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ABSTRACT

Statistical disparity between distinct treatment groups is one of the most significant
challenges for estimating Conditional Average Treatment Effects (CATE). To
address this, we introduce a model-agnostic data augmentation method that imputes
the counterfactual outcomes for a selected subset of individuals. Specifically,
we utilize contrastive learning to learn a representation space and a similarity
measure such that in the learned representation space close individuals identified
by the learned similarity measure have similar potential outcomes. This property
ensures reliable imputation of counterfactual outcomes for the individuals with
close neighbors from the alternative treatment group. By augmenting the original
dataset with these reliable imputations, we can effectively reduce the discrepancy
between different treatment groups, while inducing minimal imputation error. The
augmented dataset is subsequently employed to train CATE estimation models.
Theoretical analysis and experimental studies on synthetic and semi-synthetic
benchmarks demonstrate that our method achieves significant improvements in
both performance and robustness to overfitting across state-of-the-art models.

1 INTRODUCTION

One of the most significant challenges for Conditional Average Treatment Effect (CATE) estimation
is the statistical disparity between distinct treatment groups (Goldsmith-Pinkham et al., 2022). While
Randomized Controlled Trials (RCT) mitigate this issue (Rubin, 1974; Imbens & Rubin, 2015),
they can be expensive, unethical, and sometimes unfeasible to conduct. Consequently, we are often
constrained to relying on observational studies, which are susceptible to selection bias arising from
the aforementioned issue. To address this, we introduce a model-agnostic data augmentation method,
comprising two key steps. First, our approach identifies a subset of individuals whose counterfactual
outcomes can be reliably imputed. Subsequently, it performs imputation for the counterfactual
outcomes of these selected individuals, thereby augmenting the original dataset with the imputed
values. Importantly, our method serves as a data pre-processing module that remains agnostic to the
choice of the subsequent model employed for CATE estimation. Extensive experiments underscore
the efficacy of our approach, as it consistently delivers substantial performance improvements across
various models, including state-of-the-art models for CATE estimation. Furthermore, our method
has been empirically validated to effectively mitigate overfitting, a significant challenge in CATE
estimation applications due to the inherent inaccessibility of counterfactual data.

Our method is motivated by an observed trade-off between (i) the discrepancy across treatment
groups and (ii) the error induced by the imputation of the missing counterfactual outcomes. Consider
the scenario with one control group and one treatment group. In this context, no individual can
appear in both the control and treatment groups due to the inaccessibility of counterfactual outcomes
(Holland, 1986). To illustrate the core concept behind our methodology, consider the following
experiment: for individuals in the control group (and reciprocally, the treatment group), we randomly
impute their outcome under treatment (or reciprocally, in the absence of treatment), generating
their counterfactual outcomes. Subsequently, we integrate each individual along with their imputed
outcomes back into the dataset. This transformation ensures that individuals from both the control
and treatment groups become identical, effectively eliminating any disparities. However, it becomes
evident that any model trained on such a randomly augmented dataset would exhibit poor performance,
primarily due to the substantial error introduced by the random imputation of the counterfactual
outcomes. Here, our approach seeks to address this challenge by identifying a subset of individuals for
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whom the counterfactual outcomes can be reliably imputed. Hence, the positive impact of disparity
reduction will outweigh the negative impact of imputation error. While it’s important to acknowledge
that the inherent issue of CATE estimation cannot be entirely eliminated, our approach effectively
alleviates the challenges faced by CATE estimation models, thus facilitating their learning process
and improving their performance.

In this paper, we utilize contrastive learning to identify the individuals whose counterfactual outcomes
can be reliably imputed. This technique helps us develop a representation space and a similarity
measure, such that within this learned representation space, close individuals by the similarity measure
exhibit similar potential outcomes. This smoothness property guarantees highly reliable imputation
of counterfactual outcomes for the individuals with a sufficient number of close neighbors from the
alternative treatment group. Specifically, we impute the counterfactual outcomes for these individuals
by utilizing the factual outcomes of their proximate neighbors. Importantly, this smoothness property
ensures that the imputation can be achieved locally with simple models that require minimal tuning.
We explore two distinct methods for imputation: linear regression and Gaussian Processes.

To comprehensively assess the efficacy of our data augmentation technique, we demonstrate that our
approach asymptotically generates datasets whose probability densities converge to those of RCTs. In
addition, we provide non-asymptotic generalization bounds for the performance of CATE estimation
models trained with our augmented data. Our empirical results further demonstrate the efficacy of our
method, showcasing consistent enhancements in the performance of state-of-the-art CATE estimation
models, including TARNet, CFR-Wass, and CFR-MMD (Shalit et al., 2017), S-Learner and T-Learner
integrated with neural networks, Bayesian Additive Regression Trees (BART) (Hill, 2011; Chipman
et al., 2010; Hill et al., 2020) with X-Learner (Künzel et al., 2019), and Causal Forests (CF) (Athey
& Imbens, 2016) with X-Learner.

Related Work. One of the fundamental tasks in causal inference is to estimate Average Treatment
Effects (ATE) and Conditional Average Treatment Effects (CATE) (Neyman, 1923; Rubin, 2005).
Various methods have been proposed to address ATE estimation task, including Covariate Adjust-
ment (Rubin, 1978), Propensity Scores (Rosenbaum & Rubin, 1983), Doubly Robust estimators (Funk
et al., 2011), Inverse Probability Weighting (Hirano et al., 2003), and recently Reisznet (Quintas-
Martinez et al., 2021). While these methods are successful for ATE estimation, they are not directly
applicable to CATE estimation. Recent advances in machine learning have led to new approaches
for CATE estimation, such as decision trees (Athey & Imbens, 2016), Gaussian Processes (Alaa &
Van Der Schaar, 2017), Multi-task deep learning ensemble (Jiang et al., 2023), Generative Model-
ing (Yoon et al., 2018), and representation learning with deep neural networks (Shalit et al., 2017;
Johansson et al., 2016). It is worth noting that alternative approaches for investigating causal rela-
tionships exist, such as graphical modeling and do-calculus, as proposed by Pearl (Pearl, 2009a;b).
In this work, we adopt the Neyman-Rubin framework. At its core, the CATE estimation problem
can be seen as a missing data problem (Rubin, 1974; Holland, 1986; Ding & Li, 2018) due to the
unavailability of the counterfactual outcomes. In this context, we propose a new data augmentation
approach for CATE estimation by imputing certain missing counterfactuals. Data augmentation,
a well-established technique in machine learning, serves to enhance model performance and curb
overfitting by artificially expanding the size of the training dataset (Van Dyk & Meng, 2001; Chawla
et al., 2002; Han et al., 2005; Jiang et al., 2020; Chen et al., 2020a; Liu et al., 2020; Feng et al., 2021).
A crucial aspect of our methodology is the identification of similar individuals. There are various
methods to achieve this goal, including propensity score matching (Rosenbaum & Rubin, 1983),
and Mahalanobis distance matching (Imai et al., 2008). Nonetheless, these methods pose significant
challenges, particularly in scenarios with large sample sizes or high-dimensional data, where they
suffer from the curse of dimensionality. Recently, Perfect Match (Schwab et al., 2018) is proposed
to leverage importance sampling to generate replicas of individuals. It relies on propensity scores
and other feature space metrics to balance the distribution between the treatment and control groups
during the training process. In contrast, we utilize contrastive learning to construct a similarity metric
within a representation space. Our method focuses on imputing missing counterfactual outcomes
for a selected subset of individuals, without creating duplicates of the original data points. While
the Perfect Match method is a universal CATE estimator, our method is a model-agnostic data
augmentation method that serves as a data preprocessing step for other CATE estimation models. It
is important to note that in recent years, other works on data augmentation for the intersection of
domain generalization and causal inference have been proposed (Ilse et al., 2021; Mahajan et al.,
2021).
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2 THEORETICAL BACKGROUND

Let T ∈ {0, 1} be a binary variable for treatment assignment, X ∈ X ⊂ Rd be the covariates
(features), and Y ∈ Y ⊂ R be the factual (observed) outcome. For each j ∈ {0, 1}, we define
Yj as the potential outcome (Rubin, 1974), which represents the outcome that would have been
observed if only the treatment T = j was administered. The random tuple (X,T, Y ) jointly follows
the factual (observational) distribution denoted by pF(x, t, y). The dataset used for causal inference,
denoted by DF = {(xi, ti, yi)}ni=1, consists of n observations independently sampled from pF where
n is the total number of observations. The counterfactual distribution, denoted by pCF, is defined
as the sampling distribution of the dataset in a hypothetical parallel universe where the treatment
assignment mechanism is inverted. To simplify the notation, for any distribution p(x, t, y), we use
p(x, t) (respectively, p(x)) to denote the marginalized distribution of p(x, t, y) over the random tuple
(X,T ) (respectively, X). For example, pF(x, t) is the factual joint distribution of X and T . For a
binary treatment assignment, the following identity holds: pCF(x, 1 − t) = pF(x, t) (Shalit et al.,
2017; Peters et al., 2017).
Definition 1 (CATE). The Conditional Average Treatment Effect (CATE) is defined as the expected
difference in potential outcomes given the covariates X = x:

τ(x) = E[Y1 − Y0|X = x]. (1)

Definition 2 (ATE). The Average Treatment Effect (ATE) is defined as:

τATE = E[Y1 − Y0]. (2)

CATE and ATE are identifiable under the assumptions of positivity, i.e., 0 < pF(T = 1|X) < 1, and
conditional unconfoundedness, i.e., (Y1, Y0) ⊥⊥ T |X (Robins, 1986; Imbens & Rubin, 2015). Let
τ̂(x) = h(x, 1)−h(x, 0) denote an estimator for CATE where h is a hypothesis h : X ×{0, 1} → Y
that estimates the underlying causal relationship between (X,T ) and Y .
Definition 3. The Expected Precision in Estimating Heterogeneous Treatment Effect (PEHE) (Hill,
2011) is defined as:

εPEHE(h) =

∫
X
(τ̂(x)− τ(x))2pF(x)dx =

∫
X
(h(x, 1)− h(x, 0)− τ(x))2pF(x)dx. (3)

Definition 4. Given a joint distribution p over (X,T, Y ) and a hypothsis h : X × {0, 1} → Y , let
Lp(h) be defined as:

Lp(h) =

∫
(y − h(x, t))2p(x, t, y) dx dt dy.

Then the factual loss LF and the counterfactual loss LCF are respectively defined as:

LF(h) = LpF(h), LCF(h) = LpCF(h) (4)

Remark. εPEHE is widely-used as the performance metric for CATE estimation. However, estimating
εPEHE directly from observational data such as DF is a non-trivial task, as it requires knowledge of
the counterfactual outcomes to compute the ground truth CATE values. This inherent challenge
underscores that models for CATE estimation need to be robust to overfitting the factual distribution.
Our empirical results (see Section 5) indicate that our method mitigates the risk of overfitting for
various CATE estimation models.

3 COCOA: CONTRASTIVE COUNTERFACTUAL AUGMENTATION

As discussed in Section 1, the effectiveness of imputing counterfactual outcomes depends on the
availability of a representation space and a similarity measure that satisfies a criterion: within this
representation space, individuals identified as similar by the similarity measure should exhibit similar
potential outcomes when subjected to the same treatment. This smoothness assumption ensures
straightforward local approximation: an individual’s potential outcomes should exhibit a strong
correlation with those of its nearby neighbors. In essence, for the individuals who possess a sufficient
number of close neighbors from the alternative treatment group, we can impute their counterfactual
outcomes using the factual outcomes of their nearby neighbors.
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To this end, we propose COntrastive COunterfactual Augmentation (COCOA) consisting of two key
components. The first component is a classifier gθ∗ , trained using contrastive learning (Le-Khac et al.,
2020; Jaiswal et al., 2020) to predict whether two individuals have similar outcomes when subjected
to the same treatment. The second component is a local regressor ψ, which imputes the counterfactual
outcome for a given individual after being fitted to the close neighbors. The pseudo-code of COCOA
is illustrated in Algorithm 1. Particularly, the trained classifier gθ∗ first identifies the close neighbors
of a given individual. These close neighbors are individuals who are likely to have similar potential
outcomes. Subsequently, the non-parametric regressor ψ utilizes the factual outcomes of these
identified individuals to estimate the counterfactual outcome of the target individual. For example, if
the target individual x belongs to the control group, we employ gθ∗ to select a subset of individuals
from the treatment group who may exhibit outcomes similar to those of x. Subsequently, ψ uses the
factual outcomes of these selected individuals from the treatment group to estimate the counterfactual
outcome of x under treatment. Finally, the imputed outcome of x is incorporated into the original
dataset. As discussed in Section 1, the minimal error of the counterfactual imputation plays a crucial
role in the success of our method. To ensure the reliability of these imputations, we only perform
imputations for individuals who possess a sufficient number of close neighbors. In our experiments,
we set the minimum required number of close neighbors to be 5. In the worst case, no individuals
will meet these criteria for imputation, resulting in no augmentation of the dataset. This approach
guarantees that our method does not compromise the information inherent in the original dataset.

Remark. COCOA differs from standard CATE estimation models: it does not generalize to unseen
samples. Instead, its objective is to identify individuals within a given dataset and then impute their
counterfactual outcomes. In essence, COCOA serves as a tool to augment the dataset for other CATE
models, thereby improving their ability to make accurate predictions on unseen samples.

3.1 CONTRASTIVE LEARNING MODULE

Contrastive (representation) learning methods (Wu et al., 2018; Bojanowski & Joulin, 2017; Doso-
vitskiy et al., 2014; Caron et al., 2020; He et al., 2020; Chen et al., 2020b; Trinh et al., 2019; Misra
& Maaten, 2020; Tian et al., 2020) are based on the fundamental principle that similar individ-
uals should be associated with closely related representations within an embedding space. This
is achieved by training models to perform an auxiliary task: predicting whether two individuals
are similar or dissimilar. The definition of similarity often depends on the context of the down-
stream task. In the context of CATE estimation, we consider two individuals with similar outcomes
under the same treatment as similar individuals. The degree of similarity between outcomes is
measured using a particular metric in the potential outcome space Y . In our case, we employ the
Euclidean norm in R1 for this purpose. With this perspective, given the factual (original) dataset
DF = {(xi, ti, yi)}ni=1, we construct a positive dataset D+ that includes pairs of similar individuals.
Specifically, we define D+ = {(xi, xj) : i, j ∈ [n], i ̸= j, ti = tj , ∥yi − yj∥ ≤ ϵ} where ϵ is
user-defined sensitivity parameter specifying the desired level of precision. We also create a negative
dataset D− = {(xi, xj) : i, j ∈ [n], i ̸= j, ti = tj , ∥yi − yj∥ > ϵ} containing pairs of individuals
deemed dissimilar. Let ℓ : {0, 1} × {0, 1} → R be any loss function for classification task. We train
a parametric classifier gθ : X × X → R where θ is the parameter vector that minimizes:

θ∗ ∈ argmin
θ

∑
(x,x′)∈D+

ℓ(gθ(x, x
′), 1) +

∑
(x,x′)∈D−

ℓ(gθ(x, x
′), 0). (5)

Selection of the Nearest Neighbors for imputation. For a given individual x with treatment t,
We utilize gθ∗ to identify a group of individuals from the factual dataset suitable for counterfactual
imputation. Specifically, we iterate over all the individuals who received treatment 1− t and employ
gθ∗ to predict whether their potential outcomes are close to the potential outcome of x under treatment
1− t. Let x be the individual who received treatment t and whose counterfactual outcome will be
imputed. Its selected neighbors Dx,t

1is defined as:

Dx,t
.
= {i ∈ [n] : ti = 1− t, gθ∗(x, xi) = 1} (6)

To ensure the quality of counterfactual imputation, we only estimate the counterfactual outcome of x
if |Dx,t| ≥ K, where K is a pre-determined parameter that controls estimation accuracy. In essence,

1The terms "individual" and "indices of individuals" are used interchangeably.
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Algorithm 1: COCOA: Contrastive Counterfactual Augmentation
Input: Factual dataset DF = {(xi, ti, yi)}ni=1, n is the total number of samples; sensitivity

parameter ϵ; threshold K for selecting individuals to augment counterfactuals
Output: Augmented factual dataset DAF as training data for CATE estimation models

1 Function Main:
2 DA ← ∅ ▷ Step 1: Train the contrastive learning module

3 Construct two datasets D+ and D− (See Section 3.1 for details)

4 Train a parametric model gθ, where θ is the parameter vector, by optimizing:
θ∗ ∈ argminθ

∑
(x,x′)∈D+ ℓ(gθ(x, x

′), 1) +
∑

(x,x′)∈D− ℓ(gθ(x, x
′), 0)

▷ Step 2: Augment the factual dataset
5 for i = 1, 2, . . . , n do
6 Ni ← {(xj , yj)|j ∈ [n], tj = 1− ti, gθ∗(xi, xj) = 1} (Only augment the factual data if the number

of close neighbors is sufficient)

7 if |Ni| ≥ K then
8 ŷi ← ψ(xi, Ni) D

A ← DA ∪ {(xi, 1− ti, ŷi)}

9 DAF ← DA ∪DF
10 return DAF

our approach ensures that we augment the counterfactual outcome for an individual solely when there
exists a sufficient number of closely related neighbors within the dataset.

3.2 LOCAL REGRESSION MODULE

After identifying the nearest neighbors, we employ a local regression module ψ to impute the
counterfactual outcomes. ψ has two arguments (i) x: the individual whose counterfactual outcome
needs to be imputed; (ii) Dx = {(xi, yi)}nx

i=1: a set of close neighbors to x from the alternative
treatment group with yi are their factual outcomes and nx is the number of close neighbors. In this
work, we explore two different types of local regression modules which are linear regression and
Gaussian Process (GP). In experimental studies, we present results with GP using a DotProduct
Kernel and defer the results for other kernels and linear regression to Appendix C.2 due to space
limitation. We opt for these relatively straightforward function classes for local regression motivated
by the following three principles:

1. Local Approximation: complex functions can be locally estimated with simple functions, e.g.,
continuous functions and complex distributions can be approximated by a linear function
(Rudin, 1953) and Gaussian distributions (Tjøstheim et al., 2021), respectively.

2. Sample Efficiency: if the class of the local linear regression module can estimate the true
target function locally, then a class with less complexity will require fewer close neighbors
for good approximations.

3. Practicality: A simpler class of ψ requires less hyper-parameter tuning which is even more
challenging in causal inference applications.

Gaussian Process. Gaussian Processes (Seeger, 2004) offers a robust non-parametric approach
to regression. Consider ϕ(x) ∼ GP(m(x), k(x, x′)), for x, x′ ∈ X . It is a collection of random
variables indexed by a set X such that any finite collection of them follows a multivariate Gaussian
distribution. Consider a finite index set of n elements X .

= {xi}ni=1, then the n-dimensional random
variable ϕ(X)

.
=

[
ϕ(x1), ϕ(x2), . . . , ϕ(xn)

]
follows a Gaussian distribution:

ϕ(X) ∼ N
(
m(X),K(X)

)
(7)

where m(X)
.
=

[
m(x1), . . . ,m(xn)

]
is the mean and the K(X) is a n× n covariance matrix whose

element on the i-th row and j-th column is defined as K(X)ij
.
= K(xi, xj). From a functional

perspective, a GP imposes a prior over functions ϕ : X → R, which is completely characterized by a
mean function m : X → R and a kernel k : X × X → R. m and K encapsulate prior beliefs about
the smoothness and periodicity of ϕ.
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Based on the principle of Local Approximation, we assume that, given the construction of Dx,t, the
counterfactual outcome of an individual x and the factual outcomes of individuals within Dx,t follow
a GP. If x received treatment t, after locating the group of close neighbors using the method described
in Section 3.1, the imputed counterfactual outcome for x is described as follows:

ŷ1−t
x

.
= E[y1−t|x, {y1−t

i }], i ∈ Dx,t (8)

Let σ(i) denote the i-th smallest index in Dx,t and k denote the kernel (covariance function) of GP.
The imputed counterfactual outcome will have the following close-form formula:

ŷ1−t
x = E[y1−t|x, y1−t

i , i ∈ Dx,t] = KT
xK

−1
xx y (9)

where y = [y1−t
σ(1), . . . , y

1−t
σ(|Dx,t|)], Kx = [k(x, xσ(1)), . . . , k(x, xσ(|Dx,t|))] and Kx,x is a |Dx,t| ×

|Dx,t| matrix whose element on the i-th row and j-column is k(xσ(i), xσ(j)). Finally, we append the
tuple (x, 1− t, ŷ1−t

x ) into the factual dataset to augment the training data.

4 THEORETICAL ANALYSIS

In this section, we present two main theoretical results to support the efficacy of our approach and
to provide a deeper understanding of its robustness. Our first result characterizes the asymptotic
behavior of data augmentation methods for causal inference, demonstrating that the distribution of
the augmented dataset converges towards the distribution of randomized controlled trials (RCTs) - the
gold standard for causal inference applications. Our second result establishes a generalization bound
for the performance of CATE estimation models trained using the augmented dataset. Importantly, it
is worth noting that the generalization bound is versatile and can be applied to a wide range of data
augmentation techniques, extending beyond the scope of COCOA.

4.1 ASYMPTOTIC ANALYSIS

We first define a notion of consistency for data augmentation. Next, we demonstrate that the proposed
consistency is equivalent to emulating RCTs. Finally, we provide convergence guarantees under the
positivity assumption. Please note that our proposed analysis does not provide theoretical guarantees
for the use of contrastive learning. Rather, it serves as an initial step towards understanding the
effectiveness of data augmentation in CATE estimation.
Definition 5 (Consistency of Factual Distribution). A factual distribution pF is consistent if for every
hypothesis h : X × {0, 1} → Y,LF(h) = LCF(h).
Definition 6 (Consistency of Data Augmentation). A data augmentation method is said to be
consistent if the augmented data follows a factual distribution that is consistent.
Proposition 1 (Consistency is Equivalent to RCT). The factual distribution of any randomized
controlled trial is consistent. More importantly, suppose we have a consistent factual distribution,
then the data must originate from a distribution that is equivalent to one generating a randomized
controlled trial.

Theorem 1 suggests that any consistent data augmentation is equivalent to collecting data from an
RCT - the gold standard for CATE estimation. Next, we establish the asymptotic consistency of
COCOA. To this end, we demonstrate that for any given individual x, the likelihood of encountering
neighboring data points is sufficiently high as the number of data points grows, which guarantees
reliable imputation of its counterfactual outcome. This concept is formally captured in the following
Theorem 2.
Proposition 2. Let x ∈ X and let {Xk}Mk=1 be iid samples of X . Under positivity, we have that for
t ∈ {0, 1}:

P (∩Mk=1Xk /∈ Bϵ(x)|T = t) ≤ (1− P (X ∈ Bϵ(x)|T = t))M −→
M→∞

0

where Bϵ(x) = {x′ ∈ X |∥x− x′∥ < ϵ} is the ϵ-ball around x.

This implies that with a sufficient number of samples, the probability of not encountering data
points in close proximity to any given point x becomes very small. Hence, positivity ensures that
within the big data regime, we will encounter densely populated regions, enabling us to approximate
counterfactual distributions locally. This facilitates the application of our methods.
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4.2 GENERALIZATION BOUND FOR DATA AUGMENTATION METHODS

Let pF(x, t, y) denote the factual distribution of the datasets and pCF(x, t, y) the counterfactual distri-
bution. Counterfactual data augmentation is essentially sampling from an estimated counterfactual
distribution p̂CF(x, t, y). The distribution of the augmented factual dataset can be defined as follows:

pAF(x, t, y) = (1− α) · pF(x, t, y) + α · p̂CF(x, t, y), (10)

where α ∈ [0, 12 ] represents the ratio of the number of generated counterfactual samples to the total
number of samples in the augmented dataset. Let pRCT(x, t, y) represent the distribution of (X,T, Y )
when the observations are sampled from randomized controlled trials.

Next, we present generalization bounds for the performance of a hypothesis trained with the aug-
mented dataset. To establish the generalization bound, we assume that there is a true potential
outcome function f such that Y = f(X,T ) + η with η verifying that E[η] = 0. Let A denote the
process of data augmentation such that A(x, t,D) denotes the imputed outcome for the individual x
under treatment t where D is the original dataset. Let n = |D| denote the total number of samples in
the original dataset. Let f̃n(x, t) = ED[A(X,T,D)|X = x, T = t] denote the expected imputation
when the dataset D consists of n samples independently sampled from pF .
Proposition 3 (Generalization Bound). LetH = {h : X × {0, 1} → Y} denote all the measurable
functions for potential outcome estimation. Let LAF = LpAF be defined as in Definition 4. Then
f̃ ∈ argminh∈H LAF(h).Moreover, for any measurable hypothesis function h ∈ H, its εPEHE is upper
bounded as follows:

εPEHE(h) ≤ 4 ·
(
LAF(h) + V

(
pRCT

(
X,T

)
, pAF

(
X,T

))
+ α · bA(n)

)
(11)

where V (p, q) =
∫
S |p(s)− q(s)|ds is the L1 distance 2 between two distributions,

bA(n) = EX,T∼p̂CF(x,t)

[
∥f(X,T )− f̃n(X,T )∥2

]
Interpretation of the Generalization Bound. We first note that the first term in Theorem 3 LAF(h)
is essentially the training loss of a hypothesis h on the augmented dataset. The second term, which
is independent of Y , characterizes the statistical similarity between the individuals and treatment
assignments in the augmented dataset and those generated from an RCT. As there is no statistical
disparity across treatment groups when (X,T ) follows pRCT, the closer pAF is to pRCT the less is the
statistical disparity in the augmented dataset. Meanwhile, the third term characterizes the accuracy of
the data augmentation method. Hence, this theorem provides a rigorous illustration of the trade-off
between the statistical disparity across treatment groups and the imputation error. It underscores
that by simultaneously minimizing disparity and imputation error, we can enhance the performance
of CATE estimation models. Also note that as α, i.e., the ratio of imputed data points to all the
data points, increases, the third term increases while the second decreases. This rigorously captures
another important trade-off between the precision of data imputation and the discrepancy across
treatment groups. It is also essential to highlight that if the local regression module can achieve
more accurate estimation with more samples (e.g., local Gaussian Process and local linear regression)
bA(n) will converge to 0 as n increases. Hence, εPEHE will converge to 0. This result aligns with our
asymptotic analysis, indicating that as the augmented dataset grows in size, it converges toward RCT.
In our experiments (Section 5), we demonstrate that even small datasets can substantially benefit
from augmenting the training data with just a few additional data samples using our approach.

5 EXPERIMENTAL STUDIES

We test our proposed methods on various benchmark datasets: the IHDP dataset (Ramey et al., 1992;
Hill, 2011), the News dataset (Johansson et al., 2016; Newman et al., 2008), and the Twins dataset
(Louizos et al., 2017). Additionally, we apply our methods to two synthetic datasets: one with linear
functions for potential outcomes and the other with non-linear functions. A detailed description of
these datasets is provided in Appendix A. To estimate the variance of our method, we randomly divide
each of these datasets into a train (70%) dataset and a test (30%) dataset with varying seeds, and

2Also known as the total variation distance.
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(a) IHDP: TARNet (b) IHDP: CFR-Wass (c) IHDP: T-learner

Figure 1: Effects of COCOA on preventing overfitting. The X-axis denotes the number of epochs, and
the Y-axis represents the performance measure (not accessible in practice). As can be observed, the
performance of the models trained with the original dataset without data augmentation demonstrates
decreases as the epoch number increases beyond the optimal stopping epoch (blue curves), overfitting
to the factual distribution. In contrast, the error of the models trained with the augmented dataset does
not increase significantly (red curves), demonstrating the effect of COCOA on preventing overfitting.

Table 1:
√
εPEHE across various CATE estimation models, with COCOA augmentation (w/ aug.) and

without COCOA augmentation (w/o aug.) on Twins, Linear, and Non-Linear datasets. Lower
√
εPEHE

corresponds to the better performance.

Twins Linear Non-linear
Model w/o aug. w/ aug. w/o aug. w/ aug. w/o aug. w/ aug.
TARNet 0.59±0.29 0.57±0.32 0.93±0.09 0.81±0.02 7.41±0.23 6.64±0.11

CFR-Wass 0.50±0.13 0.14±0.10 0.87±0.05 0.74±0.05 7.32±0.21 6.22±0.07

CFR-MMD 0.19±0.09 0.18±0.12 0.91±0.04 0.78±0.06 7.35±0.19 6.28±0.10

T-Learner 0.11±0.03 0.10±0.03 0.90±0.01 0.89±0.01 7.68±0.12 7.51±0.07

S-Learner 0.90±0.02 0.81±0.06 0.64±0.01 0.63±0.01 7.22±0.01 6.92±0.01

BART 0.57±0.08 0.56±0.08 0.65±0.00 0.30±0.00 5.49±0.00 4.50±0.00

CF 0.57±0.08 0.51±0.11 0.63±0.00 0.27±0.00 5.46±0.00 4.46±0.00

record the results from experiments with these different splits of data. Moreover, we demonstrate the
efficacy of our methods across a variety of CATE estimation models, including TARNet, CFR-Wass,
CFR-MMD, T-Learner, S-Learner, BART, and Causal Forests (CF).

Performance Improvements. The experimental results to verify the effect of COCOA on improving
the performance of CATE estimation models are summarized in Table 1 and Table 2. These tables
showcase the performance of various CATE estimation models, including the state-of-the-art ones,
with and without data augmentation. It can be observed that COCOA leads to consistent performance
improvement for a variety of CATE estimation models. Moreover, the improvements achieved by our
method are consistent across all the datasets. We also observe that COCOA significantly outperforms
Perfect Match (Schwab et al., 2018) as shown in Table 2.

Robustness Improvements. In the context of CATE estimation, it is essential to notice the absence
of a validation dataset due to the unavailability of the counterfactual outcomes. This poses a challenge
in preventing the models from overfitting to the factual distribution. Our proposed data augmentation
technique effectively addresses this challenge, as illustrated in Figure 1, resulting in a significant
enhancement of the overall effectiveness of various CATE estimation models. Notably, counterfactual
balancing frameworks (Johansson et al., 2016; Shalit et al., 2017) significantly benefit from COCOA.
This improvement can be attributed to the fact that data augmentation in dense regions helps narrow
the discrepancy between the distributions of the control and the treatment groups. By reducing this
disparity, our approach enables better generalization and minimizes the balancing distance, leading to
more stable outcomes. We include more results in Appendix C.4.

Ablation Studies. Additionally, we conducted ablation studies to assess the impact of two key
parameters on the performance of different CATE estimation models trained with the IHDP dataset.
Specifically, we investigate the influence of the epsilon ball size (R) in the embedding space and the
number of neighbors (K) on the models’ performance, as shown in Figure 2. These experiments
illustrate the trade-off between the quality of imputation and the discrepancy of the treatment groups.
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Table 2:
√
εPEHE across various CATE estimation models, with COCOA augmentation (w/ aug.),

without COCOA augmentation (w/o aug.), and with Perfect Match augmentation on News and IHDP
datasets. Lower

√
εPEHE corresponds to the better performance.

News IHDP
Model w/o aug. w/ aug. w/o aug. w/ aug.
TARNet 5.34±0.34 5.31±0.17 0.92±0.01 0.87±0.01

CFR-Wass 3.51±0.08 3.47±0.09 0.85±0.01 0.83±0.01

CFR-MMD 5.05±0.12 4.92±0.10 0.87±0.01 0.85±0.01

T-Learner 4.79±0.17 4.73±0.18 2.03±0.08 1.69±0.03

S-Learner 3.83±0.06 3.80±0.06 1.85±0.12 0.86±0.01

BART 3.61±0.02 3.55±0.00 0.67±0.00 0.67±0.00

CF 3.58±0.01 3.56±0.01 0.72±0.01 0.63±0.01

Perfect Match 4.09±1.12 0.84±0.61

Table 3:
√
εPEHE across different similarity measures: Contrastive Learning, propensity scores, and

Euclidean distance, using CFR-Wass across IHDP, News, and Twins datasets.

Measure of Similarity Euclidean Distance Propensity Score Contrastive Learning
IHDP 3.32±1.13 3.94±0.21 0.83±0.01

News 4.98±0.10 4.82±0.11 3.47±0.09

Twins 0.23±0.10 0.48±0.09 0.14±0.10

The detailed ablation studies are provided in Appendix C.3. Finally, we provide ablations comparing
our proposed contrastive learning method to other standard similarity measures: propensity scores
and Euclidean distance in the feature space, presented in Table 3. Additionally, we include in the
Appendix the results for ATE estimation C.1, as well as ablations on the performance obtained using
various kernels for Gaussian processes and local linear regression C.2.
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Figure 2: Ablation studies on the impact of the size of the ϵ−Ball (R) and the number of neighbors
(K) on the performance. The ablation study is conducted with three CATE estimation models on the
IHDP dataset. These studies illustrate the trade-off between minimizing the discrepancy between the
distributions—achieved by reducing K and increasing R—and the quality of the imputed data points,
which is achieved by decreasing R and increasing K.

6 CONCLUSION

In this paper, we present a model-agnostic data augmentation method for CATE estimation. Our
method combines theoretical guarantees with practical implementation, utilizing contrastive learning
to learn a representation space where it is possible to identify a subset of individuals for which
it can reliably impute their counterfactual outcomes. By adopting this approach, we enhance the
performance and robustness of various CATE estimation models across benchmark datasets. We also
present theoretical analysis and generalization bounds supporting our methods.
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REPRODUCIBILITY STATEMENT

The detailed dataset descriptions are provided in Appendix A, offering a comprehensive overview of
the data used in our experiment. Additionally, our choice of architectures and the associated training
parameters are demonstrated in Section 5.

REFERENCES

Ahmed M Alaa and Mihaela Van Der Schaar. Bayesian inference of individualized treatment effects
using multi-task gaussian processes. Advances in neural information processing systems, 30, 2017.

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects. Proceedings
of the National Academy of Sciences, 113(27):7353–7360, 2016.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

Piotr Bojanowski and Armand Joulin. Unsupervised learning by predicting noise. In International
Conference on Machine Learning, pp. 517–526. PMLR, 2017.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Gridmask data augmentation. arXiv
preprint arXiv:2001.04086, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020b.

Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression
trees. The Annals of Applied Statistics, 2010.

Peng Ding and Fan Li. Causal inference. Statistical Science, 33(2):214–237, 2018.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. Advances in neural information
processing systems, 27, 2014.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
Eduard Hovy. A survey of data augmentation approaches for nlp. arXiv preprint arXiv:2105.03075,
2021.

Michele Jonsson Funk, Daniel Westreich, Chris Wiesen, Til Stürmer, M Alan Brookhart, and Marie
Davidian. Doubly robust estimation of causal effects. American journal of epidemiology, 173(7):
761–767, 2011.

Paul Goldsmith-Pinkham, Karen Jiang, Zirui Song, and Jacob Wallace. Measuring changes in
disparity gaps: An application to health insurance. In AEA Papers and Proceedings, volume 112,
pp. 356–360. American Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203,
2022.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in
imbalanced data sets learning. In Advances in Intelligent Computing: International Conference on
Intelligent Computing, ICIC 2005, Hefei, China, August 23-26, 2005, Proceedings, Part I 1, pp.
878–887. Springer, 2005.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

10



Under review as a conference paper at ICLR 2024

Jennifer Hill, Antonio Linero, and Jared Murray. Bayesian additive regression trees: A review and
look forward. Annual Review of Statistics and Its Application, 7:251–278, 2020.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011.

Keisuke Hirano, Guido W Imbens, and Geert Ridder. Efficient estimation of average treatment effects
using the estimated propensity score. Econometrica, 71(4):1161–1189, 2003.

Paul W Holland. Statistics and causal inference. Journal of the American statistical Association, 81
(396):945–960, 1986.

Maximilian Ilse, Jakub M Tomczak, and Patrick Forré. Selecting data augmentation for simulating
interventions. In International Conference on Machine Learning, pp. 4555–4562. PMLR, 2021.

Kosuke Imai, Gary King, and Elizabeth A Stuart. Misunderstandings between experimentalists and
observationalists about causal inference. Journal of the royal statistical society: series A (statistics
in society), 171(2):481–502, 2008.

Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical sciences.
Cambridge University Press, 2015.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

Wei Jiang, Kai Zhang, Nan Wang, and Miao Yu. Meshcut data augmentation for deep learning in
computer vision. Plos one, 15(12):e0243613, 2020.

Ziyang Jiang, Zhuoran Hou, Yiling Liu, Yiman Ren, Keyu Li, and David Carlson. Estimating causal
effects using a multi-task deep ensemble. arXiv preprint arXiv:2301.11351, 2023.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual
inference. In International conference on machine learning, pp. 3020–3029. PMLR, 2016.

Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
neous treatment effects using machine learning. Proceedings of the national academy of sciences,
116(10):4156–4165, 2019.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A
framework and review. Ieee Access, 8:193907–193934, 2020.

Pei Liu, Xuemin Wang, Chao Xiang, and Weiye Meng. A survey of text data augmentation. In
2020 International Conference on Computer Communication and Network Security (CCNS), pp.
191–195. IEEE, 2020.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling. Causal
effect inference with deep latent-variable models. Advances in neural information processing
systems, 30, 2017.

Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching. In
International Conference on Machine Learning, pp. 7313–7324. PMLR, 2021.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6707–
6717, 2020.

Matthew L Newman, Carla J Groom, Lori D Handelman, and James W Pennebaker. Gender
differences in language use: An analysis of 14,000 text samples. Discourse processes, 45(3):
211–236, 2008.

Jersey Neyman. Sur les applications de la théorie des probabilités aux experiences agricoles: Essai
des principes. Roczniki Nauk Rolniczych, 10(1):1–51, 1923.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009a.

11



Under review as a conference paper at ICLR 2024

Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3(none):96 – 146, 2009b.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

Victor Quintas-Martinez, Victor Chernozhukov, Vasilis Syrgkanis, and Whitney Newey. Riesznet and
forestriesz: Automatic debiased machine learning with neural nets and random forests. 2021.

Craig T Ramey, Donna M Bryant, Barbara H Wasik, Joseph J Sparling, Kaye H Fendt, and Lisa M
La Vange. Infant health and development program for low birth weight, premature infants: Program
elements, family participation, and child intelligence. Pediatrics, 89(3):454–465, 1992.

James Robins. A new approach to causal inference in mortality studies with a sustained exposure
period—application to control of the healthy worker survivor effect. Mathematical modelling, 7
(9-12):1393–1512, 1986.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Donald B Rubin. Bayesian inference for causal effects: The role of randomization. The Annals of
statistics, pp. 34–58, 1978.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal
of the American Statistical Association, 100(469):322–331, 2005.

Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill Book Co., New York, 1st edition,
1953.

Patrick Schwab, Lorenz Linhardt, and Walter Karlen. Perfect match: A simple method for learning
representations for counterfactual inference with neural networks. arXiv preprint arXiv:1810.00656,
2018.

Matthias Seeger. Gaussian processes for machine learning. International journal of neural systems,
14(02):69–106, 2004.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
ization bounds and algorithms. In International Conference on Machine Learning, pp. 3076–3085.
PMLR, 2017.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in neural information processing systems,
33:6827–6839, 2020.

Dag Tjøstheim, Håkon Otneim, and Bård Støve. Statistical Modeling Using Local Gaussian Approxi-
mation. Academic Press, 2021.

Trieu H Trinh, Minh-Thang Luong, and Quoc V Le. Selfie: Self-supervised pretraining for image
embedding. arXiv preprint arXiv:1906.02940, 2019.

David A Van Dyk and Xiao-Li Meng. The art of data augmentation. Journal of Computational and
Graphical Statistics, 10(1):1–50, 2001.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
treatment effects using generative adversarial nets. In International Conference on Learning
Representations, 2018.

12



Under review as a conference paper at ICLR 2024

APPENDIX

A DATASET DESCRIPTIONS

IHDP The IHDP dataset is a semi-synthetic dataset that was introduced based on real covariates
available from the Infant Health and Development Program (IHDP) to study the effect of development
programs on children. The features (covariates) in this dataset come from a Randomized Control
Trial. The potential outcomes were simulated following Setting B in Hill (2011). The IHDP dataset
consists of 747 individuals (139 in the treatment group and 608 in the control group), each with 25
features. The potential outcomes are generated as follows:

Y0 ∼ N (exp(βT (X +W )), 1)

and
Y1 ∼ N (βT (X +W )− ω, 1)

whereW has the same dimension asX with all entries equal 0.5 and ω = 4. The regression coefficient
β is a vector of length 25 where each element is randomly sampled from a categorical distribution with
the support (0, 0.1, 0.2, 0.3, 0.4) and the respective probability masses µ = (0.6, 0.1, 0.1, 0.1, 0.1).

News The News Dataset is a semi-synthetic dataset designed to assess the causal effects of various
news topics on reader responses. It was first introduced in Johansson et al. (2016). The documents
were sampled from news items from the NY Times corpus (downloaded from UCI Newman et al.
(2008)). The covariates available for CATE estimation are the raw word counts for the 100 most
probable words in each topic. The treatment t ∈ {0, 1} denotes the viewing device. t = 0 means
with computer and t = 1 means with mobile. A topic model is trained on a comprehensive collection
of documents to generate z(x) ∈ Rk that represents the topic distribution of a given news item x
(Johansson et al., 2016).

Let the treatment effects be represented by zc1 (for t = 1) and zc0 (for t = 0) zc1 is defined as the
topic distribution of a randomly selected document while zc0 is the average topic representation
across all documents. The reader’s opinion of news item x on device t is influenced by the similarity
between z(x) and zct , expressed as:

y(x, t) = C ·
(
z(x)T zc0 + t · z(x)T zc1

)
+ ϵ

where C = 50 is a scaling factor and ϵ ∼ N (0, 1). The assignment of a news item x to a device
t ∈ {0, 1} is biased towards the preferred device for that item, modeled using the softmax function:

p(t = 1|x) = eκ·z(x)
T zc1

eκ·z(x)
T zc0 + eκ·z(x)

T zc1

Here, κ determines the strength of the bias and it is assigned to be 10.

Twins The Twins dataset Louizos et al. (2017) is based on the collected birthday data of twins
born in the United States from 1989 to 1991. It is assumed that twins share significant parts of
their features. Consider the scenario where one of the twins was born heavier than the other as
the treatment assignment. The outcome is whether the baby died in infancy (i.e., the outcome is
mortality). Here, the twins are divided into two groups: the treatment and the control groups. The
treatment group consists of heavier babies from the twins. On the other hand, the control group
consists of lighter babies from the twins. The potential outcomes, Y0 and Y1, are generated through:

Y0 ∼ N (exp(βTX), 0.2)

and
Y1 ∼ N (αTX, 0.2)

Where β and α are sampled from a high dimensional standard normal distribution.
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Linear dataset We synthetically generate a dataset with N = 1500 samples and d = 10 features.
The feature vectors X = (x1, x2, . . . , xd)

T ∈ Rd are drawn from a standard normal distribution.
The treatment assignment t ∈ {0, 1} is biased, with the probability of treatment being

p(t = 1|x) = 1

1 + exp(−(x1 + x2))

We generate potential outcomes using two linear functions with coefficients β0 = (0.5, , . . . , 0.5) ∈
Rd and β1 = (0.3, . . . , 0.3) ∈ Rd as follows:

Y0 = β0X +N (0, 0.01)

Y1 = β1X +N (0, 0.01)

Non-Linear dataset We construct a synthetic dataset consisting of N = 1500 instances with
d = 10 features. The feature vectors, denoted by X = (x1, x2, . . . , xd)

T ∈ Rd, are sampled from a
standard normal distribution. The treatment assignment t ∈ {0, 1} is biased, with the probability of
treatment being

p(t = 1|x) = 1

1 + exp(−(x1 + x2))

We generate potential outcomes using two linear functions with coefficients β0 = (0.5, , . . . , 0.5) ∈
Rd and β1 = (0.3, . . . , 0.3) ∈ Rd as follows:

Y0 = exp (β0X) +N (0, 0.01)

Y1 = exp((β1X) +N (0, 0.01)

B PROOFS OF THE THEORETICAL RESULTS

In this section, we include the proofs for the theoretical results presented in the main text.
Proposition 1 (Consistency is Equivalent Randomized Controlled Trials). Suppose we have a factual
distribution pF and its corresponding counterfactual distribution pCF such that for every hypothesis
h : X × {0, 1} → Y,LF(h) = LCF(h). This implies that the data must originate from a randomized
controlled trial, i.e., pF(X|T = 1) = pF(X|T = 0).

Proof of Proposition 1.
Suppose that for every hypothesis h : X × {0, 1} → Y,LF(h) = LCF(h).
By definition,

LF(h) =

∫
(y − h(x, t))2pF(x, t, y) dx dt dy

and
LCF(h) =

∫
(y − h(x, t))2pCF(x, t, y) dx dt dy

We can write this as

EpF

[(
Y − h(X,T )2

)]
= EpCF

[(
Y − h(X,T )2

)]
Since this holds for every function h, consider two Borel sets A and B in X × T × Y , and we let
h1(X,T ) = E [Y |X,T ]− 1A and h2(X,T ) = E [Y |X,T ]− 1B . Hence we have that,

EpF

[
(Y − h1(X,T ))2

]
= EpF

[
(Y − E [Y |X,T ] + 1A)

2
]

= EpF

[
(Y − E [Y |X,T ])2

]
+ EpF [1A] + 2EpF [1A (Y − E [Y |X,T ])]

And we have that, EpF [1A (Y − E [Y |X,T ])] = 0 since by definition of the conditional expectation

we have that E[Y 1A] = E[E [Y |X,T ]1A]. We denote by MSE(pF) = EpF

[
(Y − E [Y |X,T ])2

]
.

Therefore we have that

EpF

[
(Y − h1(X,T ))2

]
=MSE(pF) + EpF [1A]
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Using the same argument for pCF we have the following result:

EpCF

[
(Y − h1(X,T ))2

]
=MSE(pCF) + EpCF [1A]

Similarly, we have the following for h2:

EpF

[
(Y − h2(X,T ))2

]
=MSE(pF) + EpF [1B ]

EpCF

[
(Y − h2(X,T ))2

]
=MSE(pCF) + EpCF [1B ]

Therefore we have
MSE(pF)−MSE(pCF) = EpF [1A]− EpCF [1A]

and
MSE(pF)−MSE(pCF) = EpF [1B ]− EpCF [1B ]

Therefore
EpF [1A]− EpCF [1A] = EpF [1B ]− EpCF [1B ]

Hence it follows,
EpF [1A∩B ] = EpCF [1A∩B ]

And as this holds for every Borel measurable set A and B, therefore we have that pF = pCF.

Denote by u = pF(T = 1) we have pF(X) = upF(X|T = 1) + (1− u)pF(X|T = 0). Similarly we
have that pCF(X) = (1− u)pCF(X|T = 1) + upCF(X|T = 0). Therefore, since pF = pCF,

upF(X|T = 1) + (1− u)pF(X|T = 0) = (1− u)pCF(X|T = 1) + upCF(X|T = 0)

= (1− u)pF(X|T = 1) + upF(X|T = 0)

Hence
(2u− 1) pF(X|T = 1) = (2u− 1) pF(X|T = 0)

Therefore we conclude the result that,

pF(X|T = 1) = pF(X|T = 0).

This concludes the proof.

For completeness, we also include this result.

Lemma 1 (Consistency of Randomized Controlled Trials). The factual distribution of any randomized
controlled trial verifying pF(T = 1) = pF(T = 0) is consistent, i.e., if pF(X|T = 1) = pF(X|T = 0)
and pF(T = 1) = pF(T = 0), then for all h : X × {0, 1} → Y ,

LF(h) = LCF(h)

Proof. Let u = pF (T = 1) = 1
2 , pF (T = 1) = pCF (T = 0)

LF(h) =

∫
(y − h(x, t))2pF(x, t, y) dx, dt dy

= u

∫
(y − h(x, 1))2pF(x, y|T = 1) dx dy + (1− u)

∫
(y − h(x, 0))2pF(x, y|T = 0) dx dy

= u

∫
(y − h(x, 1))2pF(x, y|T = 0) dx dy + (1− u)

∫
(y − h(x, 0))2pF(x, y|T = 1) dx dy

= u

∫
(y − h(x, 1))2pCF(x, y|T = 1) dx dy + (1− u)

∫
(y − h(x, 0))2pCF(x, y|T = 0) dx dy

=

∫
(y − h(x, t))2pCF(x, t, y) dx dy

= LCF(h)
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Proposition 2 (Close neighbors are likely to appear.). Let x ∈ X and let {Xk}Mk=1 be iid samples
of X . Under positivity, i.e ∀x′ ∈ X , 0 < p(T = 1|X = x′) < 1, for every ϵ > 0, we have that for
t ∈ {0, 1}:

P (∩Mk=1Xk /∈ Bϵ(x)|T = t) ≤ (1− P (X ∈ Bϵ(x)|T = t))M −→
M→∞

0

where Bϵ(x) = {x′ ∈ X |∥x− x′∥ < ϵ} is the ϵ-ball around x.

Proof. Under positivity, we have that 0 < P (X ∈ Bϵ(x)|T = t) < 1. Hence 0 < 1 − P (X ∈
Bϵ(x)|T = t) < 1. Therefore we conclude the result.

Proposition 3. Let H = {h : X × {0, 1} → Y} denote all the measurable functions for potential
outcome estimation. Let LAF = LpAF be defined as in Definition 4. Then f̃ ∈ argminh∈H LAF(h).
Moreover, for any measurable hypothesis function h ∈ H, its εPEHE is upper bounded as follows:

εPEHE(h) ≤ 4 ·
(
LAF(h) + V

(
pRCT

(
X,T

)
, pAF

(
X,T

))
+ α · bA(n)

)
(12)

where V (p, q) =
∫
S |p(s)− q(s)|ds is the L1 distance 3 between two distributions,

bA(n) = EX,T∼p̂CF(x,t)

[
∥f(X,T )− f̃n(X,T )∥2

]
In order to prove Theorem 3 we start by stating a new definition for an “ideal" factual distribution.
Subsequently, we will prove its consistency. The ideal factual distribution is defined as follows:

pIF =
1

2
pF +

1

2
pCF. (13)

In other words, to sample a dataset from pIF , we sample from the factual distribution pF half of the
time and from the counterfactual distribution pCF in the other half of the times. Let pICF denote the
counterfactual distribution corresponding to pIF . We next show that pIF is consistent (thus called
ideal distribution).

Lemma 2 (Consistency of pIF.). The error of the ideal factual distribution equals the error of its
corresponding counterfactual distribution, i.e., for every hypothesis h : X × {0, 1} → Y , we have
that LIF(h) = LICF(h).

Proof. We observe that pICF = 1
2pCF +

1
2pF. Therefore, pICF = pIF and the result follows.

Intuitively, this result is saying that the ideal counterfactual augmentation gives us a factual distribution
that perfectly balances the factual and counterfactual worlds. It follows from Theorem 1 that
achieving this property guarantees that the dataset is identically distributed to the one generated from
a Randomized Controlled Trial. However, it is impossible to sample from pCF.

We can now prove Theorem 3.

Proof. We have f : X × {0, 1} → Y to be the function underlying the true causal relationship
between (X,T ) and Y with (X,T ) following a distribution pIF(x, t). We also have f̃n(x, t) =
ED[A(X,T,D)|X = x, T = t] is the new function induced by the data augmentation process.
Hence by construction, we have that f̃ ∈ argminh∈H LAF(h). In other words, we can see f̃n :
X ×{0, 1} → Y as a new potential outcome function that generates the augmented dataset following
pAF. It follows from Theorem 3 that:

LIF(h) ≤ LAF(h) + V (pIF, pAF) + Ex,t∼pAF [∥f(x, t)− f̃(x, t)∥
2]

where LIF is the factual loss with respect to the ideal density and LAF is the factual loss with respect
to the density of the augmented data.

3Also known as the total variation distance.
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By decomposition of the εPEHE we have that,

εPEHE(h) =

∫
X
(h(x, 1)− h(x, 0)− f(x, 1) + f(x, 0))

2
pIF(x)dx

=

∫
X
(h(x, 1)− h(x, 0)− f(x, 1) + f(x, 0))

2
pIF(x|T = 1)p(T = 1)dxdt

+

∫
X
(h(x, 1)− h(x, 0)− f(x, 1) + f(x, 0))

2
pIF(x|T = 0)p(T = 0)dxdt

≤ 2 · LIF(h) + 2 · LICF(h)

Therefore, it follows from Lemma 2 that,

εPEHE(h) ≤ 4 ·
(
LAF(h) + V (pRCT(x, t), pAF(x, t)) + Ex,t∼pAF [∥f(x, t)− f̃n(x, t)∥

2]
)

And since we have that,

Ex,t∼pAF [∥f(x, t)− f̃n(x, t)∥
2]
)
=

(1− α) · Ex,t∼pF [||f(x, t)− f̃n(x, t)||] + ·αEx,t∼p̂CF [||f(x, t)− f̃n(x, t)||]

And by observing that the first term Ex,t∼pF [∥f(x, t)− f̃n(x, t)∥2] = 0, the result follows.

Theorem 3 (Theorem 1 in Ben-David et al. (2010)). Let f be the true function for a learning task such
that f(x) = E [Y |X = x] whereX has a density p and let another true function g(x) = E [Y |X = x]
modeling another learning task, where X has a density q. Let h by a hypothesis function estimating
the true function f , therefore we have

EX∼q(x)[∥g(X)− h(X)∥2] ≤ EX∼p(x)[∥f(X)− h(X)∥2] + V (p(x), p(x))

+ EX∼p(x)[∥f(X)− g(X)∥2]

C ADDITIONAL EMPIRICAL RESULTS

In this section, we present additional results for the completeness of the empirical study for COCOA.
Specifically, we (i) study the performance of our proposed method on ATE estimation, (ii) conduct
ablation studies on the local regression module, (iii) present more results for robustness against
overfitting, and (iv) perform ablation studies on different parameters for the contrastive learning
module.

C.1 ATE ESTIMATION PERFORMANCE

In this section, we provide additional empirical results when applying our methods to ATE estimation.
The error of ATE estimation is defined as:

εATE = |τ̂ATE − τATE | , (14)

Our results are summarized in Tables 4, 5, and 6. We observe that our methods, while not tailored for
ATE estimation, still bring some benefits for a subset of the estimation models.

C.2 LOCAL REGRESSION MODULE

In this section, we compare the performance of using Gaussian Processes (GP)with different kernels
vs. local linear regression. We next define the local linear regression module and present the empirical
results in Table 7.

Local Linear Regression. For a fixed individual x who received treatment t, and has a selected
neighbors Dx,t. Under the assumption that we can locally approximate the true function with a linear
function. Suppose XD is the matrix of the observed feature values in Dx,t augmented with a column
of ones for the intercept, and YD is the column vector of observed factual outcomes. The local linear
regression coefficients, β̂, are computed as:

β̂ = (XT
DXD)−1XT

DYD

Then we impute the value of x as ŷ = [1, x]T β̂.
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Table 4: εATE across various CATE estimation models, with COCOA augmentation (w/ aug.) and
without COCOA augmentation (w/o aug.) in Twins, Linear, and Non-Linear datasets. Lower εATE
corresponds to the better performance.

Twins Linear Non-linear
Model w/o aug. w/ aug. w/o aug. w/ aug. w/o aug. w/ aug.
TARNet 0.33±.19 0.41±.29 0.10±.02 0.04±.02 0.23±.13 0.04±.02

CFR-Wass 0.47±.16 0.14±.09 0.13±.04 0.06±.01 0.19±.09 0.03±.01

CFR-MMD 0.19±.09 0.18±.12 0.12±.05 0.05±.03 0.25±.15 0.04±.01

T-Learner 0.02±.02 0.05±.03 0.01±.01 0.01±.01 0.05±0.02 0.05±.01

S-Learner 0.89±.03 0.79±.07 0.03±.01 0.05±.01 0.45±.05 0.27±.02

BART 0.28±.08 0.21±.10 0.37±.00 0.07±.01 0.80±.00 0.26±.00

CF 0.28±.06 0.14±.15 0.39±.00 0.06±.01 0.77±.00 0.32±.00

Table 5: εATE across various CATE estimation models, with COCOA augmentation (w/ aug.), without
COCOA augmentation (w/o aug.), and with Perfect Match augmentation in News and IHDP datasets.
Lower εATE corresponds to the better performance.

News IHDP
Model w/o aug. w/ aug. w/o aug. w/ aug.
TARNet 0.97±.45 0.96±.38 0.12±.05 0.07±.03

CFR-Wass 1.00±.29 0.75±.22 0.10±.03 0.05±.02

CFR-MMD 0.89±.38 0.71±.22 0.16±.04 0.09±.04

T-Learner (NN) 0.49±.26 0.76±.20 0.27±.06 0.07±.03

S-Learner (NN) 0.40±.06 0.49±.27 1.72±.21 0.40±.02

BART 0.77±.13 0.60±.00 0.02±.01 0.02±.01

Causal Forests 0.72±.01 0.60±.00 0.11±.01 0.03±.02

Perfect Match 2.00±1.01 0.24±.20

C.3 ABLATION FOR CONTRASTIVE LEARNING PARAMETERS

In this section, we provide a comprehensive set of ablation studies for the effect of the hyper-
parameters of the contrastive learning module.

Ablation on K and R. We provide extra ablation studies on the IHDP dataset and the Non-linear
dataset to study the effect of (i) the number of neighbors (K) and (ii) the embedding radius (R) on
both εPEHE and εATE . We observe a consistently enhanced performance across different CATE
estimation models. See results in figures 5 and 6. We also provide ablation studies on the sensitivity
of the proposed Contrative Learning module to the parameter ϵ, which is used to create the training
points for the contrastive learning module by creating positive and a negative dataset, see Section 3.1
for more details.

Ablation on the sensitivity parameter ϵ We provide ablation on the sensitivity parameter ϵ, a
similarity classifier for the potential outcomes (see Section 3.1 for a detailed description). The results
for the εPEHE as a function of ϵ are presented in Figure 3. It can be observed that the error of CATE
estimation models is consistent for a wide range of ϵ, demonstrating the robustness of COCOA to the
choice of hyper-parameters.

C.4 OVERFITTING TO THE FACTUAL DISTRIBUTION

In this section, we provide more empirical results on the robustness against overfitting to the factual
distribution for the Linear and Non-Linear synthetic datasets, as presented in Figure 4.
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Table 6: εATE across different similarity measures: Contrastive Learning, propensity scores, and
Euclidean distance, using CFR-Wass across IHDP, News, and Twins datasets.

Measure of Similarity Euclidean Distance Propensity Score Contrastive Learning
IHDP 3.12±1.33 3.85±.22 0.05±.02

News 0.68±.20 0.54±.25 0.75±.22

Twins 0.13±.15 0.46±.09 0.14±.09

Table 7: εPEHE and εATE across different local regression modules: Gaussian Process (GP) with
different kernels (DotProduct, RBF, and Matern) as well as Linear Regression.

Local Regression GP (DotProduct) GP (RBF) GP (Matern) Linear Regression
IHDP

(√
εPEHE

)
0.63±.01 0.63±.00 0.65±.02 0.75±.01

News
(√
εPEHE

)
3.56±.01 3.55±.04 3.44±.05 3.53±.08

Twins
(√
εPEHE

)
0.51±.11 0.51±.02 0.54±.04 0.68±.08

IHDP (εATE) 0.02±.01 0.01±.00 0.03±.01 0.09±.01

News (εATE) 0.60±.00 0.24±.12 0.05±.03 0.21±.10

Twins (εATE) 0.21±.10 0.24±.04 0.29±.04 0.38±.10
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Figure 3: εPEHE as a function of the similarity sensitivity parameter ϵ. The figure on the left presents
results for the IHDP dataset, while the one on the right is for the News dataset. Performances of two
different models (CFR-Wass and Causal Forests) are plotted for both datasets.

(a) Linear dataset: TARNet (b) Linear dataset: CFR-Wass (c) Linear dataset: T-learner

(d) Non-linear dataset: TARNet (e) Non-linear dataset: CFR-Wass (f) Non-linear dataset: T-learner

Figure 4: Effects of COCOA on preventing overfitting. We demonstrate the performance of three
CATE estimation models trained with various levels of data augmentation on the Linear and Non-
Linear datasets.
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(d) IHDP: Causal Forests
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(e) IHDP: TARNet
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Figure 5: Ablation studies on the size of the ϵ−Ball (R) and the number of neighbors (K) on the
performance of different causal inference models on the IHDP dataset.
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(a) Non-linear: Causal Forests
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(b) Non-linear: BART
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(c) Non-Linear: TARNet
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(d) Non-linear: Causal Forests
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(e) Non-linear: BART
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(f) Non-linear: TARNet

Figure 6: Ablation studies on the size of the ϵ−Ball (R) and the number of neighbors (K) on the
performance of different causal inference models on the Non-linear dataset.
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