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Abstract

We investigate the problem of minimizing the excess generalization error with
respect to the best expert prediction in a finite family in the stochastic setting,
under limited access to information. We assume that the learner only has access
to a limited number of expert advices per training round, as well as for prediction.
Assuming that the loss function is Lipschitz and strongly convex, we show that
if we are allowed to see the advice of only one expert per round for T rounds in
the training phase, or to use the advice of only one expert for prediction in the test
phase, the worst-case excess risk is Ω(1/

√
T ) with probability lower bounded by

a constant. However, if we are allowed to see at least two actively chosen expert
advices per training round and use at least two experts for prediction, the fast rate
O(1/T ) can be achieved. We design novel algorithms achieving this rate in this
setting, and in the setting where the learner has a budget constraint on the total
number of observed expert advices, and give precise instance-dependent bounds on
the number of training rounds and queries needed to achieve a given generalization
error precision.

Keywords: Online Learning, Budgeted Learning, Prediction with expert advice.

1 Introduction and setting

We consider a generic prediction problem in a stochastic setting: a target random variable Y taking
values in Y is to be predicted by a user-determined forecast F , also modeled as a random variable,
taking values in a closed convex subset X of Rd. The mismatch between the two is measured via a
loss function l(F, Y ). The quality of the agent’s output is measured by its generalization risk

R(F ) := E
[
l(F, Y )

]
.

To assist us in this task, the forecast or “advice” of a number of “experts” (F1, . . . , FK) (also
modeled as random variables) can be requested. The agent’s objective is to achieve a risk as close as
possible to the risk of the best expert R∗ = mini∈JKKR(Fi) (for a nonnegative integer n, we denote
JnK = {1, . . . , n} ). We measure the performance of the user’s forecast via its excess risk (or average
regret) with respect to that best expert.

The literature on expert advice generally considers the cumulative regret over a sequence of forecasts
Ft followed by observation of the target variable Yt and incurring the loss l(Ft, Yt), t = 1, . . . , T .
In the present work we will separate observation (or training) phase and forecast phase: the user
is allowed to observe (some of) the expert’s predictions and the target variable for a number of
independent, identically distributed rounds (Yt, F1,t, . . . , FK,t)1≤t≤T following certain rules to be
specified. After the observation phase, the user must decide of a prediction strategy, namely a
convex combination of the experts F̂ =

∑k
i=1 ŵiFi, where the weights ŵi can be chosen based

on the information gathered in the training phase. The risk of this strategy is R(F̂ ), where the risk
is evaluated on new, independent data. In other words, if the training phase takes place over T
independent rounds, the forecast risk is the expected loss over the (T + 1)th, independent, round.
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In some situations, it may be overly expensive to query the advice of all experts at each round. The
cost can be monetary if each expert demands to be paid to reveal his opinion, possibly because they
have access to some information that others do not. In this case we may have a total limit on how
much we can spend. In a different context, it is unrealistic to ask for the advice of all available
doctors or to run a large battery of tests on each patient. In this case, we may be have a strong limit
on the number of expert opinions that can be consulted for each training instance. In a more typical
machine learning scenario, each “expert” might be a fixed prediction method Fi = fi(X) (using the
information of a covariate X), where the predictor functions fi have been already trained in advance,
albeit based on different sets of parameters or methodology; the goal then amounts to predictor
selection or aggregation, in a situation where the computation of each single prediction constitutes
the bottleneck cost, rather than data acquisition. Overall the agent’s goal is to achieve a risk close to
optimal while sparing on the number of experts queries – both at training time and for forecast.

Motivated by these questions we investigate several scenarios for prediction with limited access to
expert advice. Furthermore, our emphasis is on obtaining fast convergence rates guarantees on the
excess risk (i.e. O(1/T ) or O(1/C), where C is the total query budget). These are possible under a
strong convexity assumption of the loss, specified below. Our contributions are the following.

• As a preliminary, we revisit (Section 3) the full information setting, with no limitations on
queries. Maybe surprisingly, we contribute a new algorithm that is both simpler than existing
ones and for which the proof of the fast convergence rate for excess risk is also elementary.
Furthermore, for forecast we only need to consult 2 experts. The general principle of this
algorithm will be reused in the limited observation settings.

• We then investigate (Section 4) the budgeted setting where we have a total query budget
constraint C for the training phase; then (Section 5) the two-query setting where the agent
is limited to m = 2 queries per training round. In both cases, we give precise efficiency
guarantees on the number of training expert queries needed to achieve a given precision for
forecast. The obtained bounds come both in instance-independent (agnostic) and instance-
dependent (depending on the experts’ structure) flavors.

• Finally, we give some lower bounds (Section 6) were we show that fast rates cannot be
achieved if the agent is only allowed to consult one single expert per training round or for
forecast.

The following assumption on the loss will be made throughout the paper:
Assumption 1. ∀y ∈ Y: x ∈ X ⊆ Rd 7→ l(x, y) is L-Lipschitz and ρ-strongly convex.

Recall that a function f : X → R is L-Lipschitz if ∀x, y ∈ X :|f(x)− f(y)| ≤ L‖x− y‖, and
ρ-strongly convex if the function: x→ f(x)− ρ2

2 ‖x‖
2 is convex.

Remarks. Assumption 1 implies that the diameter of X is bounded by 8L/ρ2 and the quantity
supx,x′∈X ,y∈Y |l(x, y)− l(x′, y)| is bounded by B := 8L2/ρ2 (this notation shorthand will be used
throughout the paper). Consequently, without loss of generality we can assume that the loss is
bounded by B (see Lemma1 S-1 and subsequent discussion for details). It is satisfied, for example, in
the following setting: least square loss l(x, y) = (y − x)2 where x ∈ X and y ∈ Y with X and Y
are bounded subsets of Rd. Prior knowledge on ρ is not necessary if L and an upper bound on the the
l∞ norm of the target variable Y and the experts are known.

2 Discussion of related Work

Games with limited feedback (slow rates): Our work investigates what happens between the full
information and single-point feedback games. Learning with a restricted access to information was
considered under various settings in [6], [19], [12], [20], [5]. A setting close to ours was considered in
[21], where the agent chooses in each round a subset of experts to observe their advice, then follows
the prediction of one expert. To minimize the cumulative regret in the adversarial setting, they used
an extension of the Exp3 algorithm, which allows to have an excess risk of O(

√
1/T ) in the limited

feedback setting and O(
√

log(C)/C) in the budgeted case with a budget C.

1References starting with a prefix S- point to the supplemental material.
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The differences in the setting considered here is that (a) we are interested in the generalization
error in the stochastic setting rather than the cumulative regret in an adversarial setting and (b) our
assumptions of the convexity of the loss allow for the possibility of fast excess risk convergence.
Moreover, we consider the more general case where the player is allowed to combine p out of K
experts for prediction. The possibility of playing a subset of arms was considered in the literature of
Multiple Play Multi-armed bandits. It was treated with a budget constraint in [26] for example (see
also [24]), where at each round, exactly p out of K possible arms have to be played. In addition to
observing the individual rewards for each arm played, the player also learns a vector of costs which
has to be covered with an a-priori defined budget C. In the stochastic setting, a UCB-type procedure
gives a bound for the cumulative regret of O(∆−1

min log(C)/C) that holds only in expectation, where
∆−1

min denotes the gap between the best choice of arms and the second best choice. This bound leads
to an instance dependent bound of O(

√
log(C)/C) in the worst case. In the adversarial setting, an

extension of Exp3 procedure gives a bound of O(
√

log(C)/C) for the cumulative regret that holds
with high probability. In another online problem, where the objective is to minimize the cumulative
regret in an adversarial setting with a small effective range of losses, [11] have shown the impossibility
of regret scaling with the effective range of losses in the bandit setting, while [23] showed that it is
possible to circumvent this impossibility result if the player is allowed one additional observation
per round. However, in the settings considered, it is impossible to achieve a regret dependence on T
better than the rate of O(1/

√
T ).

Fast rates in the full information setting: The learning task of doing as well as the best expert
of a finite family in the sense of generalization error has been studied quite extensively in the full
information case. In an adversarial setting, it is well-known that under suitable assumptions on the
loss function (typically related to strong convexity), an appropriately tuned exponential weighted
average (EWA) strategy has cumulative regret bounded by the “fast rate” O(log(K)/T ) [13, 9, 4],
which, combined with the online-to-batch conversion principle [8, 4] (also known as progressive
mixture rule, [7, 25]), yields a bound of the same order for the expected excess prediction risk in the
stochastic case. However, it was shown that progressive mixture type rules are deviation suboptimal
for prediction [2], that is, their excess risk takes a value larger than c/

√
T with constant positive

probability over the training phase. To lift the apparent contradiction between the two last statements,
consider that the excess risk of the EWA can take negative values, since it is an improper learning
rule. Thus negative and positive “large” deviations can compensate each other so that the expectation
is small. The inefficiency of EWA in deviation is a significant drawback, and alternatives to the EWA
progressive mixture rule that achieve O(log(K)/T ) excess prediction risk with high probability
were proposed by [17] and [3]. In [17], the strategy consists in whittling down the set of experts by
elimination of obviously suboptimal experts, and performing empirical risk minimization (ERM)
over the convex combinations of the remaining experts. In [3], the empirical star algorithm consists
in performing an ERM over all segments consisting of a two-point convex combination of the ERM
expert and any other expert. Note that the empirical star algorithm has the advantage that the final
prediction rule is a convex combination of (at most) two experts.

Linear regression with partially observed attributes: Other related work is that of [10], and [14] on
learning linear regression models with partially observed attributes. The most related setting to ours
is the local budget setting, where the learner is allowed to output a linear combination of features for
prediction. The key idea is to use the observed attributes in order to build an unbiased estimate of the
full information sample, then to use an optimization procedure to minimize the penalized empirical
loss. In our setting, the minimization of penalized empirical loss was shown to be suboptimal (see
[16]). Moreover, while we want to predict as well as the best expert, in [10], the objective is to be as
good as the best linear combination of features with a small additive term (the optimal rate, in this
case, is O

(
1/
√
T
)
). Finally, we consider that the restriction on observed attributes (experts advice)

does not apply only to the training samples but also to the testing data.

Online convex optimization with limited feedback: The idea of using multiple point feedback to
achieve faster rates appeared in the online convex optimization literature (see [1], and [22]). It was
shown that in the setting where the adversary chooses a loss function in each round if the player is
allowed to query this function in two points, it is possible to achieve minimax rates that are close to
those achievable in the full information setting. The key idea is to build a randomized estimate of the
gradients, which are then fed into standard first-order algorithms. These ideas are not convertible into
our setting because we consider a non-convex set of experts.
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3 The full information case

In this section, we revisit the “classical” case where there is no constraint on the number of expert
queries per observation round; assume the output of all experts are observed for T rounds (in other
words, T i.i.d. training examples), which is the full information or “batch” setting. We want to output
a final prediction rule with prediction risk controlled with high probability over the training phase.

We start with putting forward an apparently new rule , simpler than existing ones [17, 3], for the full
information setting which, like the empirical star [3], outputs a convex combination of two experts.
In contrast to the latter, our rule does not need any optimization over a union of segments. The
underlying principle will guide us to construct a budget efficient expert selection rule in the sequel.

Define R̂(Fi) := T−1
∑T
t=1 l(Fi,t, Yt) the empirical loss of expert i, and d̂ij := (T−1

∑T
t=1(Fi,t −

Fj,t)
2)

1
2 the empirical L2 distance between experts i and j over T rounds. Finally let α = α(δ) :=

(log(4Kδ−1)/T )
1
2 , where δ ∈ (0, 1) is a fixed confidence parameter. Define

∆ij := R̂(Fj)− R̂(Fi)− 6αmax
{
Ld̂ij , Bα

}
. (1)

The quantity ∆ij can be interpreted as a test statistic: if ∆ij > 0, then we have a guarantee that
R(Fj) > R(Fi), so that expert j is sub-optimal; this guarantee holds for all (i, j) uniformly with
probability (1− δ). It therefore makes sense to reduce the set of candidates to

S :=
{
j ∈ JKK : sup

j∈JKK
∆ij ≤ 0

}
. (2)

Our new full information setting rule is the following:

choose k̄ ∈ S arbitrarily ; pick j̄ ∈ Arg Max
j∈S

d̂k̄j ; predict F̂ :=
1

2
(Fk̄ + Fj̄). (3)

In words, the above rule consists in eliminating all experts that are manifestly outperformed by
another one, and, among the remaining experts, pick two that disagree as much as possible (in
terms of empirical L2 distance ) and output their simple average for prediction. The next theorem
establishes fast convergence rate for the excess risk of this rule:

Theorem 3.1. If Assumption 1 holds and δ ∈ (0, 1) is fixed, then for the prediction rule F̂ defined
by (3), it holds with probability 1− 3δ over the training phase (c is an absolute constant):

R(F̂ ) ≤ R∗ + cB
log(4Kδ−1)

T
.

Proof. Let d2
ij = E

[
(Fi − Fj)2

]
. The result hinges on the following high confidence control of

risk differences, established in Corollary S-4 as a direct consequence of the empirical Bernstein’s
inequality: with probability at least 1− 3δ, it holds:

For all i, j ∈ JKK : ∆ij ≤ (Rj −Ri) ≤ ∆ij + 32αmax(Ldij , Bα). (4)

Let i∗ ∈ Arg Mini∈JKKRi be an optimal expert. Since Ri∗ −Rj ≤ 0 for all j ∈ JKK, it follows that
if (4) holds, then i∗ ∈ S, from the definition of S. So if (4) holds, we have

R

(
Fk̄ + Fj̄

2

)
≤ 1

2

(
Rk̄ +Rj̄

)
− ρ2

8
d2
k̄j̄

= R∗ +
1

2

(
(Rk̄ −Ri∗) + (Rj̄ −Ri∗)

)
− ρ2

8
d2
k̄j̄

≤ R∗ +
1

2

(
∆k̄i∗ + ∆j̄i∗

)
+ 16α

(
max

(
Ldj̄i∗ , Bα

)
+ max(Ldk̄i∗ , Bα)

)
− ρ2

8
d2
k̄j̄

≤ R∗ + 32Bα2 + 48Lαdk̄j̄ −
ρ2

8
d2
k̄j̄ ;

where we have used strong convexity of the loss (and therefore ofR(.) with respect to the L2 distance)
in the first line; the right-hand side of (4) in the third line; and, in the last line, the fact that j̄, k̄, i∗ are
all in S along with dj̄i∗ ≤ dj̄k̄ + dk̄i∗ ≤ 2dj̄k̄ by construction of j̄. Finally upper bounding the value
of the last bound by its maximum possible value as a function of dk̄j̄ and recalling B = 8L2/ρ2, we
obtain the statement.
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4 Budgeted Setting

In this section, we consider the budgeted setting. More precisely, given an a-priori defined budget C,
at each round the decision-maker selects an arbitrary subset of experts and asks for their predictions.
The choice of these experts may of course depend on past observations available to the agent. The
player then pays a unit for each observed expert’s advice. The game finishes when the budget is
exhausted, at which point the player outputs a convex combination of experts for prediction.

We convert the batch rule defined in the full information setting to an "online" rule by performing
the test ∆ji > 0 for each pair (i, j) after each allocation. If at any round an expert i ∈ JKK fails any
of these tests (i.e ∃j : ∆ji > 0), it is no longer queried. This extension allows us to derive instance
dependent bounds, which cover the rates obtained in the batch setting in the worst case.

Since the tests ∆ij > 0 are performed after each allocation, we introduce the following modification
on the definition of ∆ij , for concentration inequalities to hold uniformly over the runtime of the
procedure. We define ∆ij(t, δ) as follows:

∆ij(t, δ) := R̂(j, t)− R̂(i, t)− 6α(t, δ/(t(t+ 1)) max
{
Ld̂ij(t), Bα(t, δ/(t(t+ 1))

}
.

Algorithm 1 Budgeted aggregation
Input δ, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do

Jointly query all the experts in S and update ∆ij > 0 for all i, j.
For all i, j ∈ JKK, if ∆ij > 0, eliminate j: S ← S \ {j}.
if the budget is consumed then

let k̄ ∈ S, and l̄← argmax
j∈S

d̂k̄j .

Return 1
2 (Fk̄ + Fl̄).

end if
end for

Let S∗ := Arg Mini∈JKKR(Fi) denote the set of optimal experts. For i, j ∈ JKK, we denote by
dij := (E[(Fi − Fj)2

])1/2 the L2 distance between the experts Fi and Fj . For i ∈ JKK, we introduce
the following quantity:

Λi := min
i∗∈S∗

max

{
L2d2

ii∗

|R(Fi)−R(Fi∗)|2
;

B

R(Fi)−R(Fi∗)

}
.

Define the following set of experts:

Sε =

{
i ∈ JKK : Λi >

1

ε

}
,

and let Scε be its complementary.
Theorem 4.1. (Instance dependent bound) Suppose Assumption 1 holds. Let C ≥ K denote the
global budget on queries and denote ĝ the output of Algorithm 1 with inputs (δ, L, ρ) when the budget
C runs out. For any ε ≥ 0, if:

C > 578Cε log
(
Kδ−1Cε

)
,

where

Cε :=
∑
i∈Scε

Λi + |Sε| min

{
1

ε
; Λ∗

}
,

where Λ∗ := maxi:Λi<+∞ Λi, then, with probability at least 1− δ:

R(ĝ) ≤ R∗ + cBε,

where c is an absolute constant.
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Remarks. Observe that the above result gives in particular a query budget bound for the problem
of best expert identification in our setting, by taking ε = 0, in which case the required expert query
budget is of order

∑
i:Λi<+∞ Λi up to logarithmic terms. We can compare this to the problem of

best arm identification in a bandit setting (one arm pull/query per round); our setting can be cast
into that framework by considering each expert as an arm and only recording the information of the
loss of the asked expert. The known optimal query bound for best arm identification in the classical
multi-armed bandits setting with loss/reward bounded by B is of order

∑
i:Λi<+∞ Λ̃i [15], where

Λ̃i = B2(R(Fi)−R(Fi∗))
−2. Since the diameter of X is bounded byB/L (see Lemma S-1), it holds

Λi ≤ Λ̃i. Hence, for best expert identification, the bound of Theorem 4.1 improves upon the best arm
identification bound, potentially by a significant margin (in particular concerning the contribution
of suboptimal but close to optimal experts for which dii∗ � B/L and Ri −Ri∗ � B). Again, the
improvement is due to the Assumption 1 on the loss and the possibility to query several experts per
round, which are not used when casting the problem as a classical bandit setting.

5 Two queries per round (m = p = 2)

In this section, we suppose that the decision-maker is constrained to see only two experts’ advice per
round (m = 2). We suppose that the horizon is unknown; when the game is halted, the player outputs
a convex combination of at most two experts (p = 2). We will show that the rates obtained are as
good as in the full information case in its dependence on the number of rounds T .

Algorithm 2 works as follows. To circumvent the limitation of observing only two experts per round,
in each round, we sample a pair (i, j) ∈ S×S in a uniform way, where S is the set of non-eliminated
experts. Then the tests ∆′ji ≤ 0 and ∆′ij ≤ 0 are performed, where ∆′ij is defined by (5). If i or j
fail the test, which means that it is a suboptimal expert, it is eliminated from S.

Finally, when the algorithm is halted, depending on the number of allocated samples, we choose
either an empirical risk minimizer over the non-eliminated experts or the mean of two experts from S
that are distant enough. This rule allows our algorithm’s output to enjoy the best of converge rates of
the two methods.

We introduce the following notations: In round t, denote Tij(t) the number of samples where
predictions of experts i and j were jointly queried and Ti(t) the number of rounds where the
prediction of expert i was queried. Denote R̂ij(j, t) the empirical loss of expert i calculated using

only the Tij(t) samples queried for (i, j) jointly. We define αij(t, δ) :=
√

log(4Kδ−1)
Tij(t)

if Tij(t) > 0

and αij(t) =∞ otherwise. Let d̂ij(t) be the empirical L2 distance between experts i and j based on
the Tij(t) queried samples. Denote δt := δ/(t(t+ 1)). For i, j ∈ JKK we define:

∆′ij(t, δ) := R̂ij(j, t)− R̂ij(i, t)− 6 max
{
Lαij(t, δt)d̂ij(t), Bα

2
ij(t, δt)

}
. (5)

Algorithm 2 Two-point feedback
Input δ, L and ρ.
Initialization: S ← JKK.
for T = 1, 2, . . . do

Let (i, j) ∈ Arg Min(u,v)∈S×S Tuv .
Query the advice of experts i and j and update the corresponding quantities.
For all u, v: If ∆′uv > 0: S ← S \ {v}.

end for
On interrupt: Let k̂ ∈ S and let l̂← argmax

j∈S
d̂k̂j .

Let q̂ denote the empirical risk minimizer on S.
if Tk̂l̂ >

√
log(KTδ−1)Tq̂ then

Return 1
2

(
Fk̂ + Fl̂

)
.

else
Return Fq̂ .

end if
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Our first result in this setting is an empirical bound. At any interruption time, it gives a bound on the
excess risk, only depending on quantities available to the user, using the number of queries resulting
from the querying strategy in Algorithm 2. We then use a worst-case bound on these quantities to
develop an instance independent bound in Corollary 5.2.
Theorem 5.1. (Empirical bound) Suppose Assumption 1 holds. Let T ≥ 2K2, and denote ĝ the
output of Algorithm 2 with inputs (δ, L, ρ) in round T . Then with probability at least 1− 3δ:

R(ĝ) ≤ R∗ + c Bmin

{
log
(
TKδ−1

)
Tk̂l̂(T )

,

√
log(TKδ−1)

Tq̂(T )

}
, (6)

where k̂, l̂ and q̂ are the experts in Algorithm 2 and c is an absolute constant.

Proof Sketch of Theorem 5.1 We start by noting that when running Algorithm 2, the optimal
experts S∗ = Arg Mini∈JKKR(Fi) are never eliminated with high probability (Lemma S-5). This
shows in particular, that when the procedure is terminated, we have S∗ ⊆ ST , where ST is the set of
non-eliminated experts at round T .

Then we show the following key result: in each round t ≤ T , for any expert i ∈ St, let j ∈
Arg Maxl∈St d̂il(t), we have with probability at least 1− δ:

R

(
Fi + Fj

2

)
≤ R∗ + cB

log(Kδ−1
t )

Tij(t)
.

For the second bound, recall that i∗ belongs to ST with high probability. Therefore, performing an

empirical risk minimization over the set of non-eliminated experts leads to the bound
√

log(KTδ−1)
Tq(T ) ,

through a simple concentration argument using Hoeffding’s inequality.
Corollary 5.2. (Instance independent bound) Suppose assumption 1 holds. Let T ≥ 2K2, and
denote ĝ the output of Algorithm 2 with inputs (δ, L, ρ) in round T . Then with probability at least
1− 3δ:

R(ĝ) ≤ R∗ + c Bmin

{
K2 log

(
TKδ−1

)
T

,

√
K log(TKδ−1)

T

}
,

where c is an absolute constant.

Proof. We develop an elementary bound on Tk̂l̂ and Tq̂, then we inject these bounds into inequality
(6).

Note that: q̂, i∗ ∈ ST , hence Tq̂(T ), Ti∗(T ) ≥ T
2K . Moreover, we have:

Tk̂l̂(T ) ≥ T

K2
.

Using inequality (6), we obtain the result.

Remarks. Observe that in all the considered settings (full information, budgeted and limited advice),
the number of jointly sampled pairs (Fi, Fj) to attain an excess risk of O(ε) is of the order of
O(K2/ε). Being able to ask a set of m experts simultaneously in a training round allows to sample
m(m− 1)/2 pairs for a query cost of m: this is the advantage of the budgeted setting, while we have
to query each pair in succession under the strict m = 2 constraint, resulting in a higher cost overall.
Theorem 5.3. (Instance dependent bound) Suppose Assumption 1 holds. Let ĝ denote the output of
Algorithm 2 with input (δ, L, ρ) and T denote the total number of rounds. Let ε > 0, if :

T ≥ 578 Cε log
(
δ−1Cε

)
,

where

Cε := K
∑
i∈Scε

Λi + 2|Sε|2 min

{
1

ε
,Λ∗

}
,

where Λ∗ := maxi:Λi<+∞ Λi, then, with probability at least 1− δ:

R(ĝ) ≤ R∗ + cB ε,

where c is an absolute constant.
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Remarks. If the algorithm is allowed to query m > 2 expert advices per round, then it can be
modified to attain an improved excess risk. We present this extension in Section S-8 in the supplemental,
and prove that it leads to a rate of O

(
(K/m)2

T log(KT/δ)
)

, which interpolates for intermediate
values of m.

Proof Sketch of Theorem 5.3 First, we develop instance-dependent upper and lower bound for
Tij(t), for any i, j ∈ JKK such that: R(Fi) 6= R(Fj). To do this we introduce the following lemma
(see Lemma S-7 in the supplemental):

Lemma 5.4. Let i, j ∈ JKK such that R(Fi) 6= R(Fj). With probability at least 1− 4δ, for all t ≥ 1,
if

Tij(t) ≥ 289 log
(
Kδ−1

t

)
max

{
L2d2

ij

|R(Fi)−R(Fj)|2
;

B

|R(Fi)−R(Fj)|

}
,

then we have either ∆′ij > 0 or ∆′ji > 0; furthermore, if

Tij(t) ≤ 3 log
(
Kδ−1

t

)
max

{
L2d2

ij

|R(Fi)−R(Fj)|2
;

B

|R(Fi)−R(Fj)|

}
,

then we have: ∆′ij ≤ 0 and ∆′ji ≤ 0.

This lemma gives in particular an upper bound on the number of allocations needed for an expert i to
be eliminated by an optimal expert i∗ (i.e. to fail the test ∆ii∗ ≤ 0). Then, we derive a bound on the
number of rounds Tε required to eliminate all the experts in Scε and we conclude by showing that
T − Tε is large enough to ensure that the experts k̂ and l̂ in algorithm 2 satisfy Tk̂l̂ > 1/ε with high
probability.

6 Lower Bounds for m = 1 or p = 1

This section considers the case where the agent is restricted to selecting one expert at the end of the
procedure (p = 1), and the case where the learner is restricted to see only one feedback per round
(m = 1). We show that in either case it is impossible to do better than an excess risk O

(
1/
√
T
)

in
deviation.

Lemma 6.1 is a direct consequence of a more general lower bound in [18], which proved that if the
closure of the experts class is non-convex, and a single expert must be picked at the end (“proper”
learning rule), then even under full information access during training the best achievable rate with
high probability is O

(
1/
√
T
)
.

Lemma 6.1. (p = 1) Consider the squared loss function. For K = m = 2 and p = 1, for any
T > 0, and for any convex combination of the experts ĝ output after T training rounds, there exists a
probability distribution for experts {F1, F2} and target variable Y (all bounded by 1) such that, with
probability at least 0.1,

R̂T (ĝ)−R∗ ≥ c1√
T
,

where c1 > 0 is an absolute constant.

The second result shows that the same lower bound holds for the bandit feedback (m = 1) setting,
even if the learner is allowed to predict using a convex combination of all the experts at the end. To
the best of our knowledge, this is the first lower bound for deviations in this setting.

Lemma 6.2. (m = 1) Consider the squared loss function. For K = p = 2, and m = 1, for any
T > 0, for any convex combination of the experts ĝ output after T training rounds, there exists a
probability distribution for experts {F1, F2} and target variable Y (all bounded by 1) such that with
probability at least 0.1,

R̂T (ĝ)−R∗ ≥ 1

2
√
T
.
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7 Conclusion

We discussed the impact of restricted access to information in generalization error minimization
with respect to the best expert. As many classical methods, such as progressive mixture rules (and
randomized versions thereof) are deviation suboptimal, we proposed a new procedure achieving fast
rates with high probability. We focused on the global budget setting, where a constraint on the total
number of expert queries is made, and the local budget, where a limited number of expert advices are
shown per round. Moreover, we proved fast rates are impossible to achieve if the agent is allowed to
see just one expert advice per round or choose just one expert for prediction.

An interesting future direction is allowing experts to learn from data during the process. In this case,
the i.i.d. assumption on the loss sequence is dropped, which necessitates deriving a new concentration
for the key quantities.
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