
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEATURE HEDGING: CORRELATED FEATURES BREAK
NARROW SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

It is assumed that sparse autoencoders (SAEs) decompose polysemantic activa-
tions into interpretable linear directions, as long as the activations are composed
of sparse linear combinations of underlying features. However, we find that if an
SAE is more narrow than the number of underlying “true features” on which it
is trained, and there is correlation between features, the SAE will merge compo-
nents of correlated features together, thus destroying monosemanticity. In LLM
SAEs, these two conditions are almost certainly true. This phenomenon, which
we call feature hedging, is caused by SAE reconstruction loss, and is more severe
the narrower the SAE. In this work, we introduce the problem of feature hedg-
ing and study it both theoretically in toy models and empirically in SAEs trained
on LLMs. We suspect that feature hedging may be one of the core reasons that
SAEs consistently underperform supervised baselines. Finally, we use our under-
standing of feature hedging to propose an improved variant of matryoshka SAEs.
Importantly, our work shows that SAE width is not a neutral hyperparameter: nar-
rower SAEs suffer more from hedging than wider SAEs.

1 INTRODUCTION

As large language models (LLMs) are deployed in real-world applications, it is increasingly impor-
tant to understand their internal workings. Sparse autoencoders (SAEs) decompose the dense, pol-
ysemantic activations of LLMs into interpretable latent features (Cunningham et al., 2024; Bricken
et al., 2023) using sparse dictionary learning (Olshausen & Field, 1997). SAEs have the advantage
of operating completely unsupervised, and can easily be scaled to millions of neurons in its hidden
layer (hereafter called “latents” 1)(Templeton et al., 2024; Gao et al., 2024).

While SAEs showed promising results, recent work has cast doubt on the performance of SAEs rela-
tive to baseline techniques. Wu et al. (2025) show that SAEs underperform on both concept steering
and detection relative to baselines, and Kantamneni et al. (2025) show that SAEs underperform sim-
ple linear probes on both in-domain and out-of-domain detection, even when the probes have very
few training samples. The question, then, is why do SAEs underperform relative to other techniques?
And if we can identify the problems holding back SAEs, can we then fix those problems?

One fundamental issue with SAEs is the problem of feature absorption (Chanin et al., 2024), where
a more specific latent suppresses the firing a more general latent. For instance, an SAE may have
a latent that appears to track “Cities in USA” but that arbitrarily fails to fire on the specific cities
“New York” and “Detroit”, where a city-specific latent fires instead. Feature absorption requires
underlying features to exist in a hierarchy, with a parent feature fp and a child feature fc, where fc
can only fire if fp is firing (fc =⇒ fp). Feature absorption is caused by SAE sparsity penalty,
and becomes more severe the wider the SAE. An SAE encoder/decoder under feature absorption is
shown in Figure 1b.

In this paper, we identify another fundamental issue with SAEs which we call feature hedging. In
hedging, an SAE is too narrow to represent both features fa and fb with their own latents la and lb.
Ideally, an SAE should assign a latent l to either fa or fb, and ignore the feature not being tracked.
However, if fa and fb are either hierarchical as in absorption, or (anti-)correlated, then the SAE

1We use the term “latents” for the hidden neurons of the SAE to avoid overloading the term “feature”. We
use “feature” only to describe interpretable concepts represented by the model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparing feature hedging and feature absorption

Feature absorption Feature hedging

Learns gerrymandered latents Learns polysemantic mixtures of features
Caused by sparsity loss Caused by MSE reconstruction loss
Features are all tracked in the SAE One feature is in the SAE, the other is not
Affects the encoder and decoder asymmetrically Affects encoder and decoder symmetrically
Gets worse the wider the SAE Gets worse the narrower the SAE
Requires hierarchical features Requires only correlation between features

latent l can reduce reconstruction error by incorrectly mixing in components of both fa and fb. A
sample SAE encoder and decoder experiencing hedging is shown in Figure 1a. In an LLM SAE,
hedging will look like each SAE latent has noise mixed into it, reducing the performance of the
latent for both detection and steering. Unlike with absorption, hedging becomes worse the narrower
the SAE: thus trying to reduce absorption by making the SAE narrower will simply result in more
hedging instead. The differences between hedging and absorption are shown in Table 1.

In LLM SAEs, the SAE is almost certainly narrower than the number of underlying features, as even
extremely wide LLM SAEs appear to miss features (Templeton et al., 2024). Furthermore, we expect
that nearly every feature in an LLM has positive and negative correlations to many features. We thus
expect that hedging is the norm in LLM SAEs and will significantly distort their performance.

1 2

True feature

1

SA
E

L
at

en
t

SAE encoder

1 2

True feature

1

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Feature hedging)

(a) When the SAE is only wide enough to represent
one of the two features, we see feature hedging. La-
tent l1 mainly tracks f1, but a small component of f2
is incorrectly mixed into the latent l1 as well. f2 is
mixed symmetrically into both the encoder and de-
coder.

1 2

True feature

1
2

SA
E

L
at

en
t

SAE encoder

1 2

True feature

1
2

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Feature absorption)

(b) Adding a new latent to the SAE so it is wide
enough to track both features, we see feature absorp-
tion. The decoder for l1 perfectly tracks f1, but its
encoder turns off if f2 is also active. l2 tracks f2, but
its decoder mixes f1 and f2. Asymmetry between
encoder and decoder is characteristic of absorption.

Figure 1: SAE encoder and decoder patterns for hierarchical features f1 and f2, where f1 =⇒ f2.
These features lead to either hedging or absorption depending on the width of the SAE.

A solution to feature absorption has been proposed in the form of matryoshka SAEs (Bussmann
et al., 2025). Matryoshka SAEs use nested SAE loss terms to enforce a hierarchy on the SAE
latents, solving absorption by forcing the narrow inner levels of the SAE to reconstruct inputs on
their own. However, as we show in this paper, matryoshka SAEs suffer more from hedging due to
the inner matryoshka levels essentially being very narrow SAEs. Matryoshka SAEs thus trade off
absorption for hedging.

In this work, we define and study feature hedging both theoretically in toy models and empirically in
LLM SAEs. We show that hedging is worse the more narrow the SAE, and introduce a technique to
characterize the amount of hedging present in a given SAE. We also study hedging and absorption
in matryoshka SAEs, and show that it is possible to improve the monosemanticity of matryoshka
SAEs by tuning the relative loss coefficients in each level of the matryoshka SAE to better balance
the competing forces of absorption and hedging—though both problems remain present. We show
as well that SAE width is not a neutral hyperparameter: narrow SAEs suffer more from hedging
than wider SAEs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

Sparse autoencoders (SAEs). An SAE decomposes an input activation x ∈ RD into a hidden
state f consisting of L hidden neurons, called “latents”. An SAE is composed of an encoder Wenc ∈
RL×D, a decoder Wdec ∈ RD×L, a decoder bias bdec ∈ RD, and encoder bias benc ∈ RL, and a
nonlinearity σ, typically ReLU or a variant like JumpReLU (Rajamanoharan et al., 2024), TopK
(Gao et al., 2024) or BatchTopK (Bussmann et al., 2024).

z =σ(Wenc(x− bdec) + benc) (1)
x̂ =Wdecz + bdec (2)

The SAE is trained with a reconstruction loss, typically Mean Squared Error (MSE), and a sparsity-
inducing loss consisting of a function S that penalizes non-sparse representation with corresponding
sparsity coefficient λ. For standard L1 SAEs, S is the L1 norm of f . For TopK and BatchTopK
SAEs, there is no sparsity-inducing loss (S = 0) as the TopK function directly induces sparsity.
There is sometimes also an additional auxiliary loss Laux with coefficient α to ensure all latents
fire. Standard L1 SAEs typically do not have an auxiliary loss (Olah et al., 2024). The general SAE
loss is

L = ∥x− x̂∥22 + λS + αLaux. (3)

Tied SAEs. A tied SAE has Wenc = W T
dec. The biases have different dimensions and are untied.

Matryoshka SAEs. A matryoshka SAE (Bussmann et al., 2025) extends the SAE definition by
summing losses created by prefixes of SAE latents. This forces each sub-SAE to reconstruct input
activations on its own, and incentivizes the SAE to place more common, general concepts into latents
with smaller index number. A matryoshka SAE uses nested prefixes with sizes M = m1,m2, ...mn

where m1 < m2 < . . . < mn = L, where L is the number of latents in the full dictionary.
Matryoshka SAE loss is:

L =
∑

m∈M

(
∥x− x̂m∥22 + λSm

)
+ αLaux (4)

Where x̂m is the reconstruction for the SAE using the first m latents, and Sm is the sparsity penalty
applied to the first m latents. For TopK and BatchTopK Matryoshka SAEs, there is no sparsity
penalty (Sm = 0) as the TopK function directly imposes sparsity.

3 TOY MODELS OF FEATURE HEDGING

The linear representation hypothesis (LRH) states that features in LLMs are represented as nearly-
orthogonal linear directions in representation space (Bricken et al., 2023). The goal of SAEs, then,
is to recover these underlying “true features” of the model, where each latent of the SAE decoder
perfectly matches an underlying feature of the model. In real LLMs we do not have ground-truth
knowledge of these underlying features, making it difficult to know if SAEs are succeeding at recov-
ering model features. Fortunately, it is easy to create synthetic training data for SAEs that follows the
LRH and gives us ground-truth knowledge of the underlying features. This allows us to understand
when SAEs will learn the underlying features of the model, and when SAEs fail.

We define a toy model consisting of N true features F ∈ RN×D, where each ∥fi∥2 = 1. These
features are mutually orthogonal, so ∀i ̸= j, fi · fj = 0. Each feature fi has a corresponding firing
probability pi ∈ [0, 1]. For each sample, we generate a binary activation vector a ∈ {0, 1}N where
ai ∼ Bernoulli(pi) indicates whether feature fi is active (fires). The model can incorporate feature
dependencies by conditioning firing probabilities: ai|a−i ∼ Bernoulli(pi(a−i)), where a−i denotes
the activation states of all other features. We then generate SAE training samples x from this model
as x =

∑N
i=1 aifi.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We say that an SAE is correct or monosemantic for this toy model if every latent in the SAE dic-
tionary matches a true feature direction, and each SAE latent corresponds to a different true feature.
Formally, there exists a bijection π : {1, . . . , L} → {1, . . . , N} such that cos(Wdec,i, fπ(i)) = 1 for
all i ∈ {1, . . . , L}. We only investigate SAEs where L ≤ N in our toy experiments. We say an
SAE is polysemantic if some SAE latents contain positive or negative components of multiple true
features, so there exists at least one latent i ∈ {1, . . . , L} such that |{j ∈ {1, . . . , N} : |Wdec,i ·fj | >
ϵ}| > 1 for some threshold ϵ > 0.

For all SAEs in this section, we train on 15M synthetic activations using SAELens (Bloom et al.,
2024). In this section we show plots of the cosine similarity between the SAE encoder / decoder
and the true features. Each cell i, j in these plots is simply cos(WT

enc,i, fj) and cos(Wdec,i, fj),
respectively. We re-arrange the indices of the SAE latents to best align visually with true features.

3.1 FULLY INDEPENDENT FEATURES

We first study the case of a toy model with N = 4 independent features. Features 1-3 fire with
probability 0.25, and feature 4 fires with probability 0.2. We plot the encoder / decoder cosine
similarity with true features in Figure 2. When features fire independently, the SAE learns correct
features regardless of the width of the SAE.

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Independent features)

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Independent features)

Figure 2: SAE with three latents (left) and four latents (right) trained on a toy model with indepen-
dent features. Both SAEs learn correct features.

Unfortunately, real LLMs do not have fully independent features. SAEs were first studied under toy
models with independent features (Elhage et al., 2022), and this is likely why the field was not aware
of feature hedging much earlier.

3.2 HIERARCHICAL FEATURES

Next, we explore true features that fire hierarchically. We modify the toy model from Section 3.1
above, and set f3 as the parent feature and f4 as the child feature, so f4 =⇒ f3. That is, f4
cannot fire unless f3 is also firing. Hierarchical features cause feature absorption in SAEs that are
wide enough to represent both the parent and child feature, but what happens if the SAE is not wide
enough to represent the child latent? This is important as this is the intuition behind why Matryoshka
SAEs work to combat absorption: if inner SAE levels are too narrow to represent both parent and
child features, we hope that only the parent will be represented. We show results in Figure 3.

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Hierarchical features)

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Hierarchical features)

Figure 3: SAEs trained on a toy model with hierarchical features (f3 =⇒ f4). When the SAE
is too narrow to represent f4 (left), we see hedging where latent 3 mixes . When the SAE is wide
enough to contain both f3 and f4 (right), we see feature absorption.

As expected, in the full-width SAE we see a classic feature absorption pattern. The parent latent
encoder, l3, learns ¬f4 ∧ f3, disabling the latent from firing if f4 is present. The child latent, l4,
mixes both f3 and f4 together in the decoder.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

However, when the SAE is too narrow to represent f4, we now see that latent l3 mixes a component
of f4 into both its encoder and decoder! We refer to this as feature hedging. The SAE is learning an
incorrect, polysemantic latent that mixes correlated features.

While we expect this will be a problem for all SAEs, it is particularly problematic for Matryoshka
SAEs, as Matryoshka SAEs combat absorption by using inner SAE levels that are too narrow to
contain both parent and child features. However, as we see here, this causes hedging.

We study hierarchical features further in a single-latent SAE in Appendix A.1.2. We further show
that MSE directly causes hedging with hierarchical features in Appendix A.2.1.

3.3 POSITIVELY CORRELATED FEATURES

Hierarchy is a particularly extreme form of positive correlation, where a feature can only fire if
another feature also fires. Next, we relax that restriction, and investigate what happens if a feature is
merely more likely to fire along with another feature, but can still fire on its own as well. We modify
the toy model so that p4 = 0.2 if f3 fires, but p4 = 0.1 if f3 does not fire, adding a small positive
correlation between f3 and f4. We show results Figure 4

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Correlated features)

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Correlated features, full-width SAE)

Figure 4: SAEs trained on a toy model with positive correlation between features f3 and f4. When
the SAE is too narrow to represent f4 (left), we still see hedging in latent 3. When the SAE is wide
enough to contain both f3 and f4 (right), the SAE learns correct features.

We still see that the SAE is mixing a positive component of f4 into l3, despite there no longer being
perfect hierarchy! We also see that if we extend the SAE width so that f4 is tracked by its own latent
l4, there is now no absorption at all, as absorption requires (nearly) hierarchical features to arise.

3.4 ANTI-CORRELATED FEATURES

So far we have only seen the effect of positive correlation between features. We next change our toy
model so f4 is more likely to fire if f3 does not fire. We set p4 = 0.1 if f3 fires, but p4 = 0.2 if f3
does not fire. Results are shown in Figure 5.

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Standard SAE - anti-correlated features)

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Standard SAE - anti-correlated features)

Figure 5: SAEs trained on a toy model with negative (anti) correlation between features f3 and f4.
When the SAE is too narrow to represent f4 (left), we latent 3 mixes a negative component of f4.
When the SAE is wide enough to contain both f3 and f4 (right), the SAE learns correct features.

We now see that l4 is mixing in a negative component of f3. This demonstrates that the correlation
is the cause of the hedging: flipping the sign of the correlation flips the sign of the hedging. We
study the mechanics of this phenomenon in more depth in Appendix A.1.

The implications of this for SAE performance are quite dire. While it is already bad for positively
correlated features to become hedged (e.g. “sunshine” and “summertime”), at least the mixed fea-
tures have some relation to each other. For anti-correlated features, this could look like a latent for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

“chemical molecules” having a negative component of the “Darth Vader” feature mixed in, since
chemical modules and Darth Vader are highly anti-correlated. Worse, it is not even clear if the in-
verse of the “Darth Vader” direction is meaningful in the model at all, or is just noise. We further
expect that there are many more negative correlations than positive correlations in language, e.g. a
negative component every word in every non-English language may be mixed into every latent track-
ing an English word. These negative correlations likely introduce what looks like a lot of random
noise into SAE latents, and this can only harm performance and interpretability.

4 QUANTIFYING HEDGING IN LLM SAES

While we have demonstrated hedging in a synthetic setting, it remains a question how much hedging
occurs in LLM SAEs. Based on our understanding of hedging in toy models, we expect that when a
new latent is added to an SAE, this should “pull out” the component of the new feature from existing
SAE latents, where it was previously hedged. Thus if hedging occurs, the change in existing latents
after a new latent is added should project onto that new latent. If hedging did not exist, then adding
a new latent should not have any effect on existing latents.

Parent latents are learned before child latents A key assumption in Matryoshka SAEs is that if
latents exist in a hierarchy, and the SAE is too narrow to represent both the parent and child, the SAE
will learn the parent first. We feel this assumption is reasonable since parent latents, by definition,
fire more frequently than child latents, so the SAE is incentivized to learn them first.

This insight allows us to differentiate hedging from absorption. Under absorption, if a newly added
latent is a child feature of an existing latent, then the encoder for the parent latent adds a negative
component of the child latent to avoid firing when the child is active, but the parent decoder latent
remains unchanged. This corresponds to adding l2 to Figure 1a and arriving at Figure 1b. The
decoder of l1 (the parent) remains identical to before l2 is added, except the hedging from f2 is
removed. Thus, changes to existing decoder latents cannot be absorption and must be due to hedging.

Hedging degree Taking this into account, we define a metric called hedging degree, h. We take
an existing SAE s0 with L latents and add N new latents to the SAE. After adding these latents,
we continue training the SAE and arrive at a new SAE, s1, with L + N latents. We also continue
training s0 on the same tokens that we train s1 on to ensure that any difference between s0 and s1
is due only to the newly added latents. W 0

dec refers to the new decoder of s0, and W 1
dec refers to the

decoder of s1. Wdec is normalized so each latent has unit norm. We define the difference in the
original L latents between s0 and s1 as:

δL = W 1
dec[0 : L]−W 0

dec[0 : L] (5)

where W 1
dec[L : L+N] refers to the newly added decoder latents. Wrand[0 : N] refers to a decoder

consisting of N randomly initialized unit-norm latents. All decoders are normalized to have latents
of unit norm. We define the projection of a vector v onto a subspace spanned by W as:

Proj(v,W) = ∥W (WTW)−1WT v∥ (6)

We expect that even if there were no hedging at all, simply due to noise, existing SAE decoder
latents may undergo a change that has some small projection onto new added latents. We want to
make sure that anything we quantify as hedging must be larger than what we would expect from
random noise. Taking this into account, the hedging degree h is then defined as:

h =
1

L

L∑
i

∥Proj(δL[i],W 1
dec[L : L+N])∥︸ ︷︷ ︸

Projection of δL onto N new latents

− ∥Proj(δL[i],Wrand[0 : N])∥︸ ︷︷ ︸
Projection of δL onto N random latents

(7)

Any value of h > 0 corresponds to hedging above what we would expect from random noise, as h
subtracts the projection along N randomly initialized unit-norm latents as part of the computation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The choice of the number of new latents N is a hyperparameter of hedging degree. We use N = 64
for our hedging degree calculation. We explore the effect of different choices on N in Appendix A.5.

4.1 RESULTS

We experiment with SAEs trained on Gemma-2-2b (Team et al., 2024), as this model is commonly
used for SAE research due to the thoroughness of the Gemma Scope suite of SAEs (Lieberum et al.,
2024), as well as Llama-3.2-1b (Dubey et al., 2024) to validate results on another LLM. All SAEs
are trained first on 250M tokens of the Pile uncopyrighted (Gao et al., 2020). After adding N = 64
latents, we continue training for another 250M tokens. The version of the SAE without latents added
is also trained for another 250M tokens, so each SAE is trained for 500M tokens total. The pair of
extended and non-extended SAEs is used to calculate hedging degree. SAE training details are in
Appendix A.4.

0 10000 20000 30000 40000 50000 60000

Width

10−2

10−1

H
ed

gi
ng

de
gr

ee
(l

og
)

Hedging degree vs width

gemma / btk
gemma / l1
llama / btk
llama / l1

(a) Hedging degree vs width. No
SAE tested reached 0 hedging.

0.0 0.2 0.4 0.6 0.8 1.0

Layer (portion of model)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
H

ed
gi

ng
de

gr
ee

Hedging degree vs layer

gemma / btk
gemma / l1
llama / btk
llama / l1

(b) Hedging degree vs layer, nor-
malized by number of LLM lay-
ers.

0 50 100 150 200

L0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

H
ed

gi
ng

de
gr

ee

Hedging degree vs L0

gemma / btk
gemma / l1
llama / btk
llama / l1

(c) Hedging degree vs L0.

Figure 6: Hedging degree for SAEs trained on Gemma-2-2b layer 12. Unless otherwise specified,
SAEs have width 8192, BatchTopK SAEs have K=25. Shaded area in plots is 1 std.

We first calculate hedging degree vs SAE width in Figure 6a, with widths ranging from 128 to
65536. Hedging degree is dramatically higher at narrower widths, especially at 4096 width and
below. While the hedging rate drops a lot with increasing SAE width, even at our max width of
65536 no SAE achieves 0 hedging degree, indicating there is still hedging occurring.

We next calculate hedging degree vs L0 (the average number of active latents) in Figure 6c, with L0
ranging from about 5 to 200. Very low L0 seems to lead to more hedging for BatchTopK SAEs, but
the effect is minor compared with the effect of SAE width on hedging degree.

Finally, we calculate hedging degree vs layer in Figure 6b. The hedging degree for L1 and TopK
SAEs appears to merge around the end of the SAE, but overall the layer does not appear to have a
massive effect on hedging degree.

It also appears that BatchTopK SAEs have more hedging than L1 SAEs. We suspect that L1 loss
can reduce hedging from positively correlated features. We explore this further in Appendix A.1.3.

We further validate hedging in LLM SAEs via a case-study of adding a new latent to an SAE trained
on Gemma-2-2b in Appendix A.6.

5 BALANCING HEDGING AND ABSORPTION IN MATRYOSHKA SAES

Matryoshka SAEs (Bussmann et al., 2025) combat absorption with nested SAE loss prefixes. Each
level acts like a small SAE, and is forced to reconstruct the input on its own. This forces the SAE to
learn more general concepts in earlier levels, and makes it difficult for the SAE to make holes in the
recall of parent latents for absorption, as this would hurt the reconstruction of earlier levels.

However, since early matryoshka levels are effectively narrow SAEs, they suffer from feature hedg-
ing. As we saw in Section 4.1, the more narrow an SAE is, the worse the hedging. Matryoshka
SAEs thus solve feature absorption at the expense of exacerbating feature hedging.

Inspecting the effect of hedging and absorption on the SAE encoder in Figure 1b shows that hedging
and absorption have opposite effects. For hierarchical features, hedging adds a positive component
of child features into the parent encoder latent, but absorption does the opposite and adds a negative

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

component of child features into the parent latent. If we balance the negative component of child
latents from absorption with the positive component from hedging, these effects can cancel out.

Balance matryoshka SAE We extend the definition of a matryoshka SAE from Equation 4 to
allow applying a scaling coefficient βm to the loss for each matryoshka level:

L =
∑

m∈M
βm

(
∥a− âm∥22 + λSm

)
+ αLaux (8)

We refer to this extension as a balance matryoshka SAE, where each βm ≥ 0 controls the relative
balance of each level. If each βm = 1 this is a standard matryoshka SAE. If βm = 0 for all
matryoshka levels except the outer-most level, this reduces to a standard (non-matryoshka) SAE.

We demonstrate this balancing in a toy model of hierarchical features. The toy model has 4 features,
with feature 1 being the parent feature and features 2-4 being children (features 2-4 can only fire
if feature 1 is also firing). Feature 1 fires with probability 0.25, and each child feature fires with
probability 0.15 if feature 1 is firing. We train a matryoshka SAE with a single inner level consisting
of only latent 1 with balance coefficient β (Since there is only one inner level, we always set the
outer level coefficient to 1). For more details on this toy setup, see Appendix A.8.

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Detached Matryoshka SAE (β =∞)

(a) Matryoshka SAE with de-
tached loss (equivalent to a ma-
tryoshka SAE with β = ∞).
Hedging adds positive compo-
nents of the child features 2-4 to
the encoder of latent 1.

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Standard SAE (β = 0)

(b) Standard SAE (equivalent a
matryoshka SAE with β = 0).
Absorption adds negative compo-
nents of the child features 2-4 to
the encoder of latent 1.

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Balanced Matryoshka SAE (β = 0.25)

(c) Roughly balanced matryoshka
SAE with β = 0.25. The positive
and negative contributions hedg-
ing and absorption roughly cancel
out, leaving a nearly perfect SAE.

Figure 7: Balancing hedging and absorption in a toy model of hierarchical features. Child features
2-4 only fire if parent feature 1 fires. The matryoshka SAE has a single inner level with 1 latent,
represented by a black box around latent 1.

We show results in Figure 7. When β is too high or too low this results in hedging or absorption,
respectively. When β = 0.25, these balance out and the SAE learns a near perfect representation.

Next, we train LLM balance matryoshka SAEs with different balance ratios on Gemma-2-2b layer
12. The SAEs are BatchTopK with k=40, trained on 500M tokens. The SAEs have 5 matryoshka
levels of sizes 128, 512, 2048, 8192, and 32768 (so the full SAE has width 32768). We set the
outermost β5 = 1, and set a constant multiplier between each subsequent βm, so multiplier =
βm/βm+1. If the multiplier is 0.5, then βm = 0.5(5−m).

We train 10 seeds for each multiplier and show results in Figure 8 for absorption rate, targeted
probe pertubation (TPP), Spurious Concept Removal (SCR), K-sparse probing, and feature-splitting
metrics from SAEBench (Karvonen et al., 2025), and k=1 sparse probing results (Gurnee et al.,
2023) for a Parts of Speech (POS) dataset we created using Treebank POS tagged sentences (Marcus
et al., 1993). We add a POS dataset for probing since POS are very general concepts, and should be
learned in the earliest levels of a matryoshka SAE.

For TPP, feature splitting, and sparse probing, using a compound multiplier of around 0.75 achieves
better results than either a standard matryoshka SAE or a standard (non-matryoshka) SAE, providing
evidence that balancing matryoshka losses can improve the performance. Using a multiplier of 0.75
still scores well on the absorption metric as well. Strangely, SCR appears to perform better at higher
multipliers. However, SCR is also the noisiest metric, and the noise is higher at high multipliers,
so it could be that hedging increases the noise of the SCR metric but does not fully break it. We
provide further results and more details in Appendix A.10.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5

Multiplier

0.0

0.1

0.2

0.3

0.4

A
bs

or
pt

io
n

ra
te

Mean Absorption Rate

(a) SAEBench Absorption rate.
Lower is better.

0 1 2 3 4 5

Multiplier

0.02

0.04

0.06

T
PP

sc
or

e

TPP Top-2

(b) SAEBench TPP metric.
Higher is better.

0 1 2 3 4 5

Multiplier

0.65

0.70

0.75

0.80

0.85

F1
sc

or
e

Part of speech probes mean F1 (k=1)

(c) k=1 sparse probing F1 score on
Parts of Speech (POS).

0 1 2 3 4 5

Multiplier

0.12

0.14

0.16

0.18

SC
R

m
et

ri
c

SCR Top-2

(d) SAEBench SCR top-2 metric.
Higher is better.

0 1 2 3 4 5

Multiplier

0.69

0.70

0.71

0.72

0.73

0.74

0.75

A
cc

ur
ac

y

Sparse Probing Top-1

(e) SAEBench K=1 sparse prob-
ing accuracy.

0 1 2 3 4 5

Multiplier

1.0

1.5

2.0

2.5

3.0

N
um

sp
lit

fe
at

ur
es

Mean Num Split Feats by SAE

(f) Feature splitting (SAEBench
absorption). Lower is better.

Figure 8: Performance of balance matryoshka SAEs vs multiplier. The shaded area is 1 std. Multi-
plier=0 is equivalent to a standard SAE, and multiplier=1 is a standard matryoshka SAE.

While balancing each βm can improve performance on most metrics, we do not expect this to per-
fectly solve absorption and hedging. We show in Appendix A.9 that balancing all hedging and
absorption with a single βm is not always possible. We expect it may be possible to further improve
performance by learning different balancing coefficients per latent, but this is left to future work.

6 RELATED WORK

Other work has highlighted theoretical problems with SAEs. Till (2024) investigated a problem
where SAEs may increase sparsity by inventing features. For instance, an SAE may fabricate a “red
triangle” feature in addition to “red” and “triangle” features. Templeton et al. (2024) dicuss the
problem of feature splitting, where an SAE may not learn features at a desired level of specificity.
Engels et al. (2024) investigates SAE errors and finds that SAE error may be pathological and non-
linear. Engels et al. (2025) further shows that there are features that cannot be expressed as a simple
linear direction, and thus SAEs may struggle to represent these features. Wu et al. (2025) and
Kantamneni et al. (2025) both investigate the empirical performance of SAEs and find that SAEs
underperform baselines.

7 DISCUSSION

SAEs remain a promising technique for decomposing the residual stream of LLMs in an unsuper-
vised manner. However, given recent work showing that SAEs underperform relative to baselines
(Wu et al., 2025; Kantamneni et al., 2025), it is imperative that we understand the reasons for this
underperformance so they can be addressed.

In this work, we introduced the problem of feature hedging in SAEs, showing it both theoretically
in toy models, and empirically in SAEs trained on real LLMs. We suspect that hedging, along with
absorption, may be one of the core theoretical problems leading to poor SAE performance.

Using our understanding of hedging, we introduced the balance matryoshka SAE architecture, al-
lowing balancing of hedging and absorption against each other, improving interpretability. We view
balance matryoshka SAEs as a starting point, and expect this architecture can be improved by op-
timizing the balance coefficients. There may not be a single coefficient that perfectly balances
hedging and absorption for all features, so we expect there may be further gains from learning a
different balancing coefficients per latent in the SAE. We leave these improvements to future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Code for all toy model experiments and demonstration code for training and evaluating LLM SAEs
is provided as part of the supplementary materials for this paper. We further provide details on toy
model SAE training in Section 3 and Appendix A.1. LLM SAE training is further detailed in Section
4.1 and Appendix A.4.

REFERENCES

Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. Saelens. https://github.
com/jbloomAus/SAELens, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decom-
posing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk sparse autoencoders. arXiv preprint
arXiv:2412.06410, 2024.

Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
with matryoshka sparse autoencoders. arXiv preprint arXiv:2503.17547, 2025.

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for absorption: Studying feature splitting and absorption in sparse autoencoders. arXiv preprint
arXiv:2409.14507, 2024.

Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, Robert Huben, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=F76bwRSLeK.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,

10

https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse autoen-
coders. arXiv preprint arXiv:2410.14670, 2024.

Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
features are one-dimensionally linear. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=d63a4AM4hb.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsi-
mas. Finding neurons in a haystack: Case studies with sparse probing. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=JYs1R9IMJr.

Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel Nanda.
Are sparse autoencoders useful? a case study in sparse probing. arXiv preprint arXiv:2502.16681,
2025.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Callum McDougall, Kola Ayonrinde, Matthew Wearden, Arthur Conmy, Samuel
Marks, and Neel Nanda. Saebench: A comprehensive benchmark for sparse autoencoders in
language model interpretability, 2025. URL https://arxiv.org/abs/2503.09532.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma Scope: Open Sparse
Autoencoders Everywhere All At Once on Gemma 2, August 2024.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=I4e82CIDxv.

Chris Olah, Adly Templeton, Trenton Bricken, and Adam Jermyn. April update. https:
//transformer-circuits.pub/2024/april-update/index.html, 2024. URL
https://transformer-circuits.pub/2024/april-update/index.html.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Fer-
ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,

12

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=d63a4AM4hb
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://arxiv.org/abs/2503.09532
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen
Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van
Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, Alex Tamkin, Esin Durmus, Tristan Hume,
Francesco Mosconi, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Batson,
Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet. https://transformer-circuits.
pub/2024/scaling-monosemanticity/, May 2024. Accessed on May 21, 2024.

Demian Till. Do sparse autoencoders find true features? LessWrong, 2024.
URL https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/
do-sparse-autoencoders-find-true-features.

Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky, Christo-
pher D Manning, and Christopher Potts. Axbench: Steering llms? even simple baselines outper-
form sparse autoencoders. arXiv preprint arXiv:2501.17148, 2025.

A APPENDIX

A.1 STUDYING HEDGING IN SINGLE-LATENT SAES

We begin by investigating hedging in the simplest possible toy SAE setting: an SAE with a single
latent. We use a model with two true features f1 and f2 (N = 2, D = 50). Each feature fires with
magnitude 1.0. Unless otherwise specified, f1 fires with probability 0.25, and f2 fires with proba-
bility 0.2. We use SAELens (Bloom et al., 2024) to train a single-latent SAE on these activations.

13

https://arxiv.org/abs/2408.00118
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features
https://www.lesswrong.com/posts/QoR8noAB3Mp2KBA4B/do-sparse-autoencoders-find-true-features

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

−1 0 1

−1

0

1

f1

f2

SAE Latent
SAE bdec

(a) Independent features

−1 0 1

−1

0

1

f1

f2

SAE Latent
SAE bdec

(b) Hierarchical features

−1 0 1

−1

0

1

f1

f2

SAE Latent
SAE bdec

(c) Correlated features

−1 0 1

−1

0

1

f1

f2

SAE Latent
SAE bdec

(d) Anti-correlated features

Figure 9: True features, and SAE decoder latent and bdec for single-latent SAE and a toy model with
two true features. When the features fire independently, there is no hedging seen in the SAE latent.
When any correlation is present, the SAE latent shows clear hedging.

A.1.1 FULLY INDEPENDENT FEATURES

We first study the case when f1 and f2 fire independently. We find that the SAE correctly represents
f1 without any interference from f2. However, the decoder bias has incorrectly learned to represent
the direction of f2, but with magnitude 0.2, equal to the probability of f2 firing. The single SAE
latent, SAE bias term, and true features are shown in Figure 9a.

We consistently find this pattern of the decoder bias merging in positive components of features not
tracked by their own latent. In this sense, the decoder bias can be thought of as an always-on latent,
and thus is thus also susceptible to hedging.

A.1.2 HIERARCHICAL FEATURES

Next, we investigate what happens if f1 and f2 are in a hierarchy, so f2 can only fire if f1 fires, but f1
can still fire on its own (f2 =⇒ f1). We adjust the firing probability of f2 so that P (f2|f1) = 0.2,
and P (f2|¬f1) = 0 (thus, P (f2) = 0.05). In a two-latent SAE this setup would cause feature
absorption. We plot the SAE latent, decoder bias, and true features in Figure 9b.

Here we clearly see feature hedging. The single SAE latent has now merged in a component of f2
into its single latent, so it is now a mixture of f1 and f2. This merging of features reduces the MSE
loss of the SAE despite being a degenerate solution.

Increasing the L1 penalty of the SAE cannot solve this problem. f2 only fires if f1 fires, so adding
a positive component of f2 into the encoder does not cause the latent to fire any more often.

A.1.3 POSITIVELY CORRELATED FEATURES

−1 0 1

−1

0

1

f1

f2

SAE Latent
SAE bdec

Correlated features, high L1 penalty

Figure 10: High L1 penalty can
reduce hedging caused by posi-
tive correlations.

Next, we change our setup so that P (f2|¬f1) = 0.1 instead of 0.
We still keep P (f2|f1) = 0.2, so that f2 is more likely to fire if f1
fires, but it can still fire on its own as well. The features are now
merely correlated rather than following a strict hierarchy. Results
are shown in Figure 9c.

We still see hedging in the SAE latent, but less than with full hier-
archical features. However, if the L1 penalty is high enough and
the level of correlation is low enough, then the SAE can still learn
the correct features, as positive hedging increases the L0 of the
SAE slightly relative to learning just f1. We show the resulting
SAE latent and features with high L1 penalty in Figure 10. Inter-
estingly, we now see that the hedging has moved more apparently
into the decoder bias instead. If we use a full-width SAE, the SAE
learns the true features despite the correlation (Appendix A.3).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

−0.4 −0.2 0.0 0.2 0.4

Feature Correlation

−0.50

−0.25

0.00

0.25

0.50

C
os

in
e

Si
m

ila
ri

ty

Hedging (cos(l, f2)) vs Feature Correlation

Figure 11: Hedging amount (cos(l, f2) = 0) vs correlation between f1 and f2. The amount of
hedging is a clear function of the amount of correlation between feautres.

A.1.4 ANTI-CORRELATED FEATURES

Next, we reverse the conditional probabilities of f2 so that P (f2|f1) = 0.1 and P (f2|¬f1) = 0.2.
Now f2 is more likely to fire on its own than it is to fire along with f1. Results are shown in
Figure 9d.

Now the SAE latent has actually merged a negative component of f2 into its single latent instead of a
positive component. How does this work? We see that the decoder bias, bdec, has a larger component
of f2 than in the positive correlation case. The SAE is using the decoder bias to include a “default”
value for f2, and then when f1 fires, the SAE latent’s negative component of f2 acts to reduces the
amount of f2 present in the reconstruction. The SAE is abusing the correlation to adjust its guess
of the amount of f2 that should be output despite not having a dedicted latent for f2: if f1 is active,
then the likelihood that f2 is active decreases, and the SAE likewise reduces the amount of f2 that
is output.

Increasing L1 penalty cannot solve this, as the negative component of hedging in the encoder does
not increase L0 of the SAE. If we use a full-width SAE, we again see the SAE learns the true features
despite the correlation (see Appendix A.3).

A.2 HEDGING IS A FUNCTION OF FEATURE CORRELATION

Next, we explore the effect of feature correlation on the amount of hedging in our single-latent,
two feature setting. We set P (f1) = 0.45 and P (f2) = 0.25, but change the correlation between
these features, ρ, to range from −0.5 to 0.5. We then calculate the cosine similarity of the SAE
decoder latent, l, with f2. We furthermore initialize the single SAE latent to match f1, so that any
deviation from this must be caused by gradient pressure rather than simply being an unfortunate
local minimum. If there is no hedging occurring, then cos(l, f2) = 0, as we saw in Figure 9a.
Results are shown in Figure 11.

As expected, the amount of hedging directly tracks the amount of correlation. The hedging also
matches the sign of the correlation as well, with negative correlation resulting in a negative compo-
nent of f2 being mixed into l, and positive correlation resulting in a positive component of f2 being
mixed into l.

A.2.1 HEDGING IS CAUSED BY RECONSTRUCTION LOSS: CURVES FOR SINGLE-LATENT
SAES

What causes hedging? We hypothesize that it is a combination of not enough latents to represent
every feature, and the fact that MSE loss incentivizes reconstructing multiple features imperfectly
as opposed to only one feature perfectly.

To test this, we analyze the loss curves for a single-latent tied SAE with a parent-child relationship
between the two features f1 and f2, so f2 =⇒ f1. The ideal SAE latent must be some combination
of these two features. As there are no other interfering features to break the symmetry between
encoder and decoder, the SAE can be expressed by a single unit norm latent. We set the SAE latent
l to an interpolation of these two features, l = αf2 + (1 − α)f1 (adjusted to have unit norm). We
calculate expected SAE loss consisting of MSE + L1 loss for 0 ≤ α ≤ 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

First, we set P (a = f1) = 0.3 and P (a = f1 + f2) = 0.1. We characterize the probabilities this
way since there are only two firing possibilities we need to consider: either f1 is firing on its own or
f1 and f2 are firing together. We use L1 coefficient of 0 and 0.1 to explore the effect of the sparsity
penalty on loss. We also consider the case where both features fire together more than they fire on
their own, with P (a = f1) = 0.1 and P (a = f1 + f2) = 0.3. Loss curves are shown in Figure 12.

0.0 0.2 0.4 0.6 0.8 1.0

α

0.1

0.2

0.3

0.4

E
xp

ec
te

d
L

os
s

skew parent (p(f1 + f2) < p(f1))

L1 Coeff.
0.0
0.1

Loss curves for single-latent SAE

(a) Loss curves when the parent feature f1 fires more
on its own than with child feature f2. Loss is mini-
mized between f1 and f2 rather than at f1 (α = 0).
Sparsity penalty does not change the minimum.

0.0 0.2 0.4 0.6 0.8 1.0

α

0.1

0.2

0.3

0.4

E
xp

ec
te

d
L

os
s

skew child (p(f1 + f2) > p(f1))

L1 Coeff.
0.0
0.1

Loss curves for single-latent SAE

(b) Loss curves when the parent feature f1 fires less
on its own than it does with the child feature f2.
Loss is incorrectly minimized between f1 and f2.
Sparsity penalty does not change the minimum.

Figure 12: Loss curves for an SAE with a single latent l and 2 hierarchical features, where f2 =⇒
f1. The minimum loss is indicated with a dot on each plot. α = 0 means that l = f1, and α = 1
means l = f2. In all cases, loss is minimized when the latent l is a combination of f1 and f2.

In these plots, α = 0 corresponds to the SAE latent being exactly f1, and α = 1 corresponds to the
latent being f2, and α = 0.5 corresponds to f1 + f2. We clearly see that the SAE loss has a single
minimum between f1 and f1+f2, showing that the MSE minimum is attained with feature hedging.

A.3 FULL-WIDTH SAE TOY MODEL RESULTS

1 2

True feature

1
2

SA
E

L
at

en
t

0.41 0.00

0.00 0.55

SAE encoder

1 2

True feature

1
2

SA
E

L
at

en
t

1.00 0.00

0.00 1.00

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Correlated features, full-width SAE)

(a) Full-width SAE with correlated features. The
SAE is still able to perfectly learn the underlying
features despite the correlation.

1 2

True feature

1
2

SA
E

L
at

en
t

0.36 0.00

0.00 0.50

SAE encoder

1 2

True feature

1
2

SA
E

L
at

en
t

1.00 0.00

0.00 1.00

SAE decoder

−1

0

1

co
s

si
m

Cosine similarity with true features (Full-width SAE - anti-correlated features)

(b) Full-width SAE with anti-correlated features.
The SAE is still able to perfectly learn the under-
lying features despite the correlation.

Figure 13: Full-width SAE results on correlated and anti-correlated toy models.

We extend the discussion of single-latent SAEs to explore what happens if the SAE has two la-
tents, the same number of latents as the number of true features. We use the same toy model as in
Section A.1.3 for the positive correlation case, and the same toy model as in Section A.1.4 for the
anti-correlated case. We use L1 penalty of 1e-3 for the positive correlation case, the same as the L1
penalty that caused hedging in single-latent SAEs.

We plot the results in Figure 13. In both cases, the full-width SAEs are able to perfectly recover
the true features despite the correlation, and despite the low L1 penalty. This shows that hedging is
caused by the SAE being too narrow, as increasing the width of the SAE solves the problem.

A.4 TRAINING DETAILS FOR LLM SAES

All SAEs are trained on the Pile uncopyrighted (Gao et al., 2020), using a batch size of 4096 acti-
vations and context length of 1024 tokens. For L1 SAEs, we use a linear L1 warm-up of 10k steps.
SAEs are trained on a single 80gb Nvidia H100 GPU. Model weights are loaded in fp32 precisions,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

but autocast to bfloat16 during training. We initialize the SAE so that the encoder and decoder are
identical, where each latent has norm 0.1, following the procedure described in (Olah et al., 2024).
All L1 SAEs are trained with learning rate 7e-5, and BatchTopK SAEs are trained with learning rate
3e-4. SAEs are trained using SAELens (Bloom et al., 2024).

Unless otherwise specified, BatchTopK SAEs use k=25. For SAEs trained on Gemma-2-2b, we
conduct most experiments at layer 12 (roughly in the middle), and L1 SAEs trained on Gemma-2-
2b use L1 coefficient of 10. This coefficient does not reuslt in dead extension latents, and yields a
L0 around 50. For SAEs trained on Llama-3.2-1b, we conduct most experiments at layer 7 (roughly
in the middle of the model), and for L1 SAEs trained on Llama-3.2-1b, we use L1 coefficient of 0.5.
This coefficient does not result in dead extension latents, and yields a L0 around 50.

A.5 CHOICE OF HEDGING HYPERPARAMETER N

0 50 100 150 200 250

Num latents added (N)

0.00

0.01

0.02

0.03

0.04

H
ed

gi
ng

de
gr

ee

Hedging degree vs N (width=8k, L0=25)

btk

Figure 14: Hedging degree vs N

Our hedging degree metric requires adding N new latents onto an existing SAE to extend it, naturally
leading to the question of what is a reasonable choice of N. We plot hedging degree vs N for Gemma-
2-2b layer 12, given an initial BatchTopK SAE of width 8192 in Figure 14. We find that hedging
degree increases until about N=250. We choose N=64 for our experiments, as 64 is still a small
number of latents relative to the size of the residual stream (2304 for Gemma-2-2b), while still
being large enough to hopefully reduce noise from any specific latent that gets added. Furthermore,
as we see in the plot, the hedging degree from N=64 is about in the middle of the curve, further
validating that this is a reasonable choice.

A.5.1 EXTENDING LLM SAES

We train two versions of extension SAEs - one for L1 loss SAEs and one for BatchTopK SAEs. In
both cases, we begin with a pretrained SAE and add N latents randomly initialized with norm 0.1,
and with the same encoder and decoder directions, following Olah et al. (2024). For the BatchTopK
SAEs, we simply train the SAE from this point as normal, as the TopK auxiliary loss (Gao et al.,
2024) will naturally ensure that the newly added latents do not simply die off.

For L1 SAEs with high L1 penalty, dead latents become a more serious problem. We find that most
of the newly added extension latents will rapidly be killed off if we simply train as normal. To
combat this, we re-warm-up the L1 penalty. However, we cap the minimum L1 penalty at λmin, so
for the portion of the warm-up where the L1 penalty would normally be below λmin, the L1 penalty
is left at λmin instead. This capping helps ensure the existing SAE latents are not very disturbed
by this change in the L1 penalty. If the final L1 penalty is λmin or below, then we do not perform
this warm-up at all, as the L1 penalty is not strong enough to immediately kill off the newly added
latents.

For Gemma-2-2b SAEs, we set λmin = 10.0. For Llama-3.2-1b SAEs, we set λmin = 0.5.

This warm-up procedure is only used for the high-L1 variants in Figure 6c - for all other plots the
L1 coefficient used is less than λmin, so no warmup is needed.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.6 CASE STUDY: ADDING A NEW LATENT TO AN EXISTING SAE

We next explore how hedging affects a real SAE. We trained a L1 SAE on Gemma-2-2b layer 12
with width 8192 for 250M tokens on the Pile (Gao et al., 2020), then add a new latent to the SAE,
and continue training both the original SAE and the extended SAE for another 250M tokens.

0.3/ css / bootstrap.min .

/ bootstrap.min . css integrity="sha3"

/ bootstrap.min . css "> link

(a) Newly added case-study latent, latent 8192. The
latent appears to track CSS scripts in HTML.

> < link rel =" stylesheet" type ="

8"/>< link rel = stylesheet href="..//doc

png">< link rel =" manifest" href="

(b) Latent 3094, which had the largest negative δ-
projection after adding latent 8192. This latent
tracks “rel” in HTML, used for CSS in HTML.

Figure 15: Sample top activating examples for case study latents.

We examine inputs that cause the newly added latent to fire to get a sense of what it represents.
We reproduce a portion of the top activating examples for the new latent in Figure 15a. This latent
appears to fire on CSS scripts included in HTML. A larger set of inputs is shown in Appendix A.7.

Next, we look at the magnitude of change in existing latents projected on the new latent. Based
on our understanding of hedging, if a latent loses a large component of the newly added latent,
this corresponds to a likely hierarchical relationship with the new latent. The latent which lost the
largest component of the new latent is latent 3094, which seems to track the “rel” HTML attribute
used mainly for linking CSS scripts. We show top activating examples for latent 3094 in Figure 15b.

Since CSS scripts are just one type of asset that can be linked using “rel”, this appears to be exactly
the sort of hierarchical relationship we expect to be heavily impacted by hedging.

A.7 ADDITIONAL CASE STUDY DASHBOARDS

Figure 16: Dashboard for the newly added case study latent representing CSS scripts in HTML.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 17: Dashboard for latent 3094, representing the “rel” HTML attribute used for CSS scripts.
This latent has the highest negative δ-projection on the newly added case study latent.

A.8 TOY BALANCE MATRYOSHKA SAES

To explore the effect of balancing matryoshka losses in a simple toy setting, we create a toy model
with 4 true features, all mutually orthogonal and with unit norm in a 50 dimensional space. We set
up a hierarchical relationship between these features, so feature 1 fires with probability 0.25, and
features 2, 3, and 4 all fire with probability 0.15 only if feature 1 fires. Thus, feature 1 is the parent
feature in the hierarchy and features 2, 3, and 4 are all child features.

We train a matryoshka SAE with 4 latents on 100,000,000 samples from this toy model. The ma-
tryoshka SAE has a single inner level consisting of 1 latent, to match the number of parent latents
in our hierarchy. Since our goal with this toy is just to build intuition, we initialize the SAE to
the correct solution and allow the training to thus pull it away from this correct solution. This also
ensures that each variation of our SAE with different balancing co-efficients learns the same latents
in the same order, so visual comparison is easy.

A.9 TOY UNBALANCEABLE MATRYOSHKA SAES

The situation above where each child feature has the same probability of firing is unrealistic - we
would expect that child features all fire with different probabilities from each other. Can we still
balance the SAE perfectly in this situation? We adjust the toy model from above so that the 3 child
features fire with probabilities 0.02, 0.2, and 0.5 for features f2, f3, and f4, respectively. We then
try to manually balance this SAE, finding that β = 0.17 gives roughly the best balance. We plots
the resulting encoder/decoder cosine similarities in Figure 18.

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE encoder

1 2 3 4

True feature

1
2

3
4

SA
E

L
at

en
t

SAE decoder

−1

0

1

co
s

si
m

Unbalanceable Matryoshka SAE (β = 0.17)

Figure 18: SAE encoder and decoder vs true feature cosine similarities for a balance matryoshka
SAE where the child features fire with different probabilities. It’s no longer possible to perfectly
balance all 3 child features with the same β, but we can still do reasonably well.

We now see it is no longer possible to choose a single β that perfectly balances all 3 children. We
see slight hedging of feature 4 in latent 1, and slight absorption of feature 2 in latent 1. Still, this

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

looks decent compared to the full hedging or full absorption scenario, so we still expect that while
balancing is not a perfect solution, it should be an improvement. We believe it should be possible to
finding ways of better balancing the contribution of each outer latent on each inner latent, but this is
left to future work.

A.10 SAE EVALUATION

A.10.1 SAEBENCH EVALS

We evaluate our SAEs mainly using SAEBench (Karvonen et al., 2025). All evals are performed
using default settings. We run all evaluations on an Nvidia H100 GPU with 80gb GPU memory. We
evaluate on the following SAEBench tasks:

K-sparse probing k-sparse probing builds on the work of Gurnee et al. (2023), where the goal is
to create a linear probe from model activations using only k neurons as input to the probe. This was
adapted for use as an SAE evaluation technique by Gao et al. (2024). We focus mainly on k = 1
sparse probing, which means finding the single best SAE latent that serves as a classifier for a given
concept, and evaluating the accuracy of that latent. SAEBench includes supervised classification
datasets on which k-sparse probing is evaluated.

Feature absorption The feature absorption metric in SAEBench is a variation on the metric de-
fined in the original feature absorption work (Chanin et al., 2024). This metric uses a first-letter
spelling task and first identifies the “main” latents for that task using k-sparse probing (Gurnee
et al., 2023). Then, the metric identifies cases where a linear probe is able to correctly perform the
first-letter classification task, but the “main” SAE latents fail to perform the task. The metric also
looks for other latents that project onto the linear probe direction and fire in place of the “main’
latents. Lower absorption is better.

The SAEBench absorption metric also includes “absorptions fraction”, “feature splitting”, and “first-
letter k=1 sparse probing” results as well, which we include in our extended results. Absorption
fraction detects partial absorption, where a parent latent can still fire but weaker when an absorbing
child latent fires as well. Feature splitting detects the amount of interpretable feature splitting occur-
ring in the SAE. Interpretable feature splitting is still considered negative, as we would prefer that
features do not split at all and the SAE can still represent general, high-level concepts. The k-sparse
probing results for the first-letter spelling task is calculated as part of the absorption metric, but is
an interesting sparse-probing result in and of itself.

Spurious concept removal (SCR) SCR builds on the SHIFT method from Marks et al. (2025)
to detect how well an SAE isolates concepts. The metric uses datasets where two properties are
perfectly entangled, for instance “profession” and “gender”, and trains a biased probe on these
concepts. The SCR metric then detects how well k SAE latents can be ablated to de-bias the probe.
If the SAE latents learn disentangled concepts, then it should only take a few SAE latents to perfectly
de-bias the probe. A high SCR score means the SAE latents represent disentangled concepts.

Targeted probe perturbation (TPP) The TPP metric extends SCR to multi-class labels. Binary
probes are trained for each class, and TPP measures how well ablating k SAE latents can degrade the
performance of just one of the probes without degrading performance on the other probes. A high
TPP score means that concepts are represented by distinct sets of SAE latents, rather than latents
being entangled with many concepts.

A.10.2 PARTS OF SPEECH (POS) PROBING DATASET

We are interested as well in general, high-frequency concepts that we expect should be learned
in the inner-most levels of a matryoshka SAE. These concepts should be the most affected by both
absorption and hedging, as these concepts can be considered parent concepts to most other concepts.
Parts of speech (POS) is a great test-case for these general concepts, and are not covered by the
SAEBench sparse probing task. As such, we create our own custom POS dataset using the Penn
Treebank tagged sentences (Marcus et al., 1993).

We simplify the Treebank parts of speech to the following core set:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

"TO", "IN", "DT", "CC", "NNS", "PRP", "POS"

We pass these tagged sentences through an LLM, and then collect activations for the final token of
position of each word at a given layer in the LLM. We create a binary classification dataset for each
of these parts of speech, and perform k-sparse probing (Gurnee et al., 2023) on SAE latents to find
the top k latents that act as a classifier for each of these parts of speech.

A.10.3 BALANCE MATRYOSHKA SAE FULL RESULTS

0 1 2 3 4 5

Multiplier

0.0

0.1

0.2

0.3

0.4

A
bs

or
pt

io
n

fr
ac

tio
n

Mean Absorption Fraction by SAE

(a) SAEBench Absorption frac-
tion. Lower is better.

0 1 2 3 4 5

Multiplier

0.08

0.10

0.12

0.14

0.16

T
PP

sc
or

e

TPP Top-10

(b) SAEBench TPP top-10 metric.
Higher is better.

0 1 2 3 4 5

Multiplier

0.70

0.71

0.72

0.73

0.74

0.75

0.76

E
xp

la
in

ed
va

ri
an

ce

Explained variance

(c) Explained variance.

0 1 2 3 4 5

Multiplier

0.225

0.250

0.275

0.300

0.325

0.350

SC
R

m
et

ri
c

SCR Top-10

(d) SAEBench SCR top-10 metric.
Higher is better.

0 1 2 3 4 5

Multiplier

0.84

0.85

0.86

0.87

A
cc

ur
ac

y

Sparse Probing Top-5

(e) SAEBench K=5 sparse prob-
ing accuracy.

0 1 2 3 4 5

Multiplier

0.45

0.50

0.55

0.60

0.65

k=
1

sp
ar

se
pr

ob
in

g

Mean First-Letter k=1 Sparse Probing F1 by SAE

(f) K=1 first-letter sparse probing
F1 score (SAEBench absorption).

Figure 19: Performance of balance matryoshka SAEs vs multiplier for extended metrics. The shaded
area in the plots refers to 1 std. Multiplier=0 is equivalent to a standard non-matryoska SAE, and
multiplier=1 is equivalent to a standard matryoshka SAE.

A.11 LIMITATIONS

We only test hedging in SAEs up to 65k latents on LLMs with 2b parameters due to compute
constraints. Our method for detecting hedging requires fine-tuning SAEs, which is expensive.

21

	Introduction
	Background
	Toy models of feature hedging
	Fully independent features
	Hierarchical features
	Positively correlated features
	Anti-correlated features

	Quantifying hedging in LLM SAEs
	Results

	Balancing hedging and absorption in matryoshka SAEs
	Related work
	Discussion
	Reproducibility statement
	Appendix
	Studying hedging in single-latent SAEs
	Fully independent features
	Hierarchical features
	Positively correlated features
	Anti-correlated features

	Hedging is a function of feature correlation
	Hedging is caused by reconstruction loss: curves for single-latent SAEs

	Full-width SAE toy model results
	Training details for LLM SAEs
	Choice of hedging hyperparameter N
	Extending LLM SAEs

	Case study: adding a new latent to an existing SAE
	Additional case study dashboards
	Toy balance matryoshka SAEs
	Toy unbalanceable matryoshka SAEs
	SAE evaluation
	SAEBench evals
	Parts of speech (POS) probing dataset
	Balance matryoshka SAE full results

	Limitations

