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ABSTRACT

It is assumed that sparse autoencoders (SAEs) decompose polysemantic activa-
tions into interpretable linear directions, as long as the activations are composed
of sparse linear combinations of underlying features. However, we find that if an
SAE is more narrow than the number of underlying “true features” on which it
is trained, and there is correlation between features, the SAE will merge compo-
nents of correlated features together, thus destroying monosemanticity. In LLM
SAEs, these two conditions are almost certainly true. This phenomenon, which
we call feature hedging, is caused by SAE reconstruction loss, and is more severe
the narrower the SAE. In this work, we introduce the problem of feature hedg-
ing and study it both theoretically in toy models and empirically in SAEs trained
on LLMs. We suspect that feature hedging may be one of the core reasons that
SAEs consistently underperform supervised baselines. Finally, we use our under-
standing of feature hedging to propose an improved variant of matryoshka SAEs.
Importantly, our work shows that SAE width is not a neutral hyperparameter: nar-
rower SAEs suffer more from hedging than wider SAEs.

1 INTRODUCTION

As large language models (LLMs) are deployed in real-world applications, it is increasingly impor-
tant to understand their internal workings. Sparse autoencoders (SAEs) decompose the dense, pol-
ysemantic activations of LLMs into interpretable latent features (Cunningham et al., 2024; Bricken
et al., 2023) using sparse dictionary learning (Olshausen & Field, 1997). SAEs have the advantage
of operating completely unsupervised, and can easily be scaled to millions of neurons in its hidden
layer (hereafter called “latents” 1)(Templeton et al., 2024; Gao et al., 2024).

While SAEs showed promising results, recent work has cast doubt on the performance of SAEs rela-
tive to baseline techniques. Wu et al. (2025) show that SAEs underperform on both concept steering
and detection relative to baselines, and Kantamneni et al. (2025) show that SAEs underperform sim-
ple linear probes on both in-domain and out-of-domain detection, even when the probes have very
few training samples. The question, then, is why do SAEs underperform relative to other techniques?
And if we can identify the problems holding back SAEs, can we then fix those problems?

One fundamental issue with SAEs is the problem of feature absorption (Chanin et al., 2024), where
a more specific latent suppresses the firing a more general latent. For instance, an SAE may have
a latent that appears to track “Cities in USA” but that arbitrarily fails to fire on the specific cities
“New York” and “Detroit”, where a city-specific latent fires instead. Feature absorption requires
underlying features to exist in a hierarchy, with a parent feature fp and a child feature fc, where fc
can only fire if fp is firing (fc =⇒ fp). Feature absorption is caused by SAE sparsity penalty,
and becomes more severe the wider the SAE. An SAE encoder/decoder under feature absorption is
shown in Figure 1b.

In this paper, we identify another fundamental issue with SAEs which we call feature hedging. In
hedging, an SAE is too narrow to represent both features fa and fb with their own latents la and lb.
Ideally, an SAE should assign a latent l to either fa or fb, and ignore the feature not being tracked.
However, if fa and fb are either hierarchical as in absorption, or (anti-)correlated, then the SAE

1We use the term “latents” for the hidden neurons of the SAE to avoid overloading the term “feature”. We
use “feature” only to describe interpretable concepts represented by the model.
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Table 1: Comparing feature hedging and feature absorption

Feature absorption Feature hedging

Learns gerrymandered latents Learns polysemantic mixtures of features
Caused by sparsity loss Caused by MSE reconstruction loss
Features are all tracked in the SAE One feature is in the SAE, the other is not
Affects the encoder and decoder asymmetrically Affects encoder and decoder symmetrically
Gets worse the wider the SAE Gets worse the narrower the SAE
Requires hierarchical features Requires only correlation between features

latent l can reduce reconstruction error by incorrectly mixing in components of both fa and fb. A
sample SAE encoder and decoder experiencing hedging is shown in Figure 1a. In an LLM SAE,
hedging will look like each SAE latent has noise mixed into it, reducing the performance of the
latent for both detection and steering. Unlike with absorption, hedging becomes worse the narrower
the SAE: thus trying to reduce absorption by making the SAE narrower will simply result in more
hedging instead. The differences between hedging and absorption are shown in Table 1.

In LLM SAEs, the SAE is almost certainly narrower than the number of underlying features, as even
extremely wide LLM SAEs appear to miss features (Templeton et al., 2024). Furthermore, we expect
that nearly every feature in an LLM has positive and negative correlations to many features. We thus
expect that hedging is the norm in LLM SAEs and will significantly distort their performance.
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(a) When the SAE is only wide enough to represent
one of the two features, we see feature hedging. La-
tent l1 mainly tracks f1, but a small component of f2
is incorrectly mixed into the latent l1 as well. f2 is
mixed symmetrically into both the encoder and de-
coder.

1 2

True feature

1
2

SA
E

L
at

en
t

SAE encoder

1 2

True feature

1
2

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Feature absorption)

(b) Adding a new latent to the SAE so it is wide
enough to track both features, we see feature absorp-
tion. The decoder for l1 perfectly tracks f1, but its
encoder turns off if f2 is also active. l2 tracks f2, but
its decoder mixes f1 and f2. Asymmetry between
encoder and decoder is characteristic of absorption.

Figure 1: SAE encoder and decoder patterns for hierarchical features f1 and f2, where f1 =⇒ f2.
These features lead to either hedging or absorption depending on the width of the SAE.

A solution to feature absorption has been proposed in the form of matryoshka SAEs (Bussmann
et al., 2025). Matryoshka SAEs use nested SAE loss terms to enforce a hierarchy on the SAE
latents, solving absorption by forcing the narrow inner levels of the SAE to reconstruct inputs on
their own. However, as we show in this paper, matryoshka SAEs suffer more from hedging due to
the inner matryoshka levels essentially being very narrow SAEs. Matryoshka SAEs thus trade off
absorption for hedging.

In this work, we define and study feature hedging both theoretically in toy models and empirically in
LLM SAEs. We show that hedging is worse the more narrow the SAE, and introduce a technique to
characterize the amount of hedging present in a given SAE. We also study hedging and absorption
in matryoshka SAEs, and show that it is possible to improve the monosemanticity of matryoshka
SAEs by tuning the relative loss coefficients in each level of the matryoshka SAE to better balance
the competing forces of absorption and hedging—though both problems remain present. We show
as well that SAE width is not a neutral hyperparameter: narrow SAEs suffer more from hedging
than wider SAEs.
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2 BACKGROUND

Sparse autoencoders (SAEs). An SAE decomposes an input activation x ∈ RD into a hidden
state f consisting of L hidden neurons, called “latents”. An SAE is composed of an encoder Wenc ∈
RL×D, a decoder Wdec ∈ RD×L, a decoder bias bdec ∈ RD, and encoder bias benc ∈ RL, and a
nonlinearity σ, typically ReLU or a variant like JumpReLU (Rajamanoharan et al., 2024), TopK
(Gao et al., 2024) or BatchTopK (Bussmann et al., 2024).

z =σ(Wenc(x− bdec) + benc) (1)
x̂ =Wdecz + bdec (2)

The SAE is trained with a reconstruction loss, typically Mean Squared Error (MSE), and a sparsity-
inducing loss consisting of a function S that penalizes non-sparse representation with corresponding
sparsity coefficient λ. For standard L1 SAEs, S is the L1 norm of f . For TopK and BatchTopK
SAEs, there is no sparsity-inducing loss (S = 0) as the TopK function directly induces sparsity.
There is sometimes also an additional auxiliary loss Laux with coefficient α to ensure all latents
fire. Standard L1 SAEs typically do not have an auxiliary loss (Olah et al., 2024). The general SAE
loss is

L = ∥x− x̂∥22 + λS + αLaux. (3)

Tied SAEs. A tied SAE has Wenc = W T
dec. The biases have different dimensions and are untied.

Matryoshka SAEs. A matryoshka SAE (Bussmann et al., 2025) extends the SAE definition by
summing losses created by prefixes of SAE latents. This forces each sub-SAE to reconstruct input
activations on its own, and incentivizes the SAE to place more common, general concepts into latents
with smaller index number. A matryoshka SAE uses nested prefixes with sizes M = m1,m2, ...mn

where m1 < m2 < . . . < mn = L, where L is the number of latents in the full dictionary.
Matryoshka SAE loss is:

L =
∑

m∈M

(
∥x− x̂m∥22 + λSm

)
+ αLaux (4)

Where x̂m is the reconstruction for the SAE using the first m latents, and Sm is the sparsity penalty
applied to the first m latents. For TopK and BatchTopK Matryoshka SAEs, there is no sparsity
penalty (Sm = 0) as the TopK function directly imposes sparsity.

3 TOY MODELS OF FEATURE HEDGING

The linear representation hypothesis (LRH) states that features in LLMs are represented as nearly-
orthogonal linear directions in representation space (Bricken et al., 2023). The goal of SAEs, then,
is to recover these underlying “true features” of the model, where each latent of the SAE decoder
perfectly matches an underlying feature of the model. In real LLMs we do not have ground-truth
knowledge of these underlying features, making it difficult to know if SAEs are succeeding at recov-
ering model features. Fortunately, it is easy to create synthetic training data for SAEs that follows the
LRH and gives us ground-truth knowledge of the underlying features. This allows us to understand
when SAEs will learn the underlying features of the model, and when SAEs fail.

We define a toy model consisting of N true features F ∈ RN×D, where each ∥fi∥2 = 1. These
features are mutually orthogonal, so ∀i ̸= j, fi · fj = 0. Each feature fi has a corresponding firing
probability pi ∈ [0, 1]. For each sample, we generate a binary activation vector a ∈ {0, 1}N where
ai ∼ Bernoulli(pi) indicates whether feature fi is active (fires). The model can incorporate feature
dependencies by conditioning firing probabilities: ai|a−i ∼ Bernoulli(pi(a−i)), where a−i denotes
the activation states of all other features. We then generate SAE training samples x from this model
as x =

∑N
i=1 aifi.

3
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We say that an SAE is correct or monosemantic for this toy model if every latent in the SAE dic-
tionary matches a true feature direction, and each SAE latent corresponds to a different true feature.
Formally, there exists a bijection π : {1, . . . , L} → {1, . . . , N} such that cos(Wdec,i, fπ(i)) = 1 for
all i ∈ {1, . . . , L}. We only investigate SAEs where L ≤ N in our toy experiments. We say an
SAE is polysemantic if some SAE latents contain positive or negative components of multiple true
features, so there exists at least one latent i ∈ {1, . . . , L} such that |{j ∈ {1, . . . , N} : |Wdec,i ·fj | >
ϵ}| > 1 for some threshold ϵ > 0.

For all SAEs in this section, we train on 15M synthetic activations using SAELens (Bloom et al.,
2024). In this section we show plots of the cosine similarity between the SAE encoder / decoder
and the true features. Each cell i, j in these plots is simply cos(WT

enc,i, fj) and cos(Wdec,i, fj),
respectively. We re-arrange the indices of the SAE latents to best align visually with true features.

3.1 FULLY INDEPENDENT FEATURES

We first study the case of a toy model with N = 4 independent features. Features 1-3 fire with
probability 0.25, and feature 4 fires with probability 0.2. We plot the encoder / decoder cosine
similarity with true features in Figure 2. When features fire independently, the SAE learns correct
features regardless of the width of the SAE.
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Figure 2: SAE with three latents (left) and four latents (right) trained on a toy model with indepen-
dent features. Both SAEs learn correct features.

Unfortunately, real LLMs do not have fully independent features. SAEs were first studied under toy
models with independent features (Elhage et al., 2022), and this is likely why the field was not aware
of feature hedging much earlier.

3.2 HIERARCHICAL FEATURES

Next, we explore true features that fire hierarchically. We modify the toy model from Section 3.1
above, and set f3 as the parent feature and f4 as the child feature, so f4 =⇒ f3. That is, f4
cannot fire unless f3 is also firing. Hierarchical features cause feature absorption in SAEs that are
wide enough to represent both the parent and child feature, but what happens if the SAE is not wide
enough to represent the child latent? This is important as this is the intuition behind why Matryoshka
SAEs work to combat absorption: if inner SAE levels are too narrow to represent both parent and
child features, we hope that only the parent will be represented. We show results in Figure 3.
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Figure 3: SAEs trained on a toy model with hierarchical features (f3 =⇒ f4). When the SAE
is too narrow to represent f4 (left), we see hedging where latent 3 mixes . When the SAE is wide
enough to contain both f3 and f4 (right), we see feature absorption.

As expected, in the full-width SAE we see a classic feature absorption pattern. The parent latent
encoder, l3, learns ¬f4 ∧ f3, disabling the latent from firing if f4 is present. The child latent, l4,
mixes both f3 and f4 together in the decoder.
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However, when the SAE is too narrow to represent f4, we now see that latent l3 mixes a component
of f4 into both its encoder and decoder! We refer to this as feature hedging. The SAE is learning an
incorrect, polysemantic latent that mixes correlated features.

While we expect this will be a problem for all SAEs, it is particularly problematic for Matryoshka
SAEs, as Matryoshka SAEs combat absorption by using inner SAE levels that are too narrow to
contain both parent and child features. However, as we see here, this causes hedging.

We study hierarchical features further in a single-latent SAE in Appendix A.1.2. We further show
that MSE directly causes hedging with hierarchical features in Appendix A.2.1.

3.3 POSITIVELY CORRELATED FEATURES

Hierarchy is a particularly extreme form of positive correlation, where a feature can only fire if
another feature also fires. Next, we relax that restriction, and investigate what happens if a feature is
merely more likely to fire along with another feature, but can still fire on its own as well. We modify
the toy model so that p4 = 0.2 if f3 fires, but p4 = 0.1 if f3 does not fire, adding a small positive
correlation between f3 and f4. We show results Figure 4
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Figure 4: SAEs trained on a toy model with positive correlation between features f3 and f4. When
the SAE is too narrow to represent f4 (left), we still see hedging in latent 3. When the SAE is wide
enough to contain both f3 and f4 (right), the SAE learns correct features.

We still see that the SAE is mixing a positive component of f4 into l3, despite there no longer being
perfect hierarchy! We also see that if we extend the SAE width so that f4 is tracked by its own latent
l4, there is now no absorption at all, as absorption requires (nearly) hierarchical features to arise.

3.4 ANTI-CORRELATED FEATURES

So far we have only seen the effect of positive correlation between features. We next change our toy
model so f4 is more likely to fire if f3 does not fire. We set p4 = 0.1 if f3 fires, but p4 = 0.2 if f3
does not fire. Results are shown in Figure 5.
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Figure 5: SAEs trained on a toy model with negative (anti) correlation between features f3 and f4.
When the SAE is too narrow to represent f4 (left), we latent 3 mixes a negative component of f4.
When the SAE is wide enough to contain both f3 and f4 (right), the SAE learns correct features.

We now see that l4 is mixing in a negative component of f3. This demonstrates that the correlation
is the cause of the hedging: flipping the sign of the correlation flips the sign of the hedging. We
study the mechanics of this phenomenon in more depth in Appendix A.1.

The implications of this for SAE performance are quite dire. While it is already bad for positively
correlated features to become hedged (e.g. “sunshine” and “summertime”), at least the mixed fea-
tures have some relation to each other. For anti-correlated features, this could look like a latent for
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“chemical molecules” having a negative component of the “Darth Vader” feature mixed in, since
chemical modules and Darth Vader are highly anti-correlated. Worse, it is not even clear if the in-
verse of the “Darth Vader” direction is meaningful in the model at all, or is just noise. We further
expect that there are many more negative correlations than positive correlations in language, e.g. a
negative component every word in every non-English language may be mixed into every latent track-
ing an English word. These negative correlations likely introduce what looks like a lot of random
noise into SAE latents, and this can only harm performance and interpretability.

4 QUANTIFYING HEDGING IN LLM SAES

While we have demonstrated hedging in a synthetic setting, it remains a question how much hedging
occurs in LLM SAEs. Based on our understanding of hedging in toy models, we expect that when a
new latent is added to an SAE, this should “pull out” the component of the new feature from existing
SAE latents, where it was previously hedged. Thus if hedging occurs, the change in existing latents
after a new latent is added should project onto that new latent. If hedging did not exist, then adding
a new latent should not have any effect on existing latents.

Parent latents are learned before child latents A key assumption in Matryoshka SAEs is that if
latents exist in a hierarchy, and the SAE is too narrow to represent both the parent and child, the SAE
will learn the parent first. We feel this assumption is reasonable since parent latents, by definition,
fire more frequently than child latents, so the SAE is incentivized to learn them first.

This insight allows us to differentiate hedging from absorption. Under absorption, if a newly added
latent is a child feature of an existing latent, then the encoder for the parent latent adds a negative
component of the child latent to avoid firing when the child is active, but the parent decoder latent
remains unchanged. This corresponds to adding l2 to Figure 1a and arriving at Figure 1b. The
decoder of l1 (the parent) remains identical to before l2 is added, except the hedging from f2 is
removed. Thus, changes to existing decoder latents cannot be absorption and must be due to hedging.

Hedging degree Taking this into account, we define a metric called hedging degree, h. We take
an existing SAE s0 with L latents and add N new latents to the SAE. After adding these latents,
we continue training the SAE and arrive at a new SAE, s1, with L + N latents. We also continue
training s0 on the same tokens that we train s1 on to ensure that any difference between s0 and s1
is due only to the newly added latents. W 0

dec refers to the new decoder of s0, and W 1
dec refers to the

decoder of s1. Wdec is normalized so each latent has unit norm. We define the difference in the
original L latents between s0 and s1 as:

δL = W 1
dec[0 : L]−W 0

dec[0 : L] (5)

where W 1
dec[L : L+N ] refers to the newly added decoder latents. Wrand[0 : N ] refers to a decoder

consisting of N randomly initialized unit-norm latents. All decoders are normalized to have latents
of unit norm. We define the projection of a vector v onto a subspace spanned by W as:

Proj(v,W ) = ∥W (WTW )−1WT v∥ (6)

We expect that even if there were no hedging at all, simply due to noise, existing SAE decoder
latents may undergo a change that has some small projection onto new added latents. We want to
make sure that anything we quantify as hedging must be larger than what we would expect from
random noise. Taking this into account, the hedging degree h is then defined as:

h =
1

L

L∑
i

∥Proj(δL[i],W 1
dec[L : L+N ])∥︸ ︷︷ ︸

Projection of δL onto N new latents

− ∥Proj(δL[i],Wrand[0 : N ])∥︸ ︷︷ ︸
Projection of δL onto N random latents

(7)

Any value of h > 0 corresponds to hedging above what we would expect from random noise, as h
subtracts the projection along N randomly initialized unit-norm latents as part of the computation.
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The choice of the number of new latents N is a hyperparameter of hedging degree. We use N = 64
for our hedging degree calculation. We explore the effect of different choices on N in Appendix A.5.

4.1 RESULTS

We experiment with SAEs trained on Gemma-2-2b (Team et al., 2024), as this model is commonly
used for SAE research due to the thoroughness of the Gemma Scope suite of SAEs (Lieberum et al.,
2024), as well as Llama-3.2-1b (Dubey et al., 2024) to validate results on another LLM. All SAEs
are trained first on 250M tokens of the Pile uncopyrighted (Gao et al., 2020). After adding N = 64
latents, we continue training for another 250M tokens. The version of the SAE without latents added
is also trained for another 250M tokens, so each SAE is trained for 500M tokens total. The pair of
extended and non-extended SAEs is used to calculate hedging degree. SAE training details are in
Appendix A.4.
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Figure 6: Hedging degree for SAEs trained on Gemma-2-2b layer 12. Unless otherwise specified,
SAEs have width 8192, BatchTopK SAEs have K=25. Shaded area in plots is 1 std.

We first calculate hedging degree vs SAE width in Figure 6a, with widths ranging from 128 to
65536. Hedging degree is dramatically higher at narrower widths, especially at 4096 width and
below. While the hedging rate drops a lot with increasing SAE width, even at our max width of
65536 no SAE achieves 0 hedging degree, indicating there is still hedging occurring.

We next calculate hedging degree vs L0 (the average number of active latents) in Figure 6c, with L0
ranging from about 5 to 200. Very low L0 seems to lead to more hedging for BatchTopK SAEs, but
the effect is minor compared with the effect of SAE width on hedging degree.

Finally, we calculate hedging degree vs layer in Figure 6b. The hedging degree for L1 and TopK
SAEs appears to merge around the end of the SAE, but overall the layer does not appear to have a
massive effect on hedging degree.

It also appears that BatchTopK SAEs have more hedging than L1 SAEs. We suspect that L1 loss
can reduce hedging from positively correlated features. We explore this further in Appendix A.1.3.

We further validate hedging in LLM SAEs via a case-study of adding a new latent to an SAE trained
on Gemma-2-2b in Appendix A.6.

5 BALANCING HEDGING AND ABSORPTION IN MATRYOSHKA SAES

Matryoshka SAEs (Bussmann et al., 2025) combat absorption with nested SAE loss prefixes. Each
level acts like a small SAE, and is forced to reconstruct the input on its own. This forces the SAE to
learn more general concepts in earlier levels, and makes it difficult for the SAE to make holes in the
recall of parent latents for absorption, as this would hurt the reconstruction of earlier levels.

However, since early matryoshka levels are effectively narrow SAEs, they suffer from feature hedg-
ing. As we saw in Section 4.1, the more narrow an SAE is, the worse the hedging. Matryoshka
SAEs thus solve feature absorption at the expense of exacerbating feature hedging.

Inspecting the effect of hedging and absorption on the SAE encoder in Figure 1b shows that hedging
and absorption have opposite effects. For hierarchical features, hedging adds a positive component
of child features into the parent encoder latent, but absorption does the opposite and adds a negative
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component of child features into the parent latent. If we balance the negative component of child
latents from absorption with the positive component from hedging, these effects can cancel out.

Balance matryoshka SAE We extend the definition of a matryoshka SAE from Equation 4 to
allow applying a scaling coefficient βm to the loss for each matryoshka level:

L =
∑

m∈M
βm

(
∥a− âm∥22 + λSm

)
+ αLaux (8)

We refer to this extension as a balance matryoshka SAE, where each βm ≥ 0 controls the relative
balance of each level. If each βm = 1 this is a standard matryoshka SAE. If βm = 0 for all
matryoshka levels except the outer-most level, this reduces to a standard (non-matryoshka) SAE.

We demonstrate this balancing in a toy model of hierarchical features. The toy model has 4 features,
with feature 1 being the parent feature and features 2-4 being children (features 2-4 can only fire
if feature 1 is also firing). Feature 1 fires with probability 0.25, and each child feature fires with
probability 0.15 if feature 1 is firing. We train a matryoshka SAE with a single inner level consisting
of only latent 1 with balance coefficient β (Since there is only one inner level, we always set the
outer level coefficient to 1). For more details on this toy setup, see Appendix A.8.

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Detached Matryoshka SAE (β =∞)

(a) Matryoshka SAE with de-
tached loss (equivalent to a ma-
tryoshka SAE with β = ∞).
Hedging adds positive compo-
nents of the child features 2-4 to
the encoder of latent 1.

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Standard SAE (β = 0)

(b) Standard SAE (equivalent a
matryoshka SAE with β = 0).
Absorption adds negative compo-
nents of the child features 2-4 to
the encoder of latent 1.

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Balanced Matryoshka SAE (β = 0.25)

(c) Roughly balanced matryoshka
SAE with β = 0.25. The positive
and negative contributions hedg-
ing and absorption roughly cancel
out, leaving a nearly perfect SAE.

Figure 7: Balancing hedging and absorption in a toy model of hierarchical features. Child features
2-4 only fire if parent feature 1 fires. The matryoshka SAE has a single inner level with 1 latent,
represented by a black box around latent 1.

We show results in Figure 7. When β is too high or too low this results in hedging or absorption,
respectively. When β = 0.25, these balance out and the SAE learns a near perfect representation.

Next, we train LLM balance matryoshka SAEs with different balance ratios on Gemma-2-2b layer
12. The SAEs are BatchTopK with k=40, trained on 500M tokens. The SAEs have 5 matryoshka
levels of sizes 128, 512, 2048, 8192, and 32768 (so the full SAE has width 32768). We set the
outermost β5 = 1, and set a constant multiplier between each subsequent βm, so multiplier =
βm/βm+1. If the multiplier is 0.5, then βm = 0.5(5−m).

We train 10 seeds for each multiplier and show results in Figure 8 for absorption rate, targeted
probe pertubation (TPP), Spurious Concept Removal (SCR), K-sparse probing, and feature-splitting
metrics from SAEBench (Karvonen et al., 2025), and k=1 sparse probing results (Gurnee et al.,
2023) for a Parts of Speech (POS) dataset we created using Treebank POS tagged sentences (Marcus
et al., 1993). We add a POS dataset for probing since POS are very general concepts, and should be
learned in the earliest levels of a matryoshka SAE.

For TPP, feature splitting, and sparse probing, using a compound multiplier of around 0.75 achieves
better results than either a standard matryoshka SAE or a standard (non-matryoshka) SAE, providing
evidence that balancing matryoshka losses can improve the performance. Using a multiplier of 0.75
still scores well on the absorption metric as well. Strangely, SCR appears to perform better at higher
multipliers. However, SCR is also the noisiest metric, and the noise is higher at high multipliers,
so it could be that hedging increases the noise of the SCR metric but does not fully break it. We
provide further results and more details in Appendix A.10.
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Figure 8: Performance of balance matryoshka SAEs vs multiplier. The shaded area is 1 std. Multi-
plier=0 is equivalent to a standard SAE, and multiplier=1 is a standard matryoshka SAE.

While balancing each βm can improve performance on most metrics, we do not expect this to per-
fectly solve absorption and hedging. We show in Appendix A.9 that balancing all hedging and
absorption with a single βm is not always possible. We expect it may be possible to further improve
performance by learning different balancing coefficients per latent, but this is left to future work.

6 RELATED WORK

Other work has highlighted theoretical problems with SAEs. Till (2024) investigated a problem
where SAEs may increase sparsity by inventing features. For instance, an SAE may fabricate a “red
triangle” feature in addition to “red” and “triangle” features. Templeton et al. (2024) dicuss the
problem of feature splitting, where an SAE may not learn features at a desired level of specificity.
Engels et al. (2024) investigates SAE errors and finds that SAE error may be pathological and non-
linear. Engels et al. (2025) further shows that there are features that cannot be expressed as a simple
linear direction, and thus SAEs may struggle to represent these features. Wu et al. (2025) and
Kantamneni et al. (2025) both investigate the empirical performance of SAEs and find that SAEs
underperform baselines.

7 DISCUSSION

SAEs remain a promising technique for decomposing the residual stream of LLMs in an unsuper-
vised manner. However, given recent work showing that SAEs underperform relative to baselines
(Wu et al., 2025; Kantamneni et al., 2025), it is imperative that we understand the reasons for this
underperformance so they can be addressed.

In this work, we introduced the problem of feature hedging in SAEs, showing it both theoretically
in toy models, and empirically in SAEs trained on real LLMs. We suspect that hedging, along with
absorption, may be one of the core theoretical problems leading to poor SAE performance.

Using our understanding of hedging, we introduced the balance matryoshka SAE architecture, al-
lowing balancing of hedging and absorption against each other, improving interpretability. We view
balance matryoshka SAEs as a starting point, and expect this architecture can be improved by op-
timizing the balance coefficients. There may not be a single coefficient that perfectly balances
hedging and absorption for all features, so we expect there may be further gains from learning a
different balancing coefficients per latent in the SAE. We leave these improvements to future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Code for all toy model experiments and demonstration code for training and evaluating LLM SAEs
is provided as part of the supplementary materials for this paper. We further provide details on toy
model SAE training in Section 3 and Appendix A.1. LLM SAE training is further detailed in Section
4.1 and Appendix A.4.
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A APPENDIX

A.1 STUDYING HEDGING IN SINGLE-LATENT SAES

We begin by investigating hedging in the simplest possible toy SAE setting: an SAE with a single
latent. We use a model with two true features f1 and f2 (N = 2, D = 50). Each feature fires with
magnitude 1.0. Unless otherwise specified, f1 fires with probability 0.25, and f2 fires with proba-
bility 0.2. We use SAELens (Bloom et al., 2024) to train a single-latent SAE on these activations.
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Figure 9: True features, and SAE decoder latent and bdec for single-latent SAE and a toy model with
two true features. When the features fire independently, there is no hedging seen in the SAE latent.
When any correlation is present, the SAE latent shows clear hedging.

A.1.1 FULLY INDEPENDENT FEATURES

We first study the case when f1 and f2 fire independently. We find that the SAE correctly represents
f1 without any interference from f2. However, the decoder bias has incorrectly learned to represent
the direction of f2, but with magnitude 0.2, equal to the probability of f2 firing. The single SAE
latent, SAE bias term, and true features are shown in Figure 9a.

We consistently find this pattern of the decoder bias merging in positive components of features not
tracked by their own latent. In this sense, the decoder bias can be thought of as an always-on latent,
and thus is thus also susceptible to hedging.

A.1.2 HIERARCHICAL FEATURES

Next, we investigate what happens if f1 and f2 are in a hierarchy, so f2 can only fire if f1 fires, but f1
can still fire on its own (f2 =⇒ f1). We adjust the firing probability of f2 so that P (f2|f1) = 0.2,
and P (f2|¬f1) = 0 (thus, P (f2) = 0.05). In a two-latent SAE this setup would cause feature
absorption. We plot the SAE latent, decoder bias, and true features in Figure 9b.

Here we clearly see feature hedging. The single SAE latent has now merged in a component of f2
into its single latent, so it is now a mixture of f1 and f2. This merging of features reduces the MSE
loss of the SAE despite being a degenerate solution.

Increasing the L1 penalty of the SAE cannot solve this problem. f2 only fires if f1 fires, so adding
a positive component of f2 into the encoder does not cause the latent to fire any more often.

A.1.3 POSITIVELY CORRELATED FEATURES

−1 0 1

−1

0

1

f1

f2

SAE Latent
SAE bdec

Correlated features, high L1 penalty

Figure 10: High L1 penalty can
reduce hedging caused by posi-
tive correlations.

Next, we change our setup so that P (f2|¬f1) = 0.1 instead of 0.
We still keep P (f2|f1) = 0.2, so that f2 is more likely to fire if f1
fires, but it can still fire on its own as well. The features are now
merely correlated rather than following a strict hierarchy. Results
are shown in Figure 9c.

We still see hedging in the SAE latent, but less than with full hier-
archical features. However, if the L1 penalty is high enough and
the level of correlation is low enough, then the SAE can still learn
the correct features, as positive hedging increases the L0 of the
SAE slightly relative to learning just f1. We show the resulting
SAE latent and features with high L1 penalty in Figure 10. Inter-
estingly, we now see that the hedging has moved more apparently
into the decoder bias instead. If we use a full-width SAE, the SAE
learns the true features despite the correlation (Appendix A.3).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

−0.4 −0.2 0.0 0.2 0.4

Feature Correlation

−0.50

−0.25

0.00

0.25

0.50

C
os

in
e

Si
m

ila
ri

ty

Hedging (cos(l, f2)) vs Feature Correlation

Figure 11: Hedging amount (cos(l, f2) = 0) vs correlation between f1 and f2. The amount of
hedging is a clear function of the amount of correlation between feautres.

A.1.4 ANTI-CORRELATED FEATURES

Next, we reverse the conditional probabilities of f2 so that P (f2|f1) = 0.1 and P (f2|¬f1) = 0.2.
Now f2 is more likely to fire on its own than it is to fire along with f1. Results are shown in
Figure 9d.

Now the SAE latent has actually merged a negative component of f2 into its single latent instead of a
positive component. How does this work? We see that the decoder bias, bdec, has a larger component
of f2 than in the positive correlation case. The SAE is using the decoder bias to include a “default”
value for f2, and then when f1 fires, the SAE latent’s negative component of f2 acts to reduces the
amount of f2 present in the reconstruction. The SAE is abusing the correlation to adjust its guess
of the amount of f2 that should be output despite not having a dedicted latent for f2: if f1 is active,
then the likelihood that f2 is active decreases, and the SAE likewise reduces the amount of f2 that
is output.

Increasing L1 penalty cannot solve this, as the negative component of hedging in the encoder does
not increase L0 of the SAE. If we use a full-width SAE, we again see the SAE learns the true features
despite the correlation (see Appendix A.3).

A.2 HEDGING IS A FUNCTION OF FEATURE CORRELATION

Next, we explore the effect of feature correlation on the amount of hedging in our single-latent,
two feature setting. We set P (f1) = 0.45 and P (f2) = 0.25, but change the correlation between
these features, ρ, to range from −0.5 to 0.5. We then calculate the cosine similarity of the SAE
decoder latent, l, with f2. We furthermore initialize the single SAE latent to match f1, so that any
deviation from this must be caused by gradient pressure rather than simply being an unfortunate
local minimum. If there is no hedging occurring, then cos(l, f2) = 0, as we saw in Figure 9a.
Results are shown in Figure 11.

As expected, the amount of hedging directly tracks the amount of correlation. The hedging also
matches the sign of the correlation as well, with negative correlation resulting in a negative compo-
nent of f2 being mixed into l, and positive correlation resulting in a positive component of f2 being
mixed into l.

A.2.1 HEDGING IS CAUSED BY RECONSTRUCTION LOSS: CURVES FOR SINGLE-LATENT
SAES

What causes hedging? We hypothesize that it is a combination of not enough latents to represent
every feature, and the fact that MSE loss incentivizes reconstructing multiple features imperfectly
as opposed to only one feature perfectly.

To test this, we analyze the loss curves for a single-latent tied SAE with a parent-child relationship
between the two features f1 and f2, so f2 =⇒ f1. The ideal SAE latent must be some combination
of these two features. As there are no other interfering features to break the symmetry between
encoder and decoder, the SAE can be expressed by a single unit norm latent. We set the SAE latent
l to an interpolation of these two features, l = αf2 + (1 − α)f1 (adjusted to have unit norm). We
calculate expected SAE loss consisting of MSE + L1 loss for 0 ≤ α ≤ 1.
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First, we set P (a = f1) = 0.3 and P (a = f1 + f2) = 0.1. We characterize the probabilities this
way since there are only two firing possibilities we need to consider: either f1 is firing on its own or
f1 and f2 are firing together. We use L1 coefficient of 0 and 0.1 to explore the effect of the sparsity
penalty on loss. We also consider the case where both features fire together more than they fire on
their own, with P (a = f1) = 0.1 and P (a = f1 + f2) = 0.3. Loss curves are shown in Figure 12.
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(a) Loss curves when the parent feature f1 fires more
on its own than with child feature f2. Loss is mini-
mized between f1 and f2 rather than at f1 (α = 0).
Sparsity penalty does not change the minimum.
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(b) Loss curves when the parent feature f1 fires less
on its own than it does with the child feature f2.
Loss is incorrectly minimized between f1 and f2.
Sparsity penalty does not change the minimum.

Figure 12: Loss curves for an SAE with a single latent l and 2 hierarchical features, where f2 =⇒
f1. The minimum loss is indicated with a dot on each plot. α = 0 means that l = f1, and α = 1
means l = f2. In all cases, loss is minimized when the latent l is a combination of f1 and f2.

In these plots, α = 0 corresponds to the SAE latent being exactly f1, and α = 1 corresponds to the
latent being f2, and α = 0.5 corresponds to f1 + f2. We clearly see that the SAE loss has a single
minimum between f1 and f1+f2, showing that the MSE minimum is attained with feature hedging.

A.3 FULL-WIDTH SAE TOY MODEL RESULTS
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(a) Full-width SAE with correlated features. The
SAE is still able to perfectly learn the underlying
features despite the correlation.
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(b) Full-width SAE with anti-correlated features.
The SAE is still able to perfectly learn the under-
lying features despite the correlation.

Figure 13: Full-width SAE results on correlated and anti-correlated toy models.

We extend the discussion of single-latent SAEs to explore what happens if the SAE has two la-
tents, the same number of latents as the number of true features. We use the same toy model as in
Section A.1.3 for the positive correlation case, and the same toy model as in Section A.1.4 for the
anti-correlated case. We use L1 penalty of 1e-3 for the positive correlation case, the same as the L1
penalty that caused hedging in single-latent SAEs.

We plot the results in Figure 13. In both cases, the full-width SAEs are able to perfectly recover
the true features despite the correlation, and despite the low L1 penalty. This shows that hedging is
caused by the SAE being too narrow, as increasing the width of the SAE solves the problem.

A.4 TRAINING DETAILS FOR LLM SAES

All SAEs are trained on the Pile uncopyrighted (Gao et al., 2020), using a batch size of 4096 acti-
vations and context length of 1024 tokens. For L1 SAEs, we use a linear L1 warm-up of 10k steps.
SAEs are trained on a single 80gb Nvidia H100 GPU. Model weights are loaded in fp32 precisions,
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but autocast to bfloat16 during training. We initialize the SAE so that the encoder and decoder are
identical, where each latent has norm 0.1, following the procedure described in (Olah et al., 2024).
All L1 SAEs are trained with learning rate 7e-5, and BatchTopK SAEs are trained with learning rate
3e-4. SAEs are trained using SAELens (Bloom et al., 2024).

Unless otherwise specified, BatchTopK SAEs use k=25. For SAEs trained on Gemma-2-2b, we
conduct most experiments at layer 12 (roughly in the middle), and L1 SAEs trained on Gemma-2-
2b use L1 coefficient of 10. This coefficient does not reuslt in dead extension latents, and yields a
L0 around 50. For SAEs trained on Llama-3.2-1b, we conduct most experiments at layer 7 (roughly
in the middle of the model), and for L1 SAEs trained on Llama-3.2-1b, we use L1 coefficient of 0.5.
This coefficient does not result in dead extension latents, and yields a L0 around 50.

A.5 CHOICE OF HEDGING HYPERPARAMETER N
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Figure 14: Hedging degree vs N

Our hedging degree metric requires adding N new latents onto an existing SAE to extend it, naturally
leading to the question of what is a reasonable choice of N. We plot hedging degree vs N for Gemma-
2-2b layer 12, given an initial BatchTopK SAE of width 8192 in Figure 14. We find that hedging
degree increases until about N=250. We choose N=64 for our experiments, as 64 is still a small
number of latents relative to the size of the residual stream (2304 for Gemma-2-2b), while still
being large enough to hopefully reduce noise from any specific latent that gets added. Furthermore,
as we see in the plot, the hedging degree from N=64 is about in the middle of the curve, further
validating that this is a reasonable choice.

A.5.1 EXTENDING LLM SAES

We train two versions of extension SAEs - one for L1 loss SAEs and one for BatchTopK SAEs. In
both cases, we begin with a pretrained SAE and add N latents randomly initialized with norm 0.1,
and with the same encoder and decoder directions, following Olah et al. (2024). For the BatchTopK
SAEs, we simply train the SAE from this point as normal, as the TopK auxiliary loss (Gao et al.,
2024) will naturally ensure that the newly added latents do not simply die off.

For L1 SAEs with high L1 penalty, dead latents become a more serious problem. We find that most
of the newly added extension latents will rapidly be killed off if we simply train as normal. To
combat this, we re-warm-up the L1 penalty. However, we cap the minimum L1 penalty at λmin, so
for the portion of the warm-up where the L1 penalty would normally be below λmin, the L1 penalty
is left at λmin instead. This capping helps ensure the existing SAE latents are not very disturbed
by this change in the L1 penalty. If the final L1 penalty is λmin or below, then we do not perform
this warm-up at all, as the L1 penalty is not strong enough to immediately kill off the newly added
latents.

For Gemma-2-2b SAEs, we set λmin = 10.0. For Llama-3.2-1b SAEs, we set λmin = 0.5.

This warm-up procedure is only used for the high-L1 variants in Figure 6c - for all other plots the
L1 coefficient used is less than λmin, so no warmup is needed.
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A.6 CASE STUDY: ADDING A NEW LATENT TO AN EXISTING SAE

We next explore how hedging affects a real SAE. We trained a L1 SAE on Gemma-2-2b layer 12
with width 8192 for 250M tokens on the Pile (Gao et al., 2020), then add a new latent to the SAE,
and continue training both the original SAE and the extended SAE for another 250M tokens.

0.3/ css / bootstrap.min .

/ bootstrap.min . css integrity="sha3"

/ bootstrap.min . css "> link

(a) Newly added case-study latent, latent 8192. The
latent appears to track CSS scripts in HTML.

> < link rel =" stylesheet" type ="

8"/>< link rel = stylesheet href="..//doc

png">< link rel =" manifest" href="

(b) Latent 3094, which had the largest negative δ-
projection after adding latent 8192. This latent
tracks “rel” in HTML, used for CSS in HTML.

Figure 15: Sample top activating examples for case study latents.

We examine inputs that cause the newly added latent to fire to get a sense of what it represents.
We reproduce a portion of the top activating examples for the new latent in Figure 15a. This latent
appears to fire on CSS scripts included in HTML. A larger set of inputs is shown in Appendix A.7.

Next, we look at the magnitude of change in existing latents projected on the new latent. Based
on our understanding of hedging, if a latent loses a large component of the newly added latent,
this corresponds to a likely hierarchical relationship with the new latent. The latent which lost the
largest component of the new latent is latent 3094, which seems to track the “rel” HTML attribute
used mainly for linking CSS scripts. We show top activating examples for latent 3094 in Figure 15b.

Since CSS scripts are just one type of asset that can be linked using “rel”, this appears to be exactly
the sort of hierarchical relationship we expect to be heavily impacted by hedging.

A.7 ADDITIONAL CASE STUDY DASHBOARDS

Figure 16: Dashboard for the newly added case study latent representing CSS scripts in HTML.
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Figure 17: Dashboard for latent 3094, representing the “rel” HTML attribute used for CSS scripts.
This latent has the highest negative δ-projection on the newly added case study latent.

A.8 TOY BALANCE MATRYOSHKA SAES

To explore the effect of balancing matryoshka losses in a simple toy setting, we create a toy model
with 4 true features, all mutually orthogonal and with unit norm in a 50 dimensional space. We set
up a hierarchical relationship between these features, so feature 1 fires with probability 0.25, and
features 2, 3, and 4 all fire with probability 0.15 only if feature 1 fires. Thus, feature 1 is the parent
feature in the hierarchy and features 2, 3, and 4 are all child features.

We train a matryoshka SAE with 4 latents on 100,000,000 samples from this toy model. The ma-
tryoshka SAE has a single inner level consisting of 1 latent, to match the number of parent latents
in our hierarchy. Since our goal with this toy is just to build intuition, we initialize the SAE to
the correct solution and allow the training to thus pull it away from this correct solution. This also
ensures that each variation of our SAE with different balancing co-efficients learns the same latents
in the same order, so visual comparison is easy.

A.9 TOY UNBALANCEABLE MATRYOSHKA SAES

The situation above where each child feature has the same probability of firing is unrealistic - we
would expect that child features all fire with different probabilities from each other. Can we still
balance the SAE perfectly in this situation? We adjust the toy model from above so that the 3 child
features fire with probabilities 0.02, 0.2, and 0.5 for features f2, f3, and f4, respectively. We then
try to manually balance this SAE, finding that β = 0.17 gives roughly the best balance. We plots
the resulting encoder/decoder cosine similarities in Figure 18.
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Figure 18: SAE encoder and decoder vs true feature cosine similarities for a balance matryoshka
SAE where the child features fire with different probabilities. It’s no longer possible to perfectly
balance all 3 child features with the same β, but we can still do reasonably well.

We now see it is no longer possible to choose a single β that perfectly balances all 3 children. We
see slight hedging of feature 4 in latent 1, and slight absorption of feature 2 in latent 1. Still, this
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looks decent compared to the full hedging or full absorption scenario, so we still expect that while
balancing is not a perfect solution, it should be an improvement. We believe it should be possible to
finding ways of better balancing the contribution of each outer latent on each inner latent, but this is
left to future work.

A.10 SAE EVALUATION

A.10.1 SAEBENCH EVALS

We evaluate our SAEs mainly using SAEBench (Karvonen et al., 2025). All evals are performed
using default settings. We run all evaluations on an Nvidia H100 GPU with 80gb GPU memory. We
evaluate on the following SAEBench tasks:

K-sparse probing k-sparse probing builds on the work of Gurnee et al. (2023), where the goal is
to create a linear probe from model activations using only k neurons as input to the probe. This was
adapted for use as an SAE evaluation technique by Gao et al. (2024). We focus mainly on k = 1
sparse probing, which means finding the single best SAE latent that serves as a classifier for a given
concept, and evaluating the accuracy of that latent. SAEBench includes supervised classification
datasets on which k-sparse probing is evaluated.

Feature absorption The feature absorption metric in SAEBench is a variation on the metric de-
fined in the original feature absorption work (Chanin et al., 2024). This metric uses a first-letter
spelling task and first identifies the “main” latents for that task using k-sparse probing (Gurnee
et al., 2023). Then, the metric identifies cases where a linear probe is able to correctly perform the
first-letter classification task, but the “main” SAE latents fail to perform the task. The metric also
looks for other latents that project onto the linear probe direction and fire in place of the “main’
latents. Lower absorption is better.

The SAEBench absorption metric also includes “absorptions fraction”, “feature splitting”, and “first-
letter k=1 sparse probing” results as well, which we include in our extended results. Absorption
fraction detects partial absorption, where a parent latent can still fire but weaker when an absorbing
child latent fires as well. Feature splitting detects the amount of interpretable feature splitting occur-
ring in the SAE. Interpretable feature splitting is still considered negative, as we would prefer that
features do not split at all and the SAE can still represent general, high-level concepts. The k-sparse
probing results for the first-letter spelling task is calculated as part of the absorption metric, but is
an interesting sparse-probing result in and of itself.

Spurious concept removal (SCR) SCR builds on the SHIFT method from Marks et al. (2025)
to detect how well an SAE isolates concepts. The metric uses datasets where two properties are
perfectly entangled, for instance “profession” and “gender”, and trains a biased probe on these
concepts. The SCR metric then detects how well k SAE latents can be ablated to de-bias the probe.
If the SAE latents learn disentangled concepts, then it should only take a few SAE latents to perfectly
de-bias the probe. A high SCR score means the SAE latents represent disentangled concepts.

Targeted probe perturbation (TPP) The TPP metric extends SCR to multi-class labels. Binary
probes are trained for each class, and TPP measures how well ablating k SAE latents can degrade the
performance of just one of the probes without degrading performance on the other probes. A high
TPP score means that concepts are represented by distinct sets of SAE latents, rather than latents
being entangled with many concepts.

A.10.2 PARTS OF SPEECH (POS) PROBING DATASET

We are interested as well in general, high-frequency concepts that we expect should be learned
in the inner-most levels of a matryoshka SAE. These concepts should be the most affected by both
absorption and hedging, as these concepts can be considered parent concepts to most other concepts.
Parts of speech (POS) is a great test-case for these general concepts, and are not covered by the
SAEBench sparse probing task. As such, we create our own custom POS dataset using the Penn
Treebank tagged sentences (Marcus et al., 1993).

We simplify the Treebank parts of speech to the following core set:
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"TO", "IN", "DT", "CC", "NNS", "PRP", "POS"

We pass these tagged sentences through an LLM, and then collect activations for the final token of
position of each word at a given layer in the LLM. We create a binary classification dataset for each
of these parts of speech, and perform k-sparse probing (Gurnee et al., 2023) on SAE latents to find
the top k latents that act as a classifier for each of these parts of speech.

A.10.3 BALANCE MATRYOSHKA SAE FULL RESULTS
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Figure 19: Performance of balance matryoshka SAEs vs multiplier for extended metrics. The shaded
area in the plots refers to 1 std. Multiplier=0 is equivalent to a standard non-matryoska SAE, and
multiplier=1 is equivalent to a standard matryoshka SAE.

A.11 LIMITATIONS

We only test hedging in SAEs up to 65k latents on LLMs with 2b parameters due to compute
constraints. Our method for detecting hedging requires fine-tuning SAEs, which is expensive.
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