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Abstract

Intrinsic image decomposition is a highly under-

constrained problem that has been extensively studied by

computer vision researchers. Previous methods impose ad-

ditional constraints by exploiting either empirical or data-

driven priors. In this paper, we revisit intrinsic image de-

composition with the aid of near-infrared (NIR) imagery.

We show that NIR band is considerably less sensitive to

textures and can be exploited to reduce ambiguity caused

by reflectance variation, promoting a simple yet powerful

prior for shading smoothness. With this observation, we

formulate intrinsic decomposition as an energy minimisa-

tion problem. Unlike existing methods, our energy formu-

lation decouples reflectance and shading estimation, into

a convex local shading component based on NIR-RGB im-

age pair, and a reflectance component that encourages re-

flectance homogeneity both locally and globally. We further

show the minimisation process can be approximated by a

series of multi-dimensional convolutions, each within linear

time complexity. To validate the proposed algorithm, a NIR-

RGB dataset is captured over real-world objects, where our

NIR-assisted approach demonstrates superiority over RGB

methods.

1. Introduction

Recognised as a fundamental problem for scene under-

standing by computer vision research [4, 18, 24, 27, 44],

intrinsic decomposition is the task of recovering from the

input image two logically independent factors - a shading

image that is solely dependent on illumination, shadows and

shapes, and a reflectance image that is solely dependent on

textures and colours. This independency is nullified once

the input image is observed, permitting decomposition al-

beit under an extremely underdetermined system. In this

paper, we address this ambiguity by a novel NIR-assisted

algorithm that combines both reflectance and shading pri-

ors in a unified probabilistic model.

Due to its application background and ill-posed na-

ture, single image intrinsic decomposition has attracted

extensive interest in computer vision research, prompting

a variety of RGB-based approaches via traditional priors

[45, 21, 41, 42, 36, 6] or data-driven regression models (e.g.

deep learning) [34, 3, 23, 43, 17, 32]. However, the informa-

tion provided by an RGB image alone is limited. A common

problem is weak textures and strong shadows are often mis-

classified. More recently, further advances have been made

into the hyper-spectral domain where additional subspace

constraints can be sought [10, 22]. Still, these methods ul-

timately work within the visible spectrum, and a practical

concern of hyper-spectral methods is the difficulty of im-

age acquisition, which requires a dedicated and usually slow

hyper-spectral camera that precludes any scene motion.

We propose an algorithm that solves for intrinsics with

the help of near infrared (NIR) imagery. The NIR band

has a longer wavelength than visible lights and reveals

fairly different scattering patterns. The uniqueness of NIR

band leads to its success in assisting visibility enhancement

[39, 33], surface reconstruction [16, 15] and semantic seg-

mentation [38, 14]. In this paper, we exploit the empirical

observation that texture variation is considerably reduced in

this channel. This property of NIR lessens the ambiguity of

decomposition and offers a powerful prior for shading. On

the other hand, synchronised RGB-NIR cameras are being

popularised by vendors and are available on the market (e.g.

dual-CCD camera, or single sensor camera with RGB-NIR

4-channel Bayer pattern), making our set-up more cost-

friendly and practical compared to general hyper-spectral

methods.
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We approach NIR-RGB intrinsics via gradient-based en-

ergy minimisation. Since the NIR image has less texture

variation but preserves shape and illumination conditions,

we exploit it for an informative and straightforward shading

smoothness prior that is robust to texture variations. Ad-

ditionally, a non-local, dense energy term is designed for

the reflectance homogeneity assumption, which allows our

method to recover reflectance across long geometric dis-

tances and pass disjoint reflectance regions. We show this

energy term can be re-written as a convolution, thus making

it efficiently solvable. To validate our approach, we col-

lect NIR-RGB image pairs of various objects, where our al-

gorithm demonstrates robustness against both textures and

shading variations and compares favourably against RGB-

based algorithms. Our main contributions are highlighted

as follows.

• We advance intrinsic decomposition by exploiting NIR

band for a simple yet powerful shading prior.

• Departing from other non-local methods, we develop a

dense but linear-time-differentiable energy formulation

that can be minimised directly by a gradient-based op-

timiser. Our algorithm involves no O(n2)-complex clus-

tering/grouping process thus scales better to image size.

• We capture an object-level NIR-RGB dataset with partly

known ground truth intrinsics to facilitate future research.

2. Related work

The RGB-based intrinsic decomposition gained popular-

ity following a multichannel adaptation of Retinex theory

[28, 19, 26, 21]. Various papers have suggested that RGB-

based methods suffer significantly less ambiguity than their

grayscale counterparts, due to the introduction of chro-

maticity features that reside in a null space of shading vari-

ations [21, 3]. It is further discovered that chromaticity val-

ues are often drawn from several basis colours (sparsity).

This observation leads to non-local reflectance constraints

[41, 42, 36, 20, 47] that cluster/group pixels based on their

chromatic or texture affinity.

Some methods rely on additional inputs for guidance.

Common methods from this category include user-assisted

(scribbles) algorithm for image [8] and video [7] intrinsics.

Chen et al. [12] proposed an RGB-D algorithm that fur-

ther decomposes shading image into direct and indirect ir-

radiance components. Barron et al. [3] developed a data-

driven algorithm that jointly estimates object shape, illumi-

nation and reflectance and extended it to scene level images

with the additional input from depth sensors [2]. Huang et

al. [22] used multi-spectral images by constraining intrinsic

components in a low dimensional subspace along the spec-

tral domain.

Recent advances in synthetic datasets [9, 11, 30] and

weakly-supervised/unsupervised training routines enabled

many deep-learned approaches. Kim et al. [25] trained a

neural network to jointly estimate depth and intrinsic com-

ponents by minimising a CRF energy (loss) function. Shi

et al. [43] and Li et al. [31] proposed large-scale synthetic

datasets for training. Janner et al. [23] trained different

subnets to predict individual intrinsic components, from

which a differentiable rendering algorithm is built to allow

self-supervision from reconstruction loss. Zhou et al. [48]

trained a model to learn the ordering of reflectance pixels

and incorporate this prior in CRF energy. Fan et al. [17]

applied a flexible loss layer for training a universal model

on both fully-labeled and weakly-labeled datasets. Sev-

eral self-supervised approaches [31, 32, 29] rely on mul-

tiple images with varying illumination conditions to train

a network without ground truth by enforcing identical re-

flectance; Yu et al. [46] extended this idea and used a multi-

view pipeline to recover scene geometry. LapPyrNet [13] is

a multi-scale network that predicts each layer in the Lapla-

cian pyramid of intrinsics. Baslamisli et al. [5] proposed (a)

a physically-based image formation loss and (b) a network

that separates image gradients following Retinex theory.

3. Methodology

In this paper, we opt for a traditional energy minimisa-

tion scheme in the hope to develop a theoretical, control-

lable approach that can work without any training data.

Our energy consists of three components for shading, re-

flectance, and posterior regularisation, respectively. In the

following sections, we shall first introduce the overall en-

ergy formulation then detail each component individually.

3.1. Intrinsic decomposition as energy minimisation

By assuming a linear response camera model, the image

I can be written as the sum over a diffuse reflection Id and

a specular reflection Is

I = Id + Is, (1)

where the diffuse reflection is assumed here to be domi-

nant over specular reflection (i.e. Id ≫ Is) and can be fur-

ther factorised into a shading component S and a reflectance

component R. Hence

I ≈ Id = S ×R. (2)

With I observed, we want to solve for the most likely shad-

ing image S and reflectance image R that describe I . In this

paper, we formulate this problem in a probabilistic frame-

work by minimising the following energy

E(S,R) = ES(S) + ER(R) + EI(S,R), (3)

where ES and ER are the shading and reflectance likelihood

terms respectively, and EI is a posterior term that permits

the presence of e.g. image noise and non-diffuse reflection.
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Figure 1: Top: reflectance r versus wavelength curves for

24 colourants on a colour checker. Bottom: Standard devia-

tion of r along colourant domain - a subset of 17 (out of 24)

colourants have close reflectance values in NIR range, while

the other 7 have values spread more apart but still closer in

NIR than in visible bands.

In this paper, we shall assume illumination is white

light.1 For notational simplicity, we will use big letters I , S

and R for input/output image pixel values, and small letters

i, s and r for their corresponding log values.

3.2. NIR­assisted shading energy ES

Research showed that NIR band is transparent to a range

of colourants/dyes [37]. This observation leads the NIR im-

age to be considered as a direct surrogate for shading over

some unique materials [40, 15]. However, the generality of

these material-dependent assumptions is limited, as numer-

ous colourants (e.g. Carbon black, which reflects no light in

a wide spectrum) are still visible in NIR band.

To further demonstrate the usefulness and limitation of

NIR band, multi-spectral reflectance values are sampled

over 24 colourants on a colour checker, as illustrated in

figure 1. Note, that the spectral curves become gradually

flattened out and aggregated as wavelength increases. As a

result, a group of 17 colourants have much less reflectance

variance in NIR range than in visible range (in which case

NIR image approximates shading). However, the other 7

still differ in reflectance even under NIR band (though vari-

ation is still much less than in visible range), in which case

the NIR image fails to represent shading. See Fig. 2 for an

1For rank-1 illumination, this can be achieved by a white balancing step

(see our experiments).

Figure 2: A visual comparison between NIR (left) and RGB

(right) images of a tea bag. Note, that while texture varia-

tion is significantly reduced in the NIR image, some pat-

terns (e.g. flowers and texts) are still visible due to the use

of black pigments for colouring purposes. Also, while com-

pared to RGB image, the upper part of NIR image appears

brighter but the lower slightly darker.

example of how different colorants appear under NIR.

Additionally, we found in our experiments that some-

times NIR images cannot faithfully represent shading, even

on uniform material. This is because some real-world ma-

terials exhibit (slightly) different reflective properties un-

der NIR and visible bands. An example is the tea bag in

Fig. 2 - when compared to RGB image, the log-contrast be-

tween the upper and lower part of the same material (white,

uncoloured plastic) under NIR band is greater. This sug-

gests material’s bidirectional reflectance distribution func-

tion (BRDF) could indeed be wavelength-dependent, and

a NIR-as-shading assumption would lead to inconsistent

RGB reflectance estimation.

Based on these observations, we intend to develop a NIR

prior for shading that generalises well to a wide range of

dyes/materials. It turns out that we can do so by simply

penalising local shading variation where it is greater than

that of NIR image

Enir
S (s) =

∑

x,y∈N

(

max(0, |sx − sy| − |i
nir
x − inir

y |)
)2

, (4)

where N denotes a neighboring pixel set, and inir
x is the log

brightness of the NIR image at pixel x.

Intuitively, this energy term acts as a soft version of hard

constraint |ix− iy| ≤ |i
nir
x − inir

y |, which dictates local varia-

tion of shading image should not exceed that of NIR image.

This is an arguably reliable constraint based on the obser-

vation in Fig. 1, and provides a tight bound on image re-

gions where the reflectance component is barely visible in

NIR spectrum. Surprisingly, this straightforward formula-

tion plays a significant part in reducing shading ambiguity

caused by textures and works well in our experiments.

It is worth noting, that minimising Enir
S alone leads to a

trivial solution space (e.g. one such minimum is at sx ≡
sy ∀x, y). To remedy this, we blend Enir

S with a NIR-
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modified Colour Retinex [21] energy, defined as

Ertx
S (s) =

∑

x,y∈N

(sx − sy − ǫxy)
2 s.t. (5)

ǫxy =















G(ix)−G(iy) if ‖C(ix)− C(iy)‖2 < TC and

|G(ix)−G(iy)| < TG

inir
x − inir

y otherwise if |inir
x − inir

y | < TN

0 otherwise

,

where C(ix) and G(ix) are functions that return the RGB

chromaticity and log brightness of pixel x, respectively, and

TC , TG and TN are thresholding parameters (TC is fixed

at 0.1 as the optimal value on MIT dataset [21]). Compared

with vanilla Colour Retinex, a major departure of Eq. (5)

is that when an RGB-based reflectance edge occurs, it may

use the gradients of NIR log-image to guide shading estima-

tion, instead of simply letting shading to be locally constant.

Eq. (5) reduces to plain Colour Retinex when TN = 0. For

more details on Colour Retinex, we refer the reader to [21].

The overall shading energy thus becomes

ES(s) = Enir
S (s) + Ertx

S (s). (6)

This formulation is convex and first-derivative-continuous,

making it globally minimisable via gradient-based methods.

3.3. Non­local reflectance energy ER

Our reflectance energy combines a local component Eloc
R

and a non-local component Enol
R

ER(r) = (1− α)Eloc
R (r) + αEnol

R (r), (7)

where α is a weighting factor fixed at 0.9 to down-weight

the semi-dense global energy. The purpose for reflectance

energy is to encourage reflectance homogeneity (i.e. flat-

tened reflectance image) both locally and globally.

The local term Eloc
R is defined as

Eloc
R =

∑

x,y∈N

wxy

∑

c∈RGB

(rcx − rcy)
2 where (8)

wxy =















1 if ‖C(ix)− C(iy)‖2 < TC and

|G(ix)−G(iy)| < TG

, or‖IRGB
x − IRGB

y ‖2 < ǫ

0 otherwise

.

Eq. (8) is partially similar to Eq. (5), in that it encourages lo-

cal reflectance consistency while adjacent pixels share sim-

ilar values (in this paper, we use a small ǫ = 5e − 3 for

normalised image). However, Eq. (8) breaks energy trans-

fer between two pixels when there is a reflectance edge (by

letting wxy = 0), and works on RGB channels instead of

gray scale.

Previous research has shown that reflectance values are

often drawn from several ‘basis colours’, and thus reside

within some low-dimensional subspace/manifold of colour

system. However, this belief cannot be modeled by lo-

cal term Eloc
R (or any path-based algorithm in general, e.g.

Retinex), because the message chain is blocked wherever

there is a reflectance edge. Common methods in this direc-

tion typically utilize sparsity constraints by clustering pix-

els by their colour or texture affinity and minimising the

intra-cluster distances [42, 36, 6]. Here we propose a novel

non-local energy term based on convolution. Our energy

formulation differs from existing methods, in that:

• There is no clustering involved. Clustering algorithms

generally have quadratic time complexity thus limited

scalability, while our energy term can be calculated and

differentiated within linear time.

• We encourage reflectance homogeneity by reducing

some distance measure between reflectance values, in-

stead of making an explicit sparsity assumption. This

allows reflectance values to vary gradually, instead of ap-

pearing distinct or overspreaded in colour space.

We start by giving the mathematical formulation for non-

local term

Enol
R (r) =

∑

x,y

∑

c∈RGB

k(fx, fy)
∑

z k(fx, fz)
(rcx − rcy)

2 (9)

=
∑

x

∑

c∈RGB

(

rcx
2 − 2rcx

Kx ∗ r
c
y

Kx ∗ 1
+
Kx ∗ r

c
y
2

Kx ∗ 1

)

, (10)

where k(fx, fy) is some affinity measure (kernel func-

tion) between two feature vectors fx and fy (which we

shall discuss later). The purpose for normalization term
∑

z k(fx, fz) is to avoid bias by any dominant colour. In

Eq. (10) we use the convolution operator Kx∗ to denote a

convolution centred at fx with kernel function k(fx, ·) (i.e.

Kx ∗ vy =
∑

y k(fx, fy)vy for any vector-valued vy). With

this convention, Eq. (9) is reduced to a convolution at coor-

dinates {fx} in some feature space. Note, that Eq. (9) mod-

els an edge between every two pixels in reflectance image (a

total of O(n2) edges, where n is the number of pixels), thus

its computation becomes quickly intractable for a mid-sized

image. However, by re-writing it into Eq. (10), we shall see

that it can be computed in O(n) time.

In practice, we employ an iterative gradient-based solver

for minimising energy. For tth iteration, the feature vector

f
(t)
x is defined as

f (t)
x = [wXux wXvx wCC(r(t−1)

x )
T
G(r(t−1)

x )]T , (11)

where wX = 500 and wC = 5 are constant weights, C(·)
and G(·) are chromaticity and brightness functions respec-

tively, and (ux, vx) are the image coordinates of pixel x.

The choice for kernel function plays a critical part in

the performance of our algorithm. Here we project feature
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points {fx} onto a manifold called permutohedral lattice [1]

for convolution. Permutohedral lattice is intended for a fast

approximation to bilateral filtering, in the form of

k(fx, fy) ≈

{

e−|fx−fy|
2/2σ2

‖fx − fy‖∞ < λ

0 otherwise
,

(12)

where λ and σ are two constant values when dimension of

fx is fixed. This truncated form has the advantage to discon-

nect energy transfer between two pixels if their colour dif-

ference or geometric distance exceeds a threshold, in which

case we no longer force them to be similar. On the other

hand, if two pixels have similar values and are not far away

on image plane, they are encouraged to take similar val-

ues. As a result, sharp edges or distinct colours (likely

caused by reflectance change) of the input image will be

preserved in reflectance estimation, while gradual changes

(even across long geometric distances or reflectance edges,

which Retinex cannot handle) will be flattened out. The ra-

tionale behind this behaviour is similar to that of clustering.

However, a full convolution on permutohedral lattice can be

performed within linear time complexity w.r.t. number of

pixels, which makes the calculation and differentiation of

Eq. (10) scalable. For the exact algorithm of permutohedral

lattice, we refer the reader to [1].

An interesting side note is with Eq. (10) and Eq. (11),

computation and differentiation of Eq. (9) is conceptually

similar to three passes of bilateral filter (on 1, r and r2 each)

- an image processing technique that has been shown to im-

prove reflectance estimations [35].

3.4. Posterior term EI

Most existing methods assume pure diffuse (Lambertian)

shading and impose the hard constraint i = s+ r to reduce

the number of variables. However, this has several limi-

tations. For example, an inaccurate (often over-smoothed)

shading estimation can cause some shading components to

‘bleed into’ reflectance image. Another example is the dark

image regions that are susceptible to camera noise - since

this greatly affect chromaticity, artifacts may appear on re-

fletance image even when shading estimation is precise. For

these reasons we relax i = s + r and solve for s and r as

two variables, whose dependency is modeled by a posterior

term that allows the presence of some level of uncertainties

(caused by e.g. noise, over-exposure, non-grey-scale light

sources, or non-Lambertian reflectance components etc.)

EI(s, r) = β(
(

I−exp(s+r)
)2

+0.05
(

i−s−r
)2
). (13)

The first term accounts for a Gaussian distributed error on

observed pixel values, while the second term (with much

smaller weight) primarily acts as a quadratic regularizor of

the log search space that helps to overshoot local minima

(a) β = 100 (b) β = 5 (c) β = 1

Figure 3: Reflectance and shading estimations using differ-

ent values of β. Typically, large β values cause some shad-

ing component to ‘leak into’ reflectance image and noise

visible in underlit regions (zoom in for details), when too

small β results in an over-flattened reflectance image.

(e.g. while exp(s + r) → 0, gradients of first term van-

ish, in which case we rely on second term for minimising

Eq. (13)). By adjusting the weighting parameter β, we con-

trol how strictly i = s+r is satisfied, as illustrated in Fig. 3.

4. Optimisation process

The full energy model consists of both convex and non-

convex components, all of which are linear-time differen-

tiable. Considering many components are near quadratic,

we employ an L-BFGS algorithm as our energy minimiser.

The full optimisation process is described in Algorithm 1.

Algorithm 1: Iterative MAP solver

s← 0;

r ← i;

while not converged do

fx ← Eq. (11);

s, r ← one iteration of L-BFGS on E(s, r);

return S = exp(s), R = exp(r)

A side note is that since all energy components are

linear-time-differentiable, one could plug them into the loss

function of a CNN as a means to self-supervision while pre-

serving the scalability of training.

5. Experiments

5.1. NIR­RGB image collection

Our dataset contains object-level images. We use a

linear-response RGB camera without NIR cut filter to col-

lect image pairs - a 400-700nm VIS pass filter and a 850nm

long pass filter are used for capturing RGB and NIR images

respectively. The filters are mounted on a motor-driven fil-

ter wheel that is placed in front of the camera, which en-

sures the camera position is fixed despite different filters
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being used. A xenon lamp is used for illumination purpose,

and wide-band/wide-grid polarizers are placed on both light

source and camera to suppress specular lights. Our camera

is equipped with a 12-bit ADC, and raw images are saved

in 16-bit format. Foreground object masks are obtained by

manual annotation.

The camera is dark-calibrated by taking control images

of an unlit dark room. Pixel values in these images are

uniform due to forced cooling and are subtracted from all

RGB-NIR images. Images of a standard white target are

also captured for white-balancing purpose. The above pre-

processing steps are applied for all methods presented in

following sections for fair comparison.

We adopt the methods in [21] for obtaining the ground

truth intrinsics. To acquire ground truth shading compo-

nent, we remove reflectance by either spraying a thin layer

of white coating on colourful objects, or by photographing

white objects before we colour it. We call these two subsets

testsetA and testsetB, repectively. In the latter case, differ-

ent paints are used to add reflectance components to both

RGB and NIR images.

5.2. Comparison with RGB­based method

Due to the scale of dataset, we cannot re-train data-

driven methods on it. For this reason we compare our al-

gorithm with two state-of-the-art methods trained on sim-

ilar object-level datasets, i.e. SIRFS [3] and ShapeNet-

pretrained CNN [43], to minimize dataset bias. Colour

Retinex [21] is also included as a baseline method for com-

parison and is trained on entire testsets.

We fix β at 2 during quantitative evaluation. With the

remaining two paratemers TG and TN , we enforce the con-

straint TN = max(0, TG − 0.5) and thereby reduce the

number of actual free parameters to 1 to avoid overfitting.

We run a line search of TG in {0.7, 0.9, 1.1, 1.3, 1.5} using

cross-validation, and choose the best performing values for

both testsetA and testsetB. Results are shown in Table 2,

where we use LMSE and scale-insensitive MSE metrics for

fine-grained and global evaluation2. Some sample images

from both testsets (two from each) are illustrated in the top

half of Fig. 4.

shading reflectance avg. score

LMSE MSE LMSE MSE LMSE MSE

SIRFS[3] 54.1 44.9 91.1 39.1 72.6 42.0

ShNet[43] 51.3 72.7 75.5 36.7 63.4 54.7

CR[21] 201 676 85.9 152 144 414

Ours 47.9 46.7 58.9 34.2 53.4 40.5

Table 1: Quantitative results on testsetA. Best performing

methods (i.e. within 5% of lowest score) are bolded.

2Values are scaled up by a factor of 1000

shading reflectance avg.

LMSE MSE LMSE MSE LMSE MSE

SIRFS[3] 9.16 9.44 8.25 16.4 9.30 12.3

ShNet[43] 5.43 4.01 26.5 29.7 15.97 16.9

CR[21] 7.10 4.60 7.89 11.0 7.50 7.80

Ours 5.80 8.26 4.25 11.0 7.03 7.64

Table 2: Quantitative results on testsetB. Best performing

methods (i.e. within 5% of lowest score) are bolded.

It can be observed that all methods produce significantly

worse results on testsetA than on testsetB. This is because

testsetB is created from painting white objects with a few

distinct colour patches, and therefore have much less re-

flectance variation than testsetA. Surprisingly, the plain

Color Retinex on average performs better than more so-

phisticated RGB methods. An interesting observation is

that while ShapeNet-CNN yields the best shading predic-

tion, its reflectance estimation is by far the most inaccurate,

which suggests the network may have a preference for cer-

tain colours over others (see Fig. 4 for evidence). While

compared with Color Retinex, our algorithm gives better

reflectance estimation. One possible reason is the global re-

flectance homogeneity assumption is well-satisfied by test-

setB.

TestsetA contains much more challenging and ambigu-

ous cases, with a mixture of weak textures and strong shad-

ows. Particularly, some images have reflectance compo-

nents that resemble shades, and shading components that

appear to be textures. Our NIR-assisted energy obtains the

best performance on this testset, as the NIR channel is much

less hindered by the pseudo-shading texture components.

We also perform a qualitative study for a variety of real-

world objects. By allowing β to vary between [1, 10] (2 free

parameters), a visual comparison is given in the bottom half

of Fig. 4. Notably, data driven methods (i.e. SIRFS[3] and

ShapeNet[43]) yield less desirable results, suggesting they

may have overfitted training dataset. While SIRFS yields

visually appealing results, its shading estimation is not al-

ways accurate. More specifically, texture sometimes inter-

feres with shading estimation, and prediction is also sus-

ceptible to irregular, concave surfaces. Both SIRFS and

ShapeNet cannot handle dark shades, in which case shad-

ing is often overestimated.

By comparing RGB images with their NIR counterparts,

we observe that texture variance is either reduced or com-

pletely disappear in NIR image. Once again, this confirm

the usefulness of NIR spectrum in assisting shading estima-

tion. On the other hand, our global reflectance energy is

able to overcome strong shades and enforce colour homo-

geneity across long distance and reflectance edges. Overall,

our method arguably produces the best visual results on av-

erage.
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Images with ground truth from testsetA (top two rows) and testsetB (bottom two rows)

(a) Ground Truths (b) SIRFS[3] (c) ShapeNet CNN[43] (d) Colour Retinex[21] (e) Proposed method

Images w/o ground truth

(f) RGB/INR inputs (g) SIRFS[3] (h) ShapeNet CNN[43] (i) Colour Retinex[21] (j) Proposed method

Figure 4: Visual results on our dataset. Data-driven methods are placed on the left-hand side and handcrafted methods are

placed on the right. Images with ground truth are given in the top and those without in the bottom. All images are normalised

to [0, 1] for display. See supplementary materials for results.

5.3. Ablation study and variations of energy form

We conduct a quantitative ablation study on testsetA to

validate the effectiveness of global reflectance energy as

well as that of NIR-based priors, by considering several spe-

cial cases of our energy formulation shown in table3. An

RGB-local algorithm arrives where wN = 0, α = 1 and a

uniform image is given in place of NIR input. This reduces

the energy formulation to one closely resembling Colour

Retinex, albeit with the additional posterior term (i.e. re-

laxed energy). Surprisingly, this relaxed version performs

input energy avg

RGB NIR local global LMSE MSE

RGB local 76.2 87.7

RGB global 62.5 57.0

NIR local 58.4 52.2

full 53.4 40.5

Table 3: Several special cases used in ablation study.
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much better than vanilla Color Retinex. Some possible rea-

sons are (1) we use a different optimiser for solving energy,

with a more strict convergence criterion than implementa-

tion of [21], (2) compared to [21], we use a window of

3 pixels instead of 1, and (3) our formulation is more ro-

bust than the inversely proportional constraint I = S × R

(e.g. when S is small, an erroneous estimation of S could

severely impact R, and vice versa).

RGB global is yet another special case where α 6= 1,

but both wN and TN are 0. With the addition of global re-

flectance energy, we see a significant improvement on both

LMSE and MSE metrics. Table 4 compares RGB global

with the sparsity constraint [36] over the results on test-

setA. It is seen that RGB global has a better score on LMSE

avg. score

LMSE MSE

RGB global 62.5 57.0

Gehler et al. [36] 80.0 52.0

Table 4: Comparison between RGB global and classic spar-

sity constraints [36].

but lags slightly behind in MSE, which suggests Gehler et

al. [36]’s method is more capable of restoring overall re-

flectance but fails to capture fine-scale details. On the other

hand, solving RGB global proves to be much more efficient

than the iterative clustering process [36] (a few minutes ver-

sus up to an hour, depending on different images).

NIR local is a local method with α = 1 and the NIR in-

put. The NIR input leads to a greater improvement than

RGB global over RGB-local. At this stage, the algo-

rithm already outperforms [43] on both metrics. To further

demonstrate the usefulness of global reflectance energy, a

visual comparison is given in Fig. 5, where we compare the

results from NIR local with intermediate outputs at differ-

ent stages of full energy minimisation. It is seen that the

lower part of tea bag under strong shades is gradually re-

covered with the addition of global reflectance energy.

(a) NIR local (b) Full 150th (c) Full 250th (d) Full 350th (e) Full final

Figure 5: Intrinsics recovered by NIR local (5a), and by full

energy at different number of iterations (5b) to (5e).

5.4. Convergence and scalability

We plot the energy versus run time curve of our algo-

rithm on the tea bag image scaled to different sizes, in

Fig. 6. Our algorithm enjoys a practically linear time com-

plexity, and scales well to images of different sizes. Each

curve has a flat tail caused by exhaustive line-search near a

minimum. In practice, we may choose to stop the algorithm

after a fixed number of iterations (e.g. 350, at which point

energy has often well-converged) to guarantee a linear com-

plexity implementation. The experiments are carried out on

a laptop with 32GB RAM.

5X

4X

3X

2X

1X

Figure 6: Energy versus runtime for input image of differ-

ent sizes (size is measured by image width instead of total

pixels). Along dotted lines are algorithms of linear time

complexities.

6. Conclusion and future work

In this paper an optimisation-based algorithm for NIR-

assisted intrinsic decomposition is proposed. We show

that the NIR serves as powerful prior that significantly re-

duces ambiguity. We model this belief with a non-local

energy formulation that can be computed and differenti-

ated in linear complexity. In our experiments, the proposed

method demonstrates better performance than state-of-arts

RGB methods without any training.

Our algorithm requires a NIR-RGB input image pair.

While image acquisition is more difficult than RGB-based

methods, commodity RGB camera sensors are already able

to detect NIR lights, and specialized prism-based NIR-RGB

cameras capable of capturing synchronized image pairs

have also been commercialized.

We followed the method of [21] to collect ground truth

images. In reality we find this set-up difficult to achieve

since both coating and realigning objects demand extreme

care. We are aiming to expand our dataset by exploring

modern 3D printing technologies.
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assisted intrinsic images. ACM Transactions on Graphics

(TOG), 28(5):130, 2009. 2

[9] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A nat-

uralistic open source movie for optical flow evaluation. In

A. Fitzgibbon et al. (Eds.), editor, European Conf. on Com-

puter Vision (ECCV), Part IV, LNCS 7577, pages 611–625.

Springer-Verlag, Oct. 2012. 2

[10] Ayan Chakrabarti and Todd Zickler. Statistics of real-world

hyperspectral images. In Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference on, pages 193–

200. IEEE, 2011. 1

[11] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3D model repository. arXiv preprint

arXiv:1512.03012, 2015. 2

[12] Qifeng Chen and Vladlen Koltun. A simple model for intrin-

sic image decomposition with depth cues. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 241–248, 2013. 2

[13] Lechao Cheng, Chengyi Zhang, and Zicheng Liao. Intrinsic

image transformation via scale space decomposition. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 656–665, 2018. 2

[14] Gyeongmin Choe, Seong-Heum Kim, Sunghoon Im, Joon-

Young Lee, Srinivasa G Narasimhan, and In So Kweon.

Ranus: RGB and NIR urban scene dataset for deep scene

parsing. IEEE Robotics and Automation Letters, 3(3):1808–

1815, 2018. 1

[15] Gyeongmin Choe, Srinivasa G Narasimhan, and In

So Kweon. Simultaneous estimation of near IR BRDF and

fine-scale surface geometry. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2452–2460, 2016. 1, 3

[16] Gyeongmin Choe, Jaesik Park, Yu-Wing Tai, and In

So Kweon. Exploiting shading cues in kinect IR images

for geometry refinement. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

3922–3929, 2014. 1

[17] Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and

David Wipf. Revisiting deep intrinsic image decompositions.

In Proceedings of The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 8944–8952, 2018.

1, 2

[18] Graham D Finlayson, Steven D Hordley, and Mark S Drew.

Removing shadows from images using retinex. In Color and

imaging conference, volume 2002, pages 73–79. Society for

Imaging Science and Technology, 2002. 1

[19] Brian V Funt, Mark S Drew, and Michael Brockington. Re-

covering shading from color images. In European Confer-

ence on Computer Vision, pages 124–132. Springer, 1992.

2

[20] Elena Garces, Adolfo Munoz, Jorge Lopez-Moreno, and

Diego Gutierrez. Intrinsic images by clustering. In Com-

puter graphics forum, volume 31, pages 1415–1424. Wiley

Online Library, 2012. 2

[21] Roger Grosse, Micah K Johnson, Edward H Adelson, and

William T Freeman. Ground truth dataset and baseline eval-

uations for intrinsic image algorithms. In Computer Vision,

2009 IEEE 12th International Conference on, pages 2335–

2342. IEEE, 2009. 1, 2, 4, 6, 7, 8

[22] Qian Huang, Weixin Zhu, Yang Zhao, Linsen Chen, Yao

Wang, Tao Yue, and Xun Cao. Multispectral image intrinsic

decomposition via subspace constraint. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6430–6439, 2018. 1, 2

[23] Michael Janner, Jiajun Wu, Tejas D Kulkarni, Ilker Yildirim,

and Josh Tenenbaum. Self-supervised intrinsic image de-

composition. In Advances in Neural Information Processing

Systems, pages 5936–5946, 2017. 1, 2

[24] Kevin Karsch, Varsha Hedau, David Forsyth, and Derek

Hoiem. Rendering synthetic objects into legacy photographs.

ACM Transactions on Graphics (TOG), 30(6):157, 2011. 1

[25] Seungryong Kim, Kihong Park, Kwanghoon Sohn, and

Stephen Lin. Unified depth prediction and intrinsic image

decomposition from a single image via joint convolutional

neural fields. In European conference on computer vision,

pages 143–159. Springer, 2016. 2

[26] Ron Kimmel, Michael Elad, Doron Shaked, Renato Keshet,

and Irwin Sobel. A variational framework for retinex. Inter-

national Journal of computer vision, 52(1):7–23, 2003. 2

[27] Naejin Kong and Michael J Black. Intrinsic depth: Improv-

ing depth transfer with intrinsic images. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3514–3522, 2015. 1

2529



[28] Edwin H Land and John J McCann. Lightness and retinex

theory. Josa, 61(1):1–11, 1971. 2

[29] L Lettry, K Vanhoey, and L Van Gool. Unsupervised deep

single-image intrinsic decomposition using illumination-

varying image sequences. In Computer Graphics Forum,

volume 37, pages 409–419. Wiley Online Library, 2018. 2

[30] Zhengqi Li and Noah Snavely. Cgintrinsics: Better intrin-

sic image decomposition through physically-based render-

ing. arXiv preprint arXiv:1808.08601, 2018. 2

[31] Zhengqi Li and Noah Snavely. Learning intrinsic image

decomposition from watching the world. arXiv preprint

arXiv:1804.00582, 2018. 2

[32] Wei-Chiu Ma, Hang Chu, Bolei Zhou, Raquel Urtasun, and

Antonio Torralba. Single image intrinsic decomposition

without a single intrinsic image. In ECCV, pages 211–229,

2018. 1, 2

[33] Sosuke Matsui, Takahiro Okabe, Mihoko Shimano, and

Yoichi Sato. Image enhancement of low-light scenes with

near-infrared flash images. Information and Media Tech-

nologies, 6(1):202–210, 2011. 1

[34] Takuya Narihira, Michael Maire, and Stella X Yu. Direct in-

trinsics: Learning albedo-shading decomposition by convo-

lutional regression. In Proceedings of the IEEE international

conference on computer vision, pages 2992–2992, 2015. 1

[35] Thomas Nestmeyer and Peter V Gehler. Reflectance adap-

tive filtering improves intrinsic image estimation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6789–6798, 2017. 5

[36] Carsten Rother, Martin Kiefel, Lumin Zhang, Bernhard

Schölkopf, and Peter V Gehler. Recovering intrinsic im-

ages with a global sparsity prior on reflectance. In Advances

in neural information processing systems, pages 765–773,

2011. 1, 2, 4, 8

[37] Neda Salamati, Clément Fredembach, and Sabine Süsstrunk.
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