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ABSTRACT

Finding unified complexity measures and algorithms for sample-efficient learn-
ing is a central topic of research in reinforcement learning (RL). The Decision-
Estimation Coefficient (DEC) is recently proposed by Foster et al. (2021) as
a governing complexity measure for sample-efficient no-regret RL. This paper
makes progress towards a unified theory for RL with the DEC framework. First,
we propose two new DEC-type complexity measures: Explorative DEC (EDEC),
and Reward-Free DEC (RFDEC). We show that they are necessary and sufficient
for sample-efficient PAC learning and reward-free learning, thereby extending the
original DEC which only captures no-regret learning. Next, we design new unified
sample-efficient algorithms for all three learning goals. Our algorithms instantiate
variants of the Estimation-To-Decisions (E2D) meta-algorithm with a strong and
general model estimation subroutine. Even in the no-regret setting, our algorithm
E2D-TA improves upon the algorithms of Foster et al. (2021) which require ei-
ther bounding a variant of the DEC which may be prohibitively large, or designing
problem-specific estimation subroutines. As applications, we recover existing and
obtain new sample-efficient learning results for a wide range of tractable RL prob-
lems using essentially a single algorithm. Finally, as a connection, we re-analyze
two existing optimistic model-based algorithms based on Posterior Sampling or
Maximum Likelihood Estimation, showing that they enjoy similar regret bounds
as E2D-TA under similar structural conditions as the DEC.

1 INTRODUCTION

Reinforcement Learning (RL) has achieved immense success in modern artificial intelligence. As
RL agents typically require an enormous number of samples to train in practice (Mnih et al., 2015;
Silver et al., 2016), sample-efficiency has been an important question in RL research. This question
has been studied extensively in theory, with provably sample-efficient algorithms established for
many concrete RL problems starting with tabular Markov Decision Processes (MDPs) (Brafman &
Tennenholtz, 2002; Azar et al., 2017; Agrawal & Jia, 2017; Jin et al., 2018; Dann et al., 2019; Zhang
et al., 2020b), and later MDPs with various types of linear structures (Yang & Wang, 2019; Jin et al.,
2020b; Zanette et al., 2020b; Ayoub et al., 2020; Zhou et al., 2021; Wang et al., 2021).

Towards a more unifying theory, a recent line of work seeks general structural conditions and uni-
fied algorithms that encompass as many as possible known sample-efficient RL problems. Many
such structural conditions have been identified, such as Bellman rank (Jiang et al., 2017), Witness
rank (Sun et al., 2019), Eluder dimension (Russo & Van Roy, 2013; Wang et al., 2020b), Bilinear
Class (Du et al., 2019), and Bellman-Eluder dimension (Jin et al., 2021). The recent work of Fos-
ter et al. (2021) proposes the Decision-Estimation Coefficient (DEC) as a quantitative complexity
measure that governs the statistical complexity of model-based RL with a model class. Roughly
speaking, the DEC measures the optimal trade-off—achieved by any policy—between exploration
(gaining information) and exploitation (being a near-optimal policy itself) when the true model could
be any model within the model class. Foster et al. (2021) establish regret lower bounds for online RL
in terms of the DEC, and upper bounds in terms of (a variant of) the DEC and model class capacity,
showing that the DEC is necessary and (in the above sense) sufficient for online RL with low regret.
This constitutes a significant step towards a unified understanding of sample-efficient RL.
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Despite this progress, several important questions remain open within the DEC framework. First,
in Foster et al. (2021), regret upper bounds for low-DEC problems are achieved by the Estimation-
To-Decisions (E2D) meta-algorithm, which requires a subroutine for online model estimation given
past observations. However, their instantiations of this algorithm either (1) use a general improper!
estimation subroutine that works black-box for any model class, but results in a regret bound that
scales with a (potentially significantly) larger variant of the DEC that does not admit known polyno-
mial bounds, or (2) require a proper estimation subroutine, which typically requires problem-specific
designs and unclear how to construct for general model classes. These additional bottlenecks pre-
vent their instantiations from being a unified sample-efficient algorithm for any low-DEC problem.
Second, while the DEC captures the complexity of no-regret learning, there are alternative learn-
ing goals that are widely studied in the RL literature such as PAC learning (Dann et al., 2017) and
reward-free learning (Jin et al., 2020a), and it is unclear whether they can be characterized using
a similar framework. Finally, several other optimistic model-based algorithms such as Optimistic
Posterior Sampling (Zhang, 2022; Agarwal & Zhang, 2022a) or Optimistic Maximum Likelihood
Estimation (Mete et al., 2021; Liu et al., 2022a;b) have been proposed in recent work, whereas the
E2D algorithm does not explicitly use optimism in its algorithm design. It is unclear whether E2D
actually bears any similarities or connections to the aformentioned optimistic algorithms.

In this paper, we resolve the above open questions positively by developing new complexity mea-
sures and unified algorithms for RL with Decision-Estimation Coefficients. Our contributions can
be summarized as follows.

* We design E2D-TA, the first unified algorithm that achieves low regret for any problem with
bounded DEC and low-capacity model class (Section 3). E2D-TA instantiates the E2D meta-
algorithm with Tempered Aggregation, a general improper online estimation subroutine that
achieves stronger guarantees than variants used in existing work.

* We establish connections between E2D-TA and two existing model-based algorithms: Opti-
mistic Model-Based Posterior Sampling, and Optimistic Maximum-Likelihood Estimation. We
show that these two algorithms enjoy similar regret bounds as E2D-TA under similar structural
conditions as the DEC (Appendix E).

* We extend the DEC framework to two new learning goals: PAC learning and reward-free learn-
ing. We define variants of the DEC, which we term as Explorative DEC (EDEC) and Reward-
Free DEC (RFDEC), and show that they give upper and lower bounds for sample-efficient
learning in the two settings respectively (Section 4).

* We instantiate our results to give sample complexity guarantees for the broad problem class of
RL with low-complexity Bellman representations. Our results recover many existing and yield
new guarantees when specialized to concrete RL problems (Section 5).

Related work Our work is closely related to the long lines of work on sample-efficient RL (both
no-regret/PAC and reward-free), and problems/algorithms in general interactive decision making.
We review these related work in Appendix A due to the space limit.

2 PRELIMINARIES

RL as Decision Making with Structured Observations We adopt the general framework of De-
cision Making with Structured Observations (DMSO) (Foster et al., 2021), which captures broad
classes of problems such as bandits and reinforcement learning.

In DMSO, the environment is described by a model M = (PM , RM ), where pM specifies the
distribution of the observation o € @, and RM specifies the conditional means? of the reward vector
r € [0, 1], where H is the horizon length. The learner interacts with a model using a policy 7 € II.
Upon executing 7 in M, they observe an (observation, reward) tuple (o,r) ~ M (7) as follows:

1. The learner first observes an observation o ~ P (7) (also denoted as PM:7(.) € A(O)).

2. Then, the learner receives a (random) reward vector r = (r;,)f_,, with conditional mean
RM(0) = (R} (0))} := Epra(o)[r] € [0,1]" and independent entries conditioned on o.

"Which outputs in general a distribution of models within class rather than a single model.
’Note that R* (and thus M) only specifies the conditional mean rewards instead of the reward distributions.
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Let fM(rr) := EM[S7 7] denote the value (expected cumulative reward) of 7 under M, and
let 5y = argmax, . fM(7) and f (7)) denote the optimal policy and optimal value for M,
respectively.

In this paper, we focus on RL in episodic Markov Decision Processes (MDPs) using the DMSO
framework. An MDP M = (H,S, A,PM M) can be cast as a DMSO problem as follows. The
observation o = (s1,a1,...,SH,ay) is the full state-action trajectory (so that the observation space
is O = (8 x A)™). Upon executing policy m = {7, : & — A(A)},¢(f in M, the learner observes
o= (si1,ay...,sm,an) ~ PM(x), which sequentially samples s; ~ P} (-), a, ~ 7, (:|sp), and
She1 ~ Py1(:|sn, an) for all h € [H]. The learner then receives a reward vector r = (74 )pe[r] €
[0,1]H, where rj, = r(sp,, ap,) is the (possibly random) instantaneous reward for the h-th step with
conditional mean EM [ry,|o] = RM (0) =: RM (s, ay) depending only on (sy, ay,). We assume that
ST RM(sp,ap) € [0,1] forall M and all o € O.

Learning goals We consider the online learning setting, where the learner interacts with a fixed
(unknown) ground truth model M* for T episodes. Let 7* € II denote the policy executed within
the ¢-th episode. In general, 7* may be sampled by the learner from a distribution p* € A(II) before
the ¢-th episode starts. One main learning goal in this paper is to minimize the standard notion of
regret that measures the cumulative suboptimality of {7}, :

T
Regpy = Z Erept [fM* () — fM* (Wt)]-
t=1

To achieve low regret, this paper focuses on model-based approaches, where we are given a model
class M, and we assume realizability: M* € M. Additionally, throughout the majority of the
paper, we assume that the model class is finite: |[M| < oo (or |P| < oo for the reward-free set-
ting in Section 4.2) for simplicity of the presentation; both can be relaxed using standard covering
arguments (see e.g. Appendix D.2), which we do when we instantiate our results to concrete RL
problems in Example 13-15.

2.1 DEC WITH RANDOMIZED REFERENCE MODELS

The Decision-Estimation Coefficient (DEC) is proposed by Foster et al. (2021) as a key quantity
characterizing the statistical complexity of sequential decision making. We consider the following
definition of DEC with randomized reference models (henceforth “DEC”):

Definition 1 (DEC with randomized reference models). The DEC of M with respect to distribution
7 € A(M) (with policy class 11 and parameter v > 0) is defined as

dee,(M.7) = inf - sup B yByp [ (mar) = () 1 Dy (M ), M ()],

Further define dec, (M) := supgea ) decy (M, i) Above, D, is the following squared diver-
gence function
— , 7 A2
Dy (M (x), M (x)) = D§(P (x), P () + Eyupi | [RY (0) =R (0)[3]. (D

where D} (P, Q) := {(1/dP/du — /dQ/dp)?dp denotes the standard Hellinger distance between
probability distributions P, Q.

Definition 1 instantiates the general definition of DECs in Foster et al. (2021, Section 4.3) with
divergence function chosen as D, . The quantity dec, (M, 1) measures the optimal trade-off of a
policy distribution p € A(II) between two terms: low suboptimality f™ (7;) — f™ (), and high

information gain D% (M (), M (7)) with respect to the randomized reference model M ~ 7i.

The main feature of D%, is that it treats the estimation of observations and rewards separately: It
requires the observation distribution to be estimated accurately in Hellinger distance between the
full distributions, but the reward only accurately in the squared Lo error between the conditional
means. Such a treatment is particularly suitable for RL problems, where estimating mean rewards is
easier than estimating full reward distributions® and is also sufficient in most scenarios.

3Foster et al. (2021) mostly use the standard Hellinger distance (in the tuple (o, r)) in their definition of the
DEC, which cares about full reward distributions (cf. Appendix C.1 for detailed discussions).



Under review as a conference paper at ICLR 2023

Algorithm 1 E2D-TA: ESTIMATION-TO-DECISIONS WITH TEMPERED AGGREGATION

Input: Parameter v > 0; Learning rate n, € (0, 3), 7, > 0.

1: Initialize ! < Unif(M).

2. fort=1,...,T do

3: Setp' « argmin,ca ) ‘A/,Y“t’ (p), where ‘A/ﬂ{“t is defined in (2).
Sample 7t ~ pt. Execute 7! and observe (of, r?).
Update randomized model estimator by Tempered Aggregation:

p (M) ocpr pt (M) - exp (np log PM™" (o") — e " — RM(ot)H;). 3)

A

3 E2D wWITH TEMPERED AGGREGATION

We begin by presenting our algorithm Estimation-to-Decisions with Tempered Aggregation (E2D-
TA; Algorithm 1), a unified sample-efficient algorithm for any problem with bounded DEC.

Algorithm description In each episode ¢, Algorithm 1 maintains a randomized model estimator
ut € A(M), and uses it to obtain a distribution of policies p* € A(II) by minimizing the following
risk function (cf. Line 3):

Vi (p) = Sup ErpEyro [ (mar) = f () = DR (M (), M(m))]. @)

This risk function instantiates the E2D meta-algorithm with randomized estimators (Foster et al.,
2021, Algorithm 3) with divergence D%, . The algorithm then samples a policy 7! ~ pf, executes
7t, and observes (of, r?) from the environment (Line 4).

Core to our algorithm is the subroutine for updating our randomized model estimator u!: Inspired
by Agarwal & Zhang (2022a), we use a Tempered Aggregation subroutine that performs an expo-

nential weights update on 1/ (M) using a linear combination of the log-likelihood log P (') for
the observation, and the negative squared Lo loss — Hrt —RM (ot)Hz for the reward (cf. Line 5).
An important feature of this subroutine is the learning rate 7, < 1/2, which is smaller compared
to e.g. Vovk’s aggregating algorithm (Vovk, 1995) which uses 7, = 1. As we will see shortly,
this difference is crucial and allows a stronger estimation guarantee that is suitable for our purpose.
As an intuition, exponential weights with exp(n, log PM™ (ot)) = (PM- (o)) with n, < 1/2
is equivalent to computing the tempered posterior in a Bayesian setting (Bhattacharya et al., 2019;
Alquier & Ridgway, 2020) (hence our name “tempered”), whereas 7, = 1 computes the exact
posterior (see Appendix C.2 for a derivation).

We are now ready to present the main theoretical guarantee for Algorithm 1.

Theorem 2 (E2D with Tempered Aggregation). Choosing n, = n. = 1/3, Algorithm 1 achieves
the following with probability at least 1 — §:

Regpy < T'dec, (M) + 10y - log(| M| /5).

By choosing the optimal v > 0, we get Regpyy = inf,~q {T'dec, (M) + vlog(|M| /§)}, which
scales as /dT log(| M| /5) if the model class satisfies dec, (M) < d/v for some complexity mea-
sure d. To our best knowledge, this is the first unified sample-efficient algorithm for general prob-
lems with low DEC, and resolves a subtle but important technical challenge in Foster et al. (2021)
which prevented them from obtaining such a unified algorithm.

Concretely, Foster et al. (2021, Theorem 3.3 & 4.1) show that E2D with Vovk’s aggregating algo-
rithm as the estimation subroutine achieves the following regret bound with high probability:

T - SUPFreco(my decy (M; 057) + O(ylog(|M] /9)),

where 77 denotes point mass at M, and co(M) denotes the set of all possible mixtures of models in
M. Unfortunately, this mixture causes SUD 7 eco(M) dec, (M; d37) to be potentially intractable for
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most RL problems—Even when M={tabular MDPs}, supgzc .,y decy (M:; d37) does not admit
known bounds of the form poly(H, S, A, 1/v). Our Theorem 2 removes this bottleneck and only
scales with dec., (M), which is much milder and admits tractable bounds for most known tractable
RL problems (Section 5); For example, dec, (M) < H?S A/~ for tabular MDPs (Appendix K.3.1).
See Appendix C.1 for additional details on the comparison between these two DECs.

Proof overview The proof of Theorem 2 (deferred to Appendix D.2) builds upon the analysis of
E2D meta-algorithms (Foster et al., 2021). The main new ingredient in the proof is the following
online estimation guarantee for the Tempered Aggregation subroutine (proof in Appendix D.1).

Lemma 3 (Online estimation guarantee for Tempered Aggregation). Subroutine (3) with 4np, +1n, <
2 achieves the following bound with probability at least 1 — .

T
Bstrr, i= ) Brep B, [ DR (M (), M (7)) | < C - log(IM] /9), @)

t=1
where C depends only on (ny,,1:). Specifically, we can choose n, = 1. = 1/3 and C' = 10.

Bound (4) is stronger than the estimation bound for Vovk’s aggregating algorithm (e.g. Foster et al.
(2021, Lemma A.15), adapted to D%; ), which only achieves

T
D Bt [ DR (M (71), By [ M (7] ) | < € 0g(1M1 /6), )
t=1
where Bz, _ []/\4\ ¢ (Wt)] denotes the mixture model of Mt (wt) where Mt ~ pit. Note that (4) is

stronger than (5) by convexity of D%; in the second argument and Jensen’s inequality. Therefore,
while both algorithms yield randomized model estimates, the guarantee of Tempered Aggregation is
stronger, which in turn allows our regret bound in Theorem 2 to scale with a smaller DEC.

Connections to other optimistic algorithms In Appendix E, we re-analyze two existing opti-
mistic algorithms: Model-based Optimistic Posterior Sampling (MOPS), and Optimistic Maximum
Likelihood Estimation (OMLE). These algorithms are similar to E2D-TA due to their use of poste-
riors/likelihoods, and we show that they achieve regret bounds similar as E2D-TA under structural
conditions similar as the DEC, thereby establishing a connection between these three algorithms.

4 PAC LEARNING AND REWARD-FREE LEARNING

We now extend the DEC framework to two alternative learning goals in RL beyond no-regret: PAC
learning, and reward-free learning. We propose new generalized definitions of the DEC and show
that they upper and lower bound the sample complexity in both settings.

4.1 PAC LEARNING VIA EXPLORATIVE DEC

In PAC learning, we only require the learner to output a near-optimal policy after 1" episodes are

finished, and does not require the executed policies {wt}zzl (the “exploration policies”) to be high-
quality. It is a standard result that any no-regret algorithm can be converted into a PAC algorithm
by the online-to-batch conversion (e.g. Jin et al. (2018)), so that the DEC (and the corresponding
E2D-TA algorithm) gives upper bounds for PAC learning as well. However, for certain problems,
there may exist PAC algorithms that are better than converted no-regret algorithms, for which the
DEC would not fightly capture the complexity of PAC learning.

To better capture PAC learning, we define the following Explorative DEC (EDEC):
Definition 4 (Explorative DEC). The Explorative Decision-Estimation Coefficient (EDEC) of a
model-class M with respect to i € A(M) and parameter v > 0 is defined as

edec,(M,1) :=  inf sup Eropo. M) = fM(m)] = AE — _[Da, (M(x), M(x))].
M) =, By 2 B [ 0) =)=y (RO )
Pout€

Further, define edec (M) := supgea ) edecy (M, ).
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The main difference between the EDEC and the DEC (Definition 1) is that the inf is taken over
two different policy distributions peyp, and pout, Where pey,, (the “exploration policy distribution™)
appears in the information gain term, and p,,; (the “output policy distribution”) appears in the
suboptimality term. In comparison, the DEC restricts the policy distribution to be the same in both
terms. This accurately reflects the difference between PAC learning and no-regret learning, where
in PAC learning the exploration policies are not required to be the same as the final output policy.

Algorithm and theoretical guarantee The EDEC naturally leads to the following EXPLORATIVE
E2D algorithm for PAC learning. Define risk function V£ _ : A(TI) x A(II) — R as

pac,y
Tt P o) 1= 8D By, [ (mar) = (0] 9B, g | DR 4(), 3T ().
MeM Pexp> /

(6)
Our algorithm (full description in Algorithm 7) is similar as E2D-TA (Algorithm 1), except that in

each iteration, we find (ply,,, pb,) that jointly minimizes f/pf;*’mc, -) (Line 3), execute 7* ~ p. to

collect data, and return Do, = % Zthl pt ¢ as the output policy after T' episodes.

Theorem 5 (PAC learning with EXPLORATIVE E2D). Choosing n, = n, = 1/3, Algorithm 7
achieves the following PAC guarantee with probability at least 1 — §:
7 log(|M|/6)

SubOpt i= /" (7ar+) — Brg,, [ £ (m)| < edec, (M) + 108

The proof can be found in Appendix H.1. For problems with edec, (M) O (d/~), Theorem 5

<
achieves SubOpt < O («/dlog M| /T) (by tuning ), which implies an O (dlog | M] /e?) sam-
ple complexity for learning an € near-optimal policy.

In the literature, PAC RL algorithms with exploration policies different from output policies have
been designed for various problems, e.g. Jiang et al. (2017); Du et al. (2021); Liu et al. (2022a).
These algorithms typically design their exploration policies manually (e.g. concatenating the output
policy with a uniform policy over time step h) using prior knowledge about the problem. By contrast,
EXPLORATIVE E2D does not require such knowledge and automatically learns the best exploration
policy pexp € A(II) by minimizing (6), thus substantially simplifying the algorithm design.

Lower bound We show that a suitably localized version of the EDEC gives an information-
theoretic lower bound for PAC learning. The form of this lower bound is similar as the regret lower
bound in terms of the (localized) DEC (Foster et al., 2021). For any model class M and M € M,
define shorthand edec (M, M) := edec, (M, d37) where d; denotes the point mass at M.

Proposition 6 (Lower bound for PAC learning; Informal version of Proposition H.2). For any model
class M, T' € Z1, and any algorithm 2, there exists a M* € M such that
EM 2 [SubOpt] > ¢, - max sup edec, (M (M), M),
720 Frem -

where ¢y > 0 is an absolute constant, and MZ (M) denotes a certain localized subset of M around
. =
M with radius ., = ~/T (formal definition in (45)).

The upper and lower bounds in Theorem 5 and Proposition 6 together show that the EDEC governs
the complexity of PAC learning, similar as the DEC for no-regret learning (Foster et al., 2021).

Proposition 6 can be used to establish PAC lower bounds for concrete problems: For example, for
tabular MDPs, we show in Proposition H.3 that supy;, 4 edec, (M (M), M) Z min {1, HSA/~v}

as long as € 2 HSA/~, which when plugged into Proposition 6 recovers the known Q(,/HSA/T)
PAC lower bound for tabular MDPs with }, 75, € [0, 1] (Domingues et al., 2021). This implies (and

is slightly stronger than) the (v HSAT) regret lower bound for the same problem implied by the
DEC (Foster et al., 2021, Section 5.2.4), as no-regret is at least as hard as PAC learning.

Relationship between DEC and EDEC _ As the definition of EDEC takes the infimum over a
larger set than the DEC, we directly have edec, (M, i) < dec, (M, &) for any M and t € A(M).
The following shows that the converse also holds in an approximate sense (proof in Appendix H.3).
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Proposition 7 (Relationship between DEC and EDEC). For any («,7) € (0,1) x Rog and i €
A(M), we have dec (M, i) < a + (1 — ) edecq/(1—a) (M, Ti), and thus

edec, (M) < decy (M) < irif0 {a+ (1 — a)edecyn/(1—a) (M)}

Bound (i) asserts that, any problem with a bounded DEC enjoys the same bound on the EDEC, on
which EXPLORATIVE E2D achieves sample complexity no worse than that of E2D-TA (Theorem 5
& Theorem 2). On the other hand, the converse bound (ii) is in general a lossy conversion—For a
class with low EDEC, the implied DEC bound yields a slightly worse rate, similar to the standard
explore-then-commit conversion from PAC to no-regret (cf. Appendix H.3.1 for detailed discus-
sions). Indeed, there exist problems for which the current best sample complexity through no-regret

learning and bounding the DEC is O (1 / 63); whereas PAC learning through bounding the EDEC
gives a tighter 9, (1 / 52) (cf. Proposition 12 and the discussions thereafter).

4.2 REWARD-FREE LEARNING VIA REWARD-FREE DEC

In reward-free RL (Jin et al., 2020a), the goal is to optimally explore the environment without ob-
serving reward information, so that after the exploration phase, a near-optimal policy of any given
reward can be computed using the collected trajectory data alone without further interacting with
the environment.

We define the following Reward-Free DEC (RFDEC) to capture the complexity of reward-free learn-
ing. Let R denote a set of mean reward functions, P denote a set of transition dynamics, and
M = P x R denote the class of all possible models specified by M = (P,R) € P x R. We
assume the true transition dynamics P* € P.

Definition 8 (Reward-Free DEC). The Reward-Free Decision-Estimation Coefficient (RFDEC) of
model class M = P x R with respect to i € A(P) and parameter v > 0 is defined as

rfdec, (M, 1) := inf su inf su {IE,r~ . PR(re ) — P8 (m
M= s I o SR B [ (o) = £ ()]

~ VErmp By [DR(P(m), P(m))] |.
Further, define rfdec, (M) := supgea py rfdec, (M, ).

The RFDEC can be viewed as a modification of the EDEC, where we further insert a supz. to

reflect that we care about the complexity of learning any reward R € R, and use D% (P(r), P(r))
as the divergence to reflect that we observe the state-action trajectories o’ only and not the reward.

Algorithm and theoretical guarantee Our algorithm REWARD-FREE E2D (full description
in Algorithm 8) is an adaptation of EXPLORATIVE E2D to the reward-free setting, and works in two

~  t
phases. In the exploration phase, we find péxp € A(II) minimizing the sup-risk sup g Vr’f‘ 7(-, R)
in the ¢-th episode, where

~ t

K?,y(pexp’ R) := inf supErp,,, [fP7R(7TP7R) - fP’R(ﬂ')] - 'VETWPSXPE@NM [DIQ{(P(W)a ﬁf(ﬂ'))]

Pout Pep
(N
Then, in the planning phase, for any given reward R* € R, we compute p’ . (R*) as the argmin of
the inf,, , in \A/r‘f"'v(péxp, R*), and output the average policy Pout(R*) 1= % 23:1 Pl (RY).

Theorem 9 (Reward-Free E2D). Algorithm 8 achieves the following with probability at least 1 — §:

 Blox(P|/5)

SubOpt,; := sup {fP*’R* (mpe r) — By (R [fP*’R* (w)]} < rfdec, (M) + T

R*eR

The proof can be found in Appendix L.2. For problems with rfdec., (M) < O (d/~), by tuning v >

0 Theorem 9 achieves SubOpt,; < ¢ within O (dlog|P| /%) episodes of play. The only known
such general guarantee for reward-free RL is the recently proposed RFOlive algorithm of Chen et al.
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(2022) which achieves sample complexity O (poly(H) - d3y log(|F||R])/e2) in the model-free

setting*. Theorem 9 can be seen as a generalization of this result to the model-based setting, with a
more general form of structural condition (RFDEC). Further, our guarantee does not further depend
on the statistical complexity (e.g. log-cardinality) of R once we assume bounded RFDEC.

Lower bound Similar as EDEC for PAC learning, the RFEC also gives the following lower bound
for reward-free learning. For any M = P x R and P € P, define shorthand rfdec, (M,P) :=
rfdec., (M, &5) where &5 denotes the point mass at P.

Proposition 10 (Reward-free lower bound; Informal version of Proposition 1.2). For any model
class M =P x R, T € Zx1, and any algorithm 2, there exists a P* € P such that

EP" ¥ [SubOpt,¢] > ¢; - maxsup rfdec, (MZ(P),P),
v>0 5 =
PeP
where ¢y > 0 is an absolute constant, and Mt (M) denotes a certain localized subset of M
=

around M with radius g, = ~/T (formal definition in (50)).

5 INSTANTIATION: RL WITH BELLMAN REPRESENTABILITY

In this section, we instantiate our theories to bound the three DEC variants and give unified sample-
efficient algorithms for a broad class of problems—RL with low-complexity Bellman Representa-
tions (Foster et al., 2021). Consequently, our algorithms recover existing and obtain new sample
complexity results on a wide range of concrete RL problems.

Definition 11 (Bellman Representation). The Bellman representation of (M, M) is a collection of
function classes (G := {g)" ™ : M — [—1, 1]}) hep ) Such that:

(a) Forall M € M,

EM:mw [QhM’W(SmCLh) — = Vi (5h+1)” < lgf]zwm(M))'

(b) There exists a family of estimation policies {wje\}t h)MeMm, he[m] and a constant L > 1 such that
forall M, M’ € M,

s M(M)‘ < L= Dre(M (i), M (m74))-

We say M satisfies Bellman representability with Bellman representation G := (g%m Mohe[H] if
(M, M) admits a Bellman representation (Q,Jbv)he[H] forall M € M.

It is shown in Foster et al. (2021) that problems admitting a low-complexity Bellman representation
G (e.g. linear or low Eluder dimension) include tractable subclasses such as (model-based versions
of) Bilinear classes (Du et al., 2021) and Bellman-Eluder dimension (Jin et al., 2021). We show that
Bellman representability with a low complexity G implies bounded DEC/EDEC/RFDEC, which in
turn leads to concrete rates using our E2D algorithms in Section 3 and 4.

Proposition 12 (Rates for RL with low-complexity Bellman representations). Suppose M admits
a Bellman representation G with low complexity: min{e(GM,A),s(GM, A)?} < O (d) for all
(h, M) € [H] x M, where ¢ is the Eluder dimension, s is the star number (Definition K.3 & K.4),
d>0and O (+) contains possibly polylog(1/A) factors. Then we have

(1) (No-regret learning) If 7§, = mar for all M € M (the on-policy case), then dec. (M) <
O (dH?L?/7), and Algorithm E2D-TA achieves Regpyy < O(HL+\/dT log | M]).
(2) (PAC learning) For any general {m5},} vrem he[r), we have edecy (M) < 9, (dH?L?/v),

and Algorithm EXPLORATIVE E2D achieves SubOpt < ¢ within O (dH?L? log | M| /?)
episodes of play.

(3) (Reward-free learning) If G is a Bellman representation in a stronger sense (cf. Defini-
tion K.8), then rfdec, (M) < 9, (dHQLQ/'y), and Algorithm REWARD-FREE E2D achieves

SubOpt,; < & within O (dH?L?log |P| /?) episodes of play.

*Where F denotes the value class, and R denotes the reward class, and dpg denotes the Bellman-Eluder
dimension of a certain class of reward-free Bellman errors induced by F.
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The proof can be found in Appendix K.2. To our best knowledge, results (2)(3) above are the first
such results with DEC-type structural assumptions. In particular, when the estimation policies are

general, the O (1 / 52) PAC sample complexity in (2) through bounded EDEC improves over Foster
et al. (2021, Theorem 7.1 & F.2) which uses the conversion to DEC and results in an O (1/53)
sample complexity. The no-regret result in (1) also improves over the result of Foster et al. (2021)
as a unified algorithm without requiring proper online estimation oracles which is often problem-
specific. We remark that a similar bound as (1) also holds for psc,, (c.f. Definition E.1), and for

mlec,, (c.f. Definition E.4) assuming bounded Eluder dimension ¢(GM, A) < O (d.), and thus
MOPS and OMLE algorithms achieve similar regret bounds as E2D-TA (cf. Appendix K.1).

Examples Proposition 12 can be specialized to a wide range of concrete RL problems, for which
we give a few illustrating examples here (problem definitions and proofs in Appendix K.3). We em-
phasize that, except for feeding the different model class M’s into the Tempered Aggregation sub-
routines, the rates below (for each learning goal) are obtained through a single unified algorithm
without further problem-dependent designs.

Example 13. For tabular MDPs, E2D-TA achieves regret Regpyy < O (v S3A2H 3T>, and
REWARD-FREE E2D achieves reward-free guarantee SubOpt, ¢ < O («/S3A2H3/T). O

Both rates are worse then the optimal (5(\/H SAT) regret bound (Azar et al., 2017)° and

O(+/poly(H)S2A/T) reward-free bound (Jin et al., 2020a). However, our rates are obtained
through unified algorithms that is completely agnostic to the tabular structure.

Example 14. For linear mixture MDPs (Ayoub et al., 2020) with a d-dimensional feature map,
E2D-TA achieves regret Regpy; < O (\/ d?H 3T>, and REWARD-FREE E2D achieves reward-

free guarantee SubOpt,; < O («/dzH?’/T). O

The later result implies a sample complexity of O (d2 H? /52) for e-near optimal reward-free learn-
ing in linear mixture MDPs, which only has an additional H? factor over the current best sample
complexity O (d*H /<) of Chen et al. (2021)°.

Example 15. For low-rank MDPs with unknown d-dimensional features (¢,%) € ® x ¥ (i.e.
the FLAMBE setting (Agarwal et al., 2020)), A actions, and rewards R € R, EXPLORATIVE

E2D achieves PAC guarantee SubOpt < O (\/alAH2 log(|®| |¥| |R|)/T) , and E2D-RF achieves
reward-free guarantee SubOpt, ¢ < O (\/dAH2 log(|®| |\I/|)/T) O

Our PAC result matches the best known sample complexity achieved by e.g. the V-Type Golf Al-
gorithm of Jin et al. (2021). For reward-free learning, our linear in d dependence improves over the
current best d? dependence achieved by the RFOlive algorithm (Chen et al., 2022), and we do not
require linearity or low complexity assumptions on the class of reward functions R made in existing
work (Wang et al., 2020a; Chen et al., 2022). However, we remark that they handle a slightly more
general setting where only the ® class is known, due to their model-free approach.

An important subclass of low-rank MDPs is Block MDPs (Du et al.,, 2019). In (stationary-
transition) Block MDPs with O states, A actions, and S latent states, REWARD-FREE E2D achieves
SubOpt,; < O (\/(SOA + S3A2)H2/T) , which improves over the result of Jedra et al. (2022)

in the .S dependence, and does not require a certain reachability assumption made in their result.

6 CONCLUSION

This paper proposes unified sample-efficient algorithms for no-regret, PAC, and reward-free rein-
forcement learning, by developing new complexity measures and stronger algorithms within the
DEC framework. We believe our work opens up many important questions, such as developing
model-free analogs of this framework, extending to other learning goals (such as multi-agent RL),
and computational efficiency of our algorithms.

>Rescaled to total reward within [0, 1].
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A RELATED WORK

Sample-efficient reinforcement learning Sample-efficient RL has been extensively studied in the
basic model of tabular MDPs (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Jaksch et al.,
2010; Dann & Brunskill, 2015; Azar et al., 2017; Agrawal & Jia, 2017; Jin et al., 2018; Russo,
2019; Dann et al., 2019; Zanette & Brunskill, 2019; Zhang et al., 2020b; Domingues et al., 2021).
The minimax sample complexity for finite-horizon tabular MDPs has been achieved by both model-
based and model-free approaches (Azar et al., 2017; Zhang et al., 2020b). When there is function
approximation, the sample-efficiency of RL has been studied under concrete assumptions about the
function class and/or the MDP, such as (various forms of) linear or low-rank MDPs (Yang & Wang,
2019; Du et al., 2020; Jin et al., 2020b; Zanette et al., 2020b; Cai et al., 2020; Lattimore et al., 2020;
Agarwal et al., 2020; Ayoub et al., 2020; Modi et al., 2020; Zhou et al., 2021), generalized linear
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function approximation (Wang et al., 2021), Block MDPs (Du et al., 2019; Misra et al., 2020), and
so on. More general structural conditions and algorithms has been studied (Russo & Van Roy, 2013;
Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020b) and later unified by frameworks such as
Bilinear Class (Du et al., 2021) and Bellman-Eluder dimension (Jin et al., 2021).

Foster et al. (2021) propose the DEC as a complexity measure for interactive decision making prob-
lems, and develop the E2D meta-algorithm as a general model-based algorithm for problems within
their DMSO framework (which covers bandits and RL). The DEC framework is further generalized
in (Foster et al., 2022) to capture adversarial decision making problems. The DEC has close con-
nections to the modulus of continuity (Donoho & Liu, 1987; 1991a;b), information ratio (Russo &
Van Roy, 2016; 2018; Lattimore & Gyorgy, 2021), and Exploration-by-optimization (Lattimore &
Szepesvdri, 2020). Our work builds on and extends the DEC framework: We propose the E2D-
TA algorithm as a general and strong instantiation of the E2D meta-algorithm, and generalize the
DEC to capture PAC and reward-free learning.

Other general algorithms Posterior sampling (or Thompson Sampling) is another general pur-
pose algorithm for interactive decision making (Thompson, 1933; Russo, 2019; Agrawal & Jia,
2017; Zanette et al., 2020a; Zhang, 2022; Agarwal & Zhang, 2022a;b). Frequentist regret bounds
for posterior sampling are established in tabular MDPs (Agrawal & Jia, 2017; Russo, 2019) and
linear MDPs (Russo, 2019; Zanette et al., 2020a). Zhang (2022) proves regret bounds of a pos-
terior sampling algorithm for RL with general function approximation, which is then generalized
in Agarwal & Zhang (2022a;b). Our Appendix E.1 discusses the connection between the MOPS
algorithm of Agarwal & Zhang (2022a) and E2D-TA. The OMLE (Optimistic Maximum Likeli-
hood Estimation) algorithm is studied in (Liu et al., 2022a;b) for Partially Observable Markov De-
cision Process; however, the algorithm itself is general and can be used for any problem within the
DMSO framework; We provide such a generalization and discuss the connections in Appendix E.2.
Maximum-likelihood based algorithms for RL are also studied in (Mete et al., 2021; Agarwal et al.,
2020; Uehara et al., 2021).

Reward-free RL.  The reward-free learning framework is proposed by (Jin et al., 2020a) and well-
studied in both tabular and function approximation settings (Jin et al., 2020a; Zhang et al., 2020a;
Kaufmann et al., 2021; Ménard et al., 2021; Wang et al., 2020a; Zanette et al., 2020c; Agarwal et al.,
2020; Liu et al., 2021; Modi et al., 2021; Zhang et al., 2021a;b; Qiu et al., 2021; Wagenmaker et al.,
2022). The recent work of Chen et al. (2022) proposes a general algorithm for problems with low
(reward-free version of) Bellman-Eluder dimension. Our Reward-Free DEC framework generalizes
many of these results by offering a unified structural condition and algorithm for reward-free RL
with a model class.

Other problems covered by DMSO Besides multi-armed bandits and RL, the DMSO framework
of (Foster et al., 2021) (and thus all our theories as well) can handle other problems such as con-
textual bandits (Auer et al., 2002; Langford & Zhang, 2007; Chu et al., 2011; Beygelzimer et al.,
2011; Agarwal et al., 2014; Foster & Rakhlin, 2020; Foster et al., 2020), contextual reinforcement
learning (Abbasi-Yadkori & Neu, 2014; Modi et al., 2018; Dann et al., 2019; Modi & Tewari, 2020),
online convex bandits (Kleinberg, 2004; Bubeck et al., 2015; Bubeck & Eldan, 2016; Lattimore,
2020), and non-parametric bandits (Kleinberg, 2004; Auer et al., 2007; Kleinberg et al., 2013). In-
stantiating our theories to these settings would be an interesting direction for future work.

B TECHNICAL TOOLS

B.1 STRONG DUALITY

The following strong duality result for variational forms of bilinear functions is standard, e.g. ex-
tracted from the proof of Foster et al. (2021, Proposition 4.2).

Theorem B.1 (Strong duality). Suppose that X, Y are two topological spaces, such that X is
Hausdorff® and Y is finite (with discrete topology). Then for a bi-continuous function f : XxY — R

5The Hausdorff space requirement of X is only needed to ensure that A(X’) contains all finitely supported
distributions on X'
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that is uniformly bounded, it holds that

sup inf E, xE,~v[f(z,y)] = inf sup EooxEyoy[f(z, )]
XeA(x) YEAQD) v /(@) YEeA(Y) XeA(X) vyl

In this paper, for most applications of Theorem B.1, we take X = M and Y = II. We will as-
sume that II is finite, which is a natural assumption. For example, in tabular MDPs, it is enough to
consider deterministic Markov policies and there are only finitely many of them. Also, the finite-
ness assumption in Theorem B.1 can be relaxed—The strong duality holds as long as both X, Y is
Hausdorff, and the function class {f(z,-) : JJ — R}, _, has a finite p-covering for all p > 0. Such
relaxed assumption is always satisfied in our applications.

B.2 CONCENTRATION INEQUALITIES

We will use the following standard concentration inequality in the paper.

Lemma B.2 (Foster et al. (2021, Lemma A.4)). For any sequence of real-valued random variables
(Xt),<p adapted to a filtration (F;), ., it holds that with probability at least 1 — 6, for all t < T,

¢ ¢
Z —log E [exp(—X,)| Fs_1] < Z X, +log (671).
s=1 s=1

B.3 PROPERTIES OF THE HELLINGER DISTANCE

Recall that for two distributions P, QQ that are absolutely continuous with respect to u, their squared
Hellinger distance is defined as

D} (P,Q) = [ (v/B/dp — \/dQd)

We will use the following properties of the Hellinger distance.

Lemma B.3 (Foster et al. (2021, Lemma A.11, A.12)). For distributions P, Q defined on X and
Sfunction h : X — [0, R], we have

[Ep[2(X)] — Eq[h(X)]] < \/2R(Em[h(X)] +Eq[h(X)]) - D} (P, Q).
Therefore, Ep[h(X)] < 3Eg[h(X)] + 2RD%(P, Q). Also, for function h : X — [—R, R], we have

[Ep[1(X)] — Eg[h(X)]] < \/8R(EP[|/1(X)I] + Eg[|M(X)]]) - DE(P, Q).
Lemma B.4. For any pair of random variable (X,Y), it holds that

Ex~px[Dfi (Py|x,Qyix)] < 2Df (Pxy,Qx,y)-
Conversely, it holds that

Df (Px,y,Qx,y) < 3D (Px,Qx) + 2Ex~py [Dfi (Py|x, Qv x)].

Proof. Throughout the proof, we slightly abuse notations and write a distribution P and its density
dP/dy interchangeably. By the definition of the Hellinger distance, we have

1
§D12{ (Pxy,Qxy)=1- J\/ Pxyv+/Qxy

=1- J\/ PxQx/Pyx4/Qy|x
>1- J %q/]}”wxw(@y\x
= f@(l - «/PY|X\/QY|X)

1

1
ZEX~IPX [Df (Pyx, Qyix)] + ZEX~QX [Df (Pyx,Qyix)]-
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Similarly,

%D%{ Pxy,Qxy)=1— J\/ PxQx + f\/ PxQx (1 —4/PyxQy|x)

1 Py +Qx 1
< §D12{ (Px,Qx) + J% *DH (Pyx,Qyx) ,
and hence
1
Df (Px,y,Qx,y) <Df (Px,Qx) + §EX~PX [Df (Py|x, Qyx)]
1
+ §EX~QX [Df (Py|x, Qyx)]

<3D§; (Px,Qx) + 2Ex~px [Dfi (Pyx, Qvx)],

where the last inequality is due to Lemma B.3 and D% € [0, 2]. O

Next, recall the divergence D%L defined in (1):
. — 2
Do (M), T1()) = DA(PY (1), P () + By [RY(0) - R o) |.

Proposition B.5. Recall that (o,r) ~ M(r) is the observation and reward vectors as described
in Section 2, with o ~ PM(x) and v ~ RM(-|o). Suppose that v € [0,1]7 almost surely and

IRM (0) — RM(0)|2 < 2 forall o € O. Then it holds that
Dfy (M (m), M(m)) < 5D% (M(m), M(m))

where D} (M (r), M(r)) is the standard squared Hellinger distance between R™ @ PM () and
RM @ PM(r).

Proof. To prove this proposition, we need to bound |[RM(0) — RM(0)|2 in terms of
D (RM (0),RM (o)). We denote by R} (o) the distribution of 7. Then by independence, we
have

1= 304 (RY(0).R ) =[] (1- 30 (R¥ (0.7 (0)

h

< (1 - %D%v (R,Af(ox R%(O)))

where the last inequality use the fact that e=* < 1 — /2 for all z € [0, 1]. Then by Lemma B.4,
J— 2 J—
Eonptt(n) [\RM@) - RM@)(J <2E,p () [ Du(RM (0), R (0))?

)

M(n
Combining the above estimation with the fact that D (P (r),PM(w)) < D¥ (M (), M(r))
(data-processing inequality) completes the proof. O

<4Df (M (),

N

The following lemma shows that, although D3 is not symmetric with respect to its two arguments

(due to the expectation over o ~ P (1) in the second term), it is almost symmetric within a constant
multiplicative factor:
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Lemma B.6. For any two models M, M and any policy w, we have
Dfy (M (), M()) < 5Dy, (M (), M ().

Proof. For any function h : O — [0, 2], by Lemma B.3 we have

E, _p37 () [1(0)] < BEqps () [1(0)] + 4D (P (), P ().

2

, and the bound above gives

Therefore, we can take h as h(o HRM —RM(o)
2

D} (P (m), PY () + B, _pir ) [1(0)] < 5DE(PY (), PY (7)) + 5Eqpas () [(0)],

D, (M (w),M (7)) =5DZ (M (m),M ())
which is the desired result. ]

Lemma B.7. For any two models M, M and any policy w, we have
[P () = ()| < VH + 1+ Dro (M), M (7)),
Proof. We have
£ () = £ ()| = [Boprs (y [RY (0)] — B, _pr(y [ B (0)|
Eowprt ()| B (0) = R(0)]| + [Eomprs () | R (0)| B, gy [ B (0)]
(7)
(

< Egepoi(n | VE R (0) = RY(0)] | + Dua(PY (), P ()

<

¢ ¢ (14 1) (Eeprro| R (0) - R | + D3 P31, P () )
=+VH +1-Dgy(M(r), M(r)).
Above, (i) uses the fact that RM (o) € [0, 1] almost surely, and the bound
Eowprt ()| R (0)| = E, iy | B (0)|| < Drv(PY (m), P () < Du(PY (), P¥ ());

(ii) uses the Cauchy inequality vHa + b < y/(H + 1)(a2 + b2) and the fact that the squared mean
is upper bounded by the second moment. O

C DiscUSSIONS ABOUT DEC DEFINITIONS AND AGGREGATION
ALGORITHMS

C.1 DEC DEFINITIONS

Here we discuss the differences between the DEC definitions used within our E2D-TA and within
the E2D algorithm of Foster et al. (2021, Section 4.1) which uses Vovk’s aggregating algorithm as
the subroutine (henceforth E2D-VA). Recall that the regret bound of E2D-TA scales with dec., (M)
defined in Definition 1 (cf. Theorem 2).

We first remark that all the following DECs considered in Foster et al. (2021) are defined in terms
of the squared Hellinger distance D% (M (), M (7)) between the full distribution of (o, r) induced

by models M and M under 7, instead of our D%, which is defined in terms of squared Helhnger
distance in o and squared Lo loss in (the mean of) r. However, all these results hold for D3 &1, as well
with the DEC definition and algorithms changed correspondingly. For clarity, we state their results
in terms of DE{L, which will not affect the essence of the comparisons.

Foster et al. (2021, Theorem 3.3 & 4.1) show that E2D-VA achieves the following regret bound
with probability at least 1 — §:

Regpy < O(T SUPzzeco( M) decy (M 05) + 7y log (| M| /5))7
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where
SUPreco(m) decy (M d7)

_ . M My 2 v (3)
R R |

where EMNH[M(’/T)] denotes the mixture distribution of M () for M ~ i, and co(M) denotes
the set of all mixtures of models in M (which can be also identified with A(M), the set of all
probability distributions over M).

Compared with dec,, Eq. (8) is different only in the place where the expectation Ey7_; is taken. As
D2, is convex in the second argument (by convexity of the squared Hellinger distance and linearity
of Exz. 7 Eop (m) [HRM(O) —RM(0) H;] in 7z), by Jensen’s inequality, we have
sup dec, (M;d;) = dec, (M).
feco(M)
Unfortunately, bounding sup;cq, () dec, (M; 077) requires handling the information gain with re-
spect to the mixture model EMNE[M(TF)], which is in general much harder than bounding the
dec, (M) which only requires handling the expected information gain with respect to a proper

model M () over M ~ p. For general RL problems with H > 1, it is unclear whether
SUDzzeco(Mm) decy (M d;) admit bounds of the form d/y where d is some complexity measure (Fos-

ter et al., 2021, Section 7.1.3). By contrast, our @7(/\4) can be bounded for broad classes of
problems (e.g. Section 5).

We also remark that an alternative approach considered in Foster et al. (2021, Theorem 4.1) depends
on the following definition of DEC with respect to deterministic reference models:

dec, (M, M) :=p€iAn(ij’w) sup. Ernp [far(mar) = far(7) = DRy (M (7), M (7))]

and the DEC of the model class M is simply dec., (M) := supgzc 4 decy (M, M). As M (viewed
as the set of all point masses) is a subset of co(M ), by definition we have

dec, (M) < dec, (M),

therefore dec., (M) can be bounded as long as dec., (M) can. However, that approach requires the

online model estimation subroutine to output a proper estimator M?* € M with bounded Hellinger
error, which—unlike Tempered Aggregation (for the improper case)—requires problem-specific de-
signs using prior knowledge about M and is unclear how to construct for general M.

C.2 AGGREGATION ALGORITHMS AS POSTERIOR COMPUTATIONS

We illustrate that Tempered Aggregation is equivalent to computing the fempered posterior (or
power posterior) (Bhattacharya et al., 2019; Alquier & Ridgway, 2020) in the following vanilla
Bayesian setting.

Consider a model class M associated with a prior ! € A(M), and each model specifies a distri-
bution PM(-) € A(O) of observations o € O. Suppose we receive observations o', ..., 0,... ina
sequential fashion. In this setting, the Tempered Aggregation updates

p (M) ocpr pf (M) - exp (np log PM (0")) = p' (M) - (]P’M(ot))np.
Therefore, for all ¢ > 1,
t Tp
P M) oy pt (M) - (H IP’M(03)> :
s=1
If , = 1 as in Vovk’s aggregating algorithm (Vovk, 1995), by Bayes’ rule, the above p!* is exactly
the posterior M|o'*. As we chose 1, < 1/2 < 1in Tempered Aggregation, '™ gives the tempered

posterior, which is a slower variant of the posterior where data likelihoods are weighed less than in
the exact posterior.
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Algorithm 2 TEMPERED AGGREGATION

Input: Learning rate 7, € (0, 3),7: > 0.
1: Initialize ! < Unif(M).

cfort=1,...,T do

Receive (7, of, r?).

Update randomized model estimator:

Rl N

p (M) oo it (M) - exp (np log P (o ") — ny r* — RM(Ot)HZ)- (10)

D PROOFS FOR SECTION 3

D.1 TEMPERED AGGREGATION

In this section, we analyze the Tempered Aggregation algorithm for finite model classes. For the
sake of both generality and simplicity, we state our results in the following general setup of online
model estimation. Lemma 3 (restated in Corollary D.2) then follows as a direct corollary.

Setup: Online model estimation In an online model estimation problem, the learner is given
a model set M, a context space II, an observation space O, a family of conditional distributions
(PM(-]) : T — A(O))aem’, a family of vector-valued mean reward functions (RM : O —
[0, 1]H )arem- The environment fix a ground truth model M* € M; for shorthand, let P* :=
PM* R* := RM". For simplicity (in a measure-theoretic sense) we assume that O is finite®.

At each step ¢ € [T], the learner first determines a randomized model estimator (i.e. a distribution
over models) pt € A(M). Then, the environment reveals the context ¢ € II (that is in general ran-
dom and possibly depends on ¢ and history information), generates the observation o! ~ P*(-|7?),

and finally generates the reward r* € R (which is a random vector) such that E [r!| of] = R*(o?).
The information (7%, of, r') may then be used by the learner to obtain the updated estimator 1,

For any M € M, we consider the following estimation error of model M with respect to the true
model, at step ¢:

Exrly i= Bo| DE (PM ("), P*([n)) + [RM (o) = R* ()3 ©)

where E; is taken with respect to all randomness after prediction i is made’—in particular it takes
the expectation over (7, o). Note that Err’y;. = 0 by definition.

Algorithm and theoretical guarantee The Tempered Aggregation Algorithm is presented in Al-
gorithm 2. Here we present the case with a finite model class (M| < 0); In Appendix D.3 we treat
the more general case of infinite model classes using covering arguments.

Theorem D.1 (Tempered Aggregation). Suppose |M| < o, the reward vector rt is o?-sub-
Gaussian conditioned on o', and |RM (o') — R*(0")|, < D almost surely for all t € [T]. Then,

Algorithm 2 with any learning rate n,,m, > 0 such that 2n, + 2021, < 1 achieves the following
with probability at least 1 — 0:

T
D B [Errhy ] < Clog(IM]/6),
t=1

where C' = max {%, ﬁ%)d}’ d=(1- 6’0(172"26)172)/D2 and ¢ := n./(1 — 2ny) are con-

stants depending on (1, Nr, 02, D) only. Furthermore, it also achieves the following in-expectation

"We use PM°™ (0) and PM (o|) interchangeably in the following.

8To extend to the continuous setting, only slight modifications are needed, see e.g. Foster et al. (2021,
Section 3.2.3).

°In other words, [, is the conditional expectation on F;_1 = cr(ul, 7r1, 01, rl, e 0T ,/f’).
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guarantee:

T
E[Z Epgpt [Errly ] | < Clog| M.
t=1

The proof of Theorem D.1 can be found in Appendix D.1.1.

Lemma 3 now follows as a direct corollary of Theorem D.1, which we restate and prove below.

Corollary D.2 (Restatement of Lemma 3). The Tempered Aggregation subroutine (3) in Algorithm 1
with 4n, + 1 < 2 achieves the following bound with probability at least 1 — J:

T
Estgy, := Z Ertopt Egpe [DﬁL(M*(wt)’Mt(wt))] < C -log(|M] /6),
t=1

where C depends only on (n,,n:). Specifically, we can choose n, = n. = 1/3 and C' = 10.

Furthermore, when n, = n € (0, %] 7 = 0, (3) achieves

Esty = i EriepEge e [D%; (PM' (xt), PM" (wt))] <

t=1

-log(| M| /0)

SERS

with probability at least 1 — 0.

Proof. Note that subroutine (3) in Algorithm 1 is exactly an instantiation of the Tempered Aggrega-
tion algorithm (Algorithm 2) with context 7t sampled from distribution p* (which depends on pt),
observation o!, and reward r’. Therefore, we can apply Theorem D.1, where we further note that
Epr~pt [Errh, | corresponds exactly to

* At * At 2
Enrept [Errﬁu] = Eﬁtwﬂt]Eﬂ-t\,pt [DIQ{(PM (71-t)7 pM (ﬂt)) + EONPM*(TH) ‘RM (0) — RM (0)‘2]

S P [D%L(M*(wt), Mt(wt))].

Notice that we can pick 02 = 1/4 and D = +/2, as each individual reward r, € [0, 1] almost surely
(so is 1/4-sub-Gaussian by Hoeffding’s Lemma), and

R0 - R ()] = ¥ |70 - R 0
h=1

H H
< Y |RM (o) = R (o) < Y] R ()] + | R (o) = 2.
h=1 h=1

for any two models M, M’ and any o € O. Therefore, Theorem D.1 yields that, as long as 47, +1, <
2, we have with probability at least 1 — ¢ that

T
Bstrr, i= ) Exinp B [ Do (M7 (), 1T (r) | < C - log(1M] /5),
t=1

where C' = max {i, (1%%)6,}, d=(1—-e°279)/2 and ¢ = n,/(1 — 27,). Choosing 1, =

- =1/3,wehavec =1,¢ = (1—e71)/2,and C = max {3,3/c’} < 10 by numerical calculations.
This is the desired result. The case 1, = 0 follows similarly. O

D.1.1 PROOF OF THEOREM D.1

For all ¢ € [T'] define the random variable

M (ot |t
Al = —log Epge [exp (np log IP*((H + nréf\/[)] ,

ot|mt)
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where
8y o= vt = R (012 — [rf — RM (") (11)

Recall that E; is taken with respect to all randomness after prediction ! is made. Then
IP)]VI (Ot "R’t)
E; [exp (—At)] =E; []EMNM [exp (np log W + nréfw)”

M (|t

¢ (o'|7") ¢

= > pH(ME, [eXp <77p log — +nr5M)]

M P (o[x*)
1. PM(ot|xt) M

< Z pt(M)E; [an exp ( log *> + (1 —2n,) exp ( 5%)] 12

=y 2 ° P (ot|rt) 1-2n, (12)

=2, Y, u'(M)E, [Eow*uwwl WH

MeM

+ (1 —2np) Z ' (M)E, [GXP (1 _n;np 51»1)]~

MeM

For the first term, by definition

PM (o] 1,
Eo~1P’*<~rrt)l IF’*(O|77t)] =1- §D12{(P (o|t), PM(-|"). (13)

To bound the second term, we abbreviate ¢ := %, and invoke the following lemma. The proof
can be found in Appendix D.1.2.

Lemma D.3. Suppose that v € R is a o%-sub-Gaussian random vector, ¥ = E[r] is the mean of r,
and T € R% is any fixed vector. Then the random variable

§:=|r —¥5 — Jr — £,
satisfies E[exp(\0)] < exp (—)\(1 — 2020 [F - ?Hg) forany A e R.
Therefore,
Edfexp (e0h)] <Ee|exp (—e(1 - 20%0) [RM (o) = R* (") )]
<1 - ¢B[|RM (o) — R* (o), (14)

where the second inequality is due to the fact that for all x € [0, D?], it holds that eme(l=20%c)r

1 — 'z, which is ensured by our choice of ¢ € [0,2/02) and ¢ := (1 — e~ P*c(1-20%)) /D2 = ¢,
Therefore, by flipping (12) and adding one on both sides, and plugging in (13) and (14), we get

1= Ey[exp (—A")] 20pEpi~ i Bre w7, [DEEY (7), P ([7"))]
+(1— 2np)c’EM~utEt[||RM(0t) - R*(Ot)Hz]'

Thus, by martingale concentration (Lemma B.2), we have with probability at least 1 — § that

T T T
Z A +log(1/6) = Z —logE¢[exp (—A")] = Z 1 —E¢[exp (—A")]
t=1 =1 i=1
T
>np Y Baree B [DE(PY ("), P*(-|n"))] as)
=1
T
(1= 2m)¢" ) Basee By [RY (o) = R*(01)]3]
=1

> min {np, (1— 277p)c’} “Eprpt [Err'}w].
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It remains to upper bound Zthl A’. Note that the update rule of Algorithm 2 can be written in the
following Follow-The-Regularized-Leader form:

Ml (M) €xp (Zsst—l 7p log PM (OS|7T5) + 77r57\/1)
Sarem WM exp (X <;_y 1p log PM (08 |75) + 1,65,,)

where we have used that 6%, = — |r’ — RM(ot)Hz + [t — R*(0")| in which [r* — R*(0")[3is a
constant that does not depend on M for all ¢ € [T']. Therefore we have

]PZ\/I ot|lnt
exp(—A") = Eprpe [exp <77p log IP’*((ot||7rt)) + nréfvf)]

PM t| .t
> w(M)exp <77p log IP’*((OtI|7Tt)) + nr5§w)
MeM o
_ Z pi' (M) exp (Zsst—1 Tlp log PM (0°|7°) + nréfw) exp (77 log w + 1,0t )
MeM Z]W’GM pt (M) exp (ngtfl np log PM’(OSMS) + nréj/[/) P P*(ot|mt) oM
M s s
Shasem 11 (M) exp (3., 1o log G5l + mid )

M (o |m?)

2insem 1H(M) exp (Zs<t L 7plog ooy T 77r5fu)

p' (M) =

i

(16)

where the last equality used again the fact that —n, log P*(0®|7®) is a constant that does not depend
on M for all s € [t].

Taking — log on both sides above and summing over ¢ € [T'], we have by telescoping that
IP)J\I t‘

T
L 7t)
;At = —log Z put (M) exp (Z np log —————= B (of[nT) nréfw> ) (17)

MeM
By realizability M* € M, we have

ZN —log ! (M*) = log M.

Plugging this bound into (15) gives the desired high-probability statement. The in-expectation state-
ment follows similarly by further noticing that in (15), taking the expectation [E [Zthl At] gives the
same right-hand side, but without the additional log(1/¢) term on the left-hand side. O
D.1.2 PROOF OF LEMMA D.3
By definition,
§=2-TF-T—|F T3,
and therefore,
Efexp (\)] = exp (—)\ & — fug)E[exp 2\ r —F,F — )]

<exp (202/\2 I8 — %)% - A7 — fu;)

—exp (=A(1 = 20%0) £ - 7]3),
where the inequality is due to the definition of o2-sub-Gaussian random vector: For v = 2\(T—T) €

Rd
2
i\

Elexp (v.1))] < exp <2>
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Algorithm 3 E2D Meta-Algorithm with Randomized Model Estimators

Input: Parameter v > 0; Online estimation subroutine Algg.,; Prior distribution u! € A(M).
1: fort=1,...,7T do
2 Setp' « argmin,ca ) ‘A/W“t (p), where ‘A/ﬂ{“t is defined in (2).
3:  Sample 7t ~ p'. Execute 7’ and observe (o, r?).
4:  Update randomized model estimator by online estimation subroutine:

p e Alg ({7, 0% 1) )

D.2 GENERAL E2D & PROOF OF THEOREM 2

We first prove a guarantee for the following E2D meta-algorithm that allows any (randomized)
online estimation subroutine, which includes Algorithm 1 as a special case by instantiating Algg,
as the Tempered Aggregation subroutine (for finite model classes) and thus proving Theorem 2.

The following theorem is an instantiation of Foster et al. (2021, Theorem 4.3) by choosing the
divergence function to be Dry,. For completeness, we provide a proof in Appendix D.4. Let

T
Estrr i= Y Eriep B [DgL(Mt(wt), M*(wt))] (18)
t=1

denote the online estimation error of { ut}thl in D3, divergence (achieved by Algg.,).
Theorem D.4 (E2D Meta-Algorithm (Foster et al., 2021)). Algorithm 3 achieves

Regpym < T - dec, (M) + v - Estgy.

We are now ready to prove the main theorem (finite M).

Proof of Theorem 2  Note that Algorithm 1 is an instantiation of Algorithm 3 with Algg
chosen as Tempered Aggregation. By Lemma 3, choosing 7, = 1, = 1/3, the Tempered Aggrega-
tion subroutine achieves

Estgy, < 10log(| M| /§)

with probability at least 1 — §. On this event, by Theorem D.4 we have that
Regpy < T - decy (M) + 7 - Estry, < T - decy (M) + 10ylog(| M| /3).

This is the desired result. O

D.3 E2D-TA WITH COVERING

In many scenarios, we have to work with an infinite model class M instead of a finite one. In the
following, we define a covering number suitable for divergence Dgy,, and provide the analysis of
the Tempered Aggregation subroutine (as well as the corresponding E2D-TA algorithm) with such
coverings.

We consider the following definition of optimistic covering.

Definition D.5 (Optimistic covering). Given p € [0,1], an optimistic p-cover of M is a tuple
(P, My), where My is a finite subset of M, and each My € My is assigned with an optimistic
likelihood function P*o, such that the following holds:

(1) For My e My, for each T, ]f”MO’”(-) specifies a un-normalized distribution over O, and it holds
that HIP’MO’”(-) - I?’MO’”(-)H < p2
1
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(2) For any M € M, there exists a My € My that covers M: for all m € 11, o € O, it holds
PMom (o) = PM7(0)!°, and [RM (0) — RMo (O)H1 < p.

The optimistic covering number N'(M, p) is defined as the minimal cardinality of My such that
there exists P such that (P, My) is an optimistic p-cover of M.
With the definition of an optimistic covering at hand, the Tempered Aggregation algorithm can

be directly generalized to infinite model classes by performing the updates on an optimistic cover
(Algorithm 4).

Proposition D.6 (Tempered Aggregation with covering for RL). For any model class M and an
associated optimistic p-cover (P, My), the Tempered Aggregation subroutine

SMont 2
pt Y (M) ocpy pt (M) - exp (771) log PM™ (o) — n, |t — RM(ot)H2> (19)
with p' = Unif(My) and n, = 1. = 1/3 achieves the following bound with probability at least
1-4:
Estry, < 10 - [log | Mo| + 2T'p + 2log(2/6)].

E2D-TA with covering Define

est(M, K) := inf (log N'(M, p) + Kp) (20)

inf
p=0
which measures the estimation complexity of M for K-step interaction.

Proposition D.6 implies that, based on the model class M, we can suitably design the optimistic
likelihood function PP and the prior !, so that Algorithm 3 with Algg,, chosen as (19) achieves

~

Estrr, = O (est(M,T)). Therefore, by Theorem D.4 we directly have the following guarantee.

Theorem D.7 (E2D-TA with covering). Algorithm 3 with Algg, chosen as TEMPERED AGGRE-
GATION WITH COVERING (19) and optimally chosen ~y achieves

Regpy < C ir;% (T - decy (M) + yest(M,T) + vlog(1/6))
¥
with probability at least 1 — 0, where C' is a universal constant.

D.3.1 DISCUSSIONS ABOUT OPTIMISTIC COVERING

We make a few remarks regarding our definition of the optimistic covering. Examples of optimistic
covers on concrete model classes can be found in e.g. Example K.13, Proposition K.15; see also
(Liu et al., 2022a, Appendix B).

A more relaxed definition We first remark that Definition D.5(2) can actually be relaxed to

(2°) For any M € M, there exists a My € My, such that max,co HRM(O) — RMo (O)H1 < p, and
Eopa () lﬁ’)] <l+4p, Vrell (M

For the simplicity of presentation, we state all the results in terms of Definition D.5. But the proof
of Theorem D.8 can be directly adapted to (f); see Remark D.9.

Relation to Foster et al. (2021, Definition 3.2) We comment on the relationship between our
optimistic covering and the covering introduced in Foster et al. (2021, Definition 3.2) (which is also
used in their algorithms to handle infinite model classes). First, the covering in Foster et al. (2021)
needs to cover the distribution of reward, while ours only need to cover the mean reward function.
More importantly, Foster et al. (2021, Lemma A.16) explicitly introduces a factor log B, where

10 An important observation is that, along with (1), this requirement implies Drv (IP’M’Tr (), pMo,m ()) < p?

(for proof, see e.g. (33)). Therefore, a p-optimistic covering must be a p*-covering in TV distance.
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Algorithm 4 TEMPERED AGGREGATION WITH COVERING

Input: Learning rate 7, € (0, 3),7, > 0, number of steps T', p-optimistic cover (IF), My).
I: Initialize ' < Unif(Mo).
2: fort=1,...,T do
3:  Receive (7f,0f, rt).
4:  Update randomized model estimator:

(M) ocpy pt (M) - exp (77p 1og]I~DM(ot\7rt) — e et - RM(ot)Hi).

M
B = Sup,eo rert, mem PV ((()T:)T) with v being certain base distribution. Actually, with such a B, we
can show that

N'(M, p) < Nrv(M, p?/AB),

where Ny is the covering number in the TV sense, and NV is the optimistic covering number with
respect to ().

Relation to other notions of covering numbers Ignoring the reward component, our optimistic
covering number is essentially equivalent to the bracketing number. We further remark that opti-
mistic covering can be slightly weaker than the covering in x2-distance sense: given a p2-covering

M in the latter sense, we can take P= (1 + p?)P to obtain a p-optimistic covering defined by (7).

D.4 PROOF OF THEOREM D.4

We have by definition of Regpy, that

T
Regpym = Z Eqtopt [fM*(wM*) - fM*(ﬁt)]

t=1

N [P (mare) = P (7) = VB g | DLV (), AT (7)) |

T
£ D, Brnp B [ DR (M (), B (7)) |
t=1
() & —
<)) Sup Bt gt Bp o[£ (mar) = M (x") = ¥ DR (M ('), M(x"))] + 7 - Estry
t=1M¢€

o Z VIC(p')  +vy-Estgy,
=inf,eam) V4' (p)
T
() Z dec, (M, ") + 7 - Estry, < T - dec, (M) + 7 - Estgy..

t=1

Above, (i) follows by the realizability assumption M* € M; (ii) follows by definition of the risk
V,Y“t (cf. (2)) as well as the fact that p* minimizes V,Y“t (+) in Algorithm 3; (iii) follows by definition
of dec., (M, u'). This completes the proof. O

D.5 PROOF OF PROPOSITION D.6

We first restates the TEMPERED AGGREGATION WITH COVERING subroutine (19) in the general
setup of online model estimation in Algorithm 4.

Theorem D.8 (Tempered Aggregation over covering). For any M that is not necessarily finite, but
otherwise under the same setting as Theorem D.1, Algorithm 4 with 2n,, + 20%n, < 1 achieves with
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probability at least 1 — § that

T
D Eprepe [Errh, | < Cllog | Mo| + 21og(2/6) + 2T p(1 + )],

t=1
where C'is defined same as in Theorem D. 1.

Plugging Theorem D.8 into the RL setting, picking (7, 7.) and performing numerical calculations,
we directly have the Proposition D.6. The proof follows the same arguments as Corollary D.2 and
hence omitted. Similarly, when n, = n € (0, é), 7 = 0, the proof of Theorem D.8 implies that (19)

with u! = Unif (M) achieves the following bound with probability at least 1 — 4:

T

* ATt 1
3 Eriep B [ DR (P (), P () | < < llog Mol +20Tp +2log(2/3)]. @1
t=1

Proof of Theorem D.8  The proof is similar to that of Theorem D.1. Consider the random variable

PM (of|!) i
A = —10g EJMN# exp | Mp lOg W + 'r]r(SM s

for all ¢ € [T'], where 4 is defined in (11). Then by (12) and (14), we have

PM (ot|rt)

Bifoxp (~A)) <2BarBe |\ iy

(0 2m) (1 By B[R () - R (D)),

where ¢ is the same as in Theorem D.1. To bound the first term, we notice that for all = € II, and
o ~ P*(-|7), we have

BM (o]7) PM (o) \/PM (o]m) — /P (o] )
Eo~]1”*(-|7r) — | = Eo~IP’*(-|7r) . + Eo~]P’*(-|7T)
P*(o|m)

P*(o|) P*(o|m)

\/Wfr

1 M *
<l - ~P*(-|7
1 2D g (P (), P 7)) + Egupr () l (o)

PM( 0|7r IP’M(0|71')’] 3

P (o|m)

D2 HPY (), P* (7)) + Eops () [

1
1= LDREY (1), 2 (1) + [F ) — B ()|
1
~ SDAEY (1), P (fm) + p, 22

where the last inequality is due to the fact that H]P’M (|r) = PM (|7T)H < p%. (22) directly implies
1
that

fDM(OtM-t)

E
IV B (offa)

1 R
< 1= SE[DEPY ("), P*(x)] + p. (23)
Therefore, by Lemma B.2, with probability at least 1 — §/2, it holds that

T

Z A' +1og(2/8) = Z —log Ei[exp (—A")] = Z 1 —E¢[exp (—A")]

t=1 t=1 t=1
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T
205 | D Enrmpu Be[ DR (Y (-|x'), B*(-|7"))] = 2Tp1
t=1

T
+ (1 =2n,)c Z EnfeprEy [HRM(O —R*(0 Hz]
t=1

In the following, we complete the proof by showing that with probability at least 1 — §,/2,

T
Z A! < log |[Mo| + 2Tn.p + log(2/6).

By a telescoping argument same as (17), we have

T ~M
Y 3 Y P (o' |m")

1
P At = — log 1% ( exp < Tlp log W + 7]1«5}:” . (24)

MeMg

By the definition of M and the realizability M* € M, there exists a M € M such that M™ is
covered by M (i.e. [RM° (o) — R*(O)HOO < pand PM (-|r) = P*(-|x) for all 7). Then

A BM(ollrt) _ o
E|exp ZA < |Mo|E|exp Zr]plog P (ol [) — 60 | |- (25)
=1
Now

M (ot |t T *(ot|m e
Elexp ( Z Mo log IP)((t||t)) a >] [H (]IEDJVI 0t||7'rt) ) eXp( T]r(st )]
Eh—[ exp(—nrétM)] - E[ﬁ xp(=0h) - B [exp(—mdy)| OT]l (26)
t=1 t=1

T-1
< exp (2pn;,)E l n eXp(—Ur(Sf\/f)}

t=1

< - <exp (2T o),

where the first inequality is due to PM > P*, the second inequality is because for all ¢ € [T],
E [exp(fnr55\4)| ot] < exp (nr(l + 20%n,) HRM( H ) exp(2pn;),

which is due to Lemma  D.3 and IRM(0") — R*(0 H 5 <
IRM(0") — R*(0")|, |[RM (") — R*(0")|, < p. Applying Chernoff’s bound completes the
proof. O

Remark D.9. From the proof above, it is clear that Theorem D.8 also holds for for the alternative
definition of Covering number in (f): Under that definition, we can proceed in (26) by using the fact

Eop( ‘ﬂ)[ " (olm) ] < 1+ pand the fact E [exp(—n,6Y,)| o] < exp(2pn,) alternately.

BM (ofm)

E CONNECTIONS TO OPTIMISTIC ALGORITHMS

Motivated by the close connection between E2D-TA and posteriors/likelihoods, in this section,
we re-analyze two existing optimistic algorithms: Model-based Optimistic Posterior Sampling
(MOPS), and Optimistic Maximum Likelihood Estimation (OMLE), in a parallel fashion to E2D-
TA. We show that these two algorithms—in addition to algorithmic similarity to E2D-TA—work
under general structural conditions related to the DEC, for which we establish formal relationships.
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E.1 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (MOPS)

We consider the following version of the MOPS algorithm of Agarwal & Zhang (2022a)!!. Similar
as E2D-TA, MOPS also maintains a posterior u! € A(M) over models, initialized at a suitable
prior pu'. The policy in the ¢-th episode is directly obtained by posterior sampling: ¢ = 7+ where
M? ~ put. After executing 7t and observing (of, rt), the algorithm updates the posterior as

_ ot 2
P (M) ey pt (M) - exp (7 LM (mar) + mp log PMT (o) — e et — RM( t)Hz)- 27)
This update is similar as Tempered Aggregation (3), and differs in the additional optimism term
v~ 1 fM (7pr) which favors models with higher optimal values. (Full algorithm in Algorithm 5.)
We now state the structural condition and theoretical guarantee for the MOPS algorithm.

Definition E.1 (Posterior sampling coefficient). The Posterior Sampling Coefficient (PSC) of model
class M with respect to reference model M € M and parameter vy > 0 is defined as

psc, (M, M) = sup En,Erry [fM(WM) — fM(mar) — ¥ DAL (M (mar), M(WM/))] .
HeA(M)
Theorem E.2 (Regret bound for MOPS). Choosing n, = 1/6, n, = 0.6 and the uniform prior
ut = Unif (M), Algorithm 5 achieves the following with probability at least 1 — §:

Regpar < T psc, (M, M*) +2/7 | + 47 - log(1M] /6).

Theorem E.2 (proof in Appendix F.1) is similar as Agarwal & Zhang (2022a, Theorem 1) and is
slightly more general in the assumed structural condition, as the PSC is bounded whenever the
“Hellinger decoupling coefficient” used in their theorem is bounded (Proposition E.5).

Relationship between DEC and PSC The definition of the PSC resembles that of the DEC. We
show that the DEC can indeed be upper bounded by the PSC modulo a (lower-order) additive con-
stant; in other words, low PSC implies a low DEC. The proof can be found in Appendix F.4.

Proposition E.3 (Bounding DEC by PSC). Suppose 11 is finite, then we have for any v > 0 that

dec, (M) < sup psc, (M, M) +2(H +1)/y.
MeM

E.2 OPTIMISTIC MAXIMUM LIKELIHOOD ESTIMATION (OMLE)

Standard versions of the OMLE algorithm (e.g. Liu et al. (2022a)) use the log-likelihood of all
observed data as the risk function. Here we consider the following risk function involving the
log-likelihood of the observations and the negative L3 loss of the rewards, to be parallel with E2D-
TA and MOPS:

2
L(M) = 3171 [log PM (o) — [ — RM (o) 5] (28)
In the t-th iteration, the OMLE algorithm plays the greedy policy of the most optimistic model
within a S-superlevel set of the above risk (Full algorithm in Algorithm 6):
(M*,7") == argmax fM(r) suchthat L,(M) > maxLy(M')—p. (29)
(M,m)eMxII M’
We now state the structural condition and theoretical guarantee for the OMLE algorithm.

Definition E.4 (Maximum likelihood estimation coefficient). The maximum likelihood estimation
coefficient (MLEC) of model class M with respect to reference model M € M, parameter v > 0,
and length K € 7> is defined as

K
— 1 k
mlecy g (M, M) := sup — M (p) — fM
K {Mk}e/\/( K kzll: M )

[(max Z D1 (M(mpze), Mk(wMt))> v 1].

(Tarw )]

t<k—1

"Qur version is equivalent to Agarwal & Zhang (2022a, Algorithm 1) except that we look at the full obser-
vation and reward vector (of all layers), whereas they only look at a random layer h* ~ Unif ([H]).
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Algorithm 5 MOPS (Agarwal & Zhang, 2022a)

1: Input: Parameters 7,y > 0; prior distribution u! € A(M); optimistic likelihood function P.
2: fort=1,...,T do

3:  Sample M* ~ pt(-) and set wt = wpse.

4:  Execute w! and observe (of,r?).

5 Update posterior of models by Optimistic Posterior Sampling (OPS):

_ S~ Mt 2
P (M) ocap pt (M) - exp (7 LM (ear) + mp log PMOT (o) — e et — RM(Ot)HQ) (30)

Theorem E.5 (Regret bound for OMLE). Choosing 3 = 3log(|]M|/8) = 1, with probability at
least 1 — 0, Algorithm 6 achieves

Regpm < ir;f(’) {T - mlec, (M, M*) + 12v - log(|M]|/3)}.
8!

Existing sample-efficiency guarantees for OMLE-type algorithms are only established on specific
RL problems through case-by-case analyses (Mete et al., 2021; Uehara et al., 2021; Liu et al.,
2022a;b). By contrast, Theorem E.5 shows that OMLE works on any problem with bounded
MLEQ, thereby offering a more unified understanding. The proof of Theorem E.5 is deferred to Ap-
pendix G.2.

We remark that the MLEC is also closely related to the PSC, in that bounded MLEC (under a slightly
modified definition) implies bounded PSC (Proposition G.4 & Appendix G.3).

F PROOFS FOR SECTION E. 1

F.1 ALGORITHM MOPS

Here we present a more general version of the MOPS algorithm where we allow M to be a pos-

sibly infinite model class, and require a prior u' € A(M) and an optimistic likelihood function P
(cf. Definition D.5) as inputs. The algorithm stated in Appendix E.1 is a special case of Algorithm 5

with | M| < o0, P = P, and p* = Unif(M).
We state the theoretical guarantee for Algorithm 5 as follows.

Theorem F.1 (MOPS). Given a p-optimistic cover (IF’, M), Algorithm 5 with n, = 1/6, n, = 0.6
and ;' = Unif(M) achieves the following with probability at least 1 — §:

2
Regppm < T[pscv/ﬁ(/\/l, M*) + 7] + vy[log |[Mo| + 3T p + 21log(2/6)].

Choosing the optimal v > 0, with probability at least 1 — 9, suitable implementation of Algorithm 5
achieves

T
Regpn < 12 ir;% {TpscW(M,M*) + p + ylest(M, T) + log(l/é)]}.
8!

When M is finite, clearly (P, M) itself is a 0-optimistic covering, and hence Theorem F.1 implies
Theorem E.2 directly.

It is worth noting that Agarwal & Zhang (2022a) state the guarantee of MOPS in terms of a general
prior, with the regret depending on a certain “prior around true model” like quantity. The proof of
Theorem F.2 can be directly adapted to work in their setting; however, we remark that, obtaining
an explicit upper bound on their “prior around true model” in a concrete problem likely requires
constructing an explicit covering, similar as in Theorem F.1.

Proof of Theorem F.1 By definition,

T
Regpm = Z Epropt [fM* (mags) — fM (7TM)]
=1
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T
= 2 Engpe [ £ (mare) = M (7a1) + Ty [Dhy, (M (), M ()] |

<

Bounded by Corollary F.3

T
+ Y Eatege | £ (mar) = 27 (m01) = 3By [Dfy, (M (), M ()] |

~~
Bounded by psc

2T
<7[log [Mo| + 3Tp + 2log(2/6)] + ~ + T'psc,, j6(M, M™).

F.2 OPTIMISTIC POSTERIOR SAMPLING

In this section, we analyze the following Optimistic Posterior Sampling algorithm under a more
general setting. The problem setting and notation are the same as the online model estimation
problem introduced in Appendix D.1. Additionally, we assume that each M € M is assigned with
a scalar Vjs € [0, 1]; in our application, Vj; is going to be optimal value of model M.

Theorem F.2 (Analysis of posterior in OPS). Fix a p > 0 and a p-optimistic covering (]IND, My) of
M. Under the assumption of Theorem D. 1, the following update rule

_ ~ 2
(M) ocpy pf (M) - exp (’y "War + np log PM (of [xf) — my [xf — RM(ot)H2>. 31
with 20, + 4021, < 1 and p* = Unif (M) achieves with probability at least 1 — § that

_ T
“8y(1 — 2np, — 4o2n,)
+[Tp2y™" + 2np + 1) + 210g(2/6)],

where V, = Vi« and co = min{n,, 40°n,(1 — (3*’32/8"2)/D2 }, as long as there exists M € M,
such that M™* is covered by M (cf. Definition D.5) and Vy; = V, — 2p.

T
Z Enrept[Vi = Var + coy Errly | + v log | My

t=1

The proof of Theorem F.2 can be found in Appendix F.2.1.

As a direct corollary of Theorem F.2, the posterior ;f maintained in the MOPS algorithm (Algo-
rithm 5) achieves the following guarantee.

Corollary E.3. Given a p-optimistic covering (]T"7 M), subroutine (30) within Algorithm 5 with
Np = 1/6,m, = 0.6,y = 1 and uniform prior p* = Unif(M) achieves with probability at least
1 — 6 that

T
O Eates [ £ (mare) = £ (7ar) + ZEpt [ Dy, (M (), M ()]
t=1

< g + v[log [Mo| + 3Tp + 21og(2/9)].

Proof. Note that subroutine (30) in Algorithm 5 is exactly an instantiation of (31) with context

! sampled from distribution p¢ (which depends on u!), observation o!, reward r?, and Vy; =

M (mar). Furthermore, Epy [Errfw] corresponds to B, Ereope [DI%LL(M* (1), M (m))]
(cf. Corollary D.2).

Therefore, in order to apply Theorem F.2, we have to Vgrify: as long as M € M covers the ground
truth model M* (i.e. |[RM0(0) —R*(0)|, < pand PM(-|x) = P*(-|x) for all 7), it holds that
Var = Vi — 2p. We note that V, > fM" (7), thus

fM(m) = M ()] < sup Dry (B (). BY([m) 40 (D)

Vi — Vs <sup
™
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by definition. An important observation is that, for 7 € II,

Drv (B (), PY (m) = 3 [P*(olm) — PM(olm)], < 3 B¥ (olm) — P (olr) < 2. (33)
0eO 0eO

Therefore, V, — Vi < p+ p? < 2p. Now we can apply Theorem F.2 and plug in 02 = 1/4, D? = 2
as in Corollary D.2. Choosing 1, = 1/6, n. = 0.6, and v > 1, we have 47, + 1+ np < 3,
8(1 —2n, — 1) = 1/2, and ¢y = 1/6. This completes the proof. O

F.2.1 PROOF OF THEOREM F.2

For all ¢ € [T'] define the random variable

ﬁDM(Ot|7Tt)
t._ -1 t
A" = —logEpre e [exp (7 (Var — Vi) + mp log P (ot]rt) +0:0ar | |5

where 6% is defined as in (11).

Similar as the proof of Theorem D.1, we begin by noticing that

¢ 1 PM (of|rt) :
logIEt[eXp (—A )] =logEpr~ptEe|exp [ v~ (Var — Vi) 4 np log W + ey

Var — Vi
<(1—2n, —40%n,) log By t[exp( )]
( P ) g Y(1 = 2np — 4o?n;)

1. PM(ot|rt)
+ 277p log ]EM~Mt]Et [exp <2 log W

1
+ 402n, log Epre By [exp (4025}6\4> ] , (34)

which is due to Jensen’s inequality. For the first term, we abbreviate 79 = 1 — 27, — 407, and
consider aps := (Vi — Vr)/~vno. Then by the boundedness of a,; and Hoeffding’s Lemma,

EMNMt[VM]_‘/*) ( 1 )
Erretlexp(—a <ex cexp | —=— ). 35)
M~p [ p( M)] p( o p 8'72"7(%

The second term can be bounded as in (22):
1. PM(ot|rt) 1 N
log Epse i By lexp <2 log P (otln?) <logEpr e [1 —3E [DE @M (-|x"), P*(-|x"))] + p}
1 .
< =5 Eureu B [DEPY (|71, P*(|7")] + p, (36)

and the third term can be bounded by Lemma D.3 (similar to (14)):
1 1 , . 2
log Epge By [exp <402(5}5\4)] < logEpr By [exp (802 HRM(Ot) _R (Ot)|2>]
<logEpsp By [1 — (1 —e %% D% |IRM (o) — R*(ot)Hj] (37)

<-(1- G_DZ/SUZ)/D2EM~HtEt[”RM(Ot) _ R*(Ot)Hz]'
Plugging (35), (36), and (37) into (34) gives
Vi = Eprept [Via] 1
—logE.[exp (—AY)] = a —
g i [exp (—A")] 5 S

2, FEar W B DR B (1), P ()] — ]

(38)
ot (1 D7) D By B[R ()~ R (0]

2EM~M [’}/_1(‘/; — V]w) + Co EI‘I"IEW] — — 2’[7pp.

1
87210
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On the other hand, by Lemma B.2, we have with probability at least 1 — ¢/2 that

T T
2 A" +1og(2/6) = 2 —log E,[exp (—A")]. (39)

t=1 t=1

It remains to bound Zle A'. By the update rule (31) and a telescoping argument similar to (16),
we have

SIN S PMo'rt) |
;A = —logEps~ 1 exp ;7 (Var = Vi) +np log B (of|) +m0h | -

The following argument is almost the same as the argument we make to bound (24). Fix a M € M,
that covers M™ and V; — Vi, = —2p. We bound the following moment generating function

1
=E

Pas (ot |7t)

E]W~,u1 exXp (Z?:l 7_1(VZM - ‘/*) + Tlp IOg P (ot]xt) + nT(ﬁM)

o Py (of|7) ,
<IMo|Elexp | = Y v (Var = Vi) + mp log ——=—2 + il
~ P*(of|r")

T
<exp (217" 'p) [Mo| E [H exp ("rfﬁw)]
t=1

<exp (2T7_1p + Tpm) | Mo,

where the first inequality is because (M) = 1/|My|, the second inequality is due to PM >
P*, and the last inequality follows from the same argument as (26): by Lemma D.3 we have
E [exp(—n:d4,)| '] < exp(n.p), and applying this inequality recursively yields the desired result.

Therefore, with at least with probability 1 — 6/2,

T
2 A" <log Mol + Tp(2v™" + 2n,) + log(2/6). (40)
t=1

Summing (38) over ¢ € [T'], then taking union of (40) and (39) establish the theorem. O

F.3 BOUNDING PSC BY HELLINGER DECOUPLING COEFFICIENT

The Hellinger decoupling coefficient is introduced by Agarwal & Zhang (2022a) as a structural
condition for the sample efficiency of the MOPS algorithm.

Definition F.4 (Hellinger decoupling coefficient). Given o € (0,1), € > 0, the coefficient
dep™*(M, M, €) is the smallest positive number ¢ = 0 such that for all i € A(M),

Enr, EM [QhM’WM (snyan) = — V3™ (Sh“)]
< (Ch EM,MIN;LEMJM/ |:D12{ (]P)hM('lshvah>7P’]lM("8h’ah)) * )R%(S}“ah) - RhM(s’“ah)‘ :|> e

The Hellinger decoupling coefficient dcp is defined as

1 H (1-a)/a
dep®(M, M, ¢) := (H Z dep™*(M, M, e)a/(la)> .

h=1

We remark that the main difference between the PSC and the Hellinger decoupling coefficient is that,
the Hellinger decoupling coefficient is defined in terms of Bellman errors and Hellinger distances
within each layer h € [H] separately, whereas the PSC is defined in terms of the overall value
function and Hellinger distances of the entire observable (o, r).
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The following result shows that the PSC can be upper bounded by the Hellinger decoupling coeffi-
cient, and thus is a slightly more general definition'?

Proposition F.5 (Bounding PSC by Hellinger decoupling coefficient). For any o € (0, 1), we have

o =7 a/(1—a)
20H M
aH dep ’5/\/1, ,5)) +€>.

psc., (M, M) < Hégg ((1 — a)(

Proof. Fix M, M € M, and a € (0, 1). Consider
Apspan (M, M) := Dfj (PQIHShaah)aphﬂ('|8h7ah)) + ’Rijy(smah) - R?(Shyah)r-
By the definition of Dry, and Lemma B.4, we have for any h € [H | that
B0 [Ap sy an (M, )] < 2D3y, (M (mar:), M (marr)) -
Fix € > 0 and and write ¢ = dcp”™®(M, M, ¢). For any yu € A(M), we have

Earey| £ (m2r) = £ (mar) |

H
M M, M,
= Z EM~HIE STTM [Qh ™M (Sha ah) . — Vh+17rM (5h+1)]
h=1

H «
Z (C En M’~MEM e [Ah Sluah(M M)]) + He
h=1

QEM M'NM[DRL (M(Tl']\/j/),M(ﬂM/))])a + He

||Mm

a/(l—-a) H
2aH> Z (Ch)oz/(l—a) He

gnyM’MWM[D%{L (M (mar), M(marr)) ] + (1 — a)< S

h=1

0l ng T /1)
_ 2a.d M
Bt arrn [ Dar, (M (mar), M (mar))] +(1—a)H1/(1_°‘)( acep <7M ’€)> + He,

where the last inequality is due to the fact that for all z,y > 0, « € (0, 1),
a/(1—a) a/(1-a)
o o yx aHy Yy aH o/(1—a)
< 1— =7 =2 4an- = ) 7
s gt )(7) 7t a)<7) /
by weighted AM-GM inequality. O

F.4 PROOF OF PROPOSITION E.3

Our overall argument is to bound the DEC by strong duality and the probability matching argument
(similar as Foster et al. (2021, Section 4.2)), after which we show that the resulting quantity is related
nicely to the PSC.

In the following, we denote psc., (M) := supgze o PSC., (M, M). By definition, it suffices to bound
dec, (M, z) for any fixed 7z € A(M). We have

dec(M, z) = pelil(fn)ﬁujl\)/l Exg B[ M (mar) = M () = ¥ Dy, (M (), M (rr))]

12We remark that Agarwal & Zhang (2022a) defines the Hellinger decoupling coefficient in terms of a general
function 7gen (h, 1) that maps a p € A(M) to ap € A(II), and we only present the version that Tgen (R, 14)

follows a sample from i, i.e. Tgen(h, ,LL) = 7m, M ~ p. For the general case that mgen (h, 1) = ﬁ}tm M ~

1, the corresponding Hellinger decoupling coefficient can be bounded by psc®® (Definition K.23), by a same
argument.
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Algorithm 6 OMLE

1: Input: Parameter S > 0.

2: Initialize confidence set M' = M.

3: fort=1,...,Tdo

4: Compute (M*,7") = argmax ;e pqe rerr S ().
5

6

Execute 7’ and observe ¢ = (of, rt).
Update confidence set with (28):

ML = {M eEM: L (M) = J&}}?}\(AE:&H(M/) - 5}

= inf - sup By wp qBep[fY (mar) = fY (1) — v DRy (M (7), M (7))]
PeAII) peA(M) '

sup inf By g o Besp[FM (mar) — £ () — 4 D3y (M (), M (r))]
peA (M) PEA(IT) ’

where the last equality follows by strong duality (Theorem B.1).

Now, fix any u € A(M), we pick p € A(II) by probability matching: = ~ p is equal in distribution
to m = mwp where M’ ~ p is an independent copy of M. For this choice of p, the quantity inside
the sup-inf above is

Bt vt~ Bz [V (mar) = £ (marr) = ¥ D, (M (mar), M () ]

Bty | £ ra0) = ) = 2L D (M ) T |
= Bar B[ ) = £ rar) = DR (M g T )|
Oty srnag | 14(0) = 7 (rar) = 5 DR (0 (). B )|
BarenBag [ () = £ ) — 2 D (M (mae ). )|

(1) — —
< EnrpntisBr | M (rar) = £ (mar) = § Dfy (M (ma ), M (mar) |

-

<EﬁNﬁ[pSC7/G(M,ﬁ)]<PSCW/G(M)
+ Bag bt~y B | VI 4 IDRe(M (m30), M (mar)) = L DR, (M (), M ()|
(ii3) 2(H +1
< pSC'y/6(M) + (’y)

Above, (i) uses the fact that £ (/) is equal in distribution to f () (since M ~ pand M’ ~
); (i) uses Lemma B.7 and the fact that 5D3; (M (7)), M (7)) = Dy (M (mprr), M(marr))
that is due to Lemma B.6; (iii) uses the inequality v/ H + 1z < %zQ + 3(}217:1) for any « € R. Finally,
by the arbitrariness of 7z € A(II), we have shown that dec., (M) < psc, 6(M) + 2(H + 1)/v. This
is the desired result. U

G PROOFS FOR SECTION E.2

G.1 ALGORITHM OMLE

In this section, we present the Algorithm OMLE (Algorithm 6), and then state the basic guarantees
of its confidence sets, as follows.
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Theorem G.1 (Guarantee of MLE). By choosing 8 > 3est(M,2T) + 3log(1/6), Algorithm 6
achieves the following with probability at least 1 — §: for all t € [T], M* € MY, and it holds that

> DR (M*(x*), M(n*)) < 28 + Gest(M, 2T) + 6log(1/0) <48, VM e M.

s<t

Proof of Theorem G.1  The proof of Theorem G.1 is mainly based on the following lemma.
Lemma G.2. Fix a p > 0. With probability at least 1 — §, it holds that for all t € [T| and M € M,

N(M, p)

3. Dhw, (M* (%), M(x)) < 2(L:(M*) = Lo(M)) + 6 log ==

s<t

+ 8T'p.

Now, we can take p that attains est(M, 2T") and apply Lemma G.2. Conditional on the success of
Lemma G.2, it holds that for all ¢ € [T] and M € M,

Li(M) — Li(M™) < 3est(M,2T) + 3log(1/9).
Therefore, our choice of 3 is enough to ensure that M* € M. Then, for M € M?, we have

Ly(M) = Af/lr}gj\(/lﬁt(M/) =B =Ly(M") - B.

Applying Lemma G.2 again completes the proof. O

The proof of Lemma G.2 is mostly a direct adaption of the proof of Theorem D.1 and Theorem D.8.
Proof of Lemma G.2  For simplicity, we denote P* (o|7) := P™"7 (o) and R*(0) := R™ (o).
We pick a p-optimistic covering (P, M) of M such that |IMo| = N (M, p).

Recall that the MLE functional is defined as

t—1

L] s PN
Ly(M) := > logPM™ (0°) — [r* — RM (o).
s=1
For M € M, we consider
PM (o' [rt)
P*(ot|m")

where the definition of ¢ agrees with (11). We first show that with probability at least 1 — ¢, for all
M e Mg andallt e [T1],

04, = log + 64, Sty = Hrt - R*(ot)HZ - Hrt - RM(ot)Hz,

]F)Z\/I(Osh-s) 1 x( s s\ (2 s |M0|
S 1-E, Flo ) +§ES[HR(0)—RM(0)HZ]<—ZEM+3log )

s<t s<t

This is because by Lemma B.2, it holds that with probability at least 1 — ¢, for all ¢ € [T'] and
M e ./\/lo,

1, 1,
;—gﬁM + log(|Mol/d) = ;—logEs [exp (3€M>].

Further,
1, 2 1. PM(of|x*) 1 .
_1OgEs [exp (3£]M):| = — g IOgES leXp (2 IOg W — g logEs[eXp (61\1)]
1 PM (03| 7s) 1 N Mo a2
27 - S e/ el <\ - S s - s )
B\ B | ] 6E [IR*(0*) — RM (") ]
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where the second inequality is due to the fact that — log x > 1 — 2 and Lemma D.3 (with 0% = 1/4).
Hence (41) is proven.

Now condition on the success of (41) for all My € My. Fix a M € M, there is a My € My
such that M is covered by My (i.e. [RM° (o) — RM(O)H1 < pand PMo(.|7) = PM(.|x) for all 7).

Notice that 3", _, PM0(o|7) < 1 + p?, and therefore HI[’VD]\/IO(-‘W) — IP’M(-|7r)H1 < p?. Then the first
term in (41) (plug in Mj) can be lower bounded as

DM, S| s

PMo (o8 |79) - 1

1—E, > =
P*(0%|ms) 2

E[D} (BY (|n°).B* (17°))] — p.

by (22). For the second term, by the fact that R € [0, 1]# and [R*°(0) — R (o) Hl < p, we have
E,[[R* (0%) = RY (o) 3| ZBo|[R*(0%) = RM (0") ] — 2.

Similarly, 03, = 63, — 2p, and hence — ., _, 03, < L'(M*) — L*(M) + 2T p, which completes
the proof. O

G.2 PROOF OF THEOREM E.5

In the following, we show the following general result.

Theorem G.3 (Full version of Theorem E.5). Choosing 8 = 3 est(M, 2T) + 31log(1/5) = 1, with
probability at least 1 — 9, Algorithm 6 achieves

Regpy < 1nf {T - mlec, (M, M*) + 4v5}.

Especially, when M is finite, we can take § = 3log(|]M|/J) (because est(M,2T) < log|M]),
and Theorem G.3 implies Theorem E.5 directly.

Proof of Theorem G.3  Condition on the success of Theorem G.1. Then, for ¢ € [T], it holds that
M* € M. Therefore, by the choice of (M?, 7*), it holds that fM" (7) = fM" (7rpv). Then,

Regom = )’ [P (mare) = £ ()] < 3 [ ) = £ ()]

t=1

T
|
t=1 T
bounded by mlec., 7 (M, M*)

+y- (max Z Diq, M*(?TMS),Mt(WMs))> vl

te[T] s<io1

~+
[un

Nl =

boundggby 45
<T'mlecy 7(M, M*) + 4v8.

Taking inf, - completes the proof. O

G.3 RELATIONSHIP BETWEEN PSC AND MLEC

The MLEC resembles the PSC in that both control a certain decoupling error between a family of
models and their optimal policies. The main difference is that the MLEC concerns any sequence of
models whereas the PSC concerns any distribution of models. Intuitively, the sequential nature of
the MLEC makes it a stronger requirement than the PSC.
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Formally, we show that low MLEC with a slightly modified definition of MLEC (where the
maxpe[x is replaced by the average; cf. (42)) indeed implies low PSC. Note that the modified
MLEC defined in (42) is larger than the MLEC defined in Definition E.4; however, in most concrete
applications they can be bounded by the same upper bounds. We present Definition E.4 as the main
definition of MLEC in order to capture generic classes of problems such as RL with low Bellman-
Eluder dimensions or (more generally) low-Eluder-dimension Bellman representations (Proposi-
tion K.7).

Proposition G.4 (Bounding PSC by modified MLEC). Consider the following modified MLEC:

Hﬂlﬁzy,K(Mvﬁ) ‘= sup K 2 [ (Tark) — fﬁ(WMk)]

M*YeM
{MF}e W)
(Z > Die(M(maro), M"’<w>>>.
k=1t<k—1
Then it holds that
Ryl - 21 11 1
psc., (M, M) < Kn)f1 (mlec%K(M7M)+(,y+1)\/ og (| |[/\{|M|+ ))

Proof of Proposition G4  Fix a K > 1 and p € A(M). We first prove the bound in terms
of |II|. The proof uses the probabilistic method to establish the desired deterministic bound. We
draw K i.i.d samples M, -, M* from i, and we write i = Unif({M?,--- , M*}). Then with
probability at least 1 — (|II| + 1)4, the following holds simultaneously:

Earos— Bar )| P o) — m)] < 2200,
(Exe — Earep)[D2 (T(m). ()] < 2B yremy

Therefore, with probability at least 1 — (|II| + 1)d (over the randomness of /i), we have
EnrpBarrn | £ (rar) = £ (ar) = 7 Dy (M (marr), M(mar))|

21og(1/6)

<EnrpBarg | £ (mar) = 7 (mar) = YDRa (M (mase), M(mann)) | + (14 1)y o

K k . . K K o
2 [fM k) — fM(ka)] -5 (2 3 D%L(M(wMt),Mk(wMt)O

<—
k=1t=1
2log(1/6
+(1+7) %
— — 2log(1/6
<mlec, (M, 3T) + (1+7) #

In particular, for any 6 < 1/(1+ |II|), the above holds with positive probability, and thus there exists
one /i such that the above holds. Taking & 1 1/(1 + |II|) on the right-hand side and supremum over
€ A(M) on the left-hand side, we get

2log(|IT] + 1)
— K

The bound in term of | M| follows analogously, by noticing that with probability at least 1 — (] M|+
1)d, the following holds simultaneously:

pSCV(M) < I;Te_é’y,K(-/\/LM) + (1 + fY)

Eva 2log(1/6
(EM~M_]EM~;2)[fM(7rM) —fM(WM)] < %7
— 2log(1/d
(]E]M’Nﬁ_]EIW’~;L)[D1%{L (M(’]TM/),M(WM/))] < %’ VMEM,
and repeating the same argument as above. O
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Algorithm 7 Exploartive E2D with Tempered Aggregation (EXPLORATIVE E2D)

Input: Parameter v > 0; Learning rate n;, € (0, 3), 5, > 0.
1: Initialize ' < Unif(M).
2: fort=1,...,7do

30 Set (Plyps Phut) < argming, Az VpaC - (Pexps Pout ), Where VI is defined in (6).

pac

4 Sample 7* ~ p’ . Execute 7 and observe (o', r").
Update randomized model estimator by Tempered Aggregation:

bed

(M) ocar pt(M) - exp (np log P (o) — my ' — RM(Ot)H;)- (43)

Output: Policy Pout = 7 Zthl Pout-

H PROOFS FOR SECTION 4.1
We describe the full EXPLORATIVE E2D algorithm in Algorithm 7.

H.1 PROOF OF THEOREM 5

We first show that Algorithm 7 achieves the following:

EStRL
T )

P (1+) = B, | £ ()| < e (M) + 4 (44)

where Estry, denotes the following online estimation error (cf. (18)):

T
Bstrr, i= 3, Brivpe Egpe e | DRLAT (), M* ()|
t=1

We have

=

Erceyty, [ (rare) = £ ()]

-+
Il
—

Il
=

Byt [Fa(mas) = Fa1 (1)) = B, B, | Do, (M (), AT () |

w
I
—_

T
7 3 Bt B | Dhn (M ('), M () |

t=1

N T
< 2 0 Byt Uns(mar) = ()] = VBt B | Dha (M (). 37 ()

+- 2 Ertpty Exge e | DRLOM* (), AT (1)) |

t=1

T
(i1) ~ ot
= Z VpMac,'y (péxp7p€)ut) +7 - EStRL
t=1 —
=I0f () pourea(m? Vise.y

(iii) v
= Z edec, (M, u") + - Estry, < T - edec, (M) + v - Estgy,.

t=1

Above (i) follows by the realizability assumption M* € J\/l (11) follows by definition of the risk
VI, (cf. (6)) as well as the fact that (pl,, pf,;) minimizes Vpac ~(+,+) in Algorithm 7; (iii) follows

by definition of edec, (M, u'). Dividing both sides by T" proves (44).
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Combining (44) with the online estimation guarantee of Tempered Aggregation (Corollary D.2)
completes the proof. O

Theorem 5 can be extended to the more general case with infinite model classes. Combining
(44) with Proposition D.6, we can establish the following general guarantee of EXPLORATIVE
E2D WITH COVERING.

Theorem H.1 (EXPLORATIVE E2D WITH COVERING). Suppose model class M admits a p-

optimistic cover (]TD, My). Then, Algorithm 7 with the Tempered Aggregation subroutine (3) replaced
by by (19) withn, = n, = 1/3 and p* = Unif (M) achieves the following with probability at least

SubOpt < edec, (M) + m%[log Mol + Tp + 2log(2/9)].
By tuning ~ > 0, with probability at least 1 — 6, Algorithm 7 achieves

SubOpt < C inf {@W(M) + %[est(M,T) n 1og(1/5)]},
where C'is a universal constant.

H.2 PROOF OF PROPOSITION 6

‘We present the full version of Proposition 6 here, and then provide its proof, which is a generalization
of Foster et al. (2021, Theorem 3.2).

Proposition H.2 (PAC lower bound). Consider a model class M and T > 1 a fixed integer. Define

V(M) := 3supy, 375Up, o iggj:; C(T) := 2" 10g(2T A V(M)) and ¢, := ceryT- Then we

can assign each model M € M with a reward distribution (with v € [—2,2]" almost surely), such
that for any algorithm 2, there exists a model M € M for which

1 R
EM#[SubOpt] > — max sup edec,(MZ (M), M),
6 v>0 MeM -
where we define gM (71) := fM (mpr) — fM(n) and the localization

M (D) = {MeM:)gM(w)—gM(ﬂ)‘ <e, VWEH}. 45)

Proof. First, we need to specify the reward distribution for each M € M, given its mean reward
function RM : O — [0, 1]¥: conditional on the observation o, we let r = (r"*) be a random vector,
with each entry 7" independently sampled from

, 1 3 RM(o) 3 1 RM(o)
M [ .h_ 1 _°2_ 1 M, h_° _ = h
P <r = 2‘0) 1 5 P <1" 2‘0) 1 + 7

_ 2
Then a simple calculation gives D (R,JY(O), RM (o)) <31 ‘Rf\f (0) — RM (0)‘ . Therefore, by the

fact that (") are mutually independent conditional on o, we have

1- 1D (RY(0),R™(0)) - [ (1 - Lo (R0 Rﬁ%))) =11 (1 AR - R%o)f)

2

3

> exp (- log(4/3) HRM(O) - RM(O)D > 1 log(4/3) HRM(O) - Rﬁ(o)‘ i

where the second inequality is because 1 — 2/4 > exp(—log(4/3)x) for all « € [0, 1]. Therefore,
by Lemma B .4,

D% (M(x), M(r)) < 3D% (PM(W), PW(W)) + 2B, pri () [Df{ (RM(O), Rﬁ(o))]

<3D% (PM(W), Pﬁ(w)) + 3 prt () “RM(O) . RM(O)E] < 3D, (M(x), M(r)).
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T
Next, suppose that algorithm 2 is given by rules p = {pg()p(- | )} U A{pout (- | -)}, where
t=1

pg()p (-|H(t_1)) € A(T) is the rule of interaction at ¢-th step (given H#=1) the history before t-
th step), and pous (- \’H(T)) € A(II) is the rule of the output policy. For M € M, we define

T
1 _
Pasexp = BN lT 2% ( | H 1))
t=1

where PM-% is the probability distribution induced by 21 when interacting with M. Notice that
EM2 [SUbOpt] = Eﬂ'"’p}w,out [gM (ﬂ-)]

€ A(H)a PM,out = E]W’Ql [pout(‘|HT)] € A(H)a

Let us abbreviate edec := supgzc 4 edec, (MZ (M), M), and let M € M attains the supremum.
Then

swp  Envpr [N (mar) = SY()] — vEampy, . [Dhr, (M(x), ()] > edec.
MeM= (M) ’ ’

Let M € MZ (M) attain the supremum above. Then we have

Erpir e [¢" (7)] = pR [DRL, (M (7), M(m))]+edec > %Eﬂﬂ,ﬁ [Df; (M (m), M(m))]+edec.

,exp

Recall from the definition of M (M) that ‘ gM(r) — g™ (’/T)‘ < ¢ for all . Hence, by Lemma B.3,
it holds that

< \/ 8+ (Ervpgy, [97(7) + 97(M) | + Ervp,  [9M(7) + g™ (m)|) - D (P2, PV
1

< 4eDf (P PY) 4 = (Banpyy |02 (1) + 67 (M| + Banpy |92 (1) + 67 (0)])

which implies
Sa 1 1
M M M
Erpip e (97 (0] + Ernpry [g (77)] >§E”~Pﬁ [g" (m)] + §E”~Pﬁ

- %gD%I (IPM’Q‘,IPN’Q‘> .

[gﬁ(ﬂ)]

Jout Jout

Furthermore, by the subadditivity of the squared Hellinger distance (Foster et al., 2021, Lemma
A.13), we have

D (P, P < til E | D (M(x®), M(x1)) |

—CrT By, [ D (M(x), ().

where Cr := 28 (log(2T') A log (V(M))) as in the proof of Foster et al. (2021, Theorem 3.2). As
long as 24CrTe < v, it holds that

w7 1
o [¢" ()] + o —— [gM(W)] > gedec.

This completes the proof. O

H.3 PROOF OF PROPOSITION 7

Fix a i € A(M), and we take

(ﬁexpaﬁout) = arg min sup {Eﬂ~pom [fM(WM) - fM(ﬂ_)]
(pexp7pout)EA(M)2 MeM

VB oy Exg o [ D (M (), M (m))] }.
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Then consider p = Py, + (1 — )Py By definition,
dec(M, 77

< sup Er s [fY (mar) = ¥ ()] = 1Er 5Bz [DRr, (M (), M (m))]
MeM

= sup {aBrp [ (ma0) = FY(7)] = 10Brnz, Fry [Dan(M(r), M(7))]
MeM

(= )Epep, [FM (mar) — Y1 = O)Eng,, Expoz [DRe (M (r), M(m))] }

(m)] =
< sup {a + (1= @)Ernp,, [fM( m) = M ()] = avErns, Eapo [Die (M (), M(7))] }

=a + (1 — a)edecqy/(1—a) (M, 1)
L]

H.3.1 ADDITIONAL DISCUSSIONS ON BOUNDING DEC BY EDEC

Here we argue that, for classes with low EDEC, obtaining a PAC sample complexity through the
implied DEC bound is in general worse than the bound obtained by the EDEC bound directly.

Consider any model class M with edec, (M) < d/v, where d is some dimension-like complexity
measure. Using the EXPLORATIVE E2D algorithm, by Theorem 5, the suboptimality of the output
policy scales as

* * - 1
M (01e) = By [ £ ()| < edec, (M) + mw
4.7 dlog(|M]/5)
< 5 + 5 log(|M|/é) < 0 ,

where the last inequality follows by choosing the optimal v+ > 0. This implies a PAC sample
complexity dlog(|M| /8)/e? for finding an ¢ near-optimal policy.

By contrast, suppose we use an algorithm designed for low DEC problems (such as E2D-TA). To
first bound the DEC by the EDEC, by Proposition 7, we have

— ) d d
decy (M) < égfo {a+ (1 - a)edecyq)(1—a) (M)} < érifo {a +(1- a>27a} < >

Then, using the E2D-TA algorithm, by Theorem 2 and the online-to-batch conversion, the subopti-
mality of the average policy scales as

Regpm _ 1\ pr- _ MY (ot
= Z f (WM*) ]Eﬂ.t,‘pt [f (7T )]

T T
7 log(|IM] /d)
T

< decy (M) + 10

d v dlog(|M|/9) 1/3
< — — . <
N\ﬁ+T 10g(|M|/5)~( T :

where the last inequality follows by choosing the optimal v > 0. This implies a PAC sample
complexity dlog(| M| /§)/e® for finding an & near-optimal policy, which is an 1/e factor worse
than that obtained from the EDEC directly. Note that this 1/¢3 rate is the same as obtained from
the standard explore-then-commit conversion from PAC algorithms with sample complexity 1/£% to
no-regret algorithms.

We remark that the same calculations above also hold in general for problems with edec., (M) <
1/4% (when only highlighting dependence on «) for some 8 > 0. In that case, the EDEC yields
PAC sample complexity (1/¢) & , whereas the implied DEC bound only yields a slightly worse
(1 /e) e sample complexity.
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H.4 EXAMPLE: EDEC LOWER BOUND FOR TABULAR MDPSs

In this section, we follow Domingues et al. (2021); Foster et al. (2021) to construct a class of tabular
MDPs whose (localized) EDEC has a desired lower bound, and hence establish a 2 (H SA/EQ)
lower bound of sample complexity for PAC learning in tabular MDPs, recovering the result of
Domingues et al. (2021).

Proposition H.3 (EDEC lower bound for tabular MDPs). There exists M a class of MDPs with
S = 4 states, A > 2 actions, horizon H > 21og,(S) and the same reward function, such that

sup edec,(MZ (M), M) > ¢; min {1, HSA},
MeM Y

forall v > 0 such that € = coHSA/y, where ¢y, co are two universal constants. As a corollary,
applying the PAC lower bound in EDEC (Proposition H.2), we have that for any algorithm 2| that
interacts with the environment for T episodes,

sup EM*[SubOpt] > ¢y min {1, Al HSA},
MeM T

where cq is a universal constant.

Proposition H.3 implies a sample complexity lower bound of 2 (HSA/e?) for learning -optimal
policy in tabular MDPs. This simple example illustrates the power of edec as a lower bound for PAC
learning, analogously to the DEC for no-regret learning.

Moreover, notice that all models in M have the same reward function (denote it by R), hence for
this class M it holds that

edec, (MZ (M), M) < rfdec,(MP(P),P) (46)

for all M = (P, R) € M. Combining this fact with Proposition H.3 gives a lower bound of RFDEC
of M, and hence we can also obtain a sample complexity lower bound for reward-free learning in
tabular MDPs.

Proof. Without loss of generality, we assume that S = 2"+ + 1 and let S’ = 2". We also write
A =A—-1,H =H-n>H/2.

Fixa A € (0, %] we consider M2 the class of MDPs described as follows.
1. The state space S = Siree| | {S@: So}, Where Siyee is a binary tree of level n + 1 (hence

|Siree| = 2" — 1), and sq), sg are two auxiliary nodes. Let sq be the root of Syee, and S’ be
the set of leaves of Siyee (hence |S'| = 2™).

2. Each episode has horizon H.

3. The reward function is fixed and known: arriving at sq emits a reward 1, and at all other states
the reward is 0.

4. Forh*eH' :={n+1,--- | H}, s* € 5, a* € [A'], the transition dynamic of M = Mj» g o
is defined as follows:

* The initial state is always sg.

e At anode s € Siree such that s is not leaf of Si,cc, there are two available actions left and
right, with left leads to the left children of s and right leads to the right children of s.

* Atleaf s € §’, there are A actions: wait, 1, -- , A—1. The dynamic of M = Mpx« ox o« € M
at s is given by: P (s|s,wait) = 1, and for a € [A'], h € [H]
1
PM (sg|s,a) = 5t A-T(h=h"s=s"a=a"),

1
PM(so|s,a) = 3 A-T(h=h"s=s"a=a"),
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* The state sq always transits to sg, and sg is the absorbing state (i.e. P(sg|sg, ) = 1,
P(S@|S@, ) = 1).

Let M be the MDP model with the same transition dynamic and reward function as above, except
that forall h € [H],s € S',a € [A’] it holds P} (sg|s,a) = PM (sg|s,a) = 3. Note that M does
not depend on A. We then define

MA = {M}U {Mh’s)a : (h,s,a) e H' x S x [A’]}.

Before lower bounding edec, (./\/lA , M), we make some preparations. Define
Vr(h,s,a) = Pﬁ’”(sh =s,a = a), V(h,s,a) e H' x S x [A].

Note that due to the structure of M, the events Apsa = {sn = s,a, = a} are disjoint for
(h,s,a) € H' x 8" x [A']; therefore,
vr(h,s,a) < 1.
heH’,seS’,ac[A’]

Furthermore, for M = M}, ;. € M?, we have
D% (M(m), M(m)) = IP’M’“(S;L =s,a, = a)D} ([P’;‘L/I(.|5,a),IP,IIV7(.|5,a))

because M () and M (7) only differs at the conditional probability of sj,41|s, = s,an = a.
Therefore, due to the fact that D% (IP;ILVI(-|s,a),]P,1§/[(-|s, a)) = D} (Bern(3 + A),Bern(3)) <
3A2, we have o
Df (M(m), M(7)) < 3v(h,s,a)A%
Now, that for pexp, Pout € A(m) and M € M’, we have
Erpou LI (ar) = [Y(0)] = VB, [ DRt (M (), M () ]

1 1 _
—5 A= a5+ AP0 5,0%) | = 9B, [DR (810, W)

>A(l = Enmp,. [Vr(h*, 8%,07)]) — 37A2E7r~pexp [V (", 8", a™)].
Therefore, we define
Vpexp (h,s,a) = Erepesp [Vr(h, s,a)], Vpous (15 8,0) = Exp [Vr(Ry 5,a)].
Then, for any fixed pexp, Pout € A(II), by the fact that
2 {V]gcxp(h7 s,a) + 3vAv,,, (h, s7a)} <14+ 3vA,
heH’,seS’,ac[A’]
we know that there exists (h', s’,a’) € H' x S’ x [A’] such that

1+37A

Vpery (038", 0") + 37Au,, (B, s',a") < oA

Then we can consider M’ = M}, o, and

sup Erpg,, [ () = fY(m)] = VB, [Dit (M (), M (7)) ]
MeM'’

SB[ (rat) = P (7)) = VB [DF (M), V()]
>A(1- Vpery (W', 5", a’)) —3yA%y, . (W, s d)

1+37A
A8 g
By the arbitrariness of pexp, Pout € A(II), we derive that
— 1+37A
edeCV(MA,M) = A — A . m
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Algorithm 8 REWARD-FREE E2D

1: Input: Parameters = 1/3, v > 0; prior distribution u! € A(P).
2: // Exploration phase
3: fort=1,...,Tdo
4 Setpl,, = arg min, o) SUP rer ‘/rlflﬁ(pexp7 R), where (cf. (7))
Vit (Pesgs B) 1= Inf sup By, [ (p,1) = 1P (0)] = 1Epiny B | DR (P(), P () |

5. Sample 7" ~ pf . Execute 7’ and observe o’.
6:  Compute Tt € A(P) by Tempered Aggregation with observations only:

(P ocp pf (P) - exp (n log P™" (ot)). (47)

7. // Planning phase
8: Input: R* e R

9: fort=1,...,7Tdo
10:  Compute

Phue () i= argmin supErp,, | 7 (mp.5) = 77 (1)] = B, Bpe | DR(P(m), () .
pouteA(H) PEP

11: Output: poyi(R*) = % Zlepgut(R*).

Also, by definition, it holds that M2, (M) = M2B V(M?) = 25 < 6. Therefore, given
T > 1 and algorithm 2, we set Cyp = 2, A = min {%, 11{2'2;‘%/ } ~v = CoTA, then applying
Proposition H.2 to M* gives a M € M?* such that

1Q7 Al

H'S' A 2 T

where the second inequality is due to the fact that };g?ﬁ < % which follows from simple calcula-

tion, and ¢y is a universal constant.

On the other hand, we can similarly provide lower bound of edec(M, M) for the model class M =

Ua=o M?=: For any given v > 0, we can take ¢ = A = min {%, Hllg;A/ }, and then

— — — 1+3vyA _ A 1 . (1 HSA
A
edecy (MP (M), M) = edecy (M=, M) = A - A - A = 1 :4m1n{37 12y [
O

I PROOFS FOR SECTION 4.2

I.1 ALGORITHM REWARD-FREE E2D

Algorithm 8 presents a slightly more general version of the REWARD-FREE E2D algorithm where
we allow |P| to be possibly infinite. The algorithm described in Section 4.2 is a special case of Al-
gorithm 8 with |P| < oo and we pick the uniform prior ! = Unif (P).

More generally, just as Algorithm 7, Algorithm 8 can also apply to the case when M only admits a
finite optimistic covering. Its guarantee in this setting is stated as follows.

Theorem I.1 (REWARD-FREE E2D). Given a p-optimistic cover (IB, Po) of P, we can replace the
subroutine (47) in Algorithm 8 with

u 1 (P) op ! (P) - exp (nlog P™' (o) ). (48)

3Here to avoid confusion, we move the oo in the superscript (cf. (45)) to the subscript.
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and let 1 = 1/2, u* = Unif(Py), then Algorithm 8 achieves the following with probability at least
1—4:

N 2
SubOpt,, < rfdec. (M) + %[log Po| + Tp + 2log(2/5)].

By tuning vy > 0, with probability at least 1 — §, Algorithm 8 achieves the following:
SubOpt,s <4 in% {rfdecv(/\/l) + %[est(P,T) + log(l/é)]}.
v>

1.2 PROOF OF THEOREM 9 AND THEOREM 1.1
For P e P, R € R, Pexp; Pout € A(II), we consider the function

Vt(pex[n R; pout, P) := Ernp, [fP7R(7TP,R) - fP7R(7T)] _'YEﬁN“tETWPexp [D%I(P(W)vﬁ(ﬂ'))] .

Then the policy played by Algorithm 8 at step ¢ is exactly

A~ t
Phyp = argmin sup Vi (Pexp, R) = argmin sup  inf sup V' (Pexps B; Pout, P).

PexpEA(TT) RER PexpEA(IT) RER Pout A(IT) pep

Therefore, for any R* € R, using the definition of the infs and sups in the risks, we have that

rfdec, (M) > rfdec, (M, u') = sup P (Phep, R) = P (s BY)
ReR

= inf su Vt t R*, ’ p
Pout €A(IT) PE’]I:D) (pexp7 Pout )

=Ssup Vt(péxpw R*;p(t)ut(R*)7 P) = Vt(péxp7 R*;p(t)ut(R*)7 P*)
PeP

Therefore, for any R* € R and the associated M* = (P*, R*), we have

Bty ey | £ (mare) = 17" ()| < 380y (M) + 15, Bany,, [DR (P (), P(m)]
Taking average over ¢ € [T'] and taking supremum over R* € R on the left-hand side, we get

EStH
T )

o {fp*’R* (P R*) = Erpon (¥ [fp*’R* (w)]} < rfdec, (M) + 7 - (49)

R*eR
where

T
Estyg := Z E§~HtEﬂ~p2xp [D%(P*(W)vﬁ(ﬁ))] :

t=1

Note that (52) holds regardless of the subroutine ((47) or (48)) we use. Therefore, it remains to
bound Esty for (47) and (48).

When |P| < oo, Corollary D.2 implies that subroutine (47) (agrees with (3) with , = 0 and 1, = 1)
achieves with probability at least 1 — J that

1
Esty < ;1og(|73\ /0).

This proves Theorem 9.

Similarly, when a p-optimistic covering (IB, Po) is given, Theorem D.8 implies that: subroutine (48)
(agrees with (19) with n, = 0 and 1, = 7)) achieves with probability at least 1 — J that

Esty < —[log|Po| + Tp + 21og(2/6)].

S|

This completes the proof of Theorem I.1. O
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1.3 PROOF OF PROPOSITION 10

We state and prove the formal version of Proposition 10 as follows.

Proposition 1.2 (Reward-free lower bound). Consider a model class M = P x RandT > 1a
fixed integer. Define V (M), C(T) and g., as in Proposition H.2. Then for any algorithm 2l that

returns a mapping pout : R — A(IL) after T episodes, there exists a model P € P for which
E”*[SubOpt,] = sup E™* [ 7" (mp r) — Eroue wp(r) [f7F(7)]]
ReR

1 _
>6 maxsuprfdecﬁy(./\/lOO (P),P),

>0 pep
where the localization is defined as MZ*(P) := P*(P) x R, where
Pt (P = {P eP: ’g R (1) — gER(W)‘ <e Vrell,Re R} (50)

and g*B(m) .= fPR (mp r) — fPB(n) for any (P, R,7) € P x R x IL

Proof. Suppose that algorithm 2 is given by rules p = {péx)p 1) } U A{pous(- | )}, where

8y (-|#=Y) e A(II) is the rule of interaction at ¢-th step with H(*~ 1) the history before ¢-th
step, and pous (-[HT), ) : R — A(II) is the rule of outputting the policy given a reward. Let PP-%
refers to the distribution (of (7)) induced by the exploration phase of 2 under transition P.

For any P € M and R € R, we define
Pesp(P) = E™? [ Z P (1 H“”)} € A, pout(P, ) = EP™ [pour (-, B) | € A).

NOthG that EP7Q[ [fP7R(7TP!R) - EWOUt ~Pout R) [fP R( Out)]] = ]Eﬂ—"’pout(PvR) I:gP,R(ﬂ-)] :
Let us abbreviate rfdec := supp.p rfdec, (M (P),P), and let P € P attain the supremum. Plug

N Pexp = Pexp (P) and by definition of rfdec, (which considers inf,,__ ), we have

Pexp

su inf su E,rw PR — fPR(m)]-AE s [DF (P(m), P(m))] = rfdec.
R, B 20 B 17 o) i [0 1) PO

Let R € R attain the supremum above, and plug in pout = Pout (ﬁ, R) and by definition of the above
(which considers inf,,_ ), we have

sup B poue (P.R) [P (mp ) — 71 ()] — VE s (P) [Df (P(7),P(m))] > rfdec.
PePL ™ (P)

Let P € P (P) attain the supremum above. Then we have

]Ew~pout(§,R) [gP’R(W)] > Ew~pcxp(5) [D12{ (P(ﬂ'),ﬁ(ﬂ))] + rfdec.
Similar to the proof of Proposition H.2, it holds that

Erepou (P, R) [QP’R(W)] +E PR [QP’R(W)]

1 1 B 8 o —P
>g]Eﬂ-"pout(ﬁaR) [gP,R(ﬂ-)] gEWNPOUt(ﬁvR) [gPVR(Tr)] - gEDI%I (PP’X,PP,Q(> ’

and
D2 (pp,m,pﬁ,m) <CiT B, 5 [Di (P(r),P(m)],

where we recall that PP-* refers to the distribution induced by the exploration phase of 2(. Requiring
8CrTe < vy gives

1
B~ pous(P,R) [QP’R(W)] T B PR [gP’R(W)] > 3 rfdec,

which completes the proof. O
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1.4 TRACTABLE UPPER BOUND OF RFDEC

In the following, we provide a more intuitive upper bound of rfdec useful for later proofs, which we
call rrec:

=) - P,R( 1\ _ gP,R/ 1 2 5
rrec, (M, ) = peA(Hl)ngeA(P)PepEERMH\EPNH[f (n') = fPR () || = 1B By [ DR (P(m), B(m))].

Proposition 1.3. Suppose that 11 is finite. Then
rfdec, (M, i) < 21rec, o(M, 1)

Proof. Fix any i € A(P). By definition,

rfdecy (M, It ) inf sup  su inf  Epo,Erep.., [fPF(x — PR
~( /~L) pexpeA(H) Regp,eA(I/)\/[)PouteA(H) PosiBrnpou [f (e R) — 71 ()]

= VEP~ 1 Ep i~ pes, [DIQJ(P(W) ) ﬁ(”))]
o))

+ Bp B Bp o [P () — f7R ()]
- ’YIEP~/1,E§~;7E7T~}7€XP [D%I P(ﬂ->7§(ﬂ-)):|

[ —

= inf sup sup inf Ep.,[fPF TP.R)| — Ermpou Ep s
pLxPEA(H) RGRMEA(P)pOutGA(H) ’u’[ ( )] Pout™P~f

(

(i1) 5

< inf sup sup Ep.,Ep [fP’R(WP,R) - fP’R(WP,R)]
Pexp€A(ID) ReR e A(P)

+ EppBp 55 [fp R(WP’ r) — [P (e, )]
—VEp~ Ep E D} (P(r),P(r)

P~p 7T~Pexp[ ]

(#)

< inf  sup sup 2Ep.,|sup |[Es [ P.R PR ”]
pexpGA(H)REgNGAFP) i IL[ il P / ( -

- VEPN#EPNMEWNP(@XP [DH

:2 lnf su {Su ]E [ P,R 7_[_/ _ P,R T :|
pcxpeA(H)ReRIp)Ep Tre% P~p R = )

~ 2B e, [DR(P(),P(e))] |,

where (i) is due to strong duality Theorem B.1, in (ii) we upper bound inf,, , by letting poyy € A(II)
be defined by pout(7) = p({P : mp, g = 7}), and in (iii) we upper bound

Es.z [fP’R(FP,R) - fﬁ’R(WP,R)] < sup [E5_; [fﬁ’R(ﬂ') - fP’R(W')]

m'ell

Eor By | 177 (o 1) = 1P (o) | < sup [Bp s [ 177 () = 177 ()|

)

Taking inf; over i € A(P) gives the desired result. O

J MODEL-ESTIMATION COEFFICIENT

Define

dec(P,7i) := inf sup g Drv (P(#),P(7)) | = VErmp.. B[ DE(P(x),P(r))].
mdec(P, ) pexveA(Hl)I:llLoutEA(P) PE?’ITT’Ir)eH P”“Ouf[ TV( (7) OT))] v Pexp P”“[ i(P(7) (F))]
(5D

J.1 ALGORITHM MODEL-EST E2D
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Algorithm 9 Model-EST E2D

1: Input: Parameters = 1/3, v > 0; prior distribution u! € A(P).
2: fort=1,...,7T do

. t
3 Set (plyy phyy) = arg ming, .o oeamxA(P) Vire,y (Pexps fout ), Where

-~ t

Ve Pese o) 1= supsup B, [Drv (P(), P(7))] = Yy, B e | DR (P(m), P ()|
€P e

4: Sample 7° ~ p! . Execute 7" and observe o'.
5. Compute pt*! € A(P) by Tempered Aggregation with observations only:

p (P ocp 1t (P) - exp (nlog P (o).

o))

: Compute flous = & 3i_; pbus € A(P).

: Output: P = argminpep supzey Es_,,  [Drv (P(7),P(7))]

<

Theorem J.1. Given a p-optimistic cover (P,Py) of P, we choose n = 1/2, u = Unif(P,),
then Algorithm 9 achieves the following with probability at least 1 — 6:

N ~ - 4
D%V <P, P*) = I;rleal_)[(DTv (P(ﬁ'), P*(fr)) < 2mdec, (M) + %[log |Po| + Tp + 2log(2/8)].

For P € P, 7 € IL, pexp € A(IL), pious € A(P), we consider the function

Vt (pexpa Hout; P» 7?) = E§~Nuut [DTV (P(ﬁ'), ﬁ(ﬁ))] - ’Y]E‘ITNPQXP]Eﬁ)t,\,#t [D%I(P(W)v /F;t (W))]
Then, using the definition of the infs and sups in the risks, we have that

_ A~ t
mdec, (M) = mdec (M, u') = VA, (Dheps ibu) = sup  Vi(plye,, by P 7)

PeP,mell
= Sup Vt (péxpﬂ :U’éut; P*7 ﬁ’)
7ell
= §1€11EI) EﬁN#fm [DTV (P* (7), ﬁ(fr))] - V]Eﬂwpéxp]EﬁtNHt [D?_I(P* (m), pt (71'))]

Taking average over ¢ € [T] gives

_ 1 L _
sup EﬁN#Om [DTV (P* (7), P(ﬁ-))] g? Z %ug Eﬁ”“ém [DTV (P* (7), P(ﬁ'))] (52)
t=1T€ )

well

<mdec, (M) +

where

T
Esty := Z Es i Ervpr,, [D%I(P*(ﬂ‘),ﬁ(ﬂ'))] .

t=1

By definition, it holds that
SupBo,, | Drv (P(7),P())] < supBs_, [Drv (P (7),P(7))].

and therefore,

max Drv (P(7),P*(7)) < sup {Epwuout | Drv (P(),P(®))| + supBs., [Drv (P*(7), P(7)) ] }

<2supEs [Drv (P*(7),P(7))]

P~
7ell Hout
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— Est
<2mdec, (M) + 27 - ;H

Note that Theorem D.8 implies that: subroutine (48) (agrees with (19) with . = 0 and , = 7)
achieves with probability at least 1 — J that

Esty < —[log|Po| + Tp + 21og(2/6)].

S| =

This completes the proof of Theorem J.1. O

K PROOFS FOR SECTION 5

This section provides the proofs for Section 5 along with some additional discussions, organized
as follows. We begin by presenting some useful intermediate results in Appendix K.1 for prov-
ing Proposition 12; The proof of Proposition 12 then follows by combining several statements
therein (see Appendix K.2). The proofs of Example 13-15 are provided in Appendix K.3. Ap-
pendix K.4 presents some discussions regarding the definition of Bellman representability (com-
pared with (Foster et al., 2021)) along with some useful results regarding the complexities of general
function classes. Finally, unless otherwise specified, the proofs of all new results in this section are
presented in Appendix K.5.

K.1 INTERMEDIATE RESULTS ON BELLMAN REPRESENTABILITY

Complexity measures for general function classes We begin by introducing the concept of de-
coupling coefficient for a (general) function class, which acts as a convenient interface for both
bounding the DECs and proving the examples.

Definition K.1 (Decoupling coefficient). Given a function class F < (X — R), the decoupling
coefficient dc(F,~y) is defined as

de(F,7)i= s By sllf@l) = 1BpesBan @)

As examples, the decoupling coefficient can be bounded for linear function classes, and more gener-
ally any function class with low Eluder dimension (Russo & Van Roy, 2013) or star number (Foster
et al., 2020).

Example K.2. Suppose that there exists ¢ : X — R? such that F < {fy : 2 — {0, ¢(2))}gepas
then de(F, ) < d/(4).

Definition K.3 (Eluder dimension). The eluder dimension ¢(F, A) is the maximum of the length of

sequence (f1,71), -+, (fn, ™) € F x Il such that there is a A’ > A, and
(fi(m)| = A, Y AP < (A, Vi
Jj<i

Definition K.4 (Star number). The star number s(F, A) is the maximum of the length of sequence
(f1,m),  (fn,Tn) € F x IL such that there is a A’ > A, and

[film)| = A DS < (A2, Vi
J#i
Example K.5. When F < (Il — [—1,1]) and 7y > e, it holds that
in {s2(F,A), e(F,A)} log?
min {57(F, ), ¢(F, 8)} log (1) M}.
v

de(F,v) <24 glfo{

More generally, the decoupling coefficient can be bounded by the disagreement coefficient intro-
duced in (Foster et al., 2021, Definition 6.3). The proof of Example K.5 along with some further
discussions can be found in Appendix K.4.
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Bounding DEC/EDEC by decoupling coefficient of M We now state our main intermediate
result for bounding the DEC/EDEC for any M admitting a low-complexity Bellman representation,
in the sense of a bounded decoupling coefficient.

Proposition K.6 (Bounding DEC/EDEC by decoupling coefficient of Bellman representation). Sup-
pose that G = (giJLw)MeM,he[H] is a Bellman representation of M. For any M € M, we define

SV3 SV 6H
comp(GM,v) := Hm}?xdc(gé\l,’y/mHLQ) + - (54)

and let comp(G, ) := maxXgz. comp(GM, 7). Then we have for any v > 0 that

(1) If 7§y, = s (the on-policy case), we have dec (M) < comp(G,~) and psc.,, (M, M*) <
comp(GM”, ) for all M* € M.

(2) For G with general estimation policies, we have edec~ (M) < comp(G, 7).

Similarly, we show that the MLEC can also be bounded in terms of the Eluder dimension of G M

Proposition K.7. Suppose that G = (Q,{LW)ME Mhel[H] IS @ Bellman representation of M in the
on-policy case (ﬂﬁfﬁh = s for all (h, M)). Then we have for any v > 0, K € Z>; that

MmaXpe[H) e(Gy, *7A) n A}
’y )

1 M*) < CH?L? inf
mlecy g (M, M*) < C Ago{
where C > 0 is an absolute constant.

Bounding RFDEC under strong Bellman representability We define a strong Bellman repre-
sentation as follows.

Definition K.8 (Strong Bellman representation). Given a pair (M = P x R,P € P), its strong
Bellman representation is a collection of function classes GM = {Q;Iy}he[H] with Gyt = {g""*
I — [~1, 1]} aresn such that:

1. For M = (P,R) € M, € I, it holds that for M = (P, R),
B[ (s an) = A ) || <[P

2. For M = (P, R) € M, 7 €11, it holds that
92" (m)] < LDu(P(ms), Plmi™),

for some constant L > 1.

Given a strong Bellman representation G of M, the RFDEC of M can be bounded in terms of
certain complexity measure of G as follows.

Proposition K.9 (Bounding RFDEC by decoupling coefficient of strong Bellman representation).
Suppose G is a strong Bellman representation of M. Then for w € A(P),

—_ 5 H
rfdec, (M, 1) < 2H - max max dc(gs,'y/ZlHLz) + —.
Pep he[H] Y

The proof of Proposition K.9 can be found in Appendix K.5.4. For its applications, see Ap-
pendix K.3.4.

K.2 PROOF OF PROPOSITION 12

The claims about bounded DEC/EDEC/RFDEC in (1)-(3) follows by combining the bounds in terms
of the decoupling coefficients (Proposition K.6(1), Proposition K.6(2), and Proposition K.9) with
the bound of decoupling coefficient by the Eluder dimension/star number (Example K.5). Then, the
claims about the sample complexities of the E2D algorithms follow by applying Theorem 2, Theo-
rem 5, and Theorem 9 and optimizing v > 0, respectively. O
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Proposition 12 can be directly extended to the more general case with infinite model classes, by
using the TEMPERED AGGREGATION WITH COVERING subroutine (19) (and (48) for reward-free
learning) in the corresponding E2D algorithms (see Theorem D.7, Theorem H.1 and Theorem I.1).
We summarize this in the following proposition.

Proposition K.10 (Variant of Proposition 12 with covering). Suppose M admits a Bellman repre-
sentation G with low complexity: min{e(ghﬁ, A),s(gf?, A)2} < O (d), where O () contains pos-
sibly polylog(1/A) factors. Further assume that M and P admits optimistic covers with bounded
covering numbers: log N'(M, p) < O (dim(M)) and log N'(P, p) < O (dim(P)) for any p > 0,
where dim(M), dim(P) > 0 and O (+) contains possibly polylog(1/p) factors. Then with subrou-
tines changed correspondingly to the versions with covering, we have
(1) (No-regret learning) If W‘jﬁﬁh = s for all M € M (the on-policy case), then Algorithm
E2D-TA achieves Regpyy < O(HLy/d - dim(M)T).
(2) (PAC learning) For any general {Wﬁfffh}MeM,hE[H], Algorithm EXPLORATIVE E2D achieves
SubOpt < ¢ within O (d - dim(M)H?L?/e?) episodes of play.
(3) (Reward-free learning) If G is a strong Bellman representation, then Algorithm REWARD-
FREE E2D achieves SubOpt,; < & within O (d - dim(P)H?2L?/<?) episodes of play.

K.3 PROOF OF EXAMPLES

We first present some definitions and properties as preparations. The proofs of Example 13-15 are
then presented in Appendix K.3.1-K.3.3 for the regret/PAC bounds, and in Appendix K.3.4 for the
reward-free bounds.

Definition K.11 (Model-based bilinear class, Jin et al. (2021); Foster et al. (2021)). G is a bilinear
Bellman representation of rank d if there exists maps Xp(+;-) : Mx M — R4 Wi, (++) : Mx M —
R?, such that
gn" M(M) = (X (M5 D), Wi (M5 D)y, VM, M/, M e M.

Suppose that G is bilinear with rank d, then by Example K.2,
2H?L? 4+ 2H + 2

5 .
Similarly, by Proposition K.7 we have mlec,, x (M) < O (dH?L? /7).

Example K.12 (Bellman error as Bellman representation). For a model class M, its Q-type Bellman
error is defined as

Q;JLVI/;M(M) = EMm [QM/’*(Sha ap) —rp — V;ﬁ;’*(shﬂ)]» VM, M', M € M.

comp(g,7) <

Along with 7% = 7 and L = V2, it gives a Bellman representation of M, which we term as its
OBE.

Similarly, we can consider the V-type Bellman error
gMM (g = M maon A [QMI7*<Sh, an) —rn — Vh]f/17*(3h+l>]7 VM, M',M e M,

where 7y oy, s stands for the policy which executes 7y, for the first h — 1 steps, and then follows
7 from the h-th step. Along with 7§%¢ = 7 o, Unif(A) and L = +/2A, it gives a Bellman
representation of M, which we term as its VBE.

Relation to Model-based Bellman-Eluder dimension Take Q-type Bellman error for example.
Note that the argument of g,]l” ;M(M ) corresponds to the roll-in policy 7ys. Therefore, one can

check that .
e(gijj >A> = dimDE(gha Hha A)7

where &), = {Qflw’* —rp, — P, Vhﬂﬁ’f} is the model-induced Bellman residual function class,
MeM

I, = {dﬁf *’”} . is the collection of distributions over S x A at h-step induced by policies.
TE

Therefore, ¢(GM *) is indeed equivalent to the model-based version of the Q-type (model-induced)
Bellman Eluder dimension (Jin et al., 2021).
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K.3.1 PROOF OF EXAMPLE 13, REGRET BOUND

Clearly, for the tabular MDP model class M of S states and A actions, its estimation complexity
log N (M, p) = O (SQAH) (see Example K.13) and its QBE is bilinear with rank SA. Thus by
the definition of comp in (54) and Example K.2, we have comp(G,v) = O (SAH?/v), and further

by Proposition K.6(1) and Proposition K.10, E2D-TA achieves Regppyy < O (\/ S3A2H3T)
regret.

We remark that the same regret bound also holds for MOPS and OMLE, by the PSC bound
in Proposition K.6(1) and Proposition K.7 combined with Theorem F.1 and Theorem G.3.

In the following, we demonstrate briefly how to construct an optimistic covering of the class of
tabular MDPs. Without loss of generality, we only cover the class of transition dynamic P.
Example K.13 (Optimistic covering of tabular MDP). Consider M, the class of MDPs with S
states, A actions, H steps. Fix a p; € (0,1], and p = p?/eHS. For M € M, we compute its
p1-optimistic likelihood function as follows: define

~ 1 ~ 1
Pﬁwwmw—phﬁywwﬂﬂ, PV@%—nLﬁV@ﬂ, (55)

and for Markov policy m, let

PV (sy,a1,- - suyap) =PV (s1)m (ar|s1)PM (sa|s1,a1) - - PY_ (sulsm—1, an—1)m(an|sw)
- H H—1~
=PM(s1) x [ [ ma(anlsn) x [ [ BM (snsalsn, an).
h=1 h=1

A direct calculation shows that PM™ = PM. for all 7, and |[PM-7(-) — PM-7(.)|; < p2. Clearly,

there are at most [1/ p]SzAH different optimistic likelihood functions defined by (55), and we can
form M by picking a representative in M for each optimistic likelihood function (if possible).
Then, log |[Mo| = O (S2AH log(SH/p1)).

K.3.2 PROOF OF EXAMPLE 14, REGRET BOUND

We follow the commonly used definition of linear mixture MDPs (Chen et al., 2021), which is
slightly more general than the one in Ayoub et al. (2020).

Definition K.14 (Linear mixture MDPs). A MDP is called a linear mixture MDP (of rank d) if there
exists feature maps ¢p,(-|-,-) : S x S x A — R and parameter (03,);, = R?, such that Pj,(s'|s,a) =
{On, on(s'|s, a)). We further assume that |0y, < Bforall h € [H], and |}, , ¢n(s'|s,a)V (s)|, <
1forallV :S — [0,1] and tuple (s,a,h) € S x A x [H].

Suppose that M is a linear mixture MDP model with the given feature map ¢. Then the definition
above directly yields the QBE of M is bilinear with rank d. Therefore, as long as log N (M, p) =
9, (dH), by Proposition K.10 we can obtain O (d\/ H 3T) regret of E2D-TA as claimed.

The following proposition provides an upper bound on est(M) via a concrete construction. For the
simplicity of discussion, we assume that the initial distribution is known, and we also assume the
mean reward function is known for no-regret and PAC learning setting.

Proposition K.15 (Optimistic covering for linear mixture MDPSs). Given feature map ¢ of dimen-
sion d and constant B. Suppose that M consists of linear mixture MDPs with feature map ¢ and
parameter bounded by B (without reward component). Then for p, there exists a p-optimistic cov-

ering (B, Mq) with log | Mo| = O (dH).
O

K.3.3 PROOF OF EXAMPLE 15, PAC BOUND

We consider the broader class of MDPs with low occupancy rank (Du et al., 2021):
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Definition K.16 (Occupancy rank). We say a MDP is of occupancy rank d if for all h € [H], there
exists map ¢, : II — R, 1)y, : S — RY, such that

P™(sp, = s) = (Yn(s), pn(m)), Vse S, mell

By definition, low-rank MDP with rank d is of occupancy rank d. Furthermore, for model class M
consisting of MDPs with occupancy rank d, its VBE is bilinear with rank d. Therefore, EXPLO-

RATIVE E2D achieves SubOpt = O (H dAlog | M| /T) on such model class as claimed. [

K.3.4 PROOF OF REWARD-FREE BOUNDS IN EXAMPLE 13-15

Example K.17 (Model estimation error). For model class M = P x R, its Q-type estimation error
is defined as

gz;ﬁ(ﬁ) .= EPm [DTV (PE(-\sh,ah),IF’E(-|sh,ah))].

Along with 7% = 7 and L = /2, it gives a strong Bellman representation of M, which we term
as its QFR.

Similarly, we can consider the V-type estimation error
gls;P(ﬂ-) = EP’W [I&%i{ DTV (PZ<|Sh, a)7 P}F:("gha a)):| .

Along with 7% = 7 o}, Unif(A) and L = /24, it gives a strong Bellman representation of M,
which we term as its VER.

As the following proposition indicates, the two choices of strong Bellman representation above
are enough for us to bound the RFDEC for tabular MDP, linear mixture MDP and MDP with low
occupancy complexity. The proof of Proposition K.18 is mainly based on the decoupling behavior
of linear function classes (cf. Example K.2), and can be found in Appendix K.5.6.

Proposition K.18. For model class M of linear mixture MDPs (of a given feature ¢), by its QER G
and Proposition K.9, we have rfdec, (M) < 8dH?/~.

For model class M of MDPs with occupancy rank d, because its VER G is bilinear, we have
rfdec, (M) < 8dAH? /.

Combining Proposition K.18 with Theorem I.1 gives that:

1. For tabular MDPs, REWARD-FREE E2D achieves SubOpt,; = O (« /S3AZH3 /T);

2. For linear mixture MDPs, REWARD-FREE E2D achieves SubOpt, ., = 9] (« /dH3/T);

3. For MDPs with occupancy rank at most d (including low-rank MDPs with rank d), REWARD-

FREE E2D achieves SubOpt ¢ = 4] ( dAH?log |P| /T)

K.4 DISCUSSIONS ABOUT BELLMAN REPRESENTATIONS AND DECOUPLING COEFFICIENT

Difference in definition of Bellman representation Our Definition 11 is slightly different

from Foster et al. (2021, Definition F.1): They define the function g,IZW;M(M ) in terms of the dis-

crepancy function £3;(M’; sp,, apn, T, Sh+1), while we only require 9}124’;1\ (M) can be upper bound

by Drr.. In general, g,{bw;M (M) they define can be only upper bound by the Hellinger distance in the
full observation (o, r) (which is in general larger than Dgy,), as the expected discrepancy function
may depend on distributional information about the reward that is not captured by the mean. How-
ever, when the reward r is included in the observation o, our definition is more general than theirs.
More importantly, for the majority of known concrete examples, e.g. those in Du et al. (2021); Jin
et al. (2021), the discrepancy function is linear in 75, and hence its expectation can be upper bound
by Dgy,.
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Complexity measure for Bellman representations In Foster et al. (2021), the complexity of
a Bellman representation is measured in terms of disagreement coefficient, which can be upper
bounded by eluder dimension or star number.

Definition K.19. The disagreement coefficient of a function class F < (II — [—1,1]) is defined as

A2
0 (F,Ao,e0;p) =  sup {2~IE”7TNP (3fe.7—':|f(7r)>A,Ew~p[f2(7r)]<€2)}v1.
A=ANg,ezeq (€
By Foster et al. (2021, Lemma 6.1), for A;je > 0, p € A(IL), it holds that
O(F, A& p) < 4min {s*(F,A), e(F,A)}.

It turns out that our decoupling coefficient can be upper bound by the disagreement coefficient:
applying Foster et al. (2021, Lemma E.3), we directly obtain the following result.

Lemma K.20. For function class F < (Il — [—1,1]), we have
0 (F.A7")log® (v v ¢) }

de(F,7) < inf {2A +6 S
where 6 (F,A,y71) := sup pea(m O(F, A, €3 p).

Lemma K.20 also gives Example K.5 directly.

K.5 PROOF OF PROPOSITIONS

K.5.1 PROOF OF EXAMPLE K.2

Under the linearity assumption, we can consider f — 6, € R? such that f(z) = (0, ¢(z)) Vo € X.

Givenav e A(F x X), letus set @y := Ay + Eyop[¢(2) () "] for A > 0. Then
1

E (ool @] < Eggaren 10110, 100N | < 9Breu 10715, ] + - Eoms [0 |

For the first term, we have
Epwu[10513, | =B [0] (Baons [6(2)0() T1)05] + NEgy 10

~Eg B |l @)] + AE s 1017

For the second term, we have
Bor[16@)501 | =Eons[tr(050(@)0(x) 01 ?) |
~tr(03Eans [0(@)0(a) T] 03 2)
—tr(@; 2000, ) < d.

Letting A — 0% and then taking inf,, completes the proof. O

As a corollary, we have the following result.

Corollary K.21. Suppose that there exists ¢ = (¢; : X — R%);c1 such that
Fel{foro—max|@oie)l} .

OeR4
then de(F,~y) < d/~.

Corollary K.21 can be obtained similarly to the proof above of Example K.2. However, we believe
the following fact is important:
Proposition K.22. Suppose that W < (X x Y — Rxg), then for the function class F defined by
F = {fu,:xwmaxw(z,y)} ,
yey weW

we have dc(F,~y) < de(W, 7).
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Combining Proposition K.22 and Example K.2 gives Corollary K.21 directly.

Proof of Proposition K.22 Fix av € A(F x X). Consider the map W : F — W so

that f(x) = max, W(f)(z,y) for all z € X. Further consider ¥ : .F x X — ) defined as

Y (f,x) := argmax,cy W(f)(z,y) (break ties arbitrarily). Then we let v’ € A(F x X' x V) given
x) :

by Y/ ((w,2,)) = w(1(f,2)  W(f) = wyy = Y(f,2)}), and
]E(f,:r)~l/[|f(x)|] :E(w,z,y)~u’ [w(z:,y)]
édC(W,’Y) + Ew~u’E(x,y)~l/’ [’LU(Q?, y)2]

<dc(W,7) + By By [Ifw(w)IQ]
=deW,v) +Ef By [|f(33)|2]7

where the second inequality is due to the definition f,,(z) = max, w(z, y), and the last equality is
due to the fact that the marginalization of / to X agrees with marginalization of v to X, and for

feF. VvV{w: fu=17[}) =v{{(f x): W(f) =w,fu=f}) = v(f). Taking inf, completes
the proof. O

K.5.2 PROOF OF PROPOSITION K.6

To simplify the proof, we first introduce the PSC with estimation policies.

Definition K.23. For M € M, let 7§t be the uniform mixture of {m s, TS ,ﬂﬁfftH} where
we define Ty 0 = T Let

s (M M) == sup EageuBapy | £ (mar) = Y (mar) = v DRy (T (55), M(x53)) |
pneA(M)

where we understand

H
_ 1 — s
D%{L(M(W?\/Slt’) M(W?\?')) = Hr1 Z D%{L(M(W?\?',h)vM(F?\/[t’ R))-

h=0

We further define pscS®* (M) = supyze o, psce™ (M, M).
We can generalize Proposition E.3 to psc®® by the same argument, as follows.
Proposition K.24. When 7% = 7, it holds that
— 2(H+1
dec, (M, M) < pscevs/%(/\/l) + (W)

Generally, we always have
2(H +1)

edec, (M, M) < pscSs(M) + 5

Therefore, it remains to upper bound psc§St by comp(G, 7).
Proposition K.25. It holds that

H+1

pscS™ (M, M) < H max de(GM, v/(H + 1)L?) + ™

Combining Proposition K.25 with Proposition K.24 completes the proof of Proposition K.6.

Proof of Proposition K.25 Fixa M € M and y € A(M). Then by the standard performance
decomposition using the simulation lemma, we have

Enp| £ (mar) = M (mar)|

56



Under review as a conference paper at ICLR 2023

=Enrep

H
]E]\/I I:VlMJrM( )] ]E]VI [VM 7rM 1)] + Z ]EM,’/T]\/I [QM,WM (Sh,ah) — = Vhl\ﬁ,lmu (5h+1)]1
h=1

< Burey Do (B2 )]+ X Bt )|

Therefore, we bound

H L o B
Z EMNH[ g%M(M)H - Z EMN”[ g’%M(M)H — nEar, M'w[gszw M
h=1 1

<dc(GM ,n)

] +nEn, M’~u[ g’ M(M)

|

H
Z Qh ,n) + nL*Enspr~p [ Dip (M (757 5), M(wS5)) ],

where the inequality is due to the definition of Bellman representation and decoupling coefficient.
Furthermore, we have

Enrp| Drv (P, PAT) | <Eararr[DR (M (mar), W (mar)] < Bagaar[ Dt (M (marr), M (mare))]

vy 9 — H+1

\mEM7Af'~lt[DRL (M (7o), M (7)) | + o
Now taking 7 = 1/L?(H + 1) and combining the above two inequalities above completes the
proof. O

K.5.3 PROOF OF PROPOSITION K.7

Fix any set of models {M k } relK] € M. By standard performance decomposition using the simula-
tion lemma, we have

[ 74" (rage) = £ (mann) |

-
D> D>
=

=[ =

. k MF, .
EM™m [QM ST sk (3h7ah) B — Vh+1 Tk (3h+1)]

>
Il
—
i
—_

M)

Il
—
e
Il
—

the definition of Bellman representation,

‘< =

A
c N\"
M=
D=
=
TR

On the other hand,

e I, 9 k=1
S |ar™ M [ < L2 DRL(M*(mage), M* (mage).
t=1

t=1

Therefore, defining
B = max Y D& (M*(myp), M* (mare)),

we have Y1~ ‘M'“M*(Mt)‘ < L2f forall k € [K].

Our final step is to use an Eluder dimension argument. By the above precondition, we can apply the
Eluder dimension bound in Jin et al. (2021, Lemma 41) to obtain that, for any h € [H] and A > 0,

K
Z:l ‘ M M M’“)} % : ( ¢(Gn, A)L2BK + min {e(Gn, A), K} + K'A>
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<9 (11()L : (\/e(gh,A) max {B, 1}1{ + KA),

where O (1) hides the universal constant. Summing over h € [H] gives
H K
1 M®M* gk o@1)L 3
= Ez §=1 ’gh (M )‘ < = (Hyfmax e(Gn, 2) max {ﬂ,l}KJrKHA

<

~ O(1) (H?*L? ¢(Gn, AV K
T max {5, 1} + (1) < maxpe ] ¢(Gn, A)
K gl
where the last inequality uses AM-GM. Therefore, we have shown that for any {M k } Ke[K]’

K
= [ ) = £ (rage)| - L max {31
k=1
H2L2 maXpe[H| e(gh, A)

Y
A
maxpe[ ] ¢(Gn, )+A>.
Y

+ KHLA),

<0(1).< +HLA>

<0(1)- H2L2<
By definition of mlec,, r, taking inf A~ completes the proof. O

K.5.4 PROOF OF PROPOSITION K.9

By Proposition 1.3 and the strong duality, we only need to upper bound the following quantity in
terms of the decoupling coefficient:

rrec, (M, sup inf E ) ~v
’Y( ) VEA(P xR xIT) PeEA(IT) (P Rom)

Ep | £77() = 77|

— VEp~s By, Bp; [ D (P(7), P(m))]
Then,

Ep,rm~vEpy Hfﬁ’R(W) - fP’R(W)H

(" ) |

H —
+ 3 B nm~oBon, [ETO Q7 (sn,an) = R = Vi (s0) |
h=1

©)
< E(P,R,ﬂ')~uE

P~p

< Ep,rymy~vEp [DTV Po, Po)] Z (P,R,m)~v pwHQ;ﬁ ) (77)“,

where (i) is because we use the performance decomp051t10n lemma, (ii) is due to the definition of
strong Bellman representation. Similar to the proof of Proposition K.25, we have

Z Ep.ryrE PNHng R)P 7T)H < i {dc(gﬁ, n) +nIE(p,R)wE,{w]EPW“gép,R);P(ﬂ)‘z]}

h=1

H H .

Z de( gha + L7 Z EP~V77T~VEﬁ~“[DI2{(P( ), P(m eit))]7
h=1 h=1

and

i vy H+1
EMW[DTV (IP{)”JP’{]”)] < 77 Bpevran [DE (P(m), P(m)] + o
We just need to choose p. p € A(II) as pe p(7') = v({(P, R, 7) : 7> = 7'}) (here nf™ = ),

H .
Pe = F57 2an—o Pe,h € A(IT), and let n = iz to obtain
H

B H+1
rrecy (M, i) < ) de(GR,~/(H + 1)L%) + o
h=1
Applying Proposition 1.3 completes the proof. O
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K.5.5 PROOF OF PROPOSITION K.15

We construct such a covering directly, which is a generalization of the construction in Example K.13.
An important observation is that, by the definition of feature map (cf. Definition K.14), it must hold
that

Z |o(s']s, a)|, < 2d, V(s,a) € S x A.

Then, we set N = [B/p] and let B’ = Np. For 0 € [-B’, B']%, we define the p-neighborhood of 6
as B0, p) i p16/p] + [0, p]", and let

ﬁ%(sqs,a): Wé%%§ <9 qs a)>

Then, if 6 induces a transition dynamic Py, then Pg > Py, and

Bo( Po(s'|s,a) = > 0 — 0 2pd.
2‘ o(s'|s,a) — Py(s'|s,a) e,érBlag)K ,o(']s,a)) pZHsb (s']s,a)], <20
Now, for © = (6,), € (RH)H 1, we deﬁne
Py (s1,ar, -+ s su,am) :=Pi(s))mi(ar[s1)Po, (sals1,a1) -+ Poyy (sm|sm—1,am1)m(an|sn)

H H-1

=P1(s1) - | [ ma(anlsn) x | | o, (sns1lsn, an).

h=1 h=1
Suppose that p < 1/(2Hd), then a simple calculation shows that when © induces an MDP,

’Iﬁg ~Pg| < 2eHdp.

Therefore, let p1 = 1/2eHdp, then by picking representative in each /,-p-ball, we can construct

a py-optimistic covering with M| < (2N)H4 = (2[B/p])"* = (2 [QeHdB/pﬂ)Hd, which
implies that log | M| < O (dH log(dHB/p1)). O

K.5.6 PROOF OF PROPOSITION K.18

We deal with linear mixture MDP first. Suppose that for each P € P, P is parameterized by §° =
(6F)1,. Then the QER of P is given by

o (r) <EP [ Doy (Bl an), B (o))

1
== max
2 V:SxSx A—[-1,1]
Sh+41

EP™ l > (PZ(S}L+1|S}“ an) = P (snt1lsn, a}L)>V(Sh+1|S}L7 ah)]

1 P PP
=3 v:5x5132)i[—1,1] E L;l <9;L — 0, dn(Shr1lsh, ah)> V(sh+1|Shs ah)}

Z V(3h+1|5haah)¢}L(3h+1|5haah)]>

Sh+4+1

D Visnaalsn, an)dn(sni|sn, an) ]>'

Sh+1

1 — —
=— max <9£ — 07 EPT
2 V:SxSx A—[-1,1]

<9h 6P EP

Applying Proposition K.9 and Corollary K.21 completes the proof of this case.

1
b max
2 V:SxSx A—[-1,1]

We next deal with the class P of dynamic of MDPs with occupancy rank at most d. For P € P, we
consider ¢F = (¢}, : I1 - R?), yF = (¢} : S — R?), such that PP (s, = 5) = (¥}, (s), ¢}, (7) ).
Then the VER of P is given by

o7 () =BP s D (B8 (o), Bl 0)) |

- <2 0 (s) max Dry (BF(|s.a), Bf (s, a) ,¢£<w>>.

Applying Proposition K.9 and Example K.2 completes the proof of this case. O
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