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Abstract

Self-play, a learning paradigm where agents iteratively refine their policies by interacting
with historical or concurrent versions of themselves or other evolving agents, has shown re-
markable success in solving complex non-cooperative multi-agent tasks. Despite its growing
prominence in multi-agent reinforcement learning (MARL), such as Go, poker, and video
games, a comprehensive and structured understanding of self-play in non-cooperative games
remains lacking. Focusing exclusively on such settings, this survey fills that gap by offering
a comprehensive roadmap to the multifaceted landscape of self-play methods in MARL.
We begin by introducing the necessary preliminaries, including the MARL framework and
basic game theory concepts. Then, it provides a unified framework and classifies existing
self-play algorithms within this framework. Moreover, the paper bridges the gap between
the algorithms and their practical implications by illustrating the role of self-play in dif-
ferent non-cooperative scenarios. Finally, the survey highlights open challenges and future
research directions in self-play.

1 Introduction

Reinforcement learning (RL) represents a significant paradigm (Sutton & Barto, 2018) within machine
learning (ML), focused on optimizing decision processes through interaction with an environment. In RL,
the environment is modeled as a Markov decision process (MDP), where agents observe states, take actions,
receive rewards, and cause transitions to new states. The primary goal of RL algorithms is to derive
the optimal policy that yields the maximum expected accumulated reward over time. Deep RL extends
traditional RL by employing deep neural networks as function approximators to handle high-dimensional
state spaces, contributing to breakthroughs in various complex tasks (Mnih et al., 2013).

Transitioning from single-agent to multi-agent reinforcement learning (MARL) introduces complex dynam-
ics (Rashid et al., 2018; Mahajan et al., 2019; Yu et al., 2022). In MARL, the interdependence of agents’
actions presents significant challenges, as the environment appears non-stationary to each agent. In the
context of MARL, environments can generally be categorized into cooperative and non-cooperative settings.
In cooperative scenarios, all agents share a common objective and are incentivized to work together, often
leading to formulations that maximize a joint reward. In contrast, non-cooperative settings involve agents
with individual or even conflicting goals, where the success of one agent may come at the expense of others.
For MARL, non-cooperative tasks are typically more challenging than cooperative tasks due to the absence of
shared rewards and the presence of strategic competition, further exacerbating the non-stationarity problem.

With the help of game theory, a mathematical framework that models the interactions between multiple
decision-makers, self-play emerges as an elegant solution to some inherent challenges in MARL. Vanilla self-
play refers to a setting in which an agent continuously trains by competing against the most recent version
of itself, as famously demonstrated for the symmetric zero-sum game of checkers (Samuel, 1959). Self-play,
however, encompasses far more than this canonical example. More broadly, self-play refers to a class of
learning methods where at least one agent iteratively improves its policy by interacting with a distribution
of evolving opponents, which may include historical or concurrent versions of itself or other agents. It is worth
noting that although some MARL studies have applied the concept of self-play in cooperative tasks such as
Hanabi (Cui et al., 2021) and Overcooked (Strouse et al., 2021), our survey focuses on its original and most
prevalent application—non-cooperative tasks. Self-play has demonstrated remarkable success in domains
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such as Go (Silver et al., 2016; 2017; 2018; Schrittwieser et al., 2020), chess (Silver et al., 2018; Schrittwieser
et al., 2020), poker (Moravčík et al., 2017; Heinrich et al., 2015), and complex video games (Berner et al.,
2019; Vinyals et al., 2019). In these scenarios, it has developed strategies that surpass human expertise.
Although the application of self-play is extensive and promising, it is accompanied by limitations, such as
the potential convergence to suboptimal strategies and significant computational requirements (Silver et al.,
2016; 2018).

Although some research (Wellman et al., 2025) adopts a different perspective through empirical game-
theoretic analysis (EGTA), relatively few comprehensive surveys focus on self-play. Among them, a
study (Hernandez et al., 2021) develops an algorithmic framework for self-play, but it does not incorpo-
rate the Policy-Space Response Oracle (PSRO) (Lanctot et al., 2017) series of algorithms, while a separate
study (Bighashdel et al., 2024) focuses exclusively on PSRO, without considering other self-play algorithms.
Another study (DiGiovanni & Zell, 2021) examines the theoretical safety of self-play. While these studies
are valuable, they do not provide a comprehensive perspective that fully captures the breadth and depth
of self-play. To address this gap, this survey aims to offer a systematic and holistic roadmap to the diverse
landscape of self-play algorithms in MARL, with a particular focus on non-cooperative settings.

The survey is organized as follows. Sec. 2 introduces the background of self-play, including the MARL
framework and game theory concepts. Sec. 3 proposes a unified framework and then categorizes existing self-
play algorithms into four categories based on this framework. In Sec. 4, a comprehensive analysis illustrates
how self-play is applied in various scenarios. Sec. 5 describes open problems in self-play and explores future
research directions. Finally, Sec. 6 concludes the survey on self-play. A more detailed overview of our survey
is depicted in Fig. 1, which further illustrates the relationships among the subsections.

2 Preliminaries

This section first introduces the framework of MARL, in which agents interact with an environment to
learn policies that maximize cumulative rewards. We then present fundamental concepts from game theory,
with a particular focus on non-cooperative games, which provide a formal framework for analyzing strategic
interactions among rational decision-makers who pursue individual objectives.
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2.1 MARL Framework

In RL, the environment is modeled as an MDP, where the Markovian assumption states that the environ-
ment’s evolution is fully determined by its current state, eliminating the need to consider past states. An
agent interacts with the environment by taking actions, which result in different states and associated re-
wards. MDPs can be extended to multi-agent settings, known as Markov games (MGs) (Littman, 1994) or
stochastic games (Shapley, 1953). We focus on the most general form: partially observable Markov games
(POMGs), where multiple agents interact with the environment, and each agent receives only individual
observations instead of the full state, meaning they have limited access to the environment’s state.

A POMG G is defined by G = (N ,S,A,O,P,R, γ, ρ). N = {1, · · · , n} denotes n agents. S is the state
space. A =

∏n
i=1Ai is the product of the action space of each agent. Similarly, O =

∏n
i=1Oi is the product

of the observation space of each agent. P : S × A × S → [0, 1] denotes the transition probability from one
state to another given the actions of each agent. R = {R1, · · · ,Rn}, where Ri : S × Ai → R denotes the
reward function of agent i. γ ∈ [0, 1] is the discount factor. ρ : S → [0, 1] describes initial state distribution.

More concretely, in RL, agents interact with the environment through the following procedure: At each
discrete time step t, each agent i receives an observation oi,t from the environment and selects an action
based on a stochastic policy πθi

: Oi ×Ai → [0, 1], where θi represents the parameters. After receiving the
joint actions at = (a1,t, · · · , an,t), the environment transitions from the current state st to a subsequent state
st+1 according to the transition function P and sends a reward ri,t+1 to every agent i. The ultimate goal of
agent i is to maximize the expected discounted cumulative rewards: Eπθi

[
∑∞

t=0 γtri,t].

2.2 Game Theory Concepts

2.2.1 Normal-Form and Extensive-Form

The normal form and extensive form are two distinct representations of games in game theory. If a game G
is represented in the normal-form, it can be expressed by G = (N , Π, u). N = {1, 2, · · · , n} denotes the
players. The set Π = Π1 × · · · × Πn represents the pure strategy space for all players. A pure strategy
specifies a deterministic action choice for each point in the game. A vector π = (π1, . . . , πn) ∈ Π is
called a strategy profile. A mixed strategy σ assigns a probability distribution over the set of pure
strategies. For player i, a mixed strategy is represented by σi ∈ ∆(Πi), where ∆ denotes the probability
simplex. u = (u1, · · · , un), where ui : Π → R, is a utility function that assigns the expected payoff to
each player i. If ∃C ∈ R,∀π ∈ Π,

∑
i ui(π) = C, the game is a constant-sum game. Specially, if C = 0, it

is a zero-sum games, in which every gain by one player is exactly offset by losses to the others. If no such
constant C exists, it is a general-sum game. Moreover, if Π1 = · · · = Πn and for any permutation τ and
any strategy profile (π1, . . . , πn), ui(π1, · · · , πn) = uτ(i)(πτ(1), · · · , πτ(n)), the game is a symmetric game.
If a finite set of players is involved and each player has a finite set of strategies, a normal-form game can
be depicted in a tensor T ∈ R|Π1|×···×|Πn|×n, where |Πi| is the size of player i’s strategy space and the final
dimension indexes each player’s payoff.

Specifically, in two-player zero-sum symmetric normal-form games, both players share the same pure strategy
space, denoted by Π, such that Π = Π1 = Π2. Since the utility function satisfies u1(πi, πj) = −u2(πi, πj),
we can simplify the utility to a single function u, where for πi, πj ∈ Π, if πi beats πj , then u(πi, πj) =
−u(πj , πi) > 0. This game can be directly depicted in an evaluation matrix MΠ ∈ R|Π|×|Π|. It captures
the game outcomes by detailing the results of different strategies when they are played against each other:
MΠ = {u(πi, πj) : πi, πj ∈ Π×Π}.

If a game is represented in the extensive-form, it is expressed sequentially, illustrating the sequence of
moves, choices made by the players, and the information available to each player during decision-making.
Typically, a game in the extensive-form is represented by a game tree. This tree demonstrates the sequential
and potentially conditional nature of decisions. A game G represented in the extensive-form can be expressed
by G = (N ∪{c}, H, Z, P, I, A, u). N = {1, 2, · · · , n} denotes a set of players. c is the chance node and can
be regarded as a special player. H represents a set of possible histories and Z ⊆ H is a set of terminal
histories. Order of moves is represented by a function P (h) ∈ N ∪ {c} to indicate which player is to move,
where h ∈ H. I denotes information set partitions and Ii denotes the information set partitions for
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player i. If player i reaches a history h ∈ Ii, where Ii ∈ Ii is a specific information set for player i,
all decision nodes in Ii are observationally equivalent to player i, and he cannot tell which specific node
within Ii has been reached. A game has perfect information precisely when every information set of
every player is a singleton. Formally, ∀i, ∀Ii ∈ Ii, |Ii| = 1. In such games, whenever a player is to move,
he knows exactly which decision node has been reached and, equivalently, the full sequence of past actions
and observed states. Otherwise the game is considered to have imperfect information. Action space is
represented by A(h) for a non-terminal history h ∈ H. For all non-terminal histories h within an information
set Ii, the available actions are the same; otherwise, they are distinguishable. Therefore, we use A(Ii) to
represent the available actions for the information set Ii. Utility functions is denoted by u = (u1, · · · , un),
where ui : Z → R. Together, these components define the structure and dynamics of an extensive-form
game. Moreover, a behavior strategy profile can be expressed by β = (β1, · · · , βn), where βi maps each
Ii ∈ Ii to a probability distribution over A(Ii). A game satisfies perfect recall if each player i remembers
the entire sequence of his past actions and all of the information he had at each of his previous decision
points. In any finite extensive-form game with perfect recall, for every mixed strategy σ, there exists an
equivalent behavior strategy β, and vice versa, such that both strategies induce the same distribution over
terminal histories (i.e., the same outcomes in the game tree). A subgame of an extensive-form game is any
subset of the game tree that (i) has exactly one initial decision node, (ii) whenever it contains a node it also
contains all of its descendants, and (iii) whenever it contains a node it contains every other node in that
node’s information set.

Beyond normal-form and extensive-form games, the analysis of complex games often involves a higher-level
abstraction: the meta-game. A meta-game provides an abstraction over the original game by modeling
interactions between entire policies rather than individual actions. While commonly instantiated as a normal-
form game, a meta-game can, in general, take any game-theoretic form (e.g., extensive-form) as long as it
captures strategic interactions over a policy population. In this setting, players choose policies, and meta-
strategies represent mixed strategies over these policies.

2.2.2 Transitive Game and Non-Transitive Game

To provide a clearer introduction to transitive and non-transitive games, in this section, we confine our
analysis to two-player zero-sum symmetric games. In a transitive game, the strategies or outcomes follow
a transitive relationship. Formally, ∀πi, πj , πk ∈ Π, if u(πi, πj) > 0 and u(πj , πk) > 0, then it must follow that
u(πi, πk) > 0. This transitive property simplifies the strategic landscape, allowing for an ordinal ranking of
strategies. Conversely, in a non-transitive game, ∃ πi, πj , πk ∈ Π such that u(πi, πj) > 0 and u(πj , πk) > 0,
but u(πi, πk) ≤ 0. This introduces a cyclic relationship among strategies, thereby complicating the game.
The complexity often results in a mixed-strategy equilibrium, where players randomize their choices among
multiple strategies to maximize their expected payoff. A classical example of a non-transitive game is Rock-
Paper-Scissors, in which no single strategy uniformly dominates all others.

2.2.3 Stage Game and Repeated Game

A stage game (or one-shot game) is a game that is played only once, namely a one-shot interaction
between players. A famous example of a stage game is the Prisoner’s Dilemma. A repeated game is
derived from a stage game played multiple times. Formally, a repeated game based on a stage game G is
defined by playing G for T periods, where T can be finite or infinite. The strategies in a repeated game
are history-contingent, meaning they can depend on the entire sequence of past plays. An example of a
repeated game is Texas Hold’em, where players engage in multiple rounds, and each player’s strategy may
evolve based on previous rounds, betting patterns, and the history of interactions among players.

2.2.4 Nash Equilibrium

For simplicity, πi denotes the strategy of player i, and π−i denotes the strategies of all players other than
player i. Given π−i, player i’s best response (BR) is the strategy that maximizes player i’s payoff:

BRi(π−i) = arg max
πi

ui(πi, π−i). (1)
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A strategy π∗
i is an ϵ-BR to strategies π−i if:

ui(π∗
i , π−i) ≥ ui(BRi(π−i), π−i)− ϵ, (2)

where ϵ is a pre-specified threshold.

A strategy profile (π∗
1 , π∗

2 , ..., π∗
n) is a Nash equilibrium (NE) if, for each player i:

ui(π∗
i , π∗

−i) ≥ ui(πi, π∗
−i),∀πi, (3)

meaning that no player can benefit by changing their strategy unilaterally, given the strategies of others. In
other words, an NE is a situation where each player’s strategy is a BR to the others’ strategies.

A strategy profile (π∗
1 , π∗

2 , ..., π∗
n) is an ϵ-NE if, for each player i:

ui(π∗
i , π∗

−i) ≥ ui(πi, π∗
−i)− ϵ, ∀πi, (4)

meaning that no player can increase their payoff by more than ϵ by unilaterally changing their strategy.

However, computing NE is generally intractable in complex games, so some researchers utilize α-Rank (Omid-
shafiei et al., 2019) and Correlated Equilibrium (CE) (Aumann, 1974) as alternatives. Some studies also
resort to Replicator Dynamics (Taylor & Jonker, 1978) to analyze strategy evolution.

2.2.5 Static Game and Dynamic Game

The market entry game is a classic example in game theory. There are two players: Firm 1 (the entrant),
which is considering whether to enter a market, and Firm 2 (the incumbent), which currently dominates
that market. The game outcomes are as follows:

• If the entrant stays out of the market, the entrant earns a payoff of 4, and the incumbent earns 10.
• If the entrant enters and the incumbent chooses to attack, both firms receive a payoff of 3.
• If the entrant enters and the incumbent chooses not to attack, both firms receive a payoff of 6.
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Figure 2: The example of the market entry game. (a) Matrix representation of simultaneous market entry
game in normal-form. (b) Game tree representation of sequential market entry game in extensive-form.

In the simultaneous version of the market entry game, both players choose their strategies at the same
time. The entrant decides whether to enter, and the incumbent simultaneously decides whether to attack,
without knowing the entrant’s decision. Games of this kind are referred to as static games. The normal-
form representation is appropriate here, as it captures the strategic interaction under imperfect information
(as shown in Fig. 2a). In the sequential version, the entrant moves first, and the incumbent responds
after observing the entrant’s decision. Games of this nature are called dynamic games. The extensive-
form representation is more suitable for such settings, as it clearly represents the order of moves and the
information available to each player (as depicted in Fig. 2b).

The market entry game demonstrates how the structure of a game influences equilibrium outcomes. In the
static version, non-credible threats—such as the incumbent’s threat to attack even when it is not in its best
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interest—may support a Nash equilibrium where the entrant stays out. In contrast, the dynamic version
allows for refinement through subgame perfect Nash equilibrium (SPNE), which requires that players’
strategies constitute a Nash equilibrium in every subgame. Under this refinement, the threat to attack is
ruled out as non-credible, and the predicted outcome is that the entrant will enter and the incumbent will
accommodate, since attacking would harm the incumbent itself.

3 Algorithms

Based on existing self-play work (Hernandez et al., 2021; Lanctot et al., 2017; Liu et al., 2022c; Garnelo
et al., 2021), we propose a self-play framework (Algo. 1) that boasts enhanced expressivity and superior
generalization capabilities. For simplicity, our framework is illustrated for symmetric games. All players
share a policy population with a fixed maximum size. In each iteration, a newly initialized policy is trained,
while opponent policies are sampled from the population. After training, the new policy is added to the
population, possibly replacing an existing policy. The updated policy population is then evaluated, and then
the opponent sampling strategy is recalculated for the next iteration.

This section is organized as follows: In Sec.3.1, we provide a formalized description of our framework. We
then categorize self-play algorithms into four primary groups: traditional self-play algorithms (Sec. 3.2), the
PSRO series (Sec. 3.3), the ongoing-training-based series (Sec. 3.4), and the regret-minimization-based series
(Sec. 3.5). We analyze how these four categories align with our framework and introduce corresponding
algorithms for each category. To make it more straightforward, we highlight the representative classic algo-
rithms from these and present them in Table 1 for comparison within our framework. Sec. 3.6 compares the
four categories, explains our classification rationale, contrasts the framework with prior ones to demonstrate
its greater generality, and highlights the design insights it offers for future self-play research.

3.1 Framework Definition

Algorithm 1 A unified framework of self-play.
1: Initialize Π, Σ
2: for e ∈ [[E]] do
3: for σ[k] ∈ [[K]] do
4: Initialize πh

[k]

5: πh
[k] ← ORACLE(πh

[k], σ[k], Π) ▷ Compute the oracle.
6: P ← EVAL(Π) ▷ Get policies’ performance (Optional).
7: Σ← MSS(P) ▷ Update the interaction matrix (Optional).
8: end for
9: end for

10: return Π, Σ

In Algo. 1, we define a unified self-play framework based on Liu et al. (2022c); Lanctot et al. (2017);
Garnelo et al. (2021); Hernandez et al. (2021). We combine visual illustrations (Fig. 3) with detailed textual
descriptions to explain the key processes of our framework. Next, we provide an in-depth explanation of
these processes:

• Π := {π[k](·|h(k)}K
k=1: Each policy π[k] in the policy population Π is conditioned on a policy

condition function h(k), which provides supplementary information for certain algorithms. We
denote the policy π[k](·|h(k)) as πh

[k]. Note that π[k] refers to the kth policy in the population, and
K denotes the policy population size. Π can be initialized (Line 1 in Algo. 1) in two ways: lazy
initialization and immediate initialization. In lazy initialization, Π starts with K placeholder
policies, with the actual policies being initialized during the training iterations (Line 4 in Algo. 1).
In immediate initialization, Π is initialized upfront with K real policies, which may be randomly
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Figure 3: Illustration of our framework. The top row shows two different initialization methods for the
policy population Π and the interaction matrix Σ: lazy initialization and immediate initialization (corre-
sponding to Line 1 in Algo. 1). The bottom row illustrates two training paradigms: standard training and
ongoing training (corresponding to Lines 2~9 in Algo. 1). We categorize self-play algorithms into four types:
traditional self-play, the PSRO series, the ongoing-training-based series, and the regret-minimization-based
series. Among these, traditional self-play, the PSRO series, and the regret-minimization-based series utilize
lazy initialization and standard training, whereas the ongoing-training-based series employs immediate ini-
tialization and ongoing training. For a detailed description and analysis, please refer to Sec.3 and Table1.

generated or pre-trained models. A policy πh
[k] is considered inactive if it is a placeholder; otherwise,

it is considered active.

• Σ := {σ[k]}K+1
k=1 ∈ RK×C1 : The interaction matrix Σ consists of rows σ[k]. Each σ[k] ∈ RC1

represents the probability distribution over opponent policies in the policy population Π, where
C1 = Kn−1 and n denotes the number of players. Specially, in a two-player game, if C1 = K and Σmn

represents the probability that policy m is optimized against policy n, Σ can be depicted in directed
interaction graphs (Fig. 4). Σ will be initialized with all zeros (Line 1 in Algo. 1), providing a
starting point before the meta-strategy solver updates it using the first payoff information.

• For epoch e ∈ [[E]] (Line 2 in Algo. 1): E denotes the total number of epochs for the entire policy
population. For example, if the algorithm only introduces new policies into the population without
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updating existing ones, then E = 1. This implies that only the inactive policy is likely to be chosen
for training in each iteration and turned into an active one, while active policies remain unchanged.
Conversely, if active policies are updated multiple times throughout the algorithm, then E > 1.
Indeed, E accurately reflects the number of updates performed.

• Initialize πh
[k] (Line 4 in Algo. 1): The initialization of πh

[k] can vary depending on the algorithm
being used. It can be initialized randomly or by leveraging pre-trained models (Silver et al., 2016;
Vinyals et al., 2019) or through a recently updated policy.

• ORACLE(π[k], σ[k], Π) (Line 5 in Algo. 1): The ORACLE is an abstract computational entity that
returns a new policy adhering to specific criteria. Here, we divide ORACLE into three types. (1)
One type is the BR oracle, which is designed to identify the optimal counter-strategies against
an opponent’s strategy, including finding NE (McMahan et al., 2003). However, it often requires
considerable computational effort. (2) To alleviate the computational demands, the approximate
best response (ABR) oracle is introduced, using techniques such as RL (Algo. 2), evolution-theory-
based methods (Algo. 3) or regret minimization methods (Algo. 4). (3) Other specially crafted
ORACLEs are either tailored to specific meta-strategy solvers (MSSs) (Muller et al., 2020; Marris
et al., 2021) or introduced to enhance diversity (Balduzzi et al., 2019; Perez-Nieves et al., 2021; Liu
et al., 2021). Some details of Algo. 2, 3 and 4 need to be mentioned. Algo. 2 is a RL method that
can be widely used across different categories. Moreover, on-policy RL algorithms do not require
a sample buffer to collect trajectories. In contrast, only off-policy methods rely on a sample buffer
to store and reuse past experiences (Line 11 and 15 in Algo. 2). Algo. 3 is specifically utilized by
Regularized Nash Dynamics (R-NaD) (Perolat et al., 2021) and Algo. 4 is specifically utilized by
the regret-minimization-based series. They will be introduced in detail in Sec. 3.3.5 and Sec. 3.5
respectively.

• EVAL(Π) (Line 6 in Algo. 1): Evaluating the policy population Π. There are multiple evaluation
metrics available to assess the performance of each policy. The performance matrix is represented
as P := {pk}K

k=1 ∈ RK×C2 . pk is the performance of policy k, and the dimension C2 depends on
the evaluation metric used. For instance, pk can be depicted as the relative skill like Elo ratings
(C2 = 1) or can be depicted as the payoff tensor (C2 = Kn−1, where n is the number of players).
Specially, in two-player symmetric zero-sum games, the expected payoffs can serve as the evaluation
metric. In such cases, P is a square matrix (C2 = K).

• MSS : RK×C2 → RK×C1 (Line 7 in Algo. 1): A meta-strategy solver (MSS) takes the perfor-
mance matrix P as its input and produces a new interaction matrix Σ as its output. If the MSS
produces a constant matrix irrespective of the input, the evaluation step (Line 6 in Algo. 1) can be
skipped to reduce computations. In this case, the MSS step also can be skipped. Additionally, if it
is the final iteration, the MSS step should also be skipped, as the resulting meta-strategy will not
be used. Moreover, if Π uses immediate initialization, Σ will be initialized (Line 1 in Algo. 1) by
first evaluating the performance and then applying the MSS.

3.2 Traditional Self-Play Algorithms

Traditional self-play algorithms involve agents improving their strategies by repeatedly playing against them-
selves, allowing them to explore various strategies and enhance their decision-making abilities without exter-
nal input. The simplest form involves agents training against their most recent version to identify weaknesses.
Other approaches involve training against a set of strategies from different iterations, enabling agents to de-
velop robust and adaptive strategies. This section will explain how traditional self-play algorithms fit into
our framework and introduce representative traditional self-play methods, ranging from simpler forms to
more complex ones.

3.2.1 Integration into Our Framework

Traditional self-play algorithms can be incorporated into our proposed framework (Algo. 1) with the following
settings. First, the policy population Π utilizes lazy initialization because the policy population in traditional
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Algorithm 2 Compute the oracle in RL.
Require: πh

[k] ▷ Policy k is being trained.
Require: σ[k] ▷ Opponent sampling strategy of policy k.
Require: Π ▷ Policy population.
Require: B ▷ Sample Buffer (Optional).

1: while πh
[k] is not valid do

2: for trajectory τ ∈ [[τmax]] do
3: sample πh

opp ∼ P (σ[k]) ▷ Policies of opponents.
4: π = (πh

[k], πh
opp)

5: s0, o0 ∼ ρ ▷ Initial state.
6: for t ∈ [[tmax]] do
7: at ∼ π(ot)
8: st+1, ot+1 ∼ P (st, at)
9: rt ← R(st, at)

10: end for
11: B ← B ∪ {τ} ▷ Store trajectory in buffer (Optional).
12: πh

[k] ← update(πh
[k]) ▷ Using RL algorithms

13: end for
14: end while
15: return πh

[k], B ▷ Returning B is optional.

Algorithm 3 Compute the oracle in evolution theory.
Require: πh

[k] ▷ Policy k is being trained.
Require: σ[k] ▷ Opponent sampling strategy of policy k.
Require: Π ▷ Policy population.

1: sample πh
opp ∼ P (σ[k]) ▷ Policies of opponents.

2: πreg = (πh
[k], πh

opp) ▷ Regularization policies.
3: Transform the reward by adding a policy-dependent reward according to πreg (Perolat et al., 2021).
4: πh

[k] ← Use replicator dynamics to play the reward-transformed game until convergence.

5: return πh
[k]

Algorithm 4 Compute the oracle in regret matching.
Require: πh

[k] ▷ Policy k is being trained.
Require: σ[k] ▷ Opponent sampling strategy of policy k.
Require: Π ▷ Policy population.

1: for each player i do
2: sample πh

opp ∼ P (σ[k]) ▷ Policies of opponents.
3: π = (πh

[k](i), πh
opp(−i))

4: Use regret matching to play the game and update h(k) with new regret minimization information.
5: end for
6: return πh

[k]

9
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Figure 4: Interaction matrix Σ examples. When C1 = K and the opponent sampling strategy Σmn represents
the probability that policy m is optimized against policy n, the interaction matrix Σ can be depicted
in directed interaction graphs. Here, we consider three representative self-play algorithms. In the Top
section, we define the interaction matrix Σ ∈ R3×3 as {σ[k]}3

k=1. In the Bottom section, we present
directed interaction graphs where the outgoing edges from each node are equally weighted, and their weights
collectively sum to one. The relationship between the Top and Bottom sections is established through
directed edges: an edge directed from node m to node n with a weight of Σmn signifies that policy m is
optimized against policy n with a probability of Σmn. Note that this figure is reproduced from Liu et al.
(2022c) and this concept is initially proposed by Garnelo et al. (2021).

self-play algorithms is intended to grow with each iteration. Second, we set E = 1 because only the inactive
policy can be trained in each iteration, then turning into an active policy. Here, the policy population
size K serves as the upper limit for the number of active policies in the population. In other words, we
use K iterations to optimize the policy. Third, the strategy being trained πh

[k] can be initialized in a
general manner. For instance, the strategy can be initialized randomly, learning from scratch. More often,
πh

[k] is initialized by π[k−1](·|h(k − 1)), allowing incremental learning and adaptation based on the most
current trained policy to accelerate convergence. Fourth, the policies in traditional self-play algorithms
don’t need supplementary information, we set the policy condition function h(k) = ∅. Fifth, the MSSs
of traditional self-play algorithms are straightforward, often yielding a constant interaction matrix Σ that
eliminates performance evaluation. Only the MSS for prioritized fictitious self-play (described in Sec. 3.2.5)
requires the performance matrix; nonetheless, it does not need to solve for complex game outcomes like NE.

Next, we outline the traditional self-play schemes. For simplicity, we operate under the following assumption:

Assumption 1. In a two-player symmetric game, C1 = K, with Σmn denoting the probability that policy
m is optimized in response to policy n which leads to

∑K
n=1 Σmn = 1, ∀m.

Based on Assumption 1, we can further deduce the following important corollary:

Corollary 1. In traditional self-play algorithms, the interaction matrix Σ is a lower triangular matrix.

Proof. The policy population gradually increases over time. When policy m is selected for training, only
policy n (n ≤ m) has already been trained and holds meaningful outcomes. Other policies are inactive
policies. As a result, we exclusively select policy n, where n ≤ m, to serve as the opponent for policy m.
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3.2.2 Vanilla Self-Play

In vanilla self-play (Samuel, 1959), agents are trained by competing against their latest versions. Thus, the
MSS of vanilla self-play:

MSS(P)mn =
{

1, if n = m− 1
0, otherwise

. (5)

Regardless of P, the MSS produces the same interaction matrix. Although this MSS is straightforward, it is
utilized in many other algorithms, so we refer to it as vanilla MSS. Vanilla self-play is effective in transitive
games, but it can lead the agent to cyclic learning patterns in non-transitive games. It may also lead to a
nonstationary problem, causing the system to get stuck in a local optimum.

A more modern version of vanilla self-play is to combine it with off-policy RL. In each iteration, the policy
to be trained, πh

[k], is initialized using the previous policy π[k−1](·|h(k−1)). Typically, each player’s policy is
fixed, and samples are collected into a buffer by vanilla self-play. These samples remain useful for training,
even if they were generated by an earlier policy. This allows the agent to leverage past experiences and
maintain more stationary training. Once the policy is updated, it will be added to the policy population.
Moreover, vanilla self-play is frequently used in conjunction with Monte Carlo Tree Search (MCTS), and we
provide a detailed discussion in Sec. 4.1.1, using the game of Go as a representative application.

3.2.3 Fictitious Play

Fictitious Play (FP) (Brown, 1951) is a learning algorithm in game theory where each player best responds
to the empirical frequency of the strategies used by the opponent. If the opponent’s strategy is static, FP
can find the NE. Based on FP intuition, Fictitious Self-Play (FSP) (Heinrich et al., 2015) is introduced to
make agents play against past versions of themselves to learn optimal strategies to improve the robustness
of vanilla self-play. Neural Fictitious Self-Play (NFSP) (Heinrich & Silver, 2016) is a modern variant that
combines FSP with deep learning techniques. It uses neural networks to approximate the BRs. Both NFSP
and FSP utilize two distinct types of memory: one to store the agent’s own behavioral data, and the other
to record observed opponent behavior.

More recent approaches (Lanctot et al., 2017) adopt FP in meta-games, where the opponent’s average
strategy is approximated directly, eliminating the need to maintain two separate types of memory. In this
setting, the MSS of FP is defined as:

MSS(P)mn =
{ 1

m−1 , if n ≤ m− 1
0, otherwise

. (6)

In FP, the MSS continues to generate a constant interaction matrix. Compared to vanilla self-play, this
approach enhances the robustness of the policy by sampling older versions of its own policies to be used as
opponent strategies.

3.2.4 δ-Uniform Self-Play

δ-uniform self-play, introduced by Bansal et al. (2018), uses the hyper-parameter δ, ranging from 0 to 1, to
select the most recent 1− δ percentage of policies for uniform sampling to generate opponent policies. When
policy m is in the training phase, according to Corollary 1, only the previous m− 1 policies are relevant. To
select opponents for policy m, we sample from the range of policies between [⌈δ(m − 1)⌉, m − 1], where ⌈·⌉
denotes the ceiling function, which rounds up the input to the nearest integer greater than or equal to it.
When δ = 0, the system retains the complete historical memory, whereas δ = 1 implies that only the most
recent policy is utilized. Thus, the MSS of δ-uniform self-play:
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MSS(P)mn =
{ 1

f(m) , if ⌈δ(m− 1)⌉ ≤ n ≤ m− 1
0, otherwise

, (7)

f(m) = m− ⌈δ(m− 1)⌉. (8)

In δ-uniform self-play, The MSS generates a constant interaction matrix. Specially, if δ = 0, it corresponds
to FP, and if δ = 1, it corresponds to vanilla self-play.

3.2.5 Prioritized Fictitious Self-Play

Prioritized Fictitious Self-Play (PFSP) (Vinyals et al., 2019) leverages a priority function to allocate a higher
probability of selection to agents with higher priorities. Here, P represents the winning rates, specifically
defined as Pmn = Prob(π[m] beats π[n]). The MSS of PFSP is given by Algo. 5. The function f : [0, 1] →
[0,∞) is a priority function. For example, f(x) = (1 − x)p with p > 0 indicates that stronger policies
against the currently being trained policy have a higher chance of being chosen as opponents. Alternatively,
f = x(1 − x) implies that players of similar levels are more likely to be chosen as opponents. Additionally,
in broader terms, P can also be assessed by other metrics. A similar MSS in Berner et al. (2019) can be
utilized to allocate higher probabilities to strategies that perform better or are more challenging to defeat.

Algorithm 5 PFSP meta-strategy solver.
1: function F(P)
2: σm+1,n ← f(Pm,n)∑

n≤m
f(Pm,n)

, if n ≤ m

3: Append zeros to σm+1 until its length is K.
4: return Σ

3.3 PSRO Series

Similar to traditional self-play algorithms, the PSRO series of algorithms starts with a single policy and
gradually expands the policy space by incorporating new oracles. These oracles are policies that approximate
optimal responses to the current meta-strategies of other agents.

3.3.1 Integration into Our Framework

The PSRO series of algorithms can also be integrated into our proposed framework (Algo. 1). First, similar
to traditional self-play algorithms, we also utilize lazy initialization to initialize Π. Second, we also set
E = 1 and K can be considered as the upper limit for the policy population size in the original PSRO
algorithms. Third, in the context of the PSRO series of algorithms, the strategy of our player πh

[k] can
also be initialized in a general manner. Fourth, we set h(k) = ∅ since the PSRO series of algorithms do
not use any policy condition function for their policies. Fifth, it’s crucial to highlight that our framework
diverges from the traditional PSRO model (Lanctot et al., 2017) in how σ[k] is defined. In contrast to being
the meta-strategy for policy, in our framework, σ[k] is the opponent sampling strategy. It means that σ[k]
here represents the opponent’s meta-strategy against policy k for the PSRO series of algorithms. Sixth,
compared with traditional self-play methods, the MSSs of the PSRO series are often more complex. For
example, some MSSs incorporate concepts from different types of game equilibria (McMahan et al., 2003;
Muller et al., 2020; Marris et al., 2021). Lastly, we also simply follow Assumption 1. We can derive the
Corollary 2 using a similar proof as Corollary 1.
Corollary 2. In the PSRO series of algorithms, the interaction matrix Σ is a lower triangular matrix.

3.3.2 Double Oracle

Double Oracle (DO) (McMahan et al., 2003) can be only applied to two-player normal-form games. In this
context, we can utilize the payoff matrix as the evaluation matrix. The interaction matrix can be initialized
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with all zeros, reflecting the initial absence of interactions between strategies. The MSS of DO can then be
outlined as described in Algo. 6. The opponent sampling strategy σ[k] corresponds to the opponent’s NE
strategy of the restricted game. Therefore, the oracle in DO is a BR rather than an ABR, computing the BR
against the current NE opponent strategy of the restricted game. In the context of two-player normal-form
games, DO theoretically can achieve the NE of the full game.

Algorithm 6 NE-based meta-strategy solver.
1: function F(P)
2: σ[k+1] ← SOLVE-NASH(P1:k,1:k) ▷ Opponent’s NE meta-strategy.
3: Append zeros to σ[k+1] until its length is K.
4: return Σ

We take rock-paper-scissors as an example, a symmetric two-player game. The policy condition function
h(k) = ∅. The policy population size K = 3. The policy population Π uses lazy initialization, and the
interaction matrix Σ is initialized with all zeros. Assume that in the first iteration, the policy π1 is set to
rock. Obviously, the NE-based MSS returns σ2 = (1, 0, 0). In the second iteration, the BR oracle adds
paper to Π as π2. Consequently, the NE-based MSS yields σ3 = (0, 1, 0), since paper always beats rock. In
the third iteration, noting that σ3 selects only paper and never rock, the BR oracle adds scissors as π3. The
final interaction matrix is:

Σ =

0 0 0
1 0 0
0 1 0

 (9)

Finally, the NE over this policy population becomes the uniform distribution over rock, paper, and scissors,
indicating convergence. This process demonstrates how the DO algorithm iteratively expands the strategy
set within our framework. Also, using DO as an example, we show that, compared with traditional self-play
algorithms, the PSRO series employs more sophisticated MSSs to better capture the essence of the game,
albeit at a higher computational cost.

3.3.3 PSRO

PSRO (Lanctot et al., 2017) extends DO to more complex games beyond just two-player normal-form games.
This approach first introduces the concept of the MSS, which is a broader concept than simply computing NE.
The MSS framework allows for a more flexible representation of strategic solutions in various game settings.
Many variants of PSRO focus on designing new MSSs to better capture different aspects of strategic play in
these more complex games. In the original PSRO framework, the oracle is computed using RL techniques,
similar to those described in Algorithm 2. This allows the algorithm to effectively handle large and intricate
strategy spaces, making it applicable to various game scenarios.

3.3.4 PSRO Variants

The traditional PSRO algorithm has inspired numerous extensions in recent research. Although the original
PSRO aligns well with our proposed framework, its variants may fall outside its scope; however, they remain
noteworthy and merit discussion. The first line of PSRO variants focuses on accelerating convergence. By
establishing a hierarchical structure of RL workers, Pipeline PSRO (McAleer et al., 2020) achieves the paral-
lelization of PSRO and simultaneously provides guarantees of convergence. Efficient PSRO (Zhou et al., 2022)
introduces the unrestricted-restricted (URR) game to narrow the selection of opponent policies, thereby pre-
venting the need for meta-game simulations in traditional PSRO. Similar to Pipeline PSRO, Efficient PSRO
is equipped to solve URR in parallel. In addition, unlike traditional PSRO, which confines the integration
of population strategies to the game’s initial state, Extensive-Form Double Oracle (XDO) (McAleer et al.,
2021) allows this integration across all information states. It ensures a linear convergence to an approximate
NE based on the number of information states, enhancing its tractability in extensive-form games. Online
Double Oracle (ODO) (Dinh et al., 2022) integrates the no-regret analysis of online learning with DO to
improve both the convergence rate to an NE and the average payoff. Anytime PSRO (McAleer et al., 2022b)
and Self-play PSRO (McAleer et al., 2022a) are designed to incorporate less exploitable policies into the
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policy population, facilitating faster convergence. Smith et al. (2021) proposes Mixed-Oracles and Mixed-
Opponents, which modify how new policies are added to the empirical game by training responses to a single
opponent policy, thereby reducing the cost of simulation.

In parallel, other works aim to make PSRO more computationally tractable in different game settings. As
the number of agents grows, determining BRs becomes exponentially challenging. Mean-field PSRO (Muller
et al., 2022) has been introduced to address this complexity in mean-field games. In addition, due to
the computational intractability of solving NE in multi-player general-sum games (Daskalakis et al., 2009;
Daskalakis, 2013) and the selection problem in NE (Goldberg et al., 2013), Muller et al. (2020) put forward
α-PSRO. Instead of NE, α-rank (Omidshafiei et al., 2019), which is unique and polynomial-time solvable in
multi-player general-sum games, is introduced in the MSS, and a preference-based best response (PBR) oracle
is incorporated in the approach. Similar to α-PSRO, Marris et al. (2021) proposes the Joint Policy-Space
Response Oracle (JPSRO) to tackle multi-player general-sum games. It utilizes CE and coarse correlated
equilibrium (CCE) as alternatives to NE to make it computationally tractable in multi-player general-sum
games and designs the CE and CCE-based MSS. Li et al. (2023) and Li et al. (2024b) enhance the scalability
of PSRO for large-scale pursuit-evasion games by incorporating pre-training and fine-tuning paradigms into
the policy learning process.

Other lines of research focus on promoting policy diversity, especially in non-transitive games where a single
policy is often insufficient. Balduzzi et al. (2019) introduces an open-ended framework in two-player zero-
sum games. This framework enhances the diversity of the strategy population and introduces a gamescape,
which geometrically represents the latent objectives in games for open-ended learning. The study proposed
two algorithms: Nash response PSRON and rectified Nash response PSROrN. Both algorithms utilize an
asymmetric payoff matrix as their performance evaluation metric. Similarly to DO, they employ the Nash-
based MSS (Algo. 6). Compared to PSRON, PSROrN incorporates an additional step within the ABR oracle
to focus on the opponents they beat or tie and ignore the opponents they lose to. Perez-Nieves et al. (2021)
uses determinantal point process (Kulesza et al., 2012) to assess diversity and introduces diverse PSRO by
incorporating a diversity term into the PSRO oracle. This modification can also be easily implemented in
FP and α-PSRO. Similarly, Liu et al. (2021) introduces the concepts of behavioral diversity and response
diversity and incorporates them into the PSRO oracle. Policy Space Diversity PSRO (Yao et al., 2023)
defines a diversity metric named population exploitability that helps to achieve a full-game NE.

3.3.5 R-NaD

Although R-NaD (Perolat et al., 2021) is initially described as leveraging evolutionary game theory with a
regularization component. Here, we categorized it into the PSRO series with a unique oracle computation
technique (Algo. 3), executed in two stages: the first stage involves transforming the reward based on the
regularization policy to make it policy-dependent, and the second stage applies replicator dynamics (Taylor
& Jonker, 1978) until convergence to a fixed point. The oracle added to the policy population Π in each
iteration is derived from the reward-transformed game, not the original problem’s oracle. Nonetheless, this
approach ensures that the policy converges to the NE of the original game when the game is monotone. The
MSS of R-NaD is the vanilla MSS, as described in Equ. (5). This equation illustrates that the fixed point
reached in each iteration, the oracle, is utilized as the regularization policy for the next iteration.

3.4 Ongoing-Training-Based Series

In the PSRO series of algorithms, two key challenges arise. First, truncating the ABR operators during
each iteration is often necessary when operating with a limited budget, introducing sub-optimally trained
responses into the population. Second, relearning basic skills in every iteration is redundant and becomes
untenable when confronted with increasingly formidable opponents (Liu et al., 2022c). To address these
challenges, the ongoing-training-based series of algorithms emphasizes the repeated ongoing training of all
policies. In other words, instead of only inactive policies being selected for training, all active policies are
also likely to be chosen for training.
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3.4.1 Integration into Our Framework

We can incorporate these ongoing-training-based series of algorithms into our proposed framework (Algo. 1)
using the following settings: First, we use immediate initialization to initialize Π because, in the ongoing-
training-based series, all policies in the policy population are trained together, rather than the policy popu-
lation growing with each iteration. Second, we set E = Emax > 1, which represents the maximum number
of epochs to optimize each policy within the policy population. In other words, each unique policy under-
goes iterative training for Emax times. Third, since each policy undergoes training for Emax times, we
utilize π[k](·|h(k)) to initialize πh

[k]. This means that policy updates are self-referential. Lastly, under As-
sumption 1, different from Collory 1 and 2, due to the continuous training process of all policies, we derive
Collory 3.
Corollary 3. In the ongoing-training-based series of algorithms, the interaction matrix Σ is generally not
a lower triangular matrix.

Proof. When policy m is selected for training, policy n (n ≥ m) has already been actually initialized and is
therefore considered an active policy. Furthermore, in epoch e (e > 1), policy n has already been updated
and holds significant meaning. As a result, policy n, where n ≥ m, is likely to be chosen as the opponent
for policy m. Consequently, the interaction matrix Σ is generally not a lower triangular matrix.

3.4.2 FTW

Quake III Arena Capture the Flag is a renowned 3D multi-player first-person video game where two teams
vie to capture as many flags as possible. The For The Win (FTW) agent (Jaderberg et al., 2019) is designed
to perform at human-level proficiency in this game. A pivotal aspect of FTW is its employment of the
ongoing-training-based self-play in RL. Specifically, it trains a population of K different policies in parallel,
which compete and collaborate with each other. When policy k is undergoing training, FTW samples both
its teammates and adversaries from the population. Specially, in scenarios where each team comprises a
single member, it can be seamlessly integrated into our framework using the subsequent MSS:

MSS(P)mn = 1
K

. (10)

This essentially means that the interaction graph is densely connected. Moreover, all policies draw upon a
unified policy network parameterized by ϕ. Hence, π[k](·|h(k)) can be aptly depicted as πϕ(·|h(k)). Further-
more, since these policies are not conditioned on external parameters, it is straightforward to represent the
conditioning function h(k) = ∅.

3.4.3 NeuPL

Neural Population Learning (NeuPL) (Liu et al., 2022c) introduces another critical innovation: it employs
a unified conditional network, where each policy is adjusted against a specific meta-game mixture strategy.
This is instrumental in enabling transfer learning across policies. Owing to NeuPL’s reliance on a unified
conditional network parameterized by θ, π[k](·|h(k)) can be succinctly represented as πθ(·|h(k)). Since NeuPL
policies depend on the opponent sampling strategy σ[k], we define h(k) = σ[k].

3.4.4 Simplex-NeuPL

Simplex-NeuPL (Liu et al., 2022a), which builds on NeuPL, is designed to achieve any-mixture optimality,
which signifies that the formulated policy should exhibit flexibility across a diverse spectrum of adversaries,
including those that might not present equivalent competitive prowess. To model the population learning
process from a geometric perspective, Simplex-NeuPL introduces the concept of the population simplex.
Analogously to its predecessor, Simplex-NeuPL integrates a conditional network to characterize the policy,
represented as πθ(·|h(k)) conditioned on the opponent sampling strategy h(k) = σ[k]. Intriguingly, there
is a slight possibility that σ[k] does not originate from the MSS. Instead, it is drawn as a sample from the
population simplex. This sampling mechanism results in greater robustness.
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3.5 Regret-Minimization-Based Series

Another line of self-play algorithms is based on regret minimization. Unlike other categories, this series aims
to minimize cumulative regret over time, a concept rooted in online learning theory. This distinction is crucial
in two-player zero-sum games, where these methods enjoy strong theoretical guarantees. Traditional regret-
minimization-based self-play typically doesn’t use RL, but later studies have combined them for improved
performance. This section will also discuss traditional regret-minimization methods to lay the groundwork
for understanding their integration with RL.

3.5.1 Integration into Our Framework

We can also integrate the regret-minimization-based series of algorithms into our proposed framework
(Algo. 1) with the following settings: First, similar to traditional self-play algorithms and the PSRO series,
we use lazy initialization to initialize the policy population Π. Second, we set E = 1, and K is regarded
as the maximum iteration to optimize the policy. Third, in each iteration k, h(k) represents the specific
elements that regret-minimization-based self-play algorithms need to store. Note that this category relies
heavily on the information in h(k). For instance, in Counterfactual Regret Minimization (CFR) (Zinkevich
et al., 2007), it is necessary to store counterfactual regrets for every action in every information set for each
player within h(k). Once h(k) is determined, the corresponding policy is also defined. We will discuss CFR
in detail in Sec. 3.5.2. Fourth, we initialize πh

[k] using π[k−1](·|h(k − 1)) to utilize the most current trained
policy. More specifically, h(k) is initialized by h(k−1) and πh

[k] is initialized by πh
[k−1]. In each new iteration,

regret-minimization information is continuously added to h(k) (Line 4 in Algo. 4). As a result, h accumulates
information across all iterations until the end of training. Fifth, the ABR operator (Algo. 4) incorporates
regret-related information into h(k). Unlike the original CFR, Algo. 4 updates the regrets of each player
sequentially. This means that the regrets of player 2 are updated after considering the already-updated
regrets of player 1. This adjustment has been shown to accelerate convergence empirically and possesses a
theoretical error bound (Burch et al., 2019). Additionally, each πh

[k] represents the strategies for all players,
and in iteration k, player i uses the strategy πh

[k](i). Lastly, the MSS of the regret-minimization-based series
is the vanilla MSS, as described in Equ. (5). Also, we can derive Collory 4.
Corollary 4. In the regret-minimization-based series of algorithms, the interaction matrix Σ is a lower
triangular matrix. More specifically, it is a unit lower shift matrix, with ones only on the subdiagonal
and zeroes elsewhere.

Proof. Regret minimization-based algorithms always use the latest strategy for training. In other words, at
iteration k, πh

[k−1] is consistently chosen as the opponent policy. Consequently, the interaction matrix Σ is a
unit lower shift matrix.

3.5.2 Vanilla CFR

Regret measures the difference between the best possible payoff and the actual payoff. The regret match-
ing algorithm (Hart & Mas-Colell, 2000) optimizes decisions by selecting strategies based on accumulated
positive overall regrets, with higher overall regret strategies being more likely chosen to correct past under-
performance. After each round, players update the overall regret values for each strategy. The algorithm is
guaranteed to converge to the set of NE, and any finite stopping point yields an approximate NE. However,
this method primarily applies to normal-form games because computing overall regret in extensive-form
games is challenging.

Zinkevich et al. (2007) proposes CFR for extensive-form games. In this survey, we refer to it as vanilla CFR
to distinguish it from later advancements. Vanilla CFR maintains both the strategy and the counterfactual
regret values for each information set. Theoretically, the sum of these local regrets provides an upper bound
on the overall regret. Therefore, the problem can be decomposed into many smaller regret minimization
subproblems. CFR focuses on minimizing regret locally at each information set, making the approach
computationally tractable. At each iteration, the strategy is updated using regret matching, and the final
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strategy is obtained through strategy averaging, where the strategies played across iterations are averaged
over time. This averaged strategy is proven to converge to an NE in two-player zero-sum games.

Vanilla CFR has several shortcomings. Firstly, it requires traversing the entire game tree in each iteration,
computationally intractable for larger game trees. Although some efforts have focused on game abstraction
to reduce the size of the game tree, greater abstraction can lead to decreased performance. Second, it requires
storing counterfactual regrets Rk(I, a) for every action a in every information I at each iteration k. These
values are stored in h(k) within our proposed framework (Algo. 1), leading to significant storage challenges.

3.5.3 Time-Saving Variants of CFR

Many studies focus on enhancing the time efficiency of CFR. The first approach involves modifying the regret
calculation to increase its speed. CFR+ (Tammelin, 2014) implements regret-matching+ by storing non-
negative regret-like values R+,k(I, a), rather than Rk(I, a) in kth iteration. Additionally, CFR+ updates the
regrets of each player sequentially and adopts a weighted average strategy. Moreover, Brown & Sandholm
(2019a) introduces the concept of weighted regrets and develops Linear CFR (LCFR) and Discounted CFR
(DCFR). The second approach involves adopting sampling methods. While it requires more iterations,
each iteration is shorter, reducing the overall convergence time. Monte Carlo CFR (MCCFR) (Lanctot
et al., 2009) divides terminal histories into blocks, with each iteration sampling from these blocks instead of
traversing the entire game tree. This allows for calculating sampled counterfactual values for each player,
leading to counterfactual regrets that, in expectation, match those of the Vanilla CFR. Vanilla CFR is a
specific case where all histories are divided into just one block. MCCFR typically manifests in three forms:
outcome-sampling MCCFR, where each block corresponds to a single history; external-sampling MCCFR,
which samples opponent and chance nodes; and chance-sampling MCCFR, only focusing on chance nodes.
Moreover, Johanson et al. (2012) expands on chance-sampling by categorizing based on the handling of public
and private chance nodes. Some studies also focus on learning how to reduce the variance of MCCFR to speed
up convergence (Schmid et al., 2019; Davis et al., 2020). In addition to these two primary approaches, other
studies have identified that warm starting (Brown & Sandholm, 2016) and pruning (Brown & Sandholm,
2015; Brown et al., 2017; Brown & Sandholm, 2017) can also accelerate convergence.

3.5.4 Space-Saving Variants of CFR

In perfect information games, decomposition reduces problem-solving scale by solving subgames. However,
in imperfect information games, defining subgames is challenging due to their intersection with information
set boundaries. CFR-D (Burch et al., 2014) is a pioneering method for decomposing imperfect information
games into the main component called the trunk and subgames defined by forests of trees that do not divide
any information sets. In each iteration, CFR is applied within the trunk for both players, and a solver is
used to determine the counterfactual BR in the subgame. The process includes updating the trunk with the
counterfactual values from the subgame’s root and updating the average counterfactual values at this root,
while the solution to the subgame is discarded. CFR-D minimizes storage needs by only saving Rk(I∗, a)
for information sets in the trunk and at each subgame’s root, which is denoted by I∗, trading off storage
efficiency against the time required to resolve subgames. Similar thoughts are echoed in the Continue-
Resolving technique used by DeepStack (Moravčík et al., 2017) and the Safe and Nested Subgame Solving
technique used by Libratus (Brown & Sandholm, 2018). We will discuss these approaches in Sec. 4.2.1,
exploring their application to Texas Hold’em.

3.5.5 Estimation Variants of CFR

Although these CFR variants advance the field, they can’t directly solve large imperfect-information
extensive-form games due to their reliance on tabular representations. The typical approach involves ab-
stracting the original game, applying CFR to the abstracted game, and translating strategies back to the
original. This abstraction is game-specific and relies heavily on domain knowledge. Additionally, smaller ab-
stractions often yield suboptimal results. Given these challenges, Waugh et al. (2015) introduces Regression
CFR (RCFR), which employs a shared regressor φ(I, a) to estimate counterfactual regrets. Nevertheless,
using regression trees as the regressor limits RCFR’s applicability to miniature games, and the necessity
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Table 1: Overview of representative self-play algorithms within our framework.

Algorithms MSS h(k) Categories E Initialization of Π Initialization of πh
[k]

Vanilla Self-Play Equ. (5)

∅ Traditional Self-Play E = 1 Lazy General
FP Equ. (6)

δ-Uniform Self-Play Equ. (7)

PFSP Algo. 5

DO NE-Based (Algo. 6)

∅ PSRO Series E = 1 Lazy General
PSRO General

α-PSRO α-Rank-Based

JPSRO (C)CE-Based

R-NaD Equ. (5)

FTW Equ. (10) ∅
Ongoing-Training-Based E > 1 Immediate πh

[k] ← π[k](·|h(k))NeuPL General σ[k]

Simplex-NeuPL General σ[k]

Vanilla CFR

Equ. (5)

Rk(I, a)

Regret-Minimization-Based E = 1 Lazy πh
[k] ← π[k−1](·|h(k − 1))

CFR+ R+,k(I, a)

CFR-D Rk(I∗, a)

RCFR φ(I, a)

Deep CFR V (I, a|θp)

for manually crafted features remains a drawback. After advantage-based regret minimization (ARM) (Jin
et al., 2018) merges CFR with deep RL in single-agent scenarios, a growing body of research has focused on
applying CFR in conjunction with neural networks to multi-agent scenarios. Double Neural CFR (Li et al.,
2020a) utilizes two neural networks: one for estimating counterfactual regrets and another for approximat-
ing the average strategy. In a similar vein, Deep CFR (Brown et al., 2019) leverages an advantage network
V (I, a|θp) to estimate counterfactual regrets with each player having a distinct hyperparameter θp and em-
ploys π(I, a|θπ) for strategy estimation after the training process of the advantage network. Since these
two networks are trained in sequence rather than concurrently, the strategy for each intermediate iteration
remains conditioned on the output of the advantage network: h(k) = V (I, a|θp). Despite similarities, Deep
CFR distinguishes itself from Double Neural CFR through its data collection and proven effectiveness in
larger-scale poker games. Single Deep CFR (SD-CFR) (Steinberger, 2019) demonstrates training an average
strategy network is unnecessary, with only an advantage network required. Building on the foundation of
SD-CFR, DREAM (Steinberger et al., 2020) utilizes a learned baseline to maintain low variance in a model-
free setting when only one action is sampled at each decision point. Moreover, advantage regret-matching
actor-critic (ARMAC) (Gruslys et al., 2020) incorporates the thought of retrospective policy improvement.

3.6 Reassessment of the Framework

After introducing these four categories of self-play algorithms, we will further compare them in this section,
explain the rationale behind categorizing the algorithms, and summarize the representative algorithms in
Table 1. Moreover, we will illustrate the differences between our framework and other frameworks to demon-
strate why our proposed framework is more general. Finally, we discuss how our framework can guide the
development of future self-play algorithms by offering a unified perspective on their design and evaluation.

3.6.1 Categorization Rationale

Traditional self-play algorithms and the PSRO series share many similarities. Initially, they require only
one randomly initiated policy, and the policy population expands as training progresses. Therefore, in our
framework, we use lazy initialization to initialize the policy population and set E = 1 for these two categories.
The interaction matrix is typically a lower triangular matrix (Corollary 1 and Corollary 2). The primary
difference between the PSRO series and traditional self-play algorithms is that the PSRO series employs more
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complex MSSs to handle tasks with intricate game-theoretical requirements. For example, α-PSRO (Muller
et al., 2020) specifically utilizes an α-rank-based MSS to tackle multi-player general-sum games. In other
tasks, traditional self-play algorithms are more commonly used to reduce the computational cost associated
with complex MSSs in the PSRO series.

Unlike the two previously mentioned categories, the ongoing-training-based series adopts a different
paradigm. Instead of gradually expanding the policy population and relying on newer policies to be stronger,
this approach strengthens all policies simultaneously at each epoch. This method alleviates issues such as
early truncation and repeated skill relearning that occur in the above two categories. To integrate this
category into our framework, immediate initialization is used for the policy population, and π[k](·|h(k)) is
utilized to initialize πh

[k] to ensure that policy updates are self-referential. Also, the interaction matrix is
generally not a lower triangular matrix (Corollary 3).

Lastly, the regret-minimization-based series follows an online learning paradigm that focuses on optimizing
overall performance across time rather than on individual episodes. Representative methods such as CFR
and its variants are specifically designed for extensive-form imperfect information games, making them par-
ticularly effective in such settings. The core mechanism of regret-minimization-based training is to iteratively
update the regrets associated with different strategies. However, tracking and accumulating regret for every
information set incurs substantial memory overhead, especially in large game trees. Furthermore, available
theoretical guarantees of convergence to a Nash equilibrium have so far been established only for two-player
zero-sum games; achieving comparable assurances in multiplayer or general-sum settings remains an open
research problem. Our framework uses h(k) to store this information. Since the policies are determined by
h(k), only the most recent policy is relevant. Therefore, the interaction matrix is a unit lower shift matrix
(Corollary 4). We also do not need to actually initialize the whole policy population and only need to use
π[k−1](·|h(k − 1)) to initialize πh

[k] in the training process.

3.6.2 Comparing with Existing Frameworks

Our framework is built upon PSRO (Lanctot et al., 2017) and NeuPL (Liu et al., 2022c). Here, we outline
the differences between our framework and these existing frameworks. The primary distinction between our
framework and PSRO is the use of an interaction matrix Σ := {σ[k]}K

k=1 ∈ RK×C1 to represent the opponent
sampling strategy, allowing for the integration of more complex competitive dynamics. Moreover, in our
framework, σ[k] denotes the opponent sampling strategy, which specifies how to sample opponents’ policies
against policy k rather than being the meta-strategy of policy k. Additionally, our framework incorporates a
policy condition function h(k), making it more general than NeuPL, where policies are conditioned on σ[k].
This enhancement gives our framework greater expressiveness. Furthermore, we describe how to compute the
oracle (Line 5 in Alg. 1) in three different ways (Alg. 2, Alg. 3 and Alg. 4) to provide a clearer understanding.
Also, to the best of our knowledge, our framework is the first self-play framework to integrate the regret-
minimization-based series, which is a significant self-play paradigm.

3.6.3 Implications for Future Self-Play Algorithm Design

Beyond organizing existing algorithms, our framework offers a roadmap for designing future self-play meth-
ods. While prior research has predominantly focused on the ORACLE and MSS axes, our unified perspec-
tive uncovers additional, under-explored dimensions that warrant further investigation. In the following, we
highlight these overlooked components and propose concrete research questions that naturally emerge when
self-play is viewed through the lens of our framework.

Prioritised re-training when E ≫ 1. When each policy is reused across many encounters (E ≫ 1),
repeatedly updating all members becomes computationally expensive. A natural open question is: which
policies are worth further improvement? For instance, we can formalize this as a multi-armed bandit: give
every policy a score that estimates how much new information an additional update would add (e.g., its
expected information gain), and let that score decide where to spend oracle calls. This bandit scheduling
automatically balances exploitation (further refining the strongest policies) with exploration (re-examining
under-trained or atypical policies that might expose blind spots).
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Auxiliary information h(k) and knowledge transfer. The history kernel h(k) need not serve merely as
a passive log of past interactions; instead, it can be designed to encode rich auxiliary domain knowledge, such
as exploitable behavioral patterns, partial payoff structures, or latent embeddings of opponents. By treating
h(k) as a learnable memory object that can be inherited or shared across subsets of agents, we enable a form
of continual-learning self-play. In this setting, knowledge acquired by one agent can propagate throughout
the population organically, without requiring intervention from an external oracle. This facilitates more
efficient collective learning and strategic evolution within multi-agent systems.

The two directions above are not isolated add-ons: when viewed alongside the widely studied ORACLE and
MSS dimensions, they open up a rich combinatorial design space. Their intersection promises novel avenues
for sampling, optimization, and knowledge sharing, which is a fertile ground for the next wave of self-play
innovations.

4 Empirical Analysis

In this section, we introduce iconic applications of self-play by categorizing the scenarios into three distinct
groups: board games, which typically involve perfect information; card games, which usually involve imper-
fect information; and video games, which feature real-time actions rather than turn-based play. We then
illustrate how self-play is applied in these complex scenarios and provide a comparative analysis of these
applications in Table 2.

4.1 Board Games

Board games, the majority of which are perfect information games, were previously revolutionized by the
introduction of two essential techniques: position evaluation and MCTS (Coulom, 2006; Kocsis & Szepesvári,
2006). These methodologies, with minor modifications, demonstrated superhuman effectiveness in solving
board games such as chess (Campbell et al., 2002), checkers (Schaeffer et al., 1992), othello (Buro, 1999),
backgammon (Tesauro & Galperin, 1996), and Scrabble (Sheppard, 2002). In contrast, the application of
these techniques to the game of Go with an estimated 2.1 × 10170 legal board configurations, only enabled
performance at the amateur level (Bouzy & Helmstetter, 2004; Coulom, 2007; Baudiš & Gailly, 2011; Enzen-
berger et al., 2010; Gelly & Silver, 2007). In light of this, our discussion will specifically focus on the game
of Go to illustrate the application of vanilla self-play. In addition to Go, we will explore Stratego, a board
game with imperfect information, in contrast to most board games that only involve perfect information.

4.1.1 Go

Go is an ancient board game, which is played on a grid of 19x19 lines, where two players alternately place
black and white stones aiming to control the largest territory. The paradigm of Go artificial intelligence
(AI) is revolutionized with the launch of DeepMind’s AlphaGo series (Silver et al., 2016; 2017; 2018; Schrit-
twieser et al., 2020), which leveraged the power of vanilla self-play to significantly elevate performance. In
AlphaGo (Silver et al., 2016), the training regime can be split into three stages. In the first stage, supervised
learning with expert data trains a fast policy network pπ(a|s) for rollouts in MCTS and a precise policy net-
work pσ(a|s). The second stage employs vanilla self-play combined with RL to get a refined policy network
pρ(a|s) based on pσ(a|s) and subsequently trains a value network vθ(s). Specifically, pρ(a|s) is refined by
competing against a randomly selected historical version pρ−(a|s), similar to the MSS shown in Equ. (6),
while vθ(s) is trained using the game samples collected by vanilla self-play of pρ(a|s). In the third stage,
MCTS integrates the policy and value networks to select actions.

Based on AlphaGo, AlphaGo Zero (Silver et al., 2017) does not require any expert data except game rules.
It utilizes only one network fθ(s) to concurrently predict the action probabilities Pr(a|s) and the state value
v. Each move is generated by MCTS with guidance from fθ(s) to aid MCTS expansion, unlike the rollouts
used in AlphaGo. Vanilla self-play is employed to generate data and refine fθ(s) with the current best
policy competing against itself, a process analogous to the MSS referenced in Equ. (5). A new policy to be
incorporated into the policy pool must surpass a 55 percent win rate against its predecessor, aligning with the
stipulation set in Algo. 2 at Line 1. AlphaZero (Silver et al., 2018) extends AlphaGo Zero to include games
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beyond Go, such as Chess and Shogi. Notably, a draw is introduced as an additional expected outcome,
and data augmentation is omitted due to the asymmetry of Chess and Shogi. Concerning the vanilla self-
play procedure, the only difference between AlphaZero and AlphaGo Zero is that AlphaZero utilizes the
newly updated network without the validation process present in AlphaGo Zero. Building upon AlphaZero,
MuZero (Schrittwieser et al., 2020) takes learning from scratch to the next level, even operating without
predefined game rules. MuZero incorporates ideas from model-based RL to model the dynamics of games.
In addition to the prediction network f (similar to the networks in AlphaGo Zero and AlphaZero), MuZero
introduces a dynamics network g to model the MDP and a representation network h to map observations to
hidden states. These three networks are trained jointly. MuZero employs MCTS guided by the three networks
above to make decisions. The vanilla self-play process in MuZero operates similarly to that in AlphaZero. In
practice, in addition to excelling in board games like Go, MuZero also achieves state-of-the-art performance
in Atari games.

4.1.2 Stratego

Unlike most board games, which are perfect information games, Stratego, a two-player imperfect informa-
tion board game, distinguishes itself by incorporating elements of memory, deduction, and bluffing. This
complexity is further amplified by the game’s long episode length and many potential game states, estimated
10535 (Perolat et al., 2022). The game is divided into two phases: the deployment phase, where players
secretly arrange their units, and the game-play phase, where the objective is to deduce the opponent’s setup
and capture their flag. The depth and computational complexity of the game remained a challenge until
breakthroughs such as DeepNash (Perolat et al., 2022) showed promising advances in AI’s ability to tackle
it. DeepNash scales up evolution-theory-based self-play method R-NaD (Perolat et al., 2021) (discussed in
Sec. 3.3.5) to neural R-NaD. It employs a neural network with four heads: one for value prediction, one
for the deployment phase, one for piece selection, and one for piece displacement. Neural Replicator Dy-
namics (Hennes et al., 2020) is utilized to obtain the approximate fixed-point policy. DeepNash holds the
third-place ranking among all professional Gravon Stratego players and wins nearly every match against
existing Stratego bots.

4.2 Card Games

Unlike board games, card games are typically imperfect information games with a larger state space and
greater complexity. Some regret-minimization-based self-play methods, particularly CFR and its variants,
are well-suited for handling imperfect information and have achieved strong results in card games. However,
recent studies have shown that other self-play methods without regret minimization can also perform well in
such settings. Here, we introduce three representative card games: Texas Hold’em, DouDiZhu, and Mahjong,
to illustrate how self-play is utilized in card games.

4.2.1 Texas Hold’em

Texas Hold’em, a popular poker game with 2-10 players, is known for its strategic depth and bluffing
elements. The two-player variant is called heads-up Texas Hold’em. The gameplay begins with each
player receiving two private cards (hole cards), followed by a round of betting. Subsequently, three community
cards (the flop) are revealed, leading to another betting round. This is followed by dealing a fourth (the
turn) and a fifth community card (the river), each accompanied by further betting rounds. The objective is
to construct the best five-card poker hand from any combination of hole cards and community cards. Texas
Hold’em offers two betting formats: limited betting and no-limit betting. The latter one is noted for its
complexity, allowing players to bet any amount up to their entire stack of chips. While simplified versions
such as Kuhn Poker and Leduc Poker serve valuable roles in theoretical analysis, we will focus on the
algorithms designed to compete in full Texas Hold’em.

Heads-up limit Texas Hold’em (HULHE), the simplest form with approximately 3.16×1017 game states,
was not solved until the introduction of Cepheus (Bowling et al., 2015). It utilizes fixed-point arithmetic with
compression and regret-minimization-based self-play method CFR+ (Tammelin, 2014) to address the issues
of storage and computation, respectively, resulting in superhuman performance. Deep CFR (Brown et al.,
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2019) combines regret-minimization-based self-play method CFR with deep neural networks. Furthermore,
some studies do not adopt the regret-minimization-based series of self-play; instead, they use the traditional
self-play method. NSFP (Heinrich & Silver, 2016) introduces a self-play method combined with end-to-end
RL training, also achieving competitive performance in HULHE. Poker-CNN (Yakovenko et al., 2016) utilizes
self-play to learn convolutional networks to solve a video version of HULHE.

After solving HULHE, research focus shifts to heads-up no-limit Texas Hold’em (HUNL) with signifi-
cantly larger game states, approximately 10164 (Johanson, 2013). Thus, traversing the game tree as Cepheus
does in HULHE is impossible. DeepStack (Moravčík et al., 2017) is a regret-minimization-based self-play
method combined with continual re-solving. This method focuses on a subtree of limited depth and breadth
and estimates the outcomes of the furthest reaches of this subtree. Libratus (Brown & Sandholm, 2018)
develops a blueprint strategy, leveraging an enhanced version of regret-minimization-based self-play method
MCCFR (Lanctot et al., 2009). Recursive Belief-based Learning (ReBeL) (Brown et al., 2020) introduces the
public belief state (PBS), transforming the imperfect-information game into a perfect-information game with
continuous state space. ReBeL utilizes the regret-minimization-based self-play method CFR-D, combined
with RL and search, to train both the value and policy networks. Unlike the algorithms mentioned above,
AlphaHoldem (Zhao et al., 2022a) does not use regret-minimization-based self-play. Instead, it proposes a
K-best self-play method that always selects the top K agents, based on their ELO ratings (Elo & Sloan,
1978), to generate samples.

Pluribus (Brown & Sandholm, 2019b), based on Libratus, addresses six-player no-limit Texas Hold’em.
Similar to Libratus, Pluribus utilizes a regret-minimization-based self-play method MCCFR (Lanctot et al.,
2009) to develop its blueprint strategy. It conducts a depth-limited search before executing actions. Differ-
ent from Libratus, Pluribus maintains a streamlined policy pool of only four strategies, assuming that its
opponents might adjust their strategies during gameplay among these four strategies, which allows Pluribus
to manage complexity more efficiently.

4.2.2 DouDiZhu

DouDizhu (a.k.a. Fight the Landlord) is a three-player strategic card game. In this game, one player takes
on the role of the landlord and competes against the other two players, the peasants. The game is played in
two main stages: the bidding stage and the card play stage. During the bidding stage, players vie to become
the landlord. During the card play stage, players take turns playing cards in various combinations, intending
to be the first to empty their hands. DouDiZhu is characterized by imperfect information, as players can
only see their own cards and the cards played. The essence of the game lies in cooperation among peasants
and competition between the two factions. It has an estimated 1076 ∼ 10106 possible game states (Zha et al.,
2019) and an action space comprising 27472 possible moves (Yang et al., 2022).

DeltaDou (Jiang et al., 2019) is the first algorithm to achieve expert-level performance in DouDizhu. Similar
to AlphaZero (Silver et al., 2018), DeltaDou utilizes vanilla self-play to generate samples to train policy and
value networks. DouZero (Zha et al., 2021) also uses vanilla self-play to generate data. It reduces training
costs by opting for a sampling method over the tree search approach. Based on DouZero, DouZero+ (Zhao
et al., 2022b) incorporates opponent modeling, assisting the agent in making more informed decisions. Per-
fectDou (Yang et al., 2022) utilizes vanilla self-play under a Perfect-Training-Imperfect-Execution framework.

4.2.3 Mahjong

Mahjong has evolved into various global variants, including the famous Japanese version known as Riichi
Mahjong. This game is typically played by four players who must navigate both the visible aspects of
the game, such as discarded tiles, and the hidden elements, like their own hand and the unseen public
tiles. The strategic depth and complexity of Mahjong pose significant challenges. Despite ongoing research,
these findings have yet to reach expert human levels (Kurita & Hoki, 2020; Gao et al., 2019; Mizukami
& Tsuruoka, 2015). Difficulties are navigating incomplete information, dynamically adapting strategies to
multiple opponents, and contending with complex winning rules and an enormous number of possible game
states, estimated at 10169 (Zha et al., 2019). Suphx (Li et al., 2020b) is recognized as one of the first
algorithms to master Mahjong, achieving a performance level comparable to expert human players, precisely
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10 dan on Tenhou (Tsunoda), the most popular online Mahjong platform. Initially, Suphx employs supervised
learning, utilizing expert data to train its model. It then advances its capabilities through vanilla self-play
combined with RL. Similarly, NAGA (Village), developed by Dwango Media Village, and LuckyJ (Tencent),
designed by Tencent, have also achieved the rank of 10 dan on Tenhou. Furthermore, LuckyJ has even
defeated human professional players.

4.3 Video Games

In contrast to traditional board games and card games, video games often feature real-time actions, long
trajectories, and increased complexity stemming from a broader range of actions and observations. We
illustrate representative video games showcasing self-play’s impact.

4.3.1 StarCraft II

StarCraft is a real-time strategy (RTS) game. It has three distinct species: the Terrans, Zerg, and Protoss,
each with unique units and strategic options that enhance the gameplay complexity. Renowned for its
balanced gameplay, strategic depth, and intense competitiveness, the game challenges players to gather
resources, construct bases, and build armies. Victory requires meticulous planning and tactical execution,
with defeat occurring when a player loses all their buildings. AlphaStar (Vinyals et al., 2019) dominates
the 1v1 mode competitions in StarCraft II and has defeated professional players. Its framework is similar
to AlphaGo (Silver et al., 2016), initially utilizing supervised learning to train the policy with expert data.
Subsequently, it uses a hierarchical self-play method combined with end-to-end RL to train the networks.
More specifically, The proposed self-play method divides all the agents into three types: main agents, league
exploiters, and main exploiters. It maintains a policy pool of past players that records all these types of
agents. Main agents engage in traditional self-play algorithms like FP and PFSP, competing against main
agents themselves and other agents in the policy pool. They are periodically added to the pool and never
reset. League exploiters also use a traditional self-play method PFSP to play against all policy pool agents,
added to the pool if they show a high win rate and potentially reset to expose global blind spots. Main
exploiters only compete with main agents to improve their robustness, are added to the pool after achieving
a high win rate or specific training steps, and are reset upon each addition. Among those three agent types,
the main agent is the core agent and embodies the final AlphaStar strategy. However, the introduction of
three agent types significantly increases the training computation. Further studies (Han et al., 2020; Wang
et al., 2021; Huang et al., 2024) have enhanced the league self-play training procedure.

4.3.2 MOBA Games

Multiplayer Online Battle Arena (MOBA) games are a popular video game genre that blends RTS with
role-playing elements. In typical MOBA games, two teams of players control their unique characters, known
as heroes, and compete to destroy the opposing team’s main structure, often referred to as the base. Each
hero has distinct abilities and plays a specific role within the team, such as Warrior, Tank, or Support.
Managing multiple lanes and battling under the fog of war, which obscures parts of the map, are critical
aspects of the gameplay.

OpenAI Five (Berner et al., 2019) defeated the world champion team in a simplified version of Dota 2, which
supported only 17 heroes and excluded complex features like summons and illusions. The training process
introduces a self-play method that combines two traditional self-play algorithms: with an 80% probability
of engaging in vanilla self-play and a 20% probability of employing a technique similar to the PFSP used in
AlphaStar (Vinyals et al., 2019). This technique selects each policy from the policy pool based on its quality
score, which is continuously updated from competition results throughout training. Higher quality scores
increase the likelihood of a policy being selected. OpenAI Five also requires extensive training resources.

Another notable MOBA game, especially viral in China, is Honor of Kings. The 1v1 mode is conquered
by Ye et al. (2020b), which boasts a significant winning rate against top professional players. It utilizes a
traditional self-play method δ-uniform self-play to train the RL networks. The 5v5 mode was later mastered
by Ye et al. (2020a) as well. Unlike OpenAI Five, which supported only 17 heroes, this work expands the
hero pool to 40 heroes, substantially increasing the number of possible lineup combinations. It proposes a

23



Under review as submission to TMLR

new self-play method referred to as curriculum self-play learning (CSPL). Specifically, the training process is
divided into three stages. The first stage involves training fixed lineups through self-play and utilizing human
data to balance the two teams to aid policy improvements. The second stage employs multi-teacher policy
distillation to produce a distilled model. The final stage uses this distilled model as the initial model for
another round of self-play with randomly picked lineups. This approach defeats professional player teams.
The self-play generated data is also used to learn compelling lineup drafting by utilizing MCTS and neural
networks (Chen et al., 2021).

4.3.3 Google Research Football

Google Research Football (GRF) (Kurach et al., 2020) is an open-source football simulator emphasizing
high-level actions. It initially offers two scenarios: the football benchmark and the football academy with
11 specific tasks. Here, we focus exclusively on the football benchmark because it presents a more complex
scenario that better demonstrates the effects of self-play. GRF is particularly challenging due to the need for
cooperation among teammates and competition against opposing teams. It features long trajectories with
3000 steps per round, stochastic transitions, and sparse rewards.

WeKick (Ziyang Li, 2020) claimed victory in the GRF competition on Kaggle (Google, 2020), which simplifies
the game dynamics by allowing competitors to control only one player, either the ball carrier on offense or the
nearest defender on defense. It employed self-play strategies similar to those used in league training (Vinyals
et al., 2019). It initializes its opponent policy pool using strategies developed through RL and Generative
Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) to facilitate the training process.

Further research delves into the full football game rather than the simplified version. Team-PSRO (McAleer
et al., 2023) extends PSRO series of self-play algorithms to team games, outperforming baselines in the 4v4
version of the full GRF. In the context of the 11v11 version, where the goalkeeper is rule-based controlled,
TiKick (Huang et al., 2021a) utilizes vanilla self-play to collect samples and then employs imitation learning.
Fictitious Cross-Play (FXP) (Xu et al., 2023) proposes a new self-play method similar to AlphaStar (Vinyals
et al., 2019). It introduces two populations: the main population and the counter population. Policies in
the counter population improve solely by cross-playing with policies in the main population as opponents,
while policies in the main population engage in playing with policies from both populations. FXP achieves a
win rate of over 94% against TiKick. TiZero (Lin et al., 2023), a follow-up to TiKick, combines curriculum
learning with FP and PFSP (Vinyals et al., 2019) to avoid expert data reliance, achieving a higher TrueSkill
rating (Herbrich et al., 2006) than TiKick.

5 Open Problems and Future Work

Self-play methods have shown remarkable performance by leveraging iterative learning and adapting to
complex environments. However, significant challenges and open questions remain, presenting opportunities
for further research and development.

5.1 Theoretical Foundation

Although NE has been shown to exist in games with finite players and finite actions (Nash et al., 1950), com-
puting NE with self-play algorithms in larger games remains challenging and consequently, many studies aim
to achieve approximate NE (Li et al., 2024a). However, in some cases, even computing an approximate NE is
difficult (Daskalakis, 2013). Some research has resorted to alternative solution concepts, such as CE (Marris
et al., 2021) and α-rank (Muller et al., 2020). While many successful self-play algorithms are grounded in
theoretical intuition, formal game-theoretic guarantees for their effectiveness in large, imperfect-information
games remain limited. For instance, approaches such as AlphaGo (Silver et al., 2016), AlphaStar (Samvelyan
et al., 2019), and OpenAI Five (Berner et al., 2019) achieve empirical success. However, under realistic con-
straints such as finite computational resources and limited exploration, their convergence or optimality
remains difficult to formally characterize within standard game-theoretic frameworks. Future work may
benefit from further narrowing the gap between empirical success and theoretical understanding, either by
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extending existing theoretical tools to more complex settings or by designing new self-play methods with
provable guarantees under realistic assumptions.

5.2 Non-stationarity of the Environment

In the self-play framework, the opponents are a vital component of the environment, and the strategies
of the opponent players evolve as training progresses. This evolution can cause the same strategy to lead
to different results over time, creating a non-stationary environment. This problem is also shared by the
MARL area. Future research should aim to develop self-play algorithms that are more robust and can adapt
to changing conditions. For example, incorporating opponent modeling (Zhao et al., 2022b) into self-play
can help agents anticipate changes in opponent strategies and adjust their own strategies proactively, making
them more robust to environmental changes.

5.3 Scalability and Training Efficiency

The scalability of self-play methods faces significant challenges as the number of teams and players within
those teams increases. As the number of participants grows, the complexity of interactions explodes. For
example, in OpenAI Five (Berner et al., 2019), the hero pool size is limited to only 17 heroes. MOBA AI (Ye
et al., 2020a) extends this to a 40-hero pool with the help of curriculum learning, but it still cannot cover the
entire hero pool available in the actual game. One potential solution is leveraging players’ inherent connec-
tions to optimize the learning process. For instance, using graph-based models to represent and exploit the
relationships between players can help manage and reduce the complexity of large-scale multi-agent environ-
ments. These scalability issues are fundamentally rooted in the limited training efficiency of self-play methods
from two aspects including computation and storage. The first issue is computational efficiency, which is
induced by the iterative nature of self-play where agents repeatedly play against themselves or past versions.
Moreover, although forming more complex populations and competitive mechanisms (Samvelyan et al., 2019)
can enhance the intensity and quality of training, it further exacerbates the demand for computational re-
sources. Techniques such as parallel computing, distributed learning, and more efficient neural network
architectures could be explored to address these challenges. The second issue is storage because self-play
requires maintaining a policy pool. Even when using a shared network architecture, storing the parameters
of large models can be problematic. This issue is particularly pronounced in regret-minimization-based self-
play algorithms, which must store the regrets for each information set and potential action. Managing both
the computational load and storage requirements is essential for improving the overall training efficiency and
scalability of self-play methods.

5.4 With Large Language Models

With their remarkable capability and emergent generalizability, large language models (LLMs) have been
regarded as a potential foundation for achieving human-level intelligence (Achiam et al., 2023), and self-play
methods have been proposed to fine-tune LLMs, enhance LLMs’ reasoning performance, and build LLM-
based agents with strong decision-making abilities. Post-training fine-tuning (Ouyang et al., 2022; Bai et al.,
2022) is a key step in aligning LLM with more desired behaviors, but it requires a huge amount of human-
annotated data. To reduce reliance on human-annotated data, Self-play fIne-tuNing (SPIN) (Chen et al.,
2024) introduces a self-play mechanism to generate training data using the LLM itself and fine-tuning the
LLM by distinguishing self-generated responses from human-annotated data. Another line of work (Munos
et al., 2024; Swamy et al., 2024; Wu et al., 2024) formulate the alignment problem as a two-player constant-
sum game and use self-play methods to solve the game. Some other work (Huang et al., 2023; Yuan et al.,
2024) also utilizes model-generated data to fine-tune LLMs with minimal human annotations. The idea of
self-improvement has also been applied to improve the reasoning ability of LLMs. Self-Play of Adversarial
Game (SPAG) (Cheng et al., 2024) observes that self-play in a two-player adversarial language game called
Adversarial Taboo can boost the LLM’s performance on various reasoning benchmarks. Besides improving
the capability of LLMs, self-play methods have also contributed to building LLM-based agents with strong
strategic abilities. A representative work is Cicero (Meta et al., 2022), which achieves human-level play in
the game of Diplomacy by combining language models with an RL policy trained by self-play. Cicero uses
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the self-play policy to produce an intended action and prompts the language model to generate languages
conditioned on the policy’s intent. Another line of work (Xu et al., 2024; 2025a) also combines LLM with self-
play policy but takes a different approach by first prompting the LLM to propose multiple action candidates
and then using the self-play policy to produce the action distribution over these candidates. Despite recent
progress, applying self-play with LLMs is still underexplored and requires further research.

5.5 Real-World Applications

Self-play is particularly effective in addressing some problems abstracted from real-world situations through
its iterative learning approach. In the field of economics, for instance, self-play is used to enhance supervised
learning models in multi-issue bargaining tasks (Lewis et al., 2017). Furthermore, self-play proves beneficial
in solving combinatorial optimization problems (COPs) such as the traveling salesman problem (TSP) and
the capacitated vehicle routing problem (CVRP) (Wang et al., 2024). Within the domain of traffic, self-play
facilitates the development of human-like autonomous driving behaviors (Cornelisse & Vinitsky, 2024) and
enables vehicles to learn negotiation strategies to merge on or off roads (Tang, 2019), although currently
within 2D simulators.

Deploying self-play directly in the physical world remains challenging. Its iterative, trial-and-error nature
is computationally expensive and can produce behaviors that are impractical or even unsafe outside a con-
trolled environment. Consequently, most recent work performs self-play in simulators, and practical adoption
hinges on bridging the simulation-to-reality (Sim2Real) gap. When this gap is small, self-play has already
proved useful. For instance, self-play can be well employed to enhance video streaming capabilities (Huang
et al., 2021b), and to address the image retargeting problem (Kajiura et al., 2020). Moreover, EvoPlay
(Wang et al., 2023) leverages self-play to design protein sequences, utilizing the advanced AlphaFold2 sim-
ulator (Jumper et al., 2021) to narrow the Sim2Real gap. In heterogeneous multi-robot systems, self-play
is utilized for competitive sports tasks like humanoid football (Liu et al., 2022b; Haarnoja et al., 2024),
quadruped competition (Xiong et al., 2024), and multi-drone volleyball (Xu et al., 2025b; Zhang et al.,
2025), with substantial efforts dedicated to Sim2Real transitions for real-world success (Gao et al., 2023). A
complementary research direction is to boost the sample efficiency of self-play so that policies can be trained
online, reducing or even eliminating the need for elaborate Sim2Real pipelines in real-world deployments.

6 Conclusion

The burgeoning field of self-play in RL has been systematically explored in this survey. The core idea of
self-play, that agents iteratively refine their policies by interacting with historical or concurrent versions of
themselves or other evolving agents, has proven to be a powerful approach for developing robust strategies
across various domains. Before delving into the specifics of self-play, this paper first elucidates the MARL
framework and introduces the game theory background of self-play. Moreover, the paper presents a unified
framework and categorizes existing self-play algorithms into four main categories: traditional self-play al-
gorithms, the PSRO series, the ongoing-training-based series, and the regret-minimization-based series. We
provide detailed explanations on how these four groups are seamlessly integrated into our proposed frame-
work, ensuring a comprehensive understanding of their functionalities. We then compare the four categories
within this common lens and draw design insights that can guide future self-play research. The transition
from theory to application is underscored by a rigorous analysis of self-play’s role within various scenar-
ios, such as board games, card games, and video games. Despite the successes of self-play in many areas,
challenges remain, such as convergence to suboptimal strategies and substantial computational demands.
Also, future work can focus on how to integrate self-play with LLMs and achieve real-world applications. In
conclusion, self-play is vital to modern RL research, offering key insights and tools for developing advanced
AI systems. This survey serves as an essential guide for researchers and practitioners, paving the way for
further advancements in this field.
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Audrūnas Gruslys, Marc Lanctot, Rémi Munos, Finbarr Timbers, Martin Schmid, Julien Perolat, Dustin
Morrill, Vinicius Zambaldi, Jean-Baptiste Lespiau, John Schultz, et al. The advantage regret-matching
actor-critic. arXiv preprint arXiv:2008.12234, 2020.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer skills
for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022, 2024.

Lei Han, Jiechao Xiong, Peng Sun, Xinghai Sun, Meng Fang, Qingwei Guo, Qiaobo Chen, Tengfei Shi,
Hongsheng Yu, Xipeng Wu, et al. Tstarbot-x: An open-sourced and comprehensive study for efficient
league training in starcraft ii full game. arXiv preprint arXiv:2011.13729, 2020.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68(5):1127–1150, 2000.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-information
games. arXiv preprint arXiv:1603.01121, 2016.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In Inter-
national conference on machine learning, pp. 805–813. PMLR, 2015.

Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Rémi Munos, Julien Perolat, Marc Lanctot, Audrunas
Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar Duéñez-Guzmán, et al. Neural replicator dynamics:
Multiagent learning via hedging policy gradients. In Proceedings of the 19th international conference on
autonomous agents and multiagent systems, pp. 492–501, 2020.

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian skill rating system. Advances in
neural information processing systems, 19, 2006.

Daniel Hernandez, Kevin Denamganai, Sam Devlin, Spyridon Samothrakis, and James Alfred Walker. A
comparison of self-play algorithms under a generalized framework. IEEE Transactions on Games, 14(2):
221–231, 2021.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29:4565–4573, 2016.

30

https://www.kaggle.com/c/google-football


Under review as submission to TMLR

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
language models can self-improve. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Ruozi Huang, Xipeng Wu, Hongsheng Yu, Zhong Fan, Haobo Fu, Qiang Fu, and Wei Yang. A robust
and opponent-aware league training method for starcraft ii. Advances in Neural Information Processing
Systems, 36, 2024.

Shiyu Huang, Wenze Chen, Longfei Zhang, Shizhen Xu, Ziyang Li, Fengming Zhu, Deheng Ye, Ting Chen,
and Jun Zhu. Tikick: Towards playing multi-agent football full games from single-agent demonstrations.
arXiv preprint arXiv:2110.04507, 2021a.

Tianchi Huang, Rui-Xiao Zhang, and Lifeng Sun. Zwei: A self-play reinforcement learning framework for
video transmission services. IEEE Transactions on Multimedia, 24:1350–1365, 2021b.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia Castaneda,
Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-level performance
in 3d multiplayer games with population-based reinforcement learning. Science, 364(6443):859–865, 2019.

Qiqi Jiang, Kuangzheng Li, Boyao Du, Hao Chen, and Hai Fang. Deltadou: Expert-level doudizhu ai through
self-play. In IJCAI, pp. 1265–1271, 2019.

Peter Jin, Kurt Keutzer, and Sergey Levine. Regret minimization for partially observable deep reinforcement
learning. In International conference on machine learning, pp. 2342–2351. PMLR, 2018.

Michael Johanson. Measuring the size of large no-limit poker games. arXiv preprint arXiv:1302.7008, 2013.

Michael Johanson, Nolan Bard, Marc Lanctot, Richard G Gibson, and Michael Bowling. Efficient nash
equilibrium approximation through monte carlo counterfactual regret minimization. In Aamas, pp. 837–
846, 2012.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

Nobukatsu Kajiura, Satoshi Kosugi, Xueting Wang, and Toshihiko Yamasaki. Self-play reinforcement learn-
ing for fast image retargeting. In Proceedings of the 28th ACM international conference on multimedia,
pp. 1755–1763, 2020.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference on
machine learning, pp. 282–293. Springer, 2006.

Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. Foundations and
Trends® in Machine Learning, 5(2–3):123–286, 2012.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel
reinforcement learning environment. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 4501–4510, 2020.

Moyuru Kurita and Kunihito Hoki. Method for constructing artificial intelligence player with abstractions to
markov decision processes in multiplayer game of mahjong. IEEE Transactions on Games, 13(1):99–110,
2020.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte carlo sampling for regret
minimization in extensive games. Advances in neural information processing systems, 22, 2009.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David
Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning.
Advances in neural information processing systems, 30, 2017.

31



Under review as submission to TMLR

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal? end-to-end
learning of negotiation dialogues. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 2443–2453, 2017.

Hanyu Li, Wenhan Huang, Zhijian Duan, David Henry Mguni, Kun Shao, Jun Wang, and Xiaotie Deng.
A survey on algorithms for nash equilibria in finite normal-form games. Computer Science Review, 51:
100613, 2024a.

Hui Li, Kailiang Hu, Shaohua Zhang, Yuan Qi, and Le Song. Double neural counterfactual regret minimiza-
tion. In International Conference on Learning Representations, 2020a.

Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan Yang, Li Zhao, Tao Qin, Tie-Yan
Liu, and Hsiao-Wuen Hon. Suphx: Mastering mahjong with deep reinforcement learning. arXiv preprint
arXiv:2003.13590, 2020b.

Pengdeng Li, Shuxin Li, Xinrun Wang, Jakub Cernỳ, Youzhi Zhang, Stephen McAleer, Hau Chan, and
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A Abbreviations in Alphabetical Order

ABR Approximate Best Response
AI Artificial Intelligence
ARM Advantage-based Regret Minimization
ARMAC Advantage Regret-Matching Actor-Critic
BR Best Response
CCE Coarse Correlated Equilibrium
CE Correlated Equilibrium
CFR Counterfactual Regret Minimization
COP Combinatorial Optimization Problem
CSPL Curriculum Self-Play Learning
CVRP Capacitated Vehicle Routing Problem
DCFR Discounted Counterfactual Regret Minimization
DO Double Oracle
EGTA Empirical Game-Theoretic Analysis
FP Fictitious Play
FSP Fictitious Self-Play
FTW For The Win
FXP Fictitious Cross-Play
GAIL Generative Adversarial Imitation Learning
GRF Google Research Football
HULHE Heads-Up Limit Texas Hold’em
HUNL Heads-Up No-Limit Texas Hold’em
JPSRO Joint Policy-Space Response Oracle
LCFR Linear Counterfactual Regret Minimization
LLM Large Language Model
MARL Multi-Agent Reinforcement Learning
MCCFR Monte Carlo Counterfactual Regret Minimization
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
MG Markov Game
ML Machine Learning
MOBA Multiplayer Online Battle Arena
MSS Meta-Strategy Solver
NE Nash Equilibrium
NeuPL Neural Population Learning
NFSP Neural Fictitious Self-Play
ODO Online Double Oracle
PBR Preference-based Best Response
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PBS Public Belief State
PFSP Prioritized Fictitious Self-Play
POMG Partially Observable Markov Game
PSRO Policy-Space Response Oracle
RCFR Regression Counterfactual Regret Minimization
ReBeL Recursive Belief-based Learning
RL Reinforcement Learning
R-NaD Regularized Nash Dynamics
RTS Real-Time Strategy
SD-CFR Single Deep Counterfactual Regret Minimization
SPAG Self-Play of Adversarial Game
SPIN Self-Play fIne-tuNing
TSP Traveling Salesman Problem
URR UnRestricted-Restricted
XDO Extensive-Form Double Oracle
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