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ABSTRACT

Medical wearables are transforming chronic disease management by enabling
continuous physiological monitoring and personalised therapy, improving both
clinical outcomes and quality of life. As these systems become integrated into
daily care, interpreting long-term monitoring data is critical for patients and clin-
icians to understand health trends, detect safety-critical events promptly, and
make informed decisions. However, this requires in-depth temporal reasoning
that integrates domain knowledge, patient-specific conditions, and system-level
behaviours—challenges that go beyond traditional time-series tasks. Recent ad-
vances in large language models (LLMs) offer new opportunities for context-
aware reasoning and natural language interaction with medical monitoring data.
Yet, existing question answering (QA) benchmarks lack the contextual richness,
reasoning depth, and fault modelling required for realistic long-term medical mon-
itoring scenarios. We introduce HealthLoopQA to bridge this gap. HealthLoopQA
includes a hybrid closed-loop insulin delivery testbed that simulates realistic phys-
iological and therapeutic monitoring data under varied patient activity schedules
and 17 fault scenarios reflecting device failures and cybersecurity threats. The
benchmark comprises comprehensive domain-specific QA templates for training
and evaluating models, covering process mining, anomaly detection, and predic-
tive reasoning, categorised by reasoning depth, ranging from purely descriptive
statistics to causal and inferential reasoning. Each QA pair includes both a numer-
ical answer and a textual rationale, enabling assessment of quantitative accuracy
and reasoning fidelity. We evaluated prompt-based baselines with state-of-the-art
pretrained LLMs, revealing substantial room for improvement. HealthLoopQA
aims to facilitate the development of in-depth and trustworthy time-series under-
standing in AI systems for digital health.

1 INTRODUCTION

For millions of people with type 1 diabetes (T1D), Automatic Insulin Delivery (AID) sys-
tems—integrate a continuous glucose monitor (CGM), an insulin pump, and a control algorithm that
continuously monitor blood glucose (BG) level and automatically adjust insulin delivery—represent
the difference between intensive self-management with life-threatening complications and normal
daily activities Collyns et al. (2021); Renard (2022); Godoi et al. (2023). Yet with streams of BG
measurements and safety-critical insulin delivery decisions generated continuously (e.g., every 5
mins), patients and clinicians face significant challenges in interpreting these data meaningfully and
effectively Mackett et al. (2023).

The monitoring data from these systems potentially enable three types of analyses critical for dia-
betes care. Retrospectively, clinicians and patients can identify BG trends, assess therapy effective-
ness, and detect important patterns such as nocturnal hypoglycemia or postprandial spikes Millson
& Hammond (2020). Predictively, modelling future states (e.g., BG levels or insulin needs) sup-
ports proactive adjustments in insulin dosing, meal planning, or physical activity to prevent hypo-
or hyperglycemia. In real-time, anomaly detection is crucial for identifying hazards and managing
dangerous treatment errors caused by device failures Kapadia (2024) or cyber-physical threats Niu
& Lam (2025). Such security measures and risk management are mandated by medical device regu-
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(a) Closed-loop Data Simulation (b) Question Design (c) Answer Evaluations
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Figure 1: The overview of the proposed HealthLoopQA framework: Our benchmark is comprised
of (a) closed loop data simulation (b) natural language queries to probe various levels of reasoning
and (c) answer evaluation based on numerically precise and programmatically computable ground
truth.

lation EU Parliament and Council (2017); Food & Administration (2023), while monitoring device
functionality to ensure proper operation is also placed as the user’s responsibility in device manuals
CamDiab (2025). Together, these analyses can help improve long-term glycemic control and ensure
safe system operation.

These underscore a pressing need for methods that enable users to have a deep understanding and
intuitive interaction with medical wearable monitoring data. Traditional time-series approaches like
classification and forecasting target narrow objectives and fail to incorporate multimodal information
to provide the comprehensive, open-ended insights patients require. Question Answering (QA)
offers a more flexible, user-friendly framework to address diverse information needs through natural
language queries. Recent advances in large language models (LLMs) further enhance this potential
by enabling multimodal and context-aware reasoning over wearables monitoring data Reichman
et al. (2025).

However, critical gaps in the dataset and reasoning tasks exist in current medical monitoring QA
benchmarks. ECG-QA Oh et al. (2023) provides 70 QA templates for 10-second electrocardiogram
(ECG) segments but focuses mainly on classification tasks without therapeutic or activity context.
LLM-CGM Healey & Kohane (2024b) offers 30 QA templates over 14-day continuous glucose
monitoring (CGM) data by converting statistical summaries into natural language queries, but re-
mains limited to descriptive statistics without in-depth reasoning or contextual information Healey
& Kohane (2024a). These benchmarks fail to capture the context (e.g., therapy and patient activity)
that is essential for physiological data interpretation, lack modelling of faults that may impact real-
world monitoring, and mainly focus on statistical analysis that oversimplifies dynamic patterns. As
outlined in CGM Data Analysis 2.0 Klonoff et al. (2025), modern CGM data analysis encompasses
functional data analysis, AI/ML approaches, and foundation models that enable complex pattern
recognition and personalised decision-making frameworks, yet QA pairs that evaluate this deeper
understanding remain absent.

To address these gaps, we introduce HealthLoopQA, a comprehensive QA benchmark designed to
evaluate models’ ability to interpret long-term physiological monitoring data with therapeutic and
activity context from AID systems in diverse patient self-monitoring scenarios. Our main contribu-
tions are as follows: (i) We implement a closed-loop AID system simulation testbed generating
long-term monitoring data for 20 virtual patients with flexible meal and exercise schedules, in-
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corporating 17 fault patterns derived from documented AID device malfunctions and cyber-physical
threats. (ii) We design 150 question templates covering core medical time-series tasks—process
mining, anomaly detection, and prediction—organised by reasoning depth from descriptive statis-
tics to temporal and causal inference. (iii) We develop modules for extracting precise answers from
raw monitoring data with reasoning rationales for each question, enabling assessment of both numer-
ical accuracy and reasoning fidelity while supporting flexible extension to diverse patient models,
control algorithms, activity scenarios, and faulty injections. (iv) We implement an LLM baseline
based on GPT-5 and evaluate their performance on HealthLoopQA. Our findings suggest that out of
the box, the LLMs struggle with the required reasoning. We supplement our quantitative evaluations
by a qualitative analysis that reveals certain pathologies in LLMs behaviour.

HealthLoopQA bridges the gap between traditional time-series analysis and the complex, contextual
understanding required for real-world medical wearable monitoring, providing a robust foundation
for advancing domain-specific model capabilities in personalised healthcare applications.

2 RELATED WORK

QA Benchmarking in Time Series Interpretation. QA has been extensively studied in language
and vision, but its application to time-series interpretation is relatively recent, enabled by advances in
large language models (LLMs). Early work such as DeepSQA Xing et al. (2021) relied on template-
based questions with limited linguistic diversity. SensorQA Reichman et al. (2025) improved realism
with human-created queries over long-duration data, but focused on process mining and evaluated
responses using language-similarity metrics rather than numerical accuracy. MTBench Chen et al.
(2025) introduced regression and classification metrics for financial and weather data, yet omitted
anomaly detection.

In healthcare, Time-MQA Kong et al. (2025) covered multiple domains including physiological
monitoring, but posed generic questions not tailored to medical wearables. Domain-specific efforts
such as ECG-QA Oh et al. (2023) and LLM-CGM Healey & Kohane (2024a) extended QA to elec-
trocardiogram (ECG) and continuous glucose monitoring (CGM), but remained limited to single
modalities. These benchmarks also lacked therapeutic or activity context and did not model device
faults. Overall, existing time-series QA benchmarks demonstrate potential for medical data inter-
pretation but remain short of providing domain-specific, context-rich, and fault-aware evaluations.

Understanding and Analysis of CGM Data. Beyond QA benchmarking, substantial work has fo-
cused on CGM analysis and interpretation. Clinical guidelines such as the 2025 American Diabetes
Association (ADA) Standards of Care emphasize CGM-derived metrics, highlighting the Ambula-
tory Glucose Profile (AGP) and Time in Range (TIR) as key measures for diabetes management
ame (2025). Statistical and machine learning approaches, including glucodensity curves and long
short-term memory (LSTM) models, capture temporal trends and support clustering or forecasting,
but often lack interpretability Klonoff et al. (2025).

Recent reviews, e.g., CGM Data Analysis 2.0 Klonoff et al. (2025), argue that traditional statis-
tics oversimplify dynamic glucose fluctuations and highlight alternative frameworks including func-
tional data analysis, AI/ML, and foundation models. These approaches enable richer interpretation
of complex glucose patterns and support personalized decision-making. This underscores the need
for QA pairs that move beyond traditional metrics to capture dynamic glucose trajectories and indi-
vidualized treatment contexts.

More advanced architectures such as AttenGluco Farahmand et al. (2025) integrate environmen-
tal data through cross-attention for long-term forecasting, while GLUCOBENCH Sergazinov et al.
(2024) introduces CGM-specific standards for prediction and uncertainty estimation. However, both
remain narrow in scope.

QA as Task vs. QA as Diagnostic Tool. To establish LLMs’ abilities to reason over CGM data,
we rely on QA as a diagnostic tool Srivastava et al. (2023); ?, rather than performing costly human-
centred experiments or evaluating task performance by offline proxy tasks Bedi et al. (2025), that
are mired with common NLG evaluation pitfallsGatt & Krahmer (2018); Huang et al. (2021) and
not always predict application performance Doshi-Velez & Kim (2017).Specifically, focus on the
fundamental reasoning abilities that govern understanding, analysis, and inference, including physi-
ological reasoning about glucose dynamics, temporal reasoning for pattern recognition in time-series
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data, and contextual integration of patient-specific factors. Natural language queries serve as the nat-
ural interface through which we probe these reasoning capabilities in LLMs. Thus we rely on QA as
a task format Gardner et al. (2019) rather than the task itself, where linguistic diversity and clinical
plausibility of the queries would be more central.

Together, these developments highlight progress but also reveal persistent gaps: existing benchmarks
lack domain-specific and fault-aware designs, while current CGM methods are limited in contextual
integration and clinical-level reasoning. In the CGM setting, fault-awareness is particularly critical
because sensor drift, missing data, or inaccurate event logging can directly compromise the safety
of closed-loop insulin delivery systems. Benchmarks that explicitly model such faults are therefore
essential for evaluating whether LLMs can reason robustly under realistic and safety-critical con-
ditions. These gaps motivate HealthLoopQA, a benchmark that integrates domain-specific queries,
therapy context, and device-fault modeling to enable comprehensive evaluation of LLM reasoning
in medical time-series.

3 ORGANIZATION OF BENCHMARK

3.1 TASK DEFINITION

The task simulates single-turn QA interactions between a patient and an intelligent healthcare assis-
tant, grounded in long-term continuous wearable monitoring data. Given: X , the history of mon-
itored physiological time-series data (e.g., 30 days of CGM readings); C, contextual information,
such as insulin delivery records, patient profile, and activity logs; Q, a natural language question
regarding the monitoring data; I , a reasoning instruction that describes the process or evidence
gathering that leads to the final answer. The model f is expected to output A, precise answer, which
can take one of several forms depending on the task: (i) a precise numerical value, (ii) a categorical
class label, or (iii) a temporal attribute such as a timestamp or event duration. We therefore formalise
the task as: f : (X,C,Q, I) → (A).

3.2 DESIGN PRINCIPLES

To construct an effective and comprehensive benchmark for time-series QA in medical wearables,
we focus on three key aspects: (1) Context-rich closed-loop simulators that provide access to precise
information about ground-truth world states, (2) Questions cover key time-series tasks and diverse
cognitive understanding levels, and (3) Exact numerical/categorical answers for natural language
questions. The overall benchmark design is illustrated in Fig. 1.

3.2.1 DATASET

To obtain an AID systems monitoring dataset under controlled conditions and support injection of
device malfunctions and cyberattacks without endangering real patients, we employ a closed-loop
in-silico AID testbed with 20 virtual T1D patients Siket et al. (2025) based on the Extended Hov-
orka model with physical activity submodel proposed in Rashid et al. (2019). The testbed enables the
collection of fine-grained time-series monitoring data, including physiological signals (e.g., blood
glucose levels), therapeutic responses (e.g., insulin administration), and daily activities (e.g., meal
consumption and physical activity). Unlike existing simulation datasets that often rely on rigid rou-
tines and fault-free simulations, we incorporate diverse scenarios and 17 fault types, such as diverse
meal and activity patterns, noise and spikes in glucose readings, and false BG data injection attacks.
The details of scenario design and fault injection can be found in the supplementary materials.

3.2.2 QUESTION DESIGN

To ensure comprehensive coverage and systematic evaluation of medical monitoring data under-
standing, we develop a two-dimensional taxonomy that categorises questions by time-series task
type and reasoning depth.

Based on established medical monitoring needs ame (2025) and classical time-series analysis Kong
et al. (2025), we define three time-series task: 1) Process Mining. Retrospective analysis of his-
torical trends and underlying patterns in physiological data. These questions evaluate the ability to
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compute critical metrics, identify long-term trends, assess therapy effectiveness, and extract mean-
ingful insights from historical monitoring data, 2) Anomaly Detection. Identification of abnormal
events or deviations from expected patterns. Questions in this category assess the capability to detect
device malfunctions, physiological anomalies, and potential safety hazards that require immediate
attention, 3) Prediction. Forecasting future physiological states or therapeutic needs based on his-
torical data. These questions evaluate predictive abilities and personalised decision-making essential
for proactive diabetes management and treatment optimisation.

Drawing from the levels-of-processing framework Craik & Lockhart (1972) and cognitive require-
ments for medical data interpretation Klonoff et al. (2025), we establish three key reasoning abilities
required by different questions:

Descriptive-Level. Questions requiring direct retrieval of factual statistics or explicit information
from the monitoring data. These evaluate basic computational abilities and statistical understanding
(e.g., thresholds, means, medians, ranges, rates of change, frequencies).

Example: ”What was the patient’s average blood glucose over the monitoring period?”

Memory-Level. Questions requiring precise retrieval and cross-referencing of specific data seg-
ments or time periods within the complete monitoring dataset. This level evaluates the ability to
locate, extract, and compare relevant data points across extended monitoring periods, as well as
comparative reasoning across multiple segments or conditions.

Example (Retrieval & Mapping): What was the average glucose between 2-4 pm?

Example (Comparative Reasoning): Was blood glucose variability higher in the morning or after-
noon periods?

Pattern-Level. Questions requiring identification and reasoning over recurrent or domain-specific
temporal patterns. This level evaluates pattern recognition ability and the integration of domain
knowledge to identify clinically meaningful signatures, personal profiles, temporal patterns, and
symptom-cause associations.

Example: ”The CGM shows glucose spikes at 2 AM. Is this consistent with the patient’s normal
glycaemic pattern?”

Using this two-dimensional taxonomy, we systematically construct question templates for each com-
bination of task type and reasoning level. Questions are designed by incorporating 1) CGM data
analysis frameworks and clinical guidelines Klonoff et al. (2025); Millson & Hammond (2020);
Care (2019); Bergenstal (2018), 2) Potential malfunctions and cyber-physical threats based on doc-
umented AID system vulnerabilities Kölle et al. (2019); Niu & Lam (2025), 3) Patient monitoring
needs for informed decision making by leveraging historical states and contextual factors to forecast
future states ame (2025). Complete question templates and reasoning rationales will be released in
the supplementary materials.

3.2.3 ANSWER GENERATION

For each question template, we define dataset-agnostic answer extraction modules that specify the
computational logic required to extract correct answers from raw monitoring data generated by our
closed-loop simulation testbed. In addition, each question is paired with a reasoning rationale that
articulates the step-by-step logic behind the answer derivation, which does not include labels that
may be used in the answer extraction rules to prevent data leakage. This design enables the evalua-
tion of both numerical accuracy and reasoning fidelity, while also supporting flexible extensions to
diverse patient models, control algorithms, activity scenarios, and fault injections.

3.3 EVALUATION METRICS

Regression. For questions requiring the prediction of continuous numerical values, such as glucose
levels or peak timestamp, we measured accuracy using mean absolute error (MAE) and symmetric
mean absolute percentage error (SMAPE) given the model prediction ŷi.

MAE =
1

n

n∑
i=1

∣∣yi − ŷi
∣∣; SMAPE =

100%

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2
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MAE measures the average magnitude of errors in absolute terms, while SMAPE normalizes errors
relative to the scale of the values, making it particularly suitable for comparing performance across
variables with different ranges.

Category Classification. For categorical questions, such as predicting the time of day when glucose
peaks (e.g., morning, afternoon, evening, night), we reported classification accuracy. We compared
performance against a random guess baseline (0.25 in this case).

Event Detection. For event-related questions, such as detecting hypoglycemia episodes or abnormal
sensor patterns, we used the affinity F1-score Huet et al. (2022), which assesses the temporal overlap
and alignment between predicted and true event ranges.

4 BENCHMARK RESULTS

4.1 QUANTITATIVE RESULTS

Tasks N
Regression Classification Event

% MAE SMAPE % Acc. Rand. % F1
PM 900 67 291.9 0.35 26 0.48 0.41 7 0.67
AD 1182 11 19.7 0.80 8 0.54 0.41 81 0.41
PD 200 45 2406.7 0.61 55 0.53 0.5 – –

(a) Across benchmark tasks.

Cognitive Category N
Regression Classification Event

% MAE SMAPE % Acc. Rand. % F1
Descriptive 33 63 69.9 0.27 33 0.45 0.42 3 1.00

Memory 72 22 471.1 0.62 8 0.60 0.40 69 0.21
Pattern 20 45 2406.7 0.61 55 0.53 0.50 – –

(b) Performance by cognitive category.

Table 1: Quantitative results overview: (a) performance across benchmark tasks (PM: Process Min-
ing, AD: Anomaly Detection, and PD: Prediction), and (b) across cognitive levels. Reported values
are averaged for each metric. N denotes the valid number of results. Rand. denotes the random
guess baseline.

Table 1 reports baseline results across tasks and reasoning levels. For classification questions, accu-
racy is consistently higher than random guessing, showing that LLMs can extract some information
from CGM data and context. However, overall accuracy remains low, indicating weak generalization
beyond surface-level cues. Regression tasks show a similar pattern: predictions are usually within a
reasonable range, but high SMAPE values reveal large relative errors. Event-based tasks achieve F1
scores well, indicating that models can sometimes detect structured events (e.g., meals or exercise)
from context, but performance remains unstable.

Overall, these results suggest that current LLMs capture some useful patterns in long-term physio-
logical data but remain far from reliable across reasoning levels. We further explored the reasoning
patterns and failure types compared with the model’s reasoning traces for a detailed analysis of its
performance.

4.2 REASONING PATTERN AND FAILURE ANALYSIS

In our benchmark, each question is paired with step-by-step instructions that specify the expected
reasoning path, enabling LLMs to follow explicit reasoning processes. Success or failure in adhering
to these instructions provides a clear and interpretable assessment of their strengths and limitations.
To this end, we define a set of atomic reasoning types (Table 2) aligned with the answer instructions,
allowing systematic evaluation of LLM reasoning on CGM QA tasks. This framework disentan-
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gles reasoning performance from confounding factors and identifies which atomic reasoning types
contribute to failures, offering precise insights into the underlying cognitive strategies.

We mapped each question to its required atomic reasoning types to make explicit the reasoning paths
necessary for solving it (Appendix E). For example, to answer “What’s the peak blood glucose level
on day 20?”, the model needs to first retrieve the blood glucose values on day 20 (TR) and then
compute the peak value (QC).

Atomic Reasoning Description Example Purpose

Quantitative Calcula-
tion (QC)

Execution of mathemat-
ical operations to de-
rive a single numerical
value.

mean, sum, standard de-
viation, maximum, min-
imum, counts, percent-
ages.

Forms the foundation of
CGM statistical reason-
ing.

Temporal Retrieval
(TR)

Locating and extract-
ing temporal informa-
tion from the data.

Retrieving the times-
tamp of a peak glucose
reading.

Identifies when events
occur, essential for
time-series reasoning.

Data Windowing (DW) Isolating a continuous
block of time-series data
based on predefined in-
tervals or event bound-
aries.

Selecting the 3-hour
post-meal window or
the period after exer-
cise.

Narrows reasoning to
relevant temporal seg-
ments for analysis.

Event Filtering (EF) Identifying specific
real-world events in the
data.

Detecting exercise
start/end times or meal
timestamps.

Anchors reasoning in
contextual events for
downstream analysis.

Comparative Analysis
(CA)

Establishing relation-
ships between two or
more values or periods.

Comparing glucose
variability in mornings
vs. afternoons, or time-
in-range across weeks.

Enables contrastive rea-
soning built on QC, TR,
DW, and EF.

Anomaly Recognition
(AR)

Identifying physiologi-
cally implausible pat-
terns or sensor artifacts.

Abrupt spikes/drops,
flat-lines, abnormal
insulin-glucose pat-
terns.

Ensures data integrity
and highlights unusual
events.

Interval Construction
(IC)

Grouping consecutive
data points that satisfy a
condition into continu-
ous intervals.

Consecutive NaN read-
ings [t1, t2, . . . , tn]
grouped as
{"start": t1,
"end": tn}.

Enables interval-based
reasoning rather than
pointwise reporting.

Predictive Forecasting
(PF)

Extrapolating from his-
torical or current time-
series patterns.

Predicting glucose 30
minutes ahead or fore-
casting overnight stabil-
ity.

Supports forward-
looking reasoning and
scenario anticipation.

Table 2: Atomic reasoning types for CGM-based question answering, with descriptions, illustrative
examples, and analytic purposes.

We then compared these reasoning paths with the LLMs’ generated reasoning traces to assess
whether the models could follow the instructions and arrive at correct solutions. A fine-grained
failure analysis across all questions revealed that the model failed most of the questions (81.5%,
Appendix E). We further examined these failed cases and summarized them into the following main
failure types:

1. Reluctance to calculate. The models were reluctant to execute exact precise programmatic
operations (QC) over the 30-day dataset, as well as abandoning full-sequence anomaly scans (AR),
suggesting that such operations are computationally demanding and less practicable. Instead, the
models often estimate a value, partial results, return empty sets, or default to plausible heuristics.
These failures highlight explicit limitations in both numerical accuracy and scaling to long
sequences.

2. Temporal Misalignment. The models struggled to (i) retrieve and locate timestamps (TR,
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e.g., day 7, 21:00), (ii) correctly isolate predefined time windows (DW, e.g., a 3-hour post-meal
segment), and (iii) segment anomaly intervals accurately (IC, e.g., reporting an entire week
as abnormal instead of discrete spans). Such failures reflect difficulties in indexing, boundary
alignment, and consistent interval representation.

3. Unsupported Assumption. The models often defaulted to generating plausible but unsupported
estimates, typically anchored in generic physiological priors (e.g., “average glucose ≈ 140–150
mg/dL”) or context-based assumptions (e.g., inferring that glucose is unstable after a carb-heavy
meal compared to a lighter one). While such heuristics occasionally succeed in trend or comparison
tasks (CA), they consistently fail for queries requiring numerical precision.

4. Guessing over Uncertainty. Even when the models explicitly acknowledged potential errors,
they still produced assumption-based answers rather than expressing uncertainty. This aligns with
recent findings on LLM hallucinations Kalai et al. (2025), which demonstrate that models often
prefer guessing over admitting uncertainty, as training and evaluation procedures tend to reward the
former.

5. Formatting Misalignment. The models sometimes failed to adhere to the required output format
or granularity. Typical issues include returning plain text instead of JSON or merging multiple
anomaly intervals into an overly broad span (IC). This failure type is relatively uncommon, and
interval-formatting drift is often a downstream effect of temporal misalignment.

Beyond individual errors, we observed a broader phenomenon, illustrated in Fig. 2, which we term
In-Context Laziness. Rather than executing full computations across long CGM sequences, mod-
els anchor on a rough intermediate value and then applies minor narrative adjustments to justify a
confident answer. This produces an illusion of precision without genuine calculation. In practice,
this behavior most clearly reflects Reluctance to Calculate (skipping exact operations) in combi-
nation with Unsupported Assumptions (filling gaps with physiologically plausible estimates). It is
further reinforced by Temporal Misalignment, where incorrect timestamps or time windows provide
a convenient scaffold for these approximations, and by Formatting Misalignment, where outputs are
simplified into broad spans or non-compliant formats that obscure missing reasoning steps. Even
in cases where models acknowledge potential errors, the outcome is still shaped by Guessing over
Uncertainty, producing confident but unfounded answers.

This raises a central research question: Do LLMs truly possess the capability to reason over long-
term time series, or are they becoming lazy and constrained to heuristics and approximations when
sequences become too long? To answer this question and investigate this phenomenon, we con-
ducted ablation experiments using varying lengths of time-series data to assess how performance
scales with sequence length.

4.3 ABLATION ANALYSIS

Failure Type 30-day 7-day 1-day
Count Portion (%) Count Portion (%) Count Portion (%)

Reluctance to Calculate 30 66.7% 4 14.8% 1 7.7%
Temporal Misalignment 15 33.3% 23 85.2% 12 92.3%

Total Failures 45 100% 27 100% 13 100%

Table 3: Distribution of failure types across 30-day, 7-day, and 1-day reasoning. We only reported
Reluctance to Calculate and Temporal Misalignment as they both would result in Unsupported
Assumption. Reluctance reflects avoidance of explicit computation, whereas Temporal Misalign-
ment reflects failed but genuine attempts at time-window reasoning.

To test whether LLMs genuinely reason over long CGM sequences or default to heuristics, and
whether the ”In-Context Laziness” phenomenon diminishes with shorter CGM sequences, we ab-
lated sequence length across 30-day, 7-day, and 1-day contexts. As shown in Table 3, failure modes
shifted systematically with horizon length. In the 30-day setting, Reluctance to Calculate dom-
inated (66.7%), indicating that models often avoided explicit computation and instead relied on
heuristic anchoring. In the 7-day setting, Temporal Misalignment rose sharply (85.2%) as models

8
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Figure 2: Example of the In-Context Laziness phenomenon. When analyzing long CGM data, the
model is reluctant to identify the precise time window and perform the required calculation. Instead,
it defaulted to an assumed value despite acknowledging the risks of assumption, ultimately conclud-
ing with an assumption-based answer rather than expressing uncertainty.

attempted explicit indexing and segmentation but failed at robust time reasoning, while reluctance
dropped markedly. In the 1-day setting, overall failures were fewer (N=13), with Temporal Mis-
alignment (92.3%) mostly confined to off-by-one indexing errors. This progression suggests that
shorter horizons reduce “laziness” and promote procedural reasoning, yet even under minimal con-
texts, models still struggle to execute reliable programmatic calculations.

5 CONCLUSION

This work introduced a benchmark, HealthLoopQA, to evaluate LLMs on long-term CGM data with
contextual meal and exercise events. By categorizing questions into cognitive levels and reasoning
key capabilities, we provided a systematic framework for assessing whether LLMs can move beyond
shallow heuristics to robust temporal reasoning. Our quantitative analysis shows that, while models
perform above random baselines, they struggle with precise computation, temporal alignment, and
generalization across tasks. Failure analysis further revealed a broader phenomenon, which we term
In-Context Laziness, where the model, rather than executing full computations across long CGM
sequences, anchors on a rough intermediate value and then applies minor narrative adjustments to
justify a confident answer. Ablation studies on shorter windows could diminish this phenomenon to
some extent, but the model still struggles to execute reliable programmatic calculations. Together,
these findings highlight the limitations of current LLMs for structured physiological data analysis
and point to the need for more specialized architectures and evaluation methods tailored to long-term
time-series reasoning. Importantly, In-Context Laziness warrants more fine-grained experiments in
general domains, as it represents a subtle form of hallucination that may extend beyond biomedical
contexts.

9
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The authors remain fully responsible for the scientific content and final manuscript.

D SYSTEM PROMPT
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In this section, we present the prompt template used for answering CGM-related questions.

System Prompt Template
You are a medical AI assistant analyzing diabetes management data. Based on the patient’s
health data, answer the following question accurately.

PATIENT DATA OVERVIEW:
This data represents a continuous glucose monitoring (CGM) session for a diabetes patient.
The data includes:
- Blood glucose readings taken every 5 minutes (normal range: 70--180 mg/dL)
- Carbohydrate intake events with timing and amounts
- Insulin delivery events (basal background insulin and bolus meal insulin)
- Physical activity events (running/cycling with duration and intensity)

The data may contain various artifacts, sensor issues, or abnormal patterns that need to be
identified and analyzed.

Patient Health Data: Blood Glucose Readings (mg/dL, every 5 minutes): 8640 readings
Values: [108.0, 108.0, ... 108.0, 129.2, 128.8]

Insulin Events (90 total):
- 1 Day 1 00:00: 1.3U (basal insulin)
...
- 5 Day 2 18:18: 3.1U (bolus insulin)
Carbohydrate Events (150 total):
- Week 1 Day 1 07:40: 84.3g (breakfast)
...
- Week 5 Day 2 18:18: 72.6g (dinner)
Exercise Events (30 total):
- Week 1 Day 1 16:49: Cycling avg power 200.0 for 40 min
...
- Week 5 Day 2 16:56: Cycling avg power 140.7 for 52 min

Question: {question}
Instructions: {answer instruction}
Expected Answer Type: {answer type} (e.g., float)
Example Answer: {answer example}

Please analyze the data carefully and provide your answer as a json object in the exact
format specified by the answer type. Be precise and base your response only on the data
provided. Conclude your analysis with:

{"answer": your answer here}

Figure 3: System prompt template for prompt-based baseline.

E FAILURE ANALYSIS

In this section, we report the reasoning results for CGM-related questions across the process mining,
anomaly detection, and prediction tasks. The following tables present our mapping of failure types
and reasoning paths to each question. We further ablated sequence length across 30-day, 7-day, and
1-day contexts to examine whether the ”In-Context Laziness” phenomenon diminishes.
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ID Question (short) 30-day Failure Type(s) 7-day Failure Type(s) 1-day Failure Type(s) Reasoning Path(s)

pm 0 Average glucose Unsupported Assumptions Reluctance; Unsupported
Assumptions

✓ QC

pm 1 Maximum glucose ✓ ✓ ✓ QC
pm 2 Minimum glucose ✓ ✓ ✓ QC
pm 3 Time of max glucose Temporal Misalignment; Un-

supported Assumptions
Temporal Misalignment ✓ QC → TR

pm 4 Hours in range Unsupported Assumptions ✓ ✓ DW → QC
pm 5 Hours above range Unsupported Assumptions ✓ ✓ DW → QC
pm 6 Hours below range ✓ ✓ ✓ DW → QC
pm 7 Count hypo events ✓ Temporal Misalignment ✓ DW → QC
pm 8 Count hyper events ✓ Temporal Misalignment ✓ DW → QC
pm 9 Standard deviation Unsupported Assumptions Temporal Misalignment Temporal Misalignment QC
pm 10 Time-in-range % ✓* ✓ ✓ DW → QC
pm 11 Time-above-range % ✓ Temporal Misalignment ✓ DW → QC
pm 12 Time-below-range % ✓ Reluctance ✓ DW → QC
pm 13 Rapid fluctuations ✓ ✓* Temporal Misalignment DW → QC → CA
pm 14 Avg glucose (time window) Temporal Misalignment; Un-

supported Assumptions
Reluctance Temporal Misalignment TR → DW → QC

pm 15 Stable days (CV<36) ✓* Temporal Misalignment – DW → QC → CA
pm 16 Most variable day Unsupported Assumptions Temporal Misalignment – DW → QC → CA
pm 17 Most stable day Unsupported Assumptions Reluctance – DW → QC → CA
pm 18 Variability: morning vs after-

noon
✓* ✓* Temporal Misalignment;

Unsupported Assump-
tions

TR → DW → QC →
CA

pm 19 Stability: weekdays vs week-
end

Unsupported Assumptions Temporal Misalignment – TR → DW → QC →
CA

pm 21 Peak glucose after lunch
(W3D3)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment ✓ TR → EF → DW → QC

pm 22 Return-to-baseline after din-
ner (W4D5)

✓* ✓ ✓ TR → EF → DW → QC
→ TR

pm 23 Highest meal spike (W2D5) ✓* Temporal Misalignment;
Unsupported Assump-
tions

✓ TR → EF → DW → QC
→ CA

pm 24 Glucose rise rate after snack
(W4D1)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment Temporal Misalignment TR → EF → DW → QC

pm 25 Carb-heavy dinners + spikes Unsupported Assumptions ✓ – EF → DW → QC → CA
pm 26 Peak glucose after lunch

(W1D3)
Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment ✓ TR → EF → DW → QC

pm 27 Highest meal spike (W2D2) ✓* Temporal Misalignment;
Unsupported Assump-
tions

✓ TR → EF → DW → QC
→ CA

pm 28 Peak glucose during exercise
(W3D5)

Unsupported Assumptions Temporal Misalignment Temporal Misalignment TR → EF → DW → QC

pm 29 Lowest glucose during exer-
cise (W2D2)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment Temporal Misalignment TR → EF → DW → QC

pm 30 Lowest glucose after exercise
(W1D6)

Data Misinterpretation; Un-
supported Assumptions

Temporal Misalignment ✓ TR → EF → DW → QC

pm 31 Rate of change after exercise
(W2D6)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment Temporal Misalignment TR → EF → DW → QC

pm 32 Return-to-baseline after exer-
cise (W2D5)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment Temporal Misalignment TR → EF → DW → QC
→ TR

pm 33 Avg glucose 1h post-exercise
(W4D7)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment Temporal Misalignment TR → EF → DW → QC

pm 34 Avg glucose during exercise
(W1D5)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment Temporal Misalignment TR → EF → DW → QC

pm 36 Time-to-nadir post-exercise
(W3D3)

Temporal Misalignment; Un-
supported Assumptions

Temporal Misalignment Temporal Misalignment TR → EF → DW → QC
→ TR

pm 37 Stable post-exercise days
(CV<36)

Unsupported Assumptions ✓ – EF → DW → QC → CA

pm 38 Hypoglycemia time week 3 vs
week 2

✓ – – DW → QC

pm 39 More stable week (week 1 vs
week 2)

Unsupported Assumptions – – DW → QC

pm 40 TIR change week 4 vs week 3 Temporal Misalignment; Un-
supported Assumptions

– – DW → QC

Table 4: Failure analysis comparison across 30-day, 7-day, and 1-day datasets for PM ques-
tions. ✓ indicates correct answers; ✓* indicates coincidentally correct answers based on assump-
tions/heuristics.
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ID Question (short) Failure Type(s) Reasoning Path(s)

ad 1 % missing data Reluctance to Calculate QC
ad 2 Days with > 30% missing Reluctance to Calculate DW → QC
ad 3 Missingness intervals (NaNs) Reluctance to Calculate; Formatting

Misalignment
AR → IC

ad 4 Implausible drop intervals Temporal Misalignment; Formatting
Misalignment

AR → IC

ad 5 Artifact intervals (spikes, drops, repeats) Temporal Misalignment; Formatting
Misalignment

AR → IC

ad 6 Repeated readings (logging error) Reluctance to Calculate AR → IC
ad 7 Flat-line ≥ 36 points Reluctance to Calculate AR → IC
ad 8 Flat-line or zeros (sensor dislodged) Reluctance to Calculate AR → IC
ad 9 Calibration error spike Unsupported Assumptions AR → IC
ad 10 Sudden spike then normalize Temporal Misalignment AR → IC
ad 11 Sensor drift (days 24–30) Temporal Misalignment; Formatting

Misalignment
AR → IC

ad 12 Dropout (days 28–29) Reluctance to Calculate AR → IC
ad 13 Unexpected spikes (days 24–30) Temporal Misalignment AR → IC
ad 14 Rapid drop on day 14 Temporal Misalignment AR → IC
ad 15 Drop > 50 mg/dL in week 1 Temporal Misalignment AR → IC
ad 16 Spike morning day 30 Temporal Misalignment AR → IC
ad 17 Most recent hypo episode Temporal Misalignment EF → DW → QC
ad 18 Nocturnal hypo episodes Temporal Misalignment EF → DW → QC
ad 19 Prolonged nocturnal hypo Temporal Misalignment EF → DW → QC
ad 20 Severe hypo last week Unsupported Assumptions EF → DW → QC
ad 21 Back-to-back hypo + hyper Temporal Misalignment; Formatting

Misalignment
EF → DW → QC

ad 22 Duration of most recent hypo Temporal Misalignment EF → DW → QC
ad 23 Time hyper started day 25 Temporal Misalignment TR → EF → DW
ad 24 Spike after lunch day 27 Temporal Misalignment TR → EF → DW
ad 25 Hypo event count ✓* DW → QC
ad 26 Hypo event count (last week) ✓* DW → QC
ad 27 Hyper event count (last week) ✓* DW → QC
ad 28 Hyper > 4h last week Temporal Misalignment EF → DW → QC
ad 29 Recovery time after prolonged hyper Temporal Misalignment; Unsupported

Assumptions
EF → DW → QC

ad 30 Recovery from last hypo Temporal Misalignment; Unsupported
Assumptions

EF → DW → QC

ad 31 Day with most out-of-range readings Unsupported Assumptions DW → QC → CA
ad 32 Longest hyper episode duration Temporal Misalignment EF → DW → QC

Table 5: Failure analysis for AD questions (ad 1–32) with reasoning paths. ✓ indicates correct
answers; ✓* indicates coincidentally correct answers based on assumptions/heuristics.
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ID Question (short) Failure Type(s) Reasoning Path(s)

ad 33 Similar rapid drop after lunch Temporal Misalignment EF → DW → QC
ad 34 Alerts increased last week vs first week Unsupported Assumptions; Data Misin-

terpretation
DW → QC → CA

ad 35 New hypo hour in last week Temporal Misalignment EF → DW → QC
ad 36 Post-lunch spike > 220 mg/dL (day 24) Temporal Misalignment; Unsupported

Assumptions
TR → EF → DW → QC

ad 37 Rollercoaster high–low–high Unsupported Assumptions DW → QC → CA
ad 38 Spike at 2AM consistency check Temporal Misalignment TR → DW → QC
ad 39 Abnormal post-meal responses last week Unsupported Assumptions TR → EF → DW → QC
ad 40 Overnight implausible stability Unsupported Assumptions AR → IC
ad 41 Low readings flagged ✓ QC
ad 42 Low readings + abnormal pattern (sensor

error)
Data Misinterpretation AR → IC

ad 43 Data dropout intervals (connection lost) Reluctance to Calculate AR → IC
ad 44 Wrong meal registrations Unsupported Assumptions EF → QC
ad 45 Replay attack evidence Unsupported Assumptions AR → IC
ad 46 Dangerous controller ops during work-

out
Unsupported Assumptions EF → DW → QC

ad 47 Suspicious biased readings Unsupported Assumptions AR → IC
ad 48 Unauthorized insulin pump access Unsupported Assumptions EF → QC
ad 49 Unexpected insulin doses Unsupported Assumptions EF → QC
ad 50 Saturation spoofing intervals Unsupported Assumptions AR → IC
ad 51 Faked readings via spoofing Unsupported Assumptions AR → IC
ad 52 Harmful pump basal extremes Unsupported Assumptions EF → QC
ad 53 Miscalibrated sensor Unsupported Assumptions AR → IC
ad 54 Pressure-induced attenuation Unsupported Assumptions AR → IC
ad 57 Sustained lowered concentration (≥6h) Temporal Misalignment; Reluctance to

Calculate
EF → DW → QC

ad 58 Insulin delivery stopped Unsupported Assumptions EF → QC
ad 59 Insulin appeared normal but stopped Unsupported Assumptions EF → QC
ad 60 Not enough insulin delivered Unsupported Assumptions EF → QC
ad 61 Delivered less than intended Unsupported Assumptions EF → QC
ad 62 Empty reservoir Unsupported Assumptions EF → QC
ad 63 Blocked/kinked infusion set Unsupported Assumptions EF → QC
ad 64 Insulin leakage / failed absorption Unsupported Assumptions EF → QC

Table 6: Failure analysis for AD questions (ad 33–64) with reasoning paths. ✓ indicates correct
answers; ✓* indicates coincidentally correct answers based on assumptions/heuristics.

ID Question (short) Failure Type(s) Reasoning Path(s)

pd 0 Predict time of day for highest glucose Unsupported Assumption QC → TR → PF
pd 1 Predict glucose level in 30 minutes ✓* (approximate) QC → TR → PF
pd 2 Predict insulin consumption next Mon-

day
Data Misinterpretation; Unsupported
Assumption

QC → TR → DW → PF

pd 3 Will late-night snack push glucose >180
mg/dL?

Unsupported Assumption QC → DW → EF → PF

pd 4 Predict % of time in range tomorrow Reluctance to Calculate QC → DW → PF
pd 5 Will running cause hypoglycemia in 90

min?
✓ QC → EF → PF

pd 6 Predict glucose 1h after breakfast Temporal Misalignment QC → TR → DW → PF
pd 7 Predict glucose change 15 min after run Temporal Misalignment QC → TR → DW → PF
pd 8 Predict glucose change 1h after cycling Temporal Misalignment QC → TR → DW → PF
pd 9 Which exercise lowers glucose more to-

morrow?
✓ CA → EF → PF

pd 10 Predict if patient stays in range rest of
day

✓ QC → DW → PF

pd 11 Predict spike time after heavy lunch Temporal Misalignment QC → TR → DW → PF
pd 12 Compare today vs tomorrow glucose av-

erage
Unsupported Assumption QC → DW → PF

pd 13 Predict if correction insulin needed in 2h Data Misinterpretation QC → EF → PF
pd 14 Predict swing >60 mg/dL in next 4h Temporal Misalignment QC → TR → PF
pd 15 Should I eat a snack to stay in range

overnight?
✓ QC → EF → PF

pd 17 Faster glucose rise: lunch or dinner? ✓* (assumption-heavy) CA → EF → PF
pd 18 Will insulin need be > or < weekly av-

erage?
Data Misinterpretation QC → DW → PF

pd 19 Predict glucose drop after insulin in 2h Data Misinterpretation QC → EF → PF
pd 20 Predict stable hours overnight (12–6AM) Reluctance to Calculate QC → DW → PF

Table 7: Failure analysis for PD questions with reasoning paths. ✓ indicates correct answers; ✓*
indicates coincidentally correct answers based on assumptions/heuristics.
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