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ABSTRACT

Trustworthy AI is crucial to the widespread adoption of AI in high-stakes applica-
tions with explainability, fairness and robustness being some of the key trustwor-
thiness metrics. Data-Centric AI (DCAI) aims to construct high quality datasets
for efficient training of trustworthy models. In this work, we propose a control-
lable framework for data-centric trustworthy AI (DCTAI)- VTruST, that allows
users to control the trade-offs between the different trustworthiness metrics of
the constructed training datasets. A key challenge in implementing an efficient
DCTAI framework is to design an online value-function-based training data sub-
set selection algorithm. We pose the training data valuation and subset selection
problem as an online sparse approximation formulation, where the features for
each training datapoint is obtained in an online manner through an iterative train-
ing algorithm. We propose a novel online-version of the OMP algorithm for solv-
ing this problem. We also derive conditions on the data matrix, that guarantee the
exact recovery of the sparse solution. We demonstrate the generality and effec-
tiveness of our approach by designing data-driven value functions for the above
trustworthiness metrics. Experimental results show that VTruST outperforms the
state-of-the-art baselines for fair learning as well as robust training, on standard
fair and robust datasets. We also demonstrate that VTruST can provide effective
tradeoffs between different trustworthiness metrics through pareto optimal fronts.
Finally, we show that the data valuation generated by VTruST can provide effec-
tive data-centric explanations for different trustworthiness metrics.

1 INTRODUCTION

The field of artificial intelligence (AI) has seen rapid advancements leading to its involvement in our
daily lives. This usefulness comes with heightened responsibility especially in high-stake applica-
tions such as predicting the risk of criminal recidivism (Angwin et al., 2016), autonomous driving
(Kohli & Chadha, 2020; Chen et al., 2021), disaster management (Linardos et al., 2022) and many
more. In order for users to trust the decision of the AI algorithms, it is essential for them to be
fair, reliable and robust under different circumstances. There is a substantial body of research in the
area of model-centric AI where the need for making the models robust (Wang et al., 2022; Hataya
& Nakayama, 2022) or fair (Roh et al., 2020; Romano et al., 2020) or unbiased (Gat et al., 2020;
Majumdar et al., 2021) or explainable (Pillai & Pirsiavash, 2021; Sarkar et al., 2022) has been ex-
plored while keeping the data fixed. However, the core input to the models, the data, has undergone
reasonably less exploration. With the upcoming progress in the field of Data-Centric AI 1 (Hajij
et al., 2021; Motamedi et al., 2021), currently the focus has shifted to creating quality datasets to
avoid data cascades in real world setting 2. The DCAI approach comes with several advantages -
identifying data points that explain certain model characteristics (Seedat et al., 2022b; Ethayarajh
et al., 2022), selecting useful datapoints for efficient training (Das et al., 2021a; Pooladzandi et al.,
2022), discarding noisy samples deviating training trajectory (Pruthi et al., 2020; Das et al., 2021b),

1https://datacentricai.org/
2https://ai.googleblog.com/2021/06/data-cascades-in-machine-learning.
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scoring datapoints based on a value function reflecting their contribution to the task (Yoon et al.,
2020; Lin et al., 2022) and many more.

In this work, we design a data-centric approach to achieving trustworthy AI through a controllable
data valuation framework with the composition of several value functions aimed at key trustworthy
AI metrics - fairness, robustness, and explainability. Additionally, we allow the users to control the
balance between the trustworthiness metrics. We pose the problem of training data valuation and
selection as an online sparse approximation problem, which we execute using a novel online version
of OMP (Cai & Wang, 2011). Unlike in OMP where the decision of including the optimal variables
happens iteratively looking at the entire data each time, our proposed method, VTruST, works in an
online setup where the data arrives incrementally and the decision of inclusion/exclusion happens
on the fly by only iterating over the already included variables. We add a DataReplace component
which enforces conditions based on the projections leading to the replacement of already selected
non-optimal features. To the best of our knowledge, this is one of the first works to provide a single
unified framework for balancing between the multiple value functions, followed by data valuation
and extraction of subsets. These subsets when trained from scratch, lead to fairer, more robust, or
more accurate models depending on the usage of value functions.

To summarize, our main contributions in the paper are: (1) We design a data-centric controllable
selection framework that helps us obtain a subset of training datapoints specifically suited for trust-
worthiness metrics. (2) We formulate the value functions for the metrics of fairness, robustness, and
accuracy. We also design a sampling algorithm for constructing augmented datasets for robustness.
(3) We provide theoretical derivations of the conditions used in VTruST and show that they are suf-
ficient for the exact recovery of the sparse solution. (4) We demonstrate that VTruST with subsets of
even 20% of the original dataset, is able to outperform all state-of-the-art baselines by ∼ 10− 20%
in both the tasks of fairness and robustness and can also provide data-centric explanations behind its
performance.

2 VTRUST: VALUE-DRIVEN TRUSTWORTHY AI THROUGH SELECTION OF
TRAINING DATA

We propose a controllable value function-based framework for developing trustworthy models using
a data-centric paradigm. Our system has two main components: (1) A general value function-based
framework that allows users to specify a combination of trustworthiness metrics, and (2) a novel
online subset selection algorithm for constructing high-quality training dataset based on the specified
value function. Section 2.1 describes the framework under which different value functions can be
specified for different trustworthiness metrics. Section 2.2 defines different value functions for data-
centric trustworthy AI. Section 2.3 describes the sparse approximation-based online subset selection
algorithm that efficiently selects subset which can optimally approximate the value function.

2.1 A CONTROLLABLE VALUE FUNCTION-BASED FRAMEWORK FOR DCTAI

Let D = {di = (ui, wi)|i = 1, 2, .., N} be the training dataset for a supervised learning task with
input ui ∈ U and labels wi ∈ W . Similarly, let D′ = {d′j = (u′j , w

′
j)|j = 1, 2, ..,M} be the

validation dataset which is used for assigning values/scores to a training datapoint di ∈ D based
on a value function. The total value function, VT (d′j) =

∑T
t=1

∑N
i=1 v

t
i(d
′
j) ∀d′j ∈ D′, defines

a measure of the utility of the training dataset, defined for each datapoint validation dataset D′.
We also overload the notation to define the value function vector VT (D′) =

∑T
t=1

∑N
i=1 v

t
i(D′).

The total value function is defined as an additive function over vti(D′), the value contributed by the
training datapoints di on the tth epoch, t = 1, ..., T . A commonly used value function in the data
valuation literature (Pruthi et al., 2020), which is defined as the decrease in loss incurred due to an
SGD update using the datapoint di: vti(d

′
j) = l(θi−1t , d′j)−l(θit, d

′
j), where θi−1t and θit are the model

parameters before and after the SGD update involving the training datapoint di in the tth epoch. We
call this the value function for accuracy, since each term measures the contribution of the training
datapoint di towards improving the validation loss which is a proxy for the validation accuracy:
Va(d

′
j) =

∑T
t=1

∑N
i=1 v

t
i(d
′
j) =

∑T
t=1

∑N
i=1(l(θ

i−1
t , d′j) − l(θit, d

′
j)). Other value functions for

fairness and robustness are defined in the next section.
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Given any value function V , our aim is to find a subset of training datapoints S ∈ D that lead
to an accurate approximation of the total value function in each epoch, as a weighted summation
of contributions from the selected set of points S. Let yt(d′j) = Vt(d′j) =

∑t
k=1

∑N
i=1 v

k
i (d
′
j)

be the cumulative value function till the tth epoch. We are interested in the following sparse
approximation: yt(d

′
j) ≈

∑
di∈S⊆D αi[

∑t
k=1 v

k
i (d
′
j)] , where αi are the weights for each train-

ing datapoint di. Using a second order Taylor series expansion of the loss function l(θit, d
′
j)

around l(θi−1t , d′j), and plugging in the SGD update formula θit − θi−1t = ηt∇l(θi−1t , di), we ob-
tain the following approximation for each term in the value function l(θit,D′) − l(θi−1t ,D′) ≈
ηt∇l(θi−1t , di)

T∇l(θi−1t ,D′)+O(||θit−θi−1t ||22). We truncate the Taylor expansion till the second-
order terms, and absorb the learning rates ηt in the learned coefficients αi, in order to arrive at the
following sparse approximation problem:

yt(d
′
j) ≈

∑
di∈S

αi

t∑
k=1

[
Xk

i (d
′
j)
]
∀d′j ∈ D′, t = 1, ..., T (1)

where Xk
i (d
′
j) = ∇l(θi−1k , di)

T∇l(θi−1k , d′j)+
(∇l(θi−1

k ,di)
T∇l(θi−1

k ,d′
j))

2

2 are the features for the ith

training point calculated in epoch t. We use the vectors y⃗t = [yt(d
′
j)|j ∈ D′] and X⃗t

i = [Xt
i (d
′
j)|j ∈

D′] to denote the predictor and predicted variables over the entire validation set.

The main challenge in solving the above sparse approximation problem is that we need to store
the cumulative features:

∑t
k=1 X

k
i (d
′
j), for all training and validation point-pairs (i, j) and for

all epochs t = 1, ..., T . This becomes computationally prohibitive for many practical scenarios.
Instead, we solve the following online sparse approximation (OSA) problem for each epoch t:

yt(d
′
j) ≈

∑
(p,q)∈St

βq
p

[
Xq

p(d
′
j)
]
∀d′j ∈ D′, t = 1, ..., T (2)

Here, St is the set of selected training datapoints at the end of the tth epoch. Note that the set
St can contain features from any of the epochs q = 1, ..., t. We constrain the size of the selected
training datapoints to be less than a user-specified parameter k. To summarize, we pose the online
sparse approximation problem as: minS1,S2,..,ST ,β⃗

∑T
t=1 ||

∑
(p,q)∈St

(βq
pX⃗

q
p) − y⃗t||22 s.t.|St| ≤

k ∀t = 1, ..., T , where β⃗ is the set of all learned coefficients βq
p for all (p, q) ∈ St. Note that

at any point in time t, we only need to store the β⃗ and St for only the current time instance. In
section 2.3, we describe an online algorithm for solving the above problem. We also highlight
that the value function V(d′j) only needs to satisfy an additive property over the training datapoints
and epochs in order for the above formulation to be valid. Hence, this framework is applicable
to a composite value function V(d′j) =

∑
f λfVf (d

′
j), where each value function Vf (.) satisfies

the additive property. This leads us to a general controllable framework for incorporating many
trustworthiness value functions, controlled using the user-specified weights λf .

2.2 VALUE FUNCTIONS FOR TRUSTWORTHY DATA-CENTRIC AI

In this section, we define additive value functions aimed at the trustworthiness metrics - robustness
and fairness.

Robustness Value Function: It was observed in (Rebuffi et al., 2021; Addepalli et al., 2022) that
data augmentation improves robust accuracy and reduces robust overfitting. We use this idea of
augmenting datapoints and define the robust value function (Vrvf (D′,D′a)) as a composite value
function over accuracy (Va(D′)) and robustness(Vr(D′a)). We define the accuracy value function
Va(D′) =

∑T
t=1

∑
di∈{D∪Da} l(θ

i
t,D′)− l(θi−1t ,D′) using both validation dataset D′ as described

above. The robustness value function is defined as Vr(D′a) =
∑T

t=1

∑
di∈{D∪Da} l(θ

i
t,D′a) −

l(θi−1t ,D′a), where Da and D′a are the augmented data (formed by adding brightness, impulse noise,
etc.) from D and D′ respectively. Hence, the overall value function used for robustness experiments
is Vrvf (D′,D′a) = λVa(D′) + (1 − λ)Vr(D′a) where λ is a user-defined parameter controlling the
tradeoffs between accuracy and robustness. We note that above value function can also be arrived
at by simply defining the combined loss function: lc(θit,D′,D′a) = λl(θit,D′) + (1 − λ)l(θit,D′a),
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and then defining the value function as usual: Vrvf (D′,D′a) =
∑T

t=1

∑
di∈{D∪Da} lc(θ

i
t,D′,D′a)−

lc(θ
i−1
t ,D′,D′a). Hence, the above framework works directly in this setting. Note that, the obtained

training subset is a mixture of both unaugmented and augmented data.

Fairness Value Function: Existing literature in fairness (Roh et al., 2020; Romano et al., 2020)
uses equalized odds disparity and demographic parity disparity for achieving fair models. We use
the equalized odds disparity-based (EOD) objective function defined in (Roh et al., 2020) as our
compositional value function for fairness. Let x ∈ X be the input domain, {y0, y1} ∈ Y be the
true binary labels, and {z0, z1} ∈ Z be the sensitive binary attributes. As before, we define the fair
value function Vfvf (D′) as the compositional value function over accuracy (Va(D′)) and fairness
(Vf (D′)) i.e Vfvf (D′) = λVa(D′)+ (1−λ)Vf (D′). Analogous to other value functions, we define
fairness value function as the change in EOD: Vf (D′) =

∑T
t=1

∑
di∈D ed(θit,D′) − ed(θi−1t ,D′).

Here the EOD is defined as the maximum difference in accuracy between the sensitive groups
(z ∈ Z) pre-conditioned on the true label (y ∈ Y): ed(θ,D′) = max(∥l(θ,D′y0,z0) −
l(θ,D′y0,z1)∥, ∥l(θ,D

′
y1,z0) − l(θ,D′y1,z1)∥) (Roh et al., 2021b). We note that contrary to the ac-

curacy and robustness value functions, where there is one value for every validation datapoint, there
is a single disparity measure for the entire validation dataset for fairness. As previously, we can re-
define Vfvf (D′) =

∑T
t=1

∑
di∈D ldc(θ

i
t,D′) − ldc(θ

i−1
t ,D′) where ldc(θ,D′) is a combined loss

function involving accuracy and disparity metric: ldc(θ,D′) = λ.l(θ,D′) + (1− λ).ed(θ,D′).

2.3 AN ONLINE-OMP ALGORITHM FOR ONLINE SPARSE APPROXIMATION

In this section, we describe a novel online-OMP based algorithm for the online sparse approximation
problem(OSA): minS1,S2,..,ST ,β⃗

∑T
t=1 ||

∑
(p,q)∈St

(βq
pX⃗

q
p) − y⃗t||22 s.t.|St| ≤ k ∀t = 1, ..., T .

The key difference between OSA and standard sparse approximation setting is that in OSA, new
columns X⃗q

p are added and the target value y⃗t is updated at each epoch t. Algorithm 1 describes the
novel online OMP-based algorithm for OSA. Line 9 adds new columns X⃗t

i till the cardinality of St

reaches k. Once the buffer is saturated, the DataReplace module in Algorithm 2 is invoked in line
7 to potentially replace an existing selected column with the current new column. The criteria for
replacement is to select the columns in the St that contribute to a better approximation of the current
value function y⃗t. Hence a new column X⃗t

i gets selected if the current approximation error reduces
after the replacement.We compute the projection of the current column, X⃗t

i and that of the selected
columns X⃗p

q ∀p, q ∈ St on the existing residual vector ρ⃗t, measured by π and π′ respectively. We
also denote by γ, the contribution of column p, q ∈ St (βp

q ). The column (p, q) in St whose additive
impact (π′ + γ) is smaller than that of incoming colmun (i, t), but larger than the current feature
for replacement (X⃗p

q ), gets substituted with the incoming point in line 14 having conditioned on the
projection and the beta quotient in line 8 of Algorithm 2.

Note that the proposed algorithm is different from OMP Cai & Wang (2011) since OMP scans the
entire list of columns for improvement on approximation error till k columns are selected. Hence
it cannot be used in the online sparse approximation setting. A related work by Jain et al. (2011)
proposes OMPR (OMP with replacement) which replaces columns using hard thresholding on the
projections of columns on residuals. However, it is not applied in an online setting and the entire
data is expected to be available during the approximation. Bayesian OMP Herzet & Dremeau (2014)
unrealistically assumes knowledge of the distribution of columns. To the best of our knowledge, the
current work is the first to attempt the problem of online sparse approximation. The per-epoch time
complexity of OMP is O(kMN) and that of OMPR (Jain et al., 2011) O(τkMN) where τ is the
total number of iterations for the convergence of their algorithm. The proposed method, VTruST has
a total time complexity of O(kM(N − k)).

Conditions for Optimality of the Selected Subset: The proposed algorithm solves the online
sparse approximation problem, where the optimal selected subset depends on the order in which
the columns are added to the problem. We derive the conditions for an ordering Π(X⃗) of columns
of the global matrix X⃗ to produce an optimal set of columns X⃗(T ), as the selected set using the
VTruST algorithm. For simplicity, we follow the notation in Cai & Wang (2011). Let X⃗ be the
set of all columns {X⃗1, .., X⃗N} and X⃗(T ) be an optimal set of columns approximating the value
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function y⃗. Also, let X⃗(O) denote the set of columns not included in the optimal set X⃗(T ). We
index the columns corresponding to selected datapoints by X⃗(sm) where m ∈ {1, 2, .., N}. Us-
ing X⃗(T ), we can obtain the set of optimal selected columns as X⃗(cm) : X⃗(sm) ∩ X⃗(T ) ; and
the non-optimal ones as X⃗(om) : X⃗(sm) \ X⃗(cm). The algorithm aims to reduce the residual
ρ⃗m which as we know is ρ⃗m = y⃗ − β⃗(sm)X⃗(sm). Using the above, we can also rewrite as:
ρ⃗m = y⃗ − β⃗(cm)X⃗(cm) − β⃗(om)X⃗(om). We define the theorem which states the conditions for
selection of an optimal set of elements.

Theorem 2.1 (Conditions in terms of Algorithm) ∀m ∈ {k + 1, . . . N} ∃X⃗(T ) ∈ X s.t. ∀x ∈
X⃗(T ) , ∀z ∈ X⃗(om) if |ρ⃗Tmx| > |ρ⃗Tmz| and βz < 0 , then x will be included in X⃗(sm+1) by replacing
z that satisfies the condition maxz|ρ⃗Tmz|+ βz

The proof is provided in the Appendix.

Algorithm 1 : VTruST
1: Input:

i. k : Total number of datapoints to be selected
ii. y⃗ : Targeted value function
iii. X⃗i : Features of all training points di ∈ D
iv. S : Set of selected datapoint indices
v. β⃗ ∈ R|S|: Weight of selected datapoints

2: Initialize:
S ←− ϕ //Indices of selected datapoints

3: for each epoch t ∈ {1, 2, ..., T} do
4: for each datapoint di ∈ D do
5: Input: y⃗t , Xt

i ∀i ∈ {1, 2, .., N}, ||X
t
i ||2 = 1

6: Process:
7: if |St−1| = k then
8: St ←− DataReplace(y⃗t, ξ⃗t−1, St−1, β⃗t−1, X⃗

t
i )

9: else
10: St ←− St−1 ∪ {i}
11: end if
12: Update β⃗t = argminβ∥y⃗t −

∑
p,q∈St

(βp
q X⃗p

q )||2
13: Update ξ⃗t =

∑
p,q∈St

βp
q X⃗p

q

14: end for
15: end for
16: Output:Final set of selected datapoint indices ST , learned coefficients
{βp

q |p, q ∈ ST }

Algorithm 2 : DataReplace(y⃗t, ξ⃗t, St, β⃗t, X⃗
t
i )

1: ρ⃗t = y⃗t − ξ⃗t
2: πmax = -∞
3: (a, b) = ϕ

4: π ←− abs(X⃗t
i .ρ⃗t)

5: for each index p, q ∈ St do
6: π′←− abs(X⃗p

q .ρ⃗t)
7: γ←− βp

q

8: if π > π′ & γ ≤ 0 & (π′ + γ) > πmax then
9: πmax ←− π′ + γ

10: a, b←− p, q
11: end if
12: end for
13: if (a, b) ̸= ϕ then
14: S ←− S \ {a, b} ∪ {t, i}
15: end if
16: return S

3 EXPERIMENTAL EVALUATION

In this section, we describe the datasets, models, and evaluation metrics used for the standard per-
formance and trustworthiness metrics - Robustness and Fairness. We analyze the performance of
VTruST using data-centric explanations of the subsets. All our experiments have been executed on
a single Tesla V100 GPU.

3.1 ERROR RATE, FAIRNESS AND ROBUSTNESS ON TABULAR DATA

We evaluate VTruST against baselines (wholedata standard training (ST), random, SSFR (Roh et al.,
2021a), FairMixup Mroueh et al. (2021) and FairDummies (Romano et al., 2020)) on four classi-
fication datasets: COMPAS (Angwin et al., 2016) , Adult Census (Kohavi et al., 1996), MEPS-20
(mep) and a synthetic dataset proposed by (Roh et al., 2021a). We use a 2-layer neural network for
all the datasets. For evaluation, we use the error-rate (ER) and fairness measures of equalised odds
(Hardt et al., 2016) and demographic parity (Feldman et al., 2015) following (Roh et al., 2021a).

Fairness and Error Rate comparison (VTruST-F) with baselines: We compare the performance
metrics of VTruST-F with the baselines in Table 1. The better the model is, the lower its ER as
well as its disparity/fairness measures. We can observe in Table 1 that VTruST-F with 60% selected
subset outperforms all the other methods in terms of fairness measures by a margin of 0.01-0.10, and
performs close to Wholedata-ST that yields the lowest ER. This denotes that it is able to condemn
the error-fairness tradeoff to a certain extent, emerging out to be the best performing method. We
report these results with standard deviation across 3 runs.
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Table 1: Comparison of VTruST-F with baselines over 60% subset for fairness evaluation.

Methods Synthetic COMPAS AdultCensus MEPS20

ER
±std

EO
Disp
±std

DP
Disp
±std

ER
±std

EO
Disp
±std

DP
Disp
±std

ER
±std

EO
Disp
±std

DP
Disp
±std

ER
±std

EO
Disp
±std

DP
Disp
±std

Wholedata-
ST

0.27
±0.001

0.28
±0.03

0.28
±0.02

0.34
±0.001

0.31
±0.05

0.24
±0.03

0.16
±0.002

0.19
±0.06

0.13
±0.06

0.09
± 0.001

0.09
± 0.007

0.08
± 0.0008

Random 0.29
±0.001

0.24
±0.02

0.26
±0.02

0.35
±0.002

0.20
±0.10

0.23
±0.09

0.19
±0.002

0.16
±0.05

0.13
±0.05

0.12
±0.017

0.06
±0.02

0.08
±0.005

SSFR 0.29
±0.002

0.25
±0.02

0.29
±0.01

0.35
±0.002

0.26
±0.03

0.17
±0.02

0.21
±0.001

0.18
±0.03

0.12
±0.01

0.14
±0.003

0.10
±0.011

0.06
±0.005

Fair-
Dummies

0.29
±0.002

0.22
±0.02

0.22
±0.01

0.35
±0.002

0.24
±0.02

0.17
±0.01

0.16
±0.002

0.14
±0.01

0.10
±0.01

0.12
±0.001

0.13
±0.005

0.08
±0.003

Fair-
Mixup

0.29
±0.02

0.18
±0.03

0.20
±0.05

0.35
±0.03

0.15
±0.03

0.13
±0.04

0.24
±0.04

0.11
±0.05

0.1
±0.02

0.89
±0.02

0.02
±0.04

0.05
±0.03

VTruST-F 0.28
±0.001

0.17
±0.01

0.19
±0.01

0.34
±0.002

0.15
±0.01

0.13
±0.01

0.18
±0.001

0.11
±0.03

0.05
±0.01

0.09
±0.003

0.01
±0.001

0.05
±0.0008

Tradeoffs between Error rate, Fairness and Robustness (VTrust-F , VTruST-FR, VTrust-R):
We observe the tradeoffs between error rate vs fairness (VTruST-F: Figure 1a), fairness vs robustness
(VTruST-FR: Figure 1b and 1c), and error rate vs robustness (VTruST-R: Figure 1d) through pareto
frontal curve. Figure 1 shows the pareto frontier for the different combinations. We perform the
experiments of robustness on tabular data in 2 ways: (a) label flipping following Roh et al. (2021a)
and (b) feature augmentation using SMOTE (Chawla et al., 2002). Error rate is measured on the
clean test sets while robust error rates are measured on the flipped and augmented test sets.

For VTruST-F and VTruST-FR, we vary the weightage λ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1} and for
VTruST-R, we vary it between 0− 1 in steps of 0.5. The factor λ = 0 puts the entire weightage on
the disparity measure in the case of VTruST-F and VTruST-FR, and on robust error rate for VTruST-
R. Figure 1 shows that VTruST-F, VTrust-FR, and VTruST-R follow the desired pattern across all
the setups. We can observe that Wholedata-ST has a lower error rate but high disparity/robust error
values. The other baselines continue to have a higher error rate and disparity compared to VTruST.
Note that we report the remaining results on other datasets in the Appendix.

Figure 1: Controlling tradeoffs in trustworthiness metrics in clean and augmented data setup for tabular domain.

3.2 ACCURACY AND ROBUSTNESS ON IMAGE DATA

We evaluate VTruST on three image datasets: CIFAR10 (Krizhevsky et al., 2009) , MNIST (Deng,
2012) and Tinyimagenet (Le & Yang, 2015). We use ResNet-18 model (He et al., 2016) for all
datasets. For evaluation, we use the standard accuracy (SA) computed on the clean test sets and the
robust accuracy (RA) computed on their respective corrupted test sets, CIFAR-10-C, Tiny ImageNet-
C (Hendrycks & Dietterich, 2019) and MNIST-C (Mu & Gilmer, 2019).

Despite the fact that augmentation leads to robustness (Rebuffi et al., 2021), it also leads to a large
dataset with redundancy. Hence we use our framework to select a high-quality data for further
evaluation. We adopt the data-centric approach in creating an augmented set followed by subset
selection using VTruST. Next, we define the setup of the baselines.

(i) Clean-ST: Trained on unaugmented training set. (ii) Uniform Augmentation (UAug): Trained
on datasets added with augmentations chosen uniformly at random. (iii) Sampled Augmentation
(SAug): Trained on datasets added with augmentations sampled using Algorithm ??. (Wang et al.,
2021) (iv) SSR (Roh et al., 2021a): Trained on subset obtained using the objective function only for
robustness. (v) AugMax (Wang et al., 2021).

6



Under review as a conference paper at ICLR 2024

Table 3: Comparison of VTruST-R over varying subset sizes for robustness evaluation. The numbers in brackets indicate the difference
with the second best among baselines.

Methods MNIST CIFAR10 TinyImagenet

#Data
points SA RA #Data

points SA RA
Train
Time

(min/ep)

#Data
points SA RA

Train
Time

(min/ep)
Clean-ST 60K 99.35 87.00 50K 95.64 83.95 3.03 100K 63.98 23.36 10.02
AugMax 240K 97.62 88.79 200K 94.74 86.44 13.78 400K 54.82 40.98 61.2

SAug 260K 99.36
(1.74)

97.31
(8.52) 200K 94.9

(0.16)
90.13
(3.69) 12.1 300K 62.04

(7.22)
42.04
(1.06) 28.7

After subset selection from SAug
SSR:20% 52K 98.79 86.51 40K 92.17 79.29 2.45 60K 20.26 16.05 10.35

VTruST-R:20% 52K 98.76 92.46
(3.67) 40K 92.25 85.54 2.45 60K 49.0 34.14 10.35

SSR:40% 104K 98.98 94.96 80K 93.3 85.73 4.9 120K 32.82 24.42 13.5

VTruST-R:40% 104K 99.04
(0.06)

96.29
(1.33) 80K 94.74 88.23

(1.79) 4.9 120K 57.3
(2.48) 39.69 13.5

SSR:60% 156K 99.07 96.53 120K 93.77 88.0 7.4 180K 41.94 30.07 22.32

VTruST-R:60% 156K 99.12
(0.05)

97.09
(0.56) 120K 94.77

(0.03)
89.21
(1.21) 7.4 180K 60.88

(6.03)
41.50
(0.52) 22.32

Table 4: Performance comparison with data valuation methods on CIFAR10

Methods GraNd GradMatch TracIn Data Shapley DVRL VTrust-R
SA 85.1 71.1 62.76 61.13 82.1 87.0

Why Sampled Augmentation? We train models for individual augmentations (viz. brightness,
impulse noise etc.) and test on all the corrupted test sets. A sample heatmap in Figure 2 for CIFAR10
depicts the difference in performance across augmentations. Based on this heatmap, we develop an
algorithm Sampled Augmentation (SAug) that samples images based on how far the current model is
from the self-trained augmentation model’s performance (diagonal elements) which turns out to be
best for any augmentation. We define Sampling Number (SN) for augmentation j as a normalised
difference between the average RA for aug j (RAj) and the self-trained accuracy. We compare
SAug vs UAug in Table 2(with dataset size in brackets) where it can be seen that SAug outperforms
UAug by a significant margin thus turning out to be our augmented data for further experiments.

Robustness and Accuracy comparison (VTruST-R) with baselines: We compare VTruST-R with
the baselines in Table 3 where it can be clearly seen that model using clean datasets (Clean-ST)
performs abysmally in terms of RA, thus indicating the need of augmentations. In some cases,
VTruST-R outperforms AugMax in terms of RA even at fractions < 60% (MNIST 20% , CIFAR10
40%), thus indicating that data-centric approaches help in creating quality training datasets. Addi-
tionally, we also experiment with some existing data valuation methods (GraNd (Paul et al., 2021),
GradMatch (Killamsetty et al., 2021) , TracIn (Pruthi et al., 2020), Data Shapley (Ghorbani & Zou,
2019), DVRL (Yoon et al., 2020)) on CIFAR10 where we train on 20% subset of the original unaug-
mented data and report the Standard Accuracy (SA) in Table 4. We intentionally refrain from report-
ing the Robust Accuracy (RA) since it is expected to underperform due to the absence of augmented
data as seen from Clean-ST’s performance in Table 3. In this case too, VTruST is observed to
outperform the considered methods by a reasonable margin.
Figure 2: Performance of self-
trained augmentation models on
augmented test sets.
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Table 2: Comparison of Uniform Aug-
mentation with Sampled Augmentation.

Methods Standard
Accuracy

Robust
Accuracy

UAug(260K)
MNIST 99.34 97.12

SAug(260K)
MNIST

99.37
(0.04)

97.31
(0.19)

UAug(200K)
CIFAR10 94.84 89.06

SAug(200K)
CIFAR10

94.9
(0.06)

90.13
(1.07)

UAug(300K)
TinyImageNet 60.92 26.87

SAug(300K)
TinyImageNet

62.04
(1.12)

42.04
(15.87)

Figure 3: Performance across fractions of sub-
set for varying weights (λ).
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Tradeoff between Accuracy and Robustness: We vary the weightage (λ) on Vrvf and observe in
Figure 3 that both the accuracies vary as per λ, with 20% subset showing considerably larger change.
Note that unlike the tradeoff in error-rate/accuracy vs fairness, a large tradeoff is not observed be-
tween SA and RA (as also observed by (Yang et al., 2020)) across all the fractions. It is likely to be
an artifact of the datasets used.
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3.3 DATA-CENTRIC ANALYSIS: POST HOC EXPLANATION

We pose the following question: From a data-centric point of view, what characteristics do the
selected instances on a per data point level, hold that leads to the fair or robust subset and eventually
a fair or robust model? In this section, we intend to explore some properties/characteristics of the
selected samples along with some anecdotal examples.

Explanation for fairness:

Exploring the area of counterfactual fairness, we arrive at the question: Given we change only the
sensitive attribute of the selected instances, how does the decision of the model change? The lesser
it changes, fairer the algorithm is. We use the metric Counterfactual Token Fairness Gap (CF-
Gap)(Garg et al., 2019) and Prediction Sensitivity(Maughan & Near, 2020) for our evaluation.

Given a selected instance x, we generate a counterfactual instance x′ by altering its sensitive at-
tribute. From (Garg et al., 2019), we define CF-Gap(x) as ∥f(xi)− f(x′i)| where f(x) corresponds
to the model confidence on the target label. Alongside, prediction sensitivity quantifies the extent
to which f(x) depends on the sensitive attribute z and is defined as ∂f(x)

∂z . We plot the distribution
of both these metrics in Figure 4. It can be observed that VTruST-F acquires the least values across
both the measures and datasets, justifying its retainment of fair subsets leading to fair models.
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Figure 4: Box plot representation of CF-gap and prediction sensitivity on the selected subsets from VTruST-F and other baselines.

We show 10 anecdotal samples from Adult Census dataset in Table 5 on the basis of high CF-Gap
and we can observe that SSFR has a large number of redundant samples with similar attribute values
like that of (Private, Married-civ-spouse, Husband, White, Male, United States), while VTruST-F
which anyway has relatively lower CF-gap contains a diverse set of samples. Similar pattern is
observed in terms of Prediction Sensitivity which we show in the Appendix.

Table 5: Sample instances with High Counterfactual Token Fairness Gap

VTruST-F
Feat Age WCl MS Rel Race Sex NC

D1 25 Priv SEP ORel B F JM
D2 41 FedG NM NIF W M US
D3 43 StG NM NIF W M US
D4 29 Priv NM OC API F TW
D5 60 Priv MCS Husb W M US
D6 35 Priv Div UnM W F US
D7 51 SEnI MCS Wife W F US
D8 23 Priv NM OC W M US
D9 39 Priv Div NIF AIE F Col
D10 34 Priv NM UnM W F DE

SSFR
Feat Age WCl MS Rel Race Sex NC

D1 55 Priv MCS Husb W M US
D2 41 Priv MCS Husb W M US
D3 29 Priv MCS Husb W M US
D4 55 Priv MCS Husb W M US
D5 42 LoG MCS Husb W M US
D6 30 Priv MCS Husb W M US
D7 25 Priv NM NIF W M US
D8 23 Priv NM OC W M US
D9 35 Priv MCS Husb W M DE
D10 18 Priv NM OC W M US

Explanation for robustness:

Delving into the literature ((Swayamdipta et al., 2020) (Huang et al., 2018)), we pick two measures
- uncertainty and distinctiveness. Having a set of hard-to-learn and distinguishable samples in the
subsets makes the model more generalizable and robust. We quantify uncertainty of an instance x in
the form of predictive entropy (−f(x)logf(x)) and distinctiveness as Ee∈X(s)dist(fv(x), fv(e))
where dist(, ) is the euclidean distance and fv(.) is the feature from the model’s penultimate layer.

We visualize the datapoints in the two dimensions - Uncertainty and Distinctiveness in Figure 5
where we choose a random set of 5000 points from CIFAR and TinyImagenet datasets, followed by
marking them as selected and not selected by VTruST-R and SSR respectively. We can observe that
points with relatively high uncertainty and high distinctiveness(HD-HU) values mostly belong to the
selected set of VTruST-R, while the unselected points from SSR mostly cover the HD-HU region.

We also show some anecdotal samples in Figure 6 having High Distinctiveness-High
Uncertainty(HD-HU). It can be seen from the anecdotal samples as well as the histogram visual-
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isation, that for VTruST-R, diverse samples with difficult augmentations like Impulse noise, Glass
Blur are more observed in HD-HU category, while similar(mostly white-background) and unaug-
mented or No-Noise(NN) samples or easier augmentation based samples like that of brightness are
more observed in SSR anecdotal samples, thus justifying the robust selection using VTruST-R.

Figure 5: Data Map for randomly taken 5000 samples from CIFAR10 and TinyImagenet augmented training dataset
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Figure 6: Anecdotal samples from VTruST-R & SSR with High Distinctiveness and Uncertainty from TinyImagenet for class Compass.

4 RELATED WORK AND DISCUSSION

Besides the usual building of trustworthy models, (Liang et al., 2022) highlights the need for proper
data sculpting in order to make the AI systems more trustworthy.The primary task in the robustness
and fairness literature is to design robust (Wang et al., 2021), (Chen et al., 2022) and fair (Zemel
et al., 2013),(Roh et al., 2020),(Romano et al., 2020),(Sattigeri et al., 2022),(Chuang & Mroueh,
2021) models. To begin with, they use pre-trained models and optimize them further to achieve
the desired trustworthy goals. On the contrary, we aim to obtain a subset targeted at a pre-defined
trustworthy objective followed by training them from scratch. Broadly, there are two approaches in
DCAI for obtaining quality data : (a) data quality measures (Swayamdipta et al., 2020; Ethayarajh
et al., 2022; Seedat et al., 2022a;b) and data valuation techniques (Yoon et al., 2020; Ghorbani &
Zou, 2019; Pruthi et al., 2020; Das et al., 2021b; Wang & Jia, 2022; Paul et al., 2021). Our work is
closely related to the latter among which, most of the works provide a generic method of valuation.
The works of (Ghorbani & Zou, 2019; Wang & Jia, 2022) uses value functions that turn out to
be expensive due to the usage of MCMC-based approaches. To the best of our knowledge, ours
is one of the first works in DCAI that develops a controllable framework to balance the different
trustworthiness metrics (fairness and robustness) leading to desired subsets in an online training
paradigm. We validate the efficacy of VTruST empirically and also show that this data-centric
oriented approach aids in providing data-centric explanations behind its performance.

Exploring suitable value functions for other aspects of trustworthy AI like privacy in the context of
subset selection is an open problem. For example, one can use privacy loss as a part of a compo-
sitional value function as Vp = max(|l(θ,D′) − l(θ,D′a|). The privacy loss shall ensure to retain
such datapoints from the training set (D∪Da) that shall keep it at a minimum thus reducing the risk
of membership inference attacks thereby maintaining privacy. Hence, one can definitely explore our
framework by constructing suitable value functions for the remaining aspects of trustworthy AI.
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REPRODUCIBILITY STATEMENT

We run all our experiments on publicly available datasets and thus all our results can be seamlessly
reproduced. We also attach our code (with README) in the Supplementary to aid reproducibility.
Details on model architectures and datasets are provided in the main paper. The remaining details
for obtaining reproducible results can be found in the Appendix and the attached code repository.
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