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ABSTRACT

With the wide application of Large Language Models (LLMs), the accuracy and
reliability of the content they generate have become the focus of attention. The
hallucination of the content generated by the large language model seriously af-
fects the credibility and practicability of the model in key scenarios. However,
the mainstream hallucination detection technology relies on external knowledge
bases to verify the authenticity of the content generated by the model, or uses
a large number of annotation data for training. These methods require complex
model structure and support, will consume a lot of resources and time, and cross
domain generalization ability is poor. In this paper, we proposes a new hallucina-
tion detection method, which allows the LLMs to imitate the way of thinking of
the philosopher Aristotle. We decompose the complex hallucination verification
process into two distinct subjects (called F2): a. Factual hallucination detection:
verifying the fact finding of the content generated by the model and analyzing the
optimal solution; b. Fidelity hallucination detection: Logical verification based on
classical logical forms, including the reasoning systems or logical forms of logic
such as Aristotle’s most outstanding contribution, syllogism. The experimental re-
sults show that this method not only improves the recognition and analysis ability
of the LLMs itself for illusory content, but also enhances the interpretability of the
defects of the LLMs, enabling the developers of the LLMs to effectively identify
the sources of errors and improve the model capabilities.

1 INTRODUCTION

In recent years, with the expansion of model scale and the diversification of training data, LLMs
have shown strong language understanding and generation ability (Brown et al., 2020). However,
there is a hallucination in the generation process of LLMs, that is, the generated content seems rea-
sonable in semantics, but is inconsistent with facts, context or external knowledge (Ji et al., 2023).
For LLMs hallucinations, researchers have proposed a variety of detection and mitigation methods.
Early work mainly relied on external knowledge base to detect hallucinations by comparing the gen-
erated content with the facts in the knowledge base (Guo et al., 2022). Recent studies have explored
detection methods based on the internal mechanism of the model, such as using attention weight,
intermediate representation or uncertainty estimation to identify potential hallucinations (Farquhar
et al., 2024). Recently, some researches have divided the complex reasoning process into memory
and reasoning, and used the learnable control token to solve the task (Jin et al., 2024).

This paper proposes a novel hallucination detection framework that enables large language models
(LLMs) to emulate the cognitive process of philosophers exemplified by Aristotle in their pursuit
of truth and logical reasoning to investigate the nature of reality and human affairs. The framework
decomposes the complex hallucination verification process into two equally important and distinct
components: factual hallucination detection and fidelity hallucination detection. Factual halluci-
nation detection corresponds to the exploration of truth, which involves examining and defining
entities and their attributes from multiple perspectives to verify the objective essence of people and
objects. Fidelity hallucination detection corresponds to logical reasoning, focusing primarily on the
relationships between people and things to validate the external logic governing these connections.
This method not only innovatively and systematically defines the focus in the field of hallucination
detection, but also enhances the interpretability of the capability deficiencies of LLMs, providing
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constructive suggestions for developers of LLMs to effectively identify the sources of errors and
improve the model’s capabilities.

The experimental results show that this method can improve the recognition and analysis ability
of the hallucination content of the model, and enhance the reasoning ability of the model. Our
method achieves 89.52% and 92.66% accuracy on CommonsenseQA (Talmor et al., 2019) and
QASC dataset (Khot et al., 2019), respectively, using Qwen3-8B (Yang et al., 2025), representing
remarkable improvements of 12.62% and 12.53% over the zero-shot baseline. On StrategyQA (Geva
et al., 2021), it achieves 76.35% accuracy with Gemma3-12B (Team et al., 2025). On HaluEval (Li
et al., 2023), our method obtains an F1 score of 0.894 using Qwen3-8B, surpassing the zero-shot
approach by 0.18. More notably, our method consistently outperforms the results of CoT (Wei et al.,
2022), CoT-SC (Wang et al., 2023), and ToT (Yao et al., 2023) under the same experimental settings
across all four datasets.

Our main contributions are as follows:

• A new approach to hallucination detection: inspired by Aristotle and other philosophers,
we innovatively integrate factual exploration and logical inference and applied them to
hallucination detection field.

• New self-verification framework for hallucinations of LLMs: We propose a resource-
saving, transferable and adaptive hallucination self verification method for LLMs without
training.

• Improving benchmark performance of LLMs: the proposed framework achieved compet-
itive improvements in accuracy on StrategyQA, CommonsenseQA, QASC and HaluEval
dataset.

2 RELATED WORK

2.1 HALLUCINATION DETECTION

Early hallucination detection in neural models often relied on symbolic reasoning layers that sit
on top of a neural encoder. DeepProbLog (Manhaeve et al., 2018) and NeurASP (Yang et al.,
2023), for example, treat the neural output as a distribution over discrete symbols and feed it to
a symbolic solver, a strategy that yields faithful reasoning but incurs heavy computational over-
head. Patrick (Lewis et al., 2020) explored a general fine-tuning method of Retrieval-Augmented
Generation (RAG) by combining the language generation model of pretrained parametric and non
parametric memory.

More recent work has shifted toward scalable, fully-neural strategies. SelfCheckGPT (Manakul
et al., 2023) detects factual hallucinations by asking the same LLM to sample multiple continuations
and then measuring internal consistency via entailment scoring, achieving zero-resource black-box
detection. Huang et al. (Huang et al., 2025) propose a taxonomy that distinguishes intrinsic vs.
extrinsic hallucinations and benchmark existing detectors across open-ended generation tasks. Chen
et al. (Chen et al., 2024) extend detection to the multimodal regime, introducing unified frameworks
that jointly assess object, attribute, and relation-level hallucinations in large vision–language models.

2.2 INFERENCE IN LARGE LANGUAGE MODELS

Early work on inference in Large Language Models (LLMs) focused on exact or variational methods
for small transformer decoders (Vaswani et al., 2017). Exact posterior inference over exponentially-
large output spaces is infeasible, so beam search (Graves, 2012) and temperature-controlled sam-
pling (Holtzman et al., 2020) became the de facto decoding strategies.

In recent research, a complementary line of research treats inference as amortised optimisation.
In-context learning (Brown et al., 2020) reframes few-shot tasks as forward passes that implicitly
perform gradient-descent in the model’s activation space (Holtzman et al., 2020). The scaling law of
test time (Snell et al., 2024) shows that increasing the calculation budget of reasoning time through
CoT sampling, verifier reordering or verifiable reward model can generate predictable performance
gains in reasoning benchmark.
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Figure 1: Abstraction of real world questions and classification. The answers to these questions
are contained in a growing knowledge graph cluster, but the classification of these questions can be
divided into attribute, entity and relationship according to the target subject.

In addition, the CoT (Wei et al., 2022) suggests that piecewise linear nodes are introduced between
the input and output, and the reasoning process of the input and output is connected in the form
of a chain. The later improved CoT-SC (Wang et al., 2023) generates multiple thought chains, and
then takes most of the answers as the final answer. CoT derived Tree-of-Thoughts (ToT) (Yao et al.,
2023) builds a tree structure to break the independence between CoT-SC multi chains, and gives the
model the ability to search among multiple reasoning chains through the tree structure. Graph of
Thoughts (GoT) (Besta et al., 2024) generalizes the structure of the tree. Any two reasoning nodes
may be connected by reasoning chains, so each reasoning node can have multiple parent nodes and
child nodes. By aggregating these nodes, the sub graph for solving the sub problem is obtained, and
the final solution of the problem is formed after the combination.

3 METHODOLOGY

3.1 BACKGROUND SETTING

In real-world application scenarios, the answer to a problem is actually contained in a library
KG{g1, g2, . . . , gm} with an infinite number of large knowledge graphs, where each node of the
knowledge graph represents an entity and attribute, and each edge represents a relationship. As-
suming that the user wants to ask a question from a set Query{q1, q2, . . . , qn}, each element of the
set represents a question, and the elements in this set, which are these questions, can be roughly
abstracted into three types as shown in Fig. 1: questions about attributes, questions about entities,
and questions about relationships. At the same time, the process of the big language model inferring
the answers Answer{a1, a2, . . . , an} to the problem set Query{q1, q2, . . . , qn} is actually the pro-
cess of generating a knowledge graph KG′{g′1, g′2, . . . , g′n}. The process of verifying the answers
Answer{a1, a2, . . . , an} is actually the process of verifying whether the element g’ in the generated
knowledge graph KG′{g′1, g′2, . . . , g′n} is an element in the knowledge graph KG{g1, g2, . . . , gm}.
Since the elements in KG and KG′ are knowledge graphs, it is necessary not only to verify the nodes
and edges of the graph, but also to verify the path from the original node to the final node.

The above considerations can ultimately be summarized as reflections on and a conceptualization
of the nature of reality, aligning with the fundamental question of philosophy, the relationship be-
tween matter and consciousness. These precisely correspond to the purposes of factual hallucination
detection and fidelity hallucination detection, respectively.

3.2 FACTUAL HALLUCINATION DETECTION

Factual hallucination detection is an analysis of internal factors of things, mainly the various at-
tributes of the subject entity, including the state, characteristics, properties, feelings, etc. of people
and things. The main process of factual hallucination detection is divided into two parts: verification
of factual correctness and analysis of optimal solutions. The first step is the simplest verification of
factual correctness, which requires LLM to make direct judgments on entities and their attributes
based on its internal knowledge base (language patterns and factual knowledge learned during train-
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Figure 2: Frame design of F2 mechanics. It consists of two parts: Factual Hallucination Detection
part: factual correctness analysis and optimal solution analysis; Fidelity Hallucination Detection
part: validate the logic inference, using “Aristotle is mortal” as a positive sample and “Butterfly is a
bird” as a negative sample for illustration.

ing). We represent this part as:

F = FFactualCorrectness(x, reason), F ∈ {true, false}, (1)

where F represents the result of judging the correctness of facts. For the example part in Fig. 2, the
internal knowledge base of LLM contains the molecular structure of water, which is H2O. However,
due to deviations in the Transformer’s capture of semantic information and contextual relationships
in the input problem, LLM finally outputs the structure of O2H . At this point, simple retrieval and
analysis are needed to detect this hallucination problem that does not conform to general facts and
objective laws.

The Optimal Solution Analysis section is specifically designed for a particular scenario: the answer
to the question is open-ended, but the goal is to find the one among the possible answers that best
aligns with the meaning conveyed by the question. We denote this section as:

O = OOptimalSolution(y, reason), O ∈ {true, false}, (2)

where O denotes the judgment result of optimal solution analysis. For example, when someone asks
what can extinguish a fire, A says water, B says coffee, and C says cola. Among these options,
the most suitable option is A, as water is a very common and effective fire extinguishing agent.
However, strictly speaking, the other options are not incorrect, just less suitable than water. As
shown in Fig. 2, when there are multiple valid explanations, the optimal solution analysis part needs
to verify whether LLM’s answer is the simplest, most direct, and objective answer (i.e. the answer
with the shortest inference path). The results of factual hallucination detection are expressed as:

fv1 =

{
true, if F = true and O = true,
false, otherwise,

(3)

where fv1 represents the verification result of factual hallucination detection.

3.3 FIDELITY HALLUCINATION DETECTION

Philosophical inquiry is premised on the use of logical thought and deduction to examine funda-
mental questions. This approach is imperative due to the constraints of human understanding, which
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often necessitate drawing conclusions via inference from available information when direct solu-
tions are unattainable. In a parallel manner, there are instances where an LLM cannot locate specific
entities, their properties, or inter-entity relationships within its knowledge repository, thus requiring
it to reason through parental or analogous entities. This parallel underpins the adoption of logical
verification, the results of which can, in turn, corroborate the accuracy of factual validation.

The fidelity hallucination detection is an analysis of the connections between things, including ac-
tions, relationships, etc. At this stage, our main focus is on verifying the process by which LLM
infers answers, that is, validating the reasoning logic.

This part of verification is divided into five steps, as shown on the right side of Fig. 2, using “Aristotle
is mortal” as a positive sample for illustration:

Step 1: Define the Target. This step identifies the conclusion “Aristotle is mortal” that needs to be
proved and expressed as the atomic formula Mortal(Aristotle) of predicate logic.

Step 2: Identify Premises. In this step, the major premise “All humans are mortal” and the
minor premise “Aristotle is a human” have been identified and expressed in formal logic as
∀x (Human(x) → Mortal(x)) and Human(Aristotle), respectively.

Step 3: Analyze Argument Structure. Determine the method of valid deductive reasoning proof
using natural deduction in predicate logic, that is, the inference path (The purple part in the figure).

Step 4: Verify Argument Validity. Substitute the premises obtained in Step 2 into the inference path
derived in Step 3 and verify. Both premises are valid, so the conclusion “Aristotle is mortal” is
successfully derived.

Step 5: Consider Counterexamples or Special Cases. In this positive sample, there is no counterex-
ample that can refute the conclusion.

Similarly, for the negative sample “Butterfly is a bird”, the first three steps are the same as in the
positive sample. However, in the verification process of Step 4, a typical logical fallacy “affirming
the consequent” is demonstrated, which ultimately leads to a FAIL result in the faithfulness halluci-
nation detection. Additionally, Step 5 produces a counterexample “Peacock butterflies are not birds”
that also refutes the reasoning outcome from Step 4.

These five steps can be expressed as follows:

P = Ppremise(P (x), Q(y), R(z), . . .), P∈{true, false}, (4)
I = Iinference(P (a) → Q(a), . . .), I ∈{valid, invalid}, (5)
E = Ecounterexample(ε), (6)

where P denotes the truth of all premises, I denotes the validity of the inference process, and E
denotes the existence of counterexamples; if no counterexample exists, E is empty.

Based on these processes, we obtained the result of fidelity hallucination detection:

fv2 =


true,

if P = true
and I = valid
and E = NULL,

false, otherwise,

(7)

where fv2 represents the verification result of fidelity hallucination detection.

3.4 RETRY MECHANISM

After obtaining the results of factual hallucination detection (fv1) and fidelity hallucination detection
(fv2), if at least one of them is not true, we will use the result of verification failure and a concise
reason as prompt words to retry the original problem. After receiving a new response, perform a
complete factual hallucination detection and fidelity hallucination detection again.
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4 EXPERIMENTS

4.1 EXPERIMENT SETUP

4.1.1 DATASETS.

Our experiments was conducted on three datasets: CommonsenseQA (Talmor et al., 2019) is a new
multiple-choice question answering dataset that requires different types of commonsense knowledge
to predict the correct answers . It contains 12,102 questions with one correct answer and four
distractor answers. The StrategyQA (Geva et al., 2021) dataset was created through a crowdsourcing
pipeline for eliciting creative and diverse yes/no questions that require implicit reasoning steps. To
solve questions in StrategyQA, the reasoning steps should be inferred using a strategy. QASC (Khot
et al., 2019) is a question-answering dataset with a focus on sentence composition. It consists of
9,980 8-way multiple-choice questions about grade school science (8,134 train, 926 dev, 920 test),
and comes with a corpus of 17M sentences. HaluEval (Li et al., 2023) includes 5,000 general user
queries with ChatGPT responses and 30,000 task-specific examples from three tasks, i.e., question
answering, knowledge-grounded dialogue, and text summarization.

4.1.2 MODELS.

To comprehensively evaluate the effectiveness of our method on the selected dataset, we used several
highly accepted and latest open-source models: Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), Llama-
3.1-8B-Instruct (Dubey et al., 2024), Qwen3-8B (Yang et al., 2025), Gemma-3-12b-it (Team et al.,
2025).

4.1.3 BASELINES.

Since our method is based on the performance of the LLM itself, we use zero-shot learning (Xian
et al., 2017), CoT prompts (Wei et al., 2022), CoT-SC prompts (Wang et al., 2023) and ToT
prompts (Yao et al., 2023) as the baseline for the experiments.

4.1.4 EVALUATION METRIC.

We use accuracy to evaluate the performance of all methods on three datasets except HaluEval
dataset. For HaluEval dataset, we use F1 Score for evaluation.Details of the extraction and verifica-
tion of the answers are provided in the appendix.

4.2 MAIN RESULTS

Compare our method with the following baseline methods:zero-shot learning, CoT, CoT-SC and
ToT. In Tab. 1 and Fig. 3, we demonstrate the accuracy or F1 score of these methods, and our
approach achieved significant improvements on all datasets and models. It is worth noting that our
method achieved the highest scores on Qwen3-8B for the CommonsenseQA, QASC and HaluEval
dataset, with scores of 89.52%, 92.66% and 0.894, respectively. Compared to the results of zero
shot learning (76.9%, 80.13% and 0.714), we achieved improvements of 12.62%, 12.53% and 0.18,
respectively. And our method is better than most baseline methods in the same configuration. These
results demonstrate the strong competitiveness of our method in the fields of hallucination detection
and improving model performance.

However, for the CommonsenseQA dataset and QASC dataset, the performance of CoT, CoT-SC and
ToT methods on Qwen3-8B actually decreased compared to direct response. This may be due to the
fact that the CommonsenseQA dataset and QASC dataset are multiple-choice question answering
datasets, while these methods are based on chain inference, terminating inference after obtaining
possible answers and not focusing on the optimal choice, which further demonstrates the superiority
of our method.

For the StrategyQA dataset, our method achieves the best performance with Gemma3-12B (76.35%).
However, due to the fact that the StrategyQA dataset is based on binary judgments of Wikipedia’s
problems and relies more on the textual data encountered during the training process, a one-step
inference cannot form an inference chain, which is not rigorous on the evidence chain and cannot
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Table 1: Main Comparative Experiment Results. The comparative experiments were divided into
five groups: Zero-shot, CoT, CoT-SC, ToT, and our method (F2). The best results are marked in
bold, and the second-best are underlined.

Methods Models StrategyQA CommonsenseQA QASC HaluEval Average

Zero-shot

Mistral-7B 0.5800 0.730 0.6609 0.678 0.6622
Llama3.1-8B 0.5968 0.747 0.7927 0.752 0.7221
Qwen3-8B 0.6390 0.769 0.8013 0.714 0.7308
Gemma3-12B 0.7263 0.768 0.7991 0.782 0.7688

CoT

Mistral-7B 0.5727 0.713 0.6706 0.683 0.6598
Llama3.1-8B 0.5284 0.714 0.7981 0.752 0.6981
Qwen3-8B 0.7229 0.647 0.6458 0.794 0.7024
Gemma3-12B 0.7562 0.781 0.8261 0.755 0.7795

CoT-SC

Mistral-7B 0.5718 0.711 0.6782 0.693 0.6635
Llama3.1-8B 0.5415 0.747 0.8326 0.737 0.7145
Qwen3-8B 0.7265 0.667 0.6598 0.800 0.7133
Gemma3-12B 0.7569 0.776 0.8272 0.761 0.7802

ToT

Mistral-7B 0.6326 0.483 0.4600 0.678 0.5634
Llama3.1-8B 0.5904 0.700 0.6582 0.730 0.6696
Qwen3-8B 0.7036 0.755 0.7883 0.833 0.7700
Gemma3-12B 0.7342 0.748 0.7927 0.782 0.7667

Ours (F2)

Mistral-7B 0.6071 0.7535 0.7181 0.723 0.7004
Llama3.1-8B 0.6571 0.7867 0.8200 0.781 0.7542
Qwen3-8B 0.7333 0.8952 0.9266 0.894 0.8623
Gemma3-12B 0.7635 0.8029 0.8817 0.845 0.8232

Figure 3: Performance comparisons of F2 utilizing different LLMs on three datasets.

fully utilize the advantages of our method. The lower accuracy of all methods on the StrategyQA
dataset compared to other datasets also proves this point.

4.3 ABLATION STUDY

In the ablation experiment stage, we separately blocked the effects of factual hallucination detection
and fidelity hallucination detection, and studied the impact and effectiveness of these two parts.
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Table 2: Ablation Study on Llama3.1-8B and Qwen3-8B Across Three Benchmarks.

StrategyQA CommonsenseQA QASC Average

Llama3.1-8B
F2 0.6571 0.7867 0.8200 0.7546
Factual only 0.6244 0.7451 0.8034 0.7243
Fidelity only 0.6369 0.7447 0.8023 0.7280

Qwen3-8B
F2 0.7333 0.8952 0.9266 0.8517
Factual only 0.6343 0.8264 0.8398 0.7668
Fidelity only 0.7059 0.8349 0.9030 0.8146

4.3.1 IMPACT OF FIDELITY HALLUCINATION DETECTION.

In this section, we will mask fidelity hallucination detection and only use factual hallucination de-
tection to observe the impact of fidelity hallucination detection on model performance. We com-
pared the performance of two models with significant performance differences (LLaMA-3.1-8B and
Qwen3-8B) on three datasets (StrategyQA, CommonsenseQA and QASC), and the results are shown
in the factual only section of Tab. 2. Overall, the accuracy has decreased as expected compared to
our method, especially with Qwen3-8B showing a 9.9% (StrategyQA), 6.88% (CommonsenseQA)
and 8.68% (QASC) decrease in performance on the three datasets, respectively.

4.3.2 IMPACT OF FACTUAL HALLUCINATION DETECTION.

In this section, we will mask factual hallucination detection and only use fidelity hallucination de-
tection to observe the impact of factual hallucination detection on model performance. Similar to
the study on the impact of fidelity hallucination detection in 4.3.1, we compared the performance
of two models (LLaMA-3.1-8B and Qwen3-8B) with significant performance differences on three
datasets (StrategyQA, CommonsenseQA and QASC). The results obtained are shown in the fidelity
only section of Table 2. Overall, the accuracy has decreased as expected compared to our method.

4.3.3 COMPREHENSIVE IMPACT.

In fact, by analyzing the data in Tab. 1 and 2, a very interesting phenomenon can be found. Regard-
ing the performance of LLaMA-3.1-8B on the CommonsenseQA and QASC datasets, the difference
between the results of factual hallucination detection alone or fidelity hallucination detection alone
and zero shot is very small. However, under the combined effect of factual hallucination detec-
tion and fidelity hallucination detection, the accuracy of LLaMA-3.1-8B on the CommonsenseQA
dataset has been improved. In addition, for these three datasets, the difference in performance be-
tween LLaMA-3.1-8B using either individual factual hallucination detection or individual fidelity
hallucination detection is also very small. However, similarly, under the combined effect of factual
hallucination detection and fidelity hallucination detection, the performance has been improved on
both datasets. Meanwhile, as shown in Tab. 2, for the higher performance Qwen3-8B, the effect of
fidelity hallucination detection is more advantageous than factual hallucination detection.

4.4 CASE STUDY

Fig. 4 shows the case study in the StrategyQA dataset. First, we performed a factual hallucination
detection. By analyzing the contents in the figure, we can find that LLM mistakenly identified
Petroleum (CAS 8009-03-8) as sodium lauryl sulfate (SLS)(CAS 151-21-3). For people whose skin
barrier has been damaged, SLS may further stimulate the skin. So LLM answered true. But in fact,
CAS 8009-03-8 (Petrolatum) is usually not harmful to rash, and can even be used to relieve rash.
Therefore, the verification result of the factual hallucination test is FAIL.

For fidelity hallucination detection, we carry out logical verification according to the five steps
shown in the figure. Step 1 is to let LLM determine the goal, that is, we need to prove the cor-
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Figure 4: Case study on the StrategyQA dataset using Qwen3-8B. For this question, the LLM’s
response is inconsistent with the ground truth, leading to a FAIL in factual verification. However,
the response receives a PASS in fidelity verification.

rectness of the argument that CAS 8009-03-8 is harmful to rash. Step 2 is to analyze the premise
and conclusion. In this step, LLM first replaced CAS 8009-03-8 with Solid Lauryl Sulfate (SLS)
equivalently. Although this is not correct in fact, it is not a problem in logic. Then LLM marks two
premises and a conclusion. Step 3 is to analyze and demonstrate the structure. LLM selects Aristo-
tle’s classical syllogism for logical verification. The major premise is that the stimulant can cause
skin rash, and the minor premise is that SLS is a stimulant. The conclusion is that SLS can cause
skin rash and is harmful to skin rash. Step 4 is to verify the validity of the parameters. It is obvious
that this is a classic syllogism structure. This argument is valid. Therefore, the logical verification
will pass. Step 5: consider counterexamples and special cases. Here LLM considers the application
of personal care products, but the context of the topic itself is a special case. In general, SLS is
widely used and usually safe, but for some people, especially those with sensitive skin or existing
skin problems, it may aggravate the rash. So in this step, this general situation can not affect the
final result, so in general, the verification result of fidelity illusion detection is PASS.

5 LIMITATION

Our large language model hallucination detection method has shown good results and competitive
advantages in the field of hallucination detection, but there are still some limitations. First of all, for
specific problems that only need factual hallucination detection or only need faithful hallucination
detection, we cannot judge dynamically, so we are forced to carry out two kinds of verification at
the same time. This is also proved in the appendix.

6 CONCLUSION

This paper proposes a new hallucination detection mechanics, which allows LLM to imitate the way
of thinking of philosopher Aristotle and decompose the complex hallucination detection process
into two clear subjects. The factual hallucination detection part mainly verifies whether the original
response of the model conforms to the general facts and objective laws it has learned (verifying
correctness of the answer), and determines whether the answer given by the model is the most
appropriate choice with the shortest reasoning path among all effective explanations. The fidelity
hallucination detection part verifies whether the answer of the model conforms to the reasoning
logic (verifying the reasoning process). This hallucination detection method is training-free, offers
significant advantages in terms of portability and adaptability and enhances the interpretability of
the defects of the model.

9
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APPENDIX

A EXPERIMENT DETAILS

A.1 TRAINING CONFIGURATION

All experiments involving Gemma-12B were conducted on a single NVIDIA A100 Tensor Core
GPU with 80 GB HBM2. Experiments involving the Mistral-7B-Instruct-v0.3, Llama-3.1-8B-
Instruct, and Qwen3-8B models were all performed on a single NVIDIA A40 GPU. All code was
written in Python.

A.2 PARAMETER SETTING

The sampling parameters are set as follows:

Listing 1: Generation Hyperparameters
t e m p e r a t u r e = 0 . 7
max tokens = 512
t o p p = 0 . 9
s t o p = None

A.3 GENERATION OF DATA TO BE VERIFIED

We directly input the question to the LLM, and extract the specific answer of the model after ob-
taining the raw response. For example, in the CommonsenseQA and QASC datasets, we extract the
options, and in the StrategyQA dataset, we extract the judgment results (true and false). After that,
we substitute the extracted model answers into the questions, and submit the combined questions to
our hallucination detection mechanism for verification.

A.4 DATA EXTRACTION AND VERIFICATION

The LLM is guided, through the use of designed regular expressions and prompt templates with spe-
cial tokens, to output the model-generated answer in an ideal format for comparison with a standard
answer. This formatted output is subsequently extracted as the model answer field, while the origi-
nal response is preserved as raw answer or answer content. Evaluation is ultimately performed by
computing accuracy or F1 scores based on a comparison between the model answer and the standard
answer.

B PROMPT TEMPLATE

B.1 FACTUAL HALLUCINATION DETECTION

The prompt template of factual hallucination detection is shown in Fig. 5. We divide the factual
hallucination detection into two parts, the verification of the correctness of facts and the analysis of
the optimal solution.

B.2 FIDELITY HALLUCINATION DETECTION

The prompt template of factual hallucination detection is shown in Fig. 6, which is verified in five
steps.

C SUPPLEMENT RESULTS

C.1 INFLUENCE OF FEW-SHOT

On the basis of the main experiment, we studied the impact of feed shot on our method, and adjusted
the original results of zero-shot verification with hallucination detection to the results of feed shot

12
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Figure 5: prompt template for factual hallucination detection.

Figure 6: prompt template for fidelity hallucination detection.

verification with hallucination detection. The comparison of experimental results is shown in Tab.
3.

The experimental results show that feed shot has little effect on our method, and the improvement
of the accuracy of the final results on llama3.1-8B is limited, and even has a negative effect on
mistral-7B and qwen3-8B.

C.2 TEST OF FIDELITY VERIFICATION ON MODEL PERFORMANCE

We have tried to set the factual hallucination detection as necessary and the faithful hallucination
detection as optional, and let LLM analyze and decide whether to carry out faithful hallucination
detection. We carried out this experiment with llama3.1-8B on the CommonsenseQA dataset. The
experimental results show that after making llama3.1-8B decide whether to perform fidelity halluci-
nation detection, the accuracy obtained on the commonsenseqa data set is 73.96%, which is reduced

13
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Table 3: Study on the Effect of Few-Shot Examples in Our Method. Experiments conducted on two
benchmarks using three models of similar size. Best results in bold, second-best underlined.

Methods Models StrategyQA CommonsenseQA QASC Average

Zero-shot

Mistral-7B 0.5800 0.730 0.6609 0.6569
Llama3.1-8B 0.5968 0.747 0.7927 0.7121
Qwen3-8B 0.6390 0.769 0.8013 0.7364
Gemma3-12B 0.7263 0.768 0.7991 0.7644

Few-shot

Mistral-7B 0.6310 0.722 0.6901 0.6810
Llama3.1-8B 0.6419 0.762 0.7927 0.7322
Qwen3-8B 0.6450 0.798 0.8164 0.7531
Gemma3-12B 0.7031 0.774 0.8164 0.7645

Zero-shot + F2

Mistral-7B 0.6071 0.7535 0.7181 0.6929
Llama3.1-8B 0.6571 0.7867 0.8200 0.7452
Qwen3-8B 0.7333 0.8952 0.9266 0.8517
Gemma3-12B 0.7635 0.8029 0.8817 0.8160

Few-shot + F2

Mistral-7B 0.5900 0.7521 - -
Llama3.1-8B 0.6599 0.8019 - -
Qwen3-8B 0.7335 0.8895 - -
Gemma3-12B - - - -

Table 4: Ablation Study on Fidelity Verification for Llama3.1-8B on CommonsenseQA. Factual
hallucination detection is required; fidelity (faithful) hallucination detection is varied as ablated
component. Best result in bold.

Method CommonsenseQA

Llama3.1-8B
F2 0.7867
Factual only 0.7451
Fidelity only 0.7447
Fidelity optional 0.7396

to varying degrees compared with our method (F2) and the results of only performing factual hallu-
cination detection and fidelity hallucination detection, as shown in Tab. 4.

D CASE STUDY OF QASC DATASET

It is worth noting that all the problems in the strategyqa dataset are binary judgment problems, which
cannot play a real role in the optimal solution verification on this dataset, so we have omitted this
part from this dataset. As for the analysis of optimal solution and the case study of other data sets,
we will show it in the appendix in combination with other data sets.

Fig. 7 shows a case study of the QASC dataset. First, we performed a factual hallucination detection.
By analyzing the contents in the figure, we can get that for the correctness of facts, climate (option
B) refers to the long-term average of weather conditions, including temperature and humidity (which
relates to water in the air). This aligns with general facts.

For optimal solution analysis, other options like storms (option A) are short-term weather events,
mass (option C) and density (option F) are physical properties, seasonal (option D) and winter
(option E) are time-based categories, length (option G) and fluid (option H) are unrelated. Climate
is the most appropriate and objective answer as it directly encompasses temperature and atmospheric
water content over time.

14
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Figure 7: Case study on the QASC dataset using Qwen3-8B. For this question, the LLM’s response
is consistent with the ground truth, leading to a PASS in factual verification. In addition, the response
also receives a PASS in fidelity verification.

For faithful hallucination detection, the premises here are the terms “temperature” and “water in the
air”. The conclusion is the option that best fits these terms. If a concept is defined by temperature
and water in the air, then it’s climate. This is a simple inference. It only needs to combine the two
directional facts of “temperature” and “water in the air” to infer the answer climate (option B).

E THE USE OF LARGE LANGUAGE MODELS

In the writing stage, we use the large language model to translate and polish. In addition, we use the
large language model to detect and modify code errors. We ensure that the design and implementa-
tion of the whole idea are not affected by the large language model.

15


	Introduction
	Related Work
	Hallucination Detection
	Inference in Large Language Models

	Methodology
	Background Setting
	Factual Hallucination Detection
	Fidelity Hallucination Detection
	Retry Mechanism

	Experiments
	Experiment Setup
	Datasets.
	Models.
	Baselines.
	Evaluation Metric.

	Main Results
	Ablation Study
	Impact of Fidelity Hallucination Detection.
	Impact of Factual Hallucination Detection.
	Comprehensive Impact.

	Case Study

	Limitation
	Conclusion
	Experiment Details
	Training Configuration
	Parameter Setting
	Generation of Data to Be Verified
	Data extraction and verification

	Prompt Template
	Factual Hallucination Detection
	Fidelity Hallucination Detection

	Supplement Results
	Influence of Few-shot
	Test of Fidelity Verification on Model Performance

	Case Study of QASC Dataset
	The Use of Large Language Models

