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Abstract
This document is intended to report methodol-
ogy and results for the ICML 2025 CO-BUILD
contest submission. The report describes the ap-
proach, including preliminary data analysis, re-
view of the previous submissions, model selection
and comparison, and discusses the findings of the
results. The method approaches the contest from
a data analytical perspective rather than a sim-
ulation viewpoint, treating data as a time series
forecasting task. Various models are iterated, and
a few data processing techniques are explored.
The results show improved accuracy compared
to the benchmarked value. The limitations and
implications are discussed.

1. Introduction
Buildings play a crucial role in the overall energy dynamics
of modern systems. According to IEA, operations of build-
ings make up 30% of the global total energy consumption
(International Energy Agency, 2025). Hence, optimizing
building load operations is crucial within the scope of in-
creasing energy demand in the future. One of the strategies
to obtain efficiency gains is performing optimal control. The
popular technique, gaining traction in recent years, is rein-
forcement learning (RL). This approach allows for control-
ling devices without explicitly modeling the environment
(model-free), making it flexible to be applicable and ad-
justable to a wide range of settings. A variety of research
has been conducted applying RL strategies to building de-
vice controls, including both simulations and experimental
work (Vázquez-Canteli & Nagy, 2019).

One potential enhancement of the RL approaches is the ad-
dition of forecasting. It allows for making more informed
decisions by considering future outcomes. Forecasting helps
in identifying the optimal sequence of actions over time to
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maximize cumulative rewards. The actions can be adjusted
in real-time according to the predicted scenarios. The ICML
2025 CO-BUILD contest is a direct application of forecast-
ing to building data, with the implications of potentially
improving the RL controls.

1.1. Context

The data is provided by the established benchmark from
(Goldfeder et al., 2024), which previously also performed
RL simulations for building control. The overall context is
readings from sensors and set points from the measurement
and control devices. These include but are not limited to
temperature, humidity, CO2 sensors, and temperature, air-
flow, and fan setpoints. The building contains two floors and
is separated into multiple zones, each containing a varying
number of devices. The endogenous variables are temper-
ature reading sensors, and the exogenous variables are all
other variables.

The objective of the contest is to predict the temperature
readings for the second half of the year 2022, given data for
the first half of 2022. There are no restrictions in terms of
adding external exogenous data. The contest also allows for
flexibility of the prediction horizon. The models forecasting
for a longer horizon with higher quality are described as
being better evaluated.

1.2. Other Submissions

By the time of submissions, four submissions were available
via ACM e-Energy AI DEEDS workshop (acm, 2025). The
short overview is provided below, and the best result is
selected as the benchmark. The comparison of the model
accuracy and the selected models is presented in Table 1.

Table 1. Comparison of the other submissions (*indicates MSE).

SUBMISSION MODEL MAE

(KO, 2025) LASSO REG. 1.75
(JIANG ET AL., 2025) PI NEURALNET 5.71
(GUERRA TRIGO, 2025) XGBOOST 1.74
(SOURIRAJAN, 2025) SEQCAST 373.02*

Ko (2025) makes predictions over the entire time horizon us-
ing the regression models. The preprocessing steps include
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invalid value processing, feature scaling, and the addition
of temporal features. From the results, out of the three
models of Lasso Regression, Ridge Regression, and XG-
Boost, Lasso Regression gives the best predictions. Jiang
et al. (2025) propose to use Physics-Informed Modularized
Neural Network (PI-ModNN) to conduct predictions. The
authors compare the model to the LSTM and provide re-
sults over various prediction horizons. They suggest that
increasing error over time might be potentially due to the
missing data and outliers in July. Guerra Trigo (2025) per-
forms analysis over the entire prediction horizon. The ap-
proach involves adding zonal and temporal features, with the
best-performing model being XGBoost. Sourirajan (2025)
constructs a SeqCast LSTM model and compares it to the
Vanilla LSTM. The predictions were conducted for one
week using one month of training data.

2. Methodology
2.1. Data

The data provided contains 123 endogenous temperature
sensor readings and over 1000 exogenous variables. The
frequency is 5 minutes with 51,852 time stamps in the train-
ing set and 53,292 time stamps in the testing (referred to as
validation in the instructions) set.

2.2. Preprocessing

The dataset contains invalid and inconsistent units for the
variables, mainly for temperature sensor readings. For the
Kelvin to Fahrenheit conversion, a similar threshold as in
(Ko, 2025) of 273 was applied.

The removal of invalid temperature readings was performed
by fully excluding rows with data containing even one in-
valid sensor reading. This resulted in the reduction of the
training set to 35,502 time stamps and of the testing set to
33,877 time stamps.

Several temporal features were added as exogenous vari-
ables. The features are dummy variable (or one-hot en-
coded) vectors representing: hour, time of the day, season,
weekday/weekend, and day of the week.

2.3. Models

As the XGBoost (Chen & Guestrin, 2016) model performed
the best in previous results, the baseline model is the XG-
Boost model, which is optimized with 3 Optuna search
trials.

The other choice of model iterations is a binned architecture.
The choice is the binned XGBoost models. The idea is the
following. Let:

• yt,b represent endogenous variable at time t and bin b

• Xt,b represent exogenous features at time t and bin b

• fb(
.) represents function trained for bin b

The model is trained on the training set for each bin:

yt,b = fb(Xt,b) + εt,b (1)

where εt,b is the residual error.

After the models are trained on separate bins, the predictions
are stacked to form a full prediction sequence:

Ŷt = {ŷt,0, ..., ŷt,b} (2)

where ŷt,b = fb(Xt,b).

Firstly, the following approach does not restrict the training
function specifically to XGBoost architecture: the models
could range from simple OLS models to much more com-
plex ML architectures. In this case, the model choice is
motivated by multiple factors. XGBoost models effectively
capture non-linear relationships; at the same time, the mod-
els do not require overwhelming feature handling, such as
scaling. The simple architecture also allows for quicker
training with easier hyperparameter handling. Within the
context of the contest with a large dataset, both in terms
of exogenous features and timestamps and variously scaled
features, XGBoost models are an attractive choice.

Secondly, the approach allows for the bin selection. The
overall idea of binning is to isolate the temporal patterns
through independent model training. Instead of excessively
including temporal features or time series decomposition in
the architecture, the models ”focus” on the exogenous vari-
able dependencies and their relationship across the overall
data length. Intuitively, more bins should allow for more
flexibility and parameter optimization, but can come at ex-
cessive computational cost. For the contest domain, the
choice for the majority of the iterated models is hourly bins
for the computational considerations (for one iteration, the
bin is 15 minutes). The baseline XGBoost model is indi-
cated as 1 bin in the results.

Lastly, the architecture allows for a wider parameter tuning
through focused hyperparameter optimization for a specific
bin. However, this can also cause significant computational
costs in the context of the contest with a large dataset. For
faster training, 3 to 5 Optuna search trials were chosen.

2.4. Dimensionality

The dataset contains a vast amount of exogenous features.
Reducing their input amount can help reduce computational
intensity. Nevertheless, transformation of the exogenous
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features requires careful handling in order to capture both
spatial (in this case, zonal) and temporal variations.

The choice of the studied approach is simple PCA compo-
nent analysis. The method is straightforward by retaining a
few of the components, which explain the majority of the
variation, as the exogenous variables. The PCA transform-
ers are fitted on the training data and are then applied to
both training and test data. Multiple study cases are cre-
ated: 1) no grouping (N) - the PCA is applied to the whole
exogenous variable matrix (iterations of various number of
components were performed); 2) variable type grouping (V)
- the exogenous variables are grouped into categories, and
PCA of 15 components is applied separately to each group;
3) variable type and zonal grouping (VZ) - the exogenous
variables are grouped into categories and zones, and PCA
of 3 components is applied separately to each group. The
categories for the variable types are air temperatures, water
temperatures, setpoints, control commands, environmental,
flow pressure, and other. The variables are categorized into
those groups according to the keywords in the variable name.
The zonal categorization is performed based on the zonal
metadata information. The full exogenous input without
PCA processing is indicated as (-).

2.5. Metrics

The chosen focus is long-term horizon predictions. Hence,
the benchmark is the best-achieved accuracy of 1.74◦F
MAE. Additionally, the accuracy of the same model was
calculated for other ranges: 1 week, 2 weeks, 1 month, 3
months, and the full period.

3. Results
3.1. Main Results

The results for the entire period are presented in Table 2.
For the no-grouping PCA case, the iteration with the best
results of 100 components is presented. The other iterations
with 5, 20, 50 components for that case gave MAE of 2.12,
2.09, 2.07, respectively.

Table 2. MAE Results (entire period) .

BINS PCA # OF FEATURES MAE

1 - 1092 1.17
HOURLY - 1092 1.29
HOURLY N 117 1.98
HOURLY V 119 1.79
HOURLY VZ 809 1.23
15-MINS VZ 809 1.33

The best result with the lowest MAE is the baseline XG-
Boost model of a single bin. The second-best result is the

VG case of hourly bins. The result represents the improve-
ment of more than 0.5 ◦F MAE compared to the bench-
marked result. There are a few notable observations. Firstly,
the results are better for the hourly model with the vari-
able and zonal PCA grouping compared to the one with the
full feature input. There are potentially two explanations
for this. One of them is the stochastic nature of the hyper-
parameter optimization. The other reason is the potential
positive impact of PCA processing, which removed some
of the noisy and irrelevant features despite the retention of a
large number of components. Secondly, the binned models
perform worse than the baseline model. This suggests that
isolating temporal behavior does not provide prediction im-
provements. Thirdly, the variable and zonal grouping hourly
model has better results than the models with less robust
PCA approaches. The variable grouping performs better
than the no-grouping approach, but provides fewer overall
improvements. This suggests that zonal variation plays a
significant role in quantifying the overall predictions.

The results for the three best-performing models across
different periods are provided in Table 3. The predictions of
the hourly binned PCA-processed model have lower error
across all selected periods compared to those of the non-
processed model. This potentially supports the hypothesis
that PCA removes some of the noise features, making the
performance of the models more robust.

Table 3. MAE test results by period.

PERIOD HOURLY (-) HOURLY (VZ) 1 (-)

1 WEEK 1.42 1.20 0.97
2 WEEKS 1.42 1.20 0.97
1 MONTH 1.79 1.38 1.06
3 MONTHS 1.34 1.23 1.09
ENTIRE PERIOD 1.29 1.23 1.17

The first month predictions have the highest MAE. This can
potentially be explained by the presence of missing values in
the month of July. Because of a smaller number of values, a
few inaccurate predictions can more significantly contribute
to the overall error.

3.2. Detailed Comparison

The section is primarily focused on a more close-up com-
parison of the Hourly (VZ) and 1 (-) models.

For the Hourly (VZ) model, the MAE of the best-performing
sensor is 0.67 ◦F , and the MAE of the worst-performing
sensor is 2.45 ◦F . The plots for the predictions across
different periods of the best-performing sensor are depicted
in Figures 1,3, and 5. For the 1 (-) model, the MAE of
the best-performing sensor is 0.47 ◦F , and the MAE of
the worst-performing sensor is 2.80 ◦F . The plots for the
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predictions across different periods of the best-performing
sensor are depicted in Figures 2,4, and 6.

Figure 1. The actual and predicted values for the best-performing
sensor for the entire prediction horizon - Hourly (VZ) case.

Figure 2. The actual and predicted values for the best-performing
sensor for the entire prediction horizon - 1 (-) case.

The overall pattern of the predictions, depicted in Figures 1
and 2, is satisfactory. There are no predictions that violate
any physical range, and the predictions retain robustness
across the entire period. The notable observation is that
the hourly model puts more emphasis on the spikes and
drops; the predictions align with that behavior, for instance,
in the month of September. The baseline model tends to be
much more conservative in terms of the prediction of range.
The difference can be seen in the period of late July and
early August. The hourly model overestimates the drops,
potentially causing large errors in predictions; the baseline
model does not estimate the drops, yielding higher accuracy.

Figures 5 and 6 reveal granular patterns of each model’s
predictions for the first week. A cyclical pattern can be rec-
ognized in the hourly model predicted values. The pattern
follows a daily pattern with values dropping in the night pe-
riod and ramping in the morning. This pattern makes sense
as temperature goes up during the day and drops during the
night, and it was potentially captured in the model training.
Nevertheless, the actual reading does not follow that pattern
exactly. This mismatch creates significant errors in predic-

Figure 3. The actual and predicted values for the best-performing
sensor for the first month of the prediction horizon - Hourly (VZ)
case.

Figure 4. The actual and predicted values for the best-performing
sensor for the first month of the prediction horizon - 1 (-) case.

tions (like, for instance, July 2 - the predicted values drop
during the night, however, the actual values do not). The
baseline model makes more stochastic predictions with a
less prominent cyclical trend.

The MAE for the best-performing sensor of the hourly ar-
chitecture across all months is provided in Table 4. The
results show that the error is the highest in the month of July,
aligning with the previous result of the highest error for the
first month of predictions.

Table 4. MAE of the best-performing sensor for different months -
Hourly (VZ) case.

MONTH TIMESTAMPS MAE

JULY 6428 0.765
AUGUST 7528 0.633
SEPTEMBER 8547 0.732
OCTOBER 864 0.614
NOVEMBER 4231 0.633
DECEMBER 6279 0.543

The lowest number of timestamps in the month of October
is also evident in Figure 1. The lowest error is observed for
the month of December.
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Figure 5. The actual and predicted values for the best-performing
sensor for the first week of the prediction horizon - Hourly (VZ)
case.

Figure 6. The actual and predicted values for the best-performing
sensor for the first week of the prediction horizon - 1 (-) case.

The distribution of the prediction errors is depicted in Fig-
ures 7 and 8. The median is slightly lower than the mean
for both cases.

Figure 7. The distribution of prediction errors for the best-
performing sensor - Hourly (VZ) case.

Results and discussion on hourly model training and an
additional model are provided in the Appendix.

4. Discussion
The best MAE results are lower than the established bench-
mark. Nevertheless, it is not clear whether the overall pre-

Figure 8. The distribution of prediction errors for the best-
performing sensor - 1 (-) case.

dictions of either approach would be satisfactory for the
RL tasks. For hourly models, the mismatch of the ramping
and dropping of the readings can potentially create false
signals for the actions of the RL algorithm. For instance, the
downfall of the temperature on July 2 is predicted around
the afternoon. This could be treated as a signal to reduce the
airflow into the room, since additional cooling is not antici-
pated. However, the actual values stay the same, requiring
the airflow to ramp up. This can potentially reduce the effi-
ciency of the operations. The baseline model provides more
stochastic predictions. However, whether the model would
provide better signals for control mechanisms is unclear.

The data processing techniques become one of the crucial
steps in the approach. The choice of handling zeros/missing
values can potentially alter the results. This work uses a
straightforward approach of removing the entire rows of data
with invalid readings. However, other approaches could be
considered. One of the potential ideas could be backward,
forward, and mean-value filling. The indicators of the value
filling could potentially provide helpful input for the models
to treat those values or even sensors differently. The issue
is the mismatch between the missing values in the training
and validation sets; hence, the creation of individual vec-
tor indicators can be challenging, as certain sensors might
have missing values in the training but not the validation set.
The aggregated vectors are likely to lose some important
information, while creating vectors for all sensors can be-
come computationally intense. The handling of exogenous
variables is also significant. The reduction in dimensions
while preserving all the information is challenging. Several
iterations of this work show that retaining spatial and vari-
able type variations is crucial. Hence, the techniques, which
handle variations across multiple dimensions, need to be
considered.

The baseline approach is suitable for rapid estimations and
benchmarks. XGBoost model, being a decision tree-based
approach, is flexible in terms of feature handling and is suit-
able for retaining long-term predictions without collapsing.
If some cyclical behavior is observed, the binning technique
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can potentially help capture some of the temporal patterns.
Neither of the models formulates the physics explicitly, re-
lying on the provided data of historical observations.

5. Conclusion
This work iterates through different models and data process-
ing techniques to forecast temperatures for the CO-BUILD
contest. The main observations are the following: 1) a
simple XGBoost model can provide robust long-term pre-
dictions, which can be used as benchmarked values for other
techniques; 2) exogenous variable processing should take
into account both spatial and variable type variations; 3)
binned models do not provide better forecasts within the
scope of the contest data. Future work could include more
robust exogenous feature handling, more model iterations,
and comparison with a physics-informed model.

Software and Data
The code is available via https://github.com/
starship204/ICML2025-COBUILD-contest.

Impact Statement
The forecasting in the energy sector, including building
modeling, is of crucial importance for the optimal operation
of energy systems. Making accurate predictions can help
optimize the control of the building device and the man-
agement of larger systems. This can provide economic and
resource efficiency gains with a broad societal impact. The
selected models show robust forecasts over the prediction
horizons for the contest domain. At the same time, the
binned models have not received much traction in theoret-
ical or practical research. The idea of isolating temporal
variations through binning can potentially be applied on
a broader scope. Hence, there is also an opportunity for
impact in the broader ML community by investigating the
applicability of the approach for time-series forecasting be-
yond the energy domain.
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A. Model training
The training error by hourly bin for two best performing
models is provided below.

Table 5. MAE training results by bin.

BIN HOURLY (-) HOURLY (VZ)

HOUR 0 1.25 1.29
HOUR 1 1.33 1.47
HOUR 2 1.37 1.38
HOUR 3 1.60 1.68
HOUR 4 1.58 1.63
HOUR 5 1.50 1.50
HOUR 6 1.55 1.58
HOUR 7 1.57 1.54
HOUR 8 1.63 1.65
HOUR 9 1.65 1.73
HOUR 10 1.75 1.86
HOUR 11 1.96 1.99
HOUR 12 1.89 1.76
HOUR 13 1.56 1.75
HOUR 14 1.35 1.34
HOUR 15 1.14 1.15
HOUR 16 1.21 1.21
HOUR 17 1.24 1.22
HOUR 18 1.31 1.29
HOUR 19 1.28 1.34
HOUR 20 1.38 1.33
HOUR 21 1.52 1.31
HOUR 22 1.46 1.34
HOUR 23 1.29 1.41

The models are mainly similar in terms of training error.
The slight difference is in training for the evening and night
hours. For the evening hours, the PCA processed model
has a slightly lower error; for the night hours, the non-
processed model has a slightly lower error. Moreover, for
both models, predicting the temperatures around midday
is the most challenging period. Within the scope of the
building dynamics, this aligns with the lunch period in terms
of occupant dynamics or the period with the highest sun
altitude in terms of solar radiation exposure. However, the
connection is not entirely clear and would require a more
robust investigation.

The overall observation is that the training error for each
of the models is larger than the overall error for the test-
ing period. A possible explanation is that the training set
potentially has a larger overall variation, making training
challenging. Nevertheless, a rather good performance of
models on the testing set suggests the flexibility and robust-
ness of the approach.

B. Additional model and plots
An additional model with more temporal features was run.
The additional features included temporal cyclical encod-

ing, various indicators of on/off set points through keyword
search and categorization. The total amount of exogenous
input was 1152 features. The results did not yield improve-
ments. They are provided in the table below.

Table 6. Additional model MAE test results by period.

PERIOD 1 (-)

1 WEEK 1.08
2 WEEKS 1.08
1 MONTH 1.38
3 MONTHS 1.19
ENTIRE PERIOD 1.18

The additional plots are regarding the best-performing sen-
sors. The majority of the iterations revealed the best-
performing sensor under the ID of 16286830034440683520.
However, the simple explanation of why it is the best-
performing sensor is potentially constant reading fluctu-
ations. Below are plots of observations of different sensors
(the plots do not have the rigorous implementation of the
timestamp handling, i.e., the predictions were just plotted
continuously without the gaps with the removed rows).

Figure 9. The actual and predicted values for the first two weeks.
The top plot is the best-performing sensor, the middle plot is the
worst-performing sensor, and the bottom plot is a random sensor.

From Figure 9, it can be seen that the top plot best-
performing sensor has continuous fluctuations, while the
other two sensors have slower variations. Figure 10 reveals
the idea further. For the best-performing sensor, the fluctua-
tions stay almost the same over the entire prediction period.
However, for the other two sensors, the variation range is
much higher, especially with a significant drop towards
the end (which is winter months - this makes sense as the
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Figure 10. The actual and predicted values for the entire period.
The top plot is the best-performing sensor, the middle plot is the
worst-performing sensor, and the bottom plot is a random sensor.

temperatures go down).

Figure 10 also shows how the worst-performing predictions
overestimate the sensor fluctuations across summer and fall
months. For the winter months, the predictions align much
better. The bottom plot, which depicts a random sensor,
shows an overall satisfying trend of the predictions. The
exception is the sudden surge in temperatures in the middle.
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