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ABSTRACT

Pretrained models available on platforms such as Hugging Face have become
a valuable resource for the machine learning community, particularly for nat-
ural language processing tasks. In this study, we evaluated the performance
of Kinyarwanda and English pretrained models for sentiment analysis of Kin-
yarwanda tweets through transfer learning using Hugging Face pretrained models
and Trainer for implementation. We have found that the fine tuned English pre-
trained models for translated Kinyarwanda tweets dataset using Google translate
outperformed Kinyarwanda fine tuned pretrained models.

1 INTRODUCTION

Kinyarwanda is a unique and beautiful language spoken in Rwanda, with a rich cultural heritage
and a growing presence in the digital world. Despite its significance, Kinyarwanda has been largely
overlooked in the field of natural language processing (NLP) due to a lack of available data ready
for machine learning tasks(see Orife et al. (2020) for more information). In an effort to address
this gap, we conducted a comparative analysis of open source state-of-the-art pretrained models on
Kinyarwanda labeled tweets dataset, which are both available on Hugging Face. Our findings shed
light on the potential of NLP for Kinyarwanda and provide valuable insights for researchers and
developers interested in this exciting and underrepresented language.

2 RELATED WORK

Sentiment analysis on African languages, including Kinyarwanda, is a growing area of research,
although the number of studies is much lower compared to highly represented languages such as En-
glish. Furthermore, many existing studies on African languages are unpublished or published under
closed access (see Mesthrie (1995) as cited in Orife et al. (2020) for more information). Muham-
mad et al. (2022) conducted sentiment analysis on four Nigerian languages by collecting, filtering,
processing, and labeling the dataset, and then applying transfer learning using fine tuned pretrained
models. Kwaik et al. (2020) employed transfer learning on pretrained models for sentiment analysis
on Arabic tweets dataset. In a different study, Bataa & Wu (2019) investigated transfer learning
for sentiment analysis on Japanese language using the Rakuten product review and Yahoo movie
review datasets. These studies demonstrate the potential of transfer learning and pretrained models
for sentiment analysis in underrepresented languages.

3 METHODOLOGY

Muhammad et al. (2023) collected a dataset of more than 110,000 annotated tweets covering 14
underrepresented African languages, including Kinyarwanda. We used the dataset, merging the train
and validation sets into one and preprocessing the text by removing stopwords, URLs, and emojis,
and lowercasing both the train and test sets. For transfer learning to the sentiment analysis task,
we used Kinyarwanda pretrained models trained for mask task. In addition, we performed transfer
learning on English pretrained models for tweet classification using translated dataset to English
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using the Google Translate API. For further exploration we also did preprocessing of translated
tweets by removing stopwords(except negative stopwords), punctuation and lastly stemmed. We

Figure 1: Methodology Flowchart.

evaluated the model’s performance by comparing the F1 score of the predicted test set with the
actual labeled set, using the trainer framework.

4 RESULTS

We conducted fine-tuning of the pretrained models using a standard tutorial as a guide (Amy, 2023).
The results show that KinyaBERT-large outperformed xlm-roberta-base-finetuned-kinyarwanda
while using Kinyarwanda preprocessed tweets.

Model Test Dataset F1 Score
bert-base-cased translated test tweets 0.661578923
bert-base-cased preprocessed translated test tweets 0.625459922

distilbert-base-uncased-finetuned-sst-2-english translated test tweets 0.642492736
twitter-xlm-roberta-base-sentiment translated test tweets 0.655731011

twitter-roberta-base-sentiment-latest translated test tweets 0.686036459
KinyaBERT-large Preprocessed Kinyarwanda Test Tweets 0.644029075

xlm-roberta-base-finetuned-kinyarwanda Preprocessed Kinyarwanda Test Tweets 0.598704083

Table 1: F1 scores of various transformer models on different test datasets.

Additionally, the fine tuned twitter-roberta-base-sentiment-latest model exhibited superior perfor-
mance compared to other fine tuned pretrained models for the translated dataset. In terms of overall
performance, the fine tuned English pretrained models demonstrated better results than Kinyarwanda
fine tuned pretrained models for the sentiment analysis task.

5 CONCLUSION

Based on the comparative analysis of the pretrained models on Kinyarwanda tweets sentiment anal-
ysis through transfer learning task, we can conclude that the fine tuned English pretrained models
outperform the Kinyarwanda fine tuned pretrained models. This indicates the importance of having
more labeled data and pretrained models in underrepresented African languages like Kinyarwanda.
Among the models we experimented with, the fine tuned twitter-roberta-base-sentiment-latest model
performed the best with an F1 score of 0.686, closely followed by the fine tuned bert-base-cased
model with an F1 score of 0.661 on the test set. However, it is worth noting that the performance
of the models could be improved with more fine-tuning and optimization. Overall, our study high-
lights the need for more research and development of NLP tools and resources for underrepresented
African languages, including Kinyarwanda.
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A APPENDIX

A.1 ACKNOWLEDGEMENT

We used several pre-trained models for sentiment analysis, including BERT-base-cased, DistilBERT-
base-uncased-finetuned-SST-2-English, and Twitter-RoBERTa-base-sentiment-latest, as well as two
Kinyarwanda-specific models, KinyaBERT-large and XLM-RoBERTa-base-finetuned-Kinyarwanda
see Table 1. Note: Pre-trained models and dataset1 were sourced from the Hugging Face Transform-
ers library (Wolf et al., 2019). Model details and sources: BERT-base-cased (Devlin et al., 2018)2,
DistilBERT-base-uncased-finetuned-SST-2-English (Sanh et al., 2019)3, Twitter-RoBERTa-base-
sentiment-latest4 and Twitter-XLM-RoBERTa-base-sentiment (Barbieri et al., 2021)5, KinyaBERT-
large (Ishimwe, 2021)6, XLM-RoBERTa-base-finetuned-Kinyarwanda (Adelani et al., 2021)7.Lastly
we have used Kinyarwanda stopwords (Rubungo, 2020)8.

1https://huggingface.co/datasets/shmuhammad/AfriSenti-twitter-sentiment
2https://huggingface.co/bert-base-cased
3https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
4https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
5https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
6https://huggingface.co/jean-paul/KinyaBERT-large
7https://huggingface.co/Davlan/xlm-roberta-base-finetuned-kinyarwanda
8https://github.com/Andrews2017/kkltk
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