596±0.030 0.662±0.044
2 0.659±0.023 0.625±0.026 0.815±0.046 0.590±0.017 0.516±0.020 0.780±0.031
3 0.398±0.030 0.370±0.049 0.498±0.038 0.328±0.020 0.353±0.027 0.445±0.050
4 0.383±0.019 0.401±0.038 0.490±0.033 0.380±0.025 0.405±0.027 0.558±0.037
5 0.566±0.033 0.597±0.030 0.602±0.047 0.507±0.021 0.533±0.027 0.615±0.040
6 0.591±0.030 0.608±0.037 0.710±0.048 0.521±0.020 0.558±0.041 0.630±0.052
7 0.313±0.014 0.388±0.041 0.338±0.038 0.288±0.014 0.297±0.030 0.465±0.026
8 0.419±0.030 0.532±0.050 0.473±0.052 0.418±0.020 0.376±0.039 0.587±0.041
9 0.470±0.027 0.458±0.051 0.663±0.036 0.380±0.019 0.297±0.028 0.620±0.031

10 0.633±0.033 0.613±0.041 0.787±0.039 0.426±0.029 0.400±0.031 0.667±0.039
12 0.444±0.025 0.505±0.037 0.460±0.038 0.419±0.024 0.402±0.029 0.568±0.047

Mean 0.503 0.527 0.588 0.439 0.430 0.600

Table 10. Classification accuracy of phoneme articulations using model in section 2.3.7. We also show classification accuracy for 23
consonant phonemes and 15 vowel phonemes separately. A-all phonemes, C-consonants only, V-vowels only. It is a 38-way classification
problem with chance accuracy of 1

38
= 0.026. Accuracies are averaged over 10 random seeds.

Subject number
Decoding accuracy of word
articulations using model in

section 2.3.7
Audible words Silent words

1 0.788±0.029 0.669±0.055
2 0.865±0.013 0.745±0.025
3 0.656±0.041 0.542±0.033
4 0.305±0.026 0.381±0.034
5 0.769±0.024 0.712±0.037
6 0.767±0.034 0.674±0.027
7 0.260±0.006 0.274±0.025
8 0.755±0.038 0.661±0.025
9 0.690±0.025 0.523±0.037
10 0.846±0.026 0.738±0.021
11 0.781±0.022 0.810±0.024
12 0.681±0.035 0.606±0.036

Mean 0.694 0.611

Table 11. Classification accuracy of word articulations using model in section 2.3.7. It is a 36-way classification problem with chance
accuracy of 1

36
= 0.028. Accuracies are averaged over 10 random seeds.
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B.3. NATO phonetic code articulations

Here, we present the subject-wise decoding accuracies of
the generalizable language-spelling paradigm described
in section 2.1.4. Four subjects articulated the RAINBOW
and GRANDFATHER passages character by character using
NATO phonetic codes in a silent manner. The decoding
accuracies are presented in table 12.

Subject
number

Decoding accuracy using
model in section 2.3.6

Decoding accuracy using
model in section 2.3.7

1 0.697 0.8154
2 0.632 0.7837
3 0.638 0.7337
4 0.556 0.7606

Mean 0.631 0.773

Table 12. Top-5 decoding accuracy of spelled-out RAINBOW and
GRANDFATHER passage articulations using NATO phonetic codes.
It is a 26-way classification problem with chance top-5 accuracy
of 0.178.

C. EMG data distribution shift
In section 3.3, we discussed the EMG data distribution shift
across individuals. We showed that instead of similar words
clustering together, each subject’s embeddings exhibit a
stronger within-subject similarity. To demonstrate this, we
created graph edge matrices from EMG signals recorded dur-
ing the audible articulation of words. These edge matrices,
denoted as E , were constructed using the entire articulation
duration of 1.5 seconds.

To further verify whether a similar distribution shift oc-
curs on a finer temporal scale - corresponding to individual
phonemes or co-articulated phonemes - we had 12 subjects
articulate the RAINBOW passage audibly, as one would nat-
urally speak. The entire passage was articulated over a
duration of 215 seconds, and SPD edge matrices were con-
structed using a time window of 100 ms. Consequently, we
obtained 2150 edge matrices for the entire passage dura-
tion, capturing speech at a phonemic level. We visualize
these 2150 edge matrices from each of the 12 subjects using
t-SNE (section 2.3.5) in figure 9.

Similar to our observations in section 3.3, we found that
articulations from different subjects exhibit strong within-
subject similarity. That is, we did not observe any clus-
tering based on articulation content - for example, similar
phonemes from different subjects did not cluster together.

This finding suggests that, fundamentally, the functional con-
nectivity of orofacial neuromuscular signals differs across
individuals.
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Figure 9. Articulations from different subjects cluster separately
on the manifold of SPD matrices. t-SNE of edge matrices of
RAINBOW passage articulations. Embedding is colored according
to subjects (a.u. - arbitrary units).

D. Importance of electrodes in the signal graph

In figure 7, each column of E(0)22×22 represents the relation-
ship of a given node with all other nodes in the network.
Since both E(0)22×22 and W

(1)
22×22 are full-rank matrices span-

ning R22, each column of W (1)
22×22 can be approximately

expressed as a linear combination of the columns of E(0)22×22.

Formally,
w ≈ E(0)22×22κ, (10)

where w denotes a column of W (1)
22×22 and κ is a vector of

|V| coefficients. We estimate κ via a least squares solution
using numpy.linalg.lstsq. Specifically, we compute
κλG

corresponding to wλG
, the eigenvector associated with

the largest eigenvalue.

We repeat this procedure for all 360 articulations of audible
words (36 words from section 2.1.3, each repeated 10 times).
For each trial, we rank the elements of κλG

by their abso-
lute values in descending order and identify the electrode
nodes most frequently ranked among the top three across
all articulations.

Our analysis reveals that the most influential nodes—i.e.,
those contributing most to the top eigenvector—vary sub-
stantially across subjects, indicating that the neural sub-
strates of speech articulation are highly subject-specific.
Nevertheless, certain electrode locations corresponding to
the hyoglossus, palatoglossus, and styloglossus muscles
(approximately electrodes 17, 19, 20, and 21 in figure 2)
appear frequently as important nodes across individuals.
These muscles, located in the lower cheek region, play a
vital role in tongue movement and are consistently recruited
across a wide range of articulatory gestures.

In contrast, the importance of other orofacial muscle groups
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exhibits greater variability across individuals. These include
muscles in the upper and posterior cheek regions—such
as the masseter and temporalis, which control jaw mo-
tion, and the zygomaticus, involved in upper lip ele-
vation—associated with electrode regions approximately
around nodes 22, 18, and 15 in figure 2. Electrodes located
beneath the jaw capture activity from muscles involved in
tongue protrusion and jaw-tongue coordination, such as the
genioglossus (near electrodes 8 and 9 in figure 1) and the
digastric. Additionally, electrodes near the laryngeal region
(nodes 6, 7, 10, and 11 in figure 1) reflect the activity of
muscles that modulate laryngeal and hyoid position—such
as the sternohyoid, stylohyoid, and digastric—which are
instrumental in pitch control, vowel shaping, and jaw move-
ment.

Overall, the most informative nodes for decoding speech
differ across individuals. This is consistent with the obser-
vation that the approximate eigenbasis vectors underlying
articulations vary from subject to subject (see figure 5).
Such variability likely stems from individual anatomical
differences and personalized articulatory strategies during
speech production.

In a related study (Gowda et al., 2025), where we decode
silently articulated speech using EMG through phoneme-
by-phoneme decoding on a limited-vocabulary corpus, we
demonstrate that various subsets of electrodes perform
nearly as well as the full set of electrodes.
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