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ABSTRACT

Automating structured data extraction from scientific literature is a critical chal-
lenge with broad implications across domains. We present nanoMINER, a multi-
agent system that integrates large language models and multimodal analysis for
scientific data extraction on nanomaterials. At its core, the ReAct agent orches-
trates specialized agents to ensure comprehensive data extraction. We demonstrate
its efficacy by automating the assembly of nanomaterial and nanozyme datasets,
previously manually compiled by domain experts. While we achieve near-perfect
extraction precision (0.98) for specific numerical parameters and excellent extrac-
tion quality for textual parameters, significant challenges remain in multimodal
integration, visual data interpretation, and cross-format generalization. This pa-
per explores the engineering complexities behind scientific data extraction sys-
tems and highlights open challenges that must be addressed to fully automate the
knowledge extraction pipeline. We discuss how solving these challenges could
dramatically accelerate materials discovery by eliminating manual data extraction
bottlenecks and enabling truly data-driven research approaches.

1 INTRODUCTION

The exponential growth of scientific literature poses a challenge of efficient extraction and struc-
turing knowledge from research papers, particularly in fast-evolving fields like materials science.
Automated data extraction systems have become essential. Recent advancements in natural lan-
guage processing (NLP) and large language models (LLMs) have significantly improved named en-
tity recognition (NER) and relation extraction (RE) (Foppiano et al., 2024). Models like Mistral-7B
(Jiang et al., 2023), Llama-3-8B (lla, 2024), and GPT (Radford et al.)—which have been developed
using large datasets—form the foundation for effective data extraction, while multi-modal models
such as GPT-4V (gpt, 2024) and GPT-4 Omni (OpenAI, 2024) extend processing capabilities to im-
ages and audio. Combined these technologies enable multimodal data extraction (Xu et al., 2024).

In materials science, chemical nomenclature and cross-domain terminology demand multimodal
models for automating extraction of experimental details from unstructured text (Wang et al., 2024;
Foppiano et al., 2024). Nevertheless, many existing approaches remain targeted, requiring human
intervention for interpreting figures and supplementary materials, which creates a substantial bot-
tleneck in materials discovery workflows. To explore these challenges and potential solutions, we
developed nanoMINER, a multi-agent system designed for automated, end-to-end structured data
extraction. This paper details our findings regarding the engineering complexities and open chal-
lenges encountered during system development, testing, and deployment.
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2 METHODS

The input system processes both the main paper and supplementary PDF documents.
PDF documents are converted into machine-readable text and images via pdfplumber
(https://github.com/jsvine/pdfplumber), preserving layout; py-tesseract
(https://github.com/madmaze/pytesseract) is used for optical character recogni-
tion (OCR) when needed. Next, we segment the extracted text into 2048-token chunks specifically
for the NER agent, a size chosen to balance local context retention and manageable LLM input
lengths. This chunking ensures that the NER agent analyzes each portion in detail, reducing con-
fusion from overly large contexts. Meanwhile, GPT-4o ingests the entire text in a single pass for
broader context extraction.

A cornerstone of nanoMINER is its multi-agent framework, designed to address the challenges of
extracting structured data from complex nanozyme literature. Unlike single-agent systems, which
often fail to handle multi-part instructions and edge cases, nanoMINER assigns each agent a clearly
scoped role with task-specific prompts, ambiguity resolution, and strict output formats. This mod-
ular design avoids instruction drift and improves reliability. Two separate named entity recognition
(NER) agents were fine-tuned—one using Mistral-7B and another Llama-3-8B—to identify entities
such as chemical formulas, particle sizes, and surface modifications. After benchmarking, the best-
performing NER model was integrated into the pipeline. These agents, along with a vision module,
act as specialized components generating structured outputs, which are then coordinated and refined
by a ReAct agent. This ReAct agent uses function-calling capabilities to merge data from different
sources into a unified and accurate structured dataset.

To capture information from non-textual elements, a YOLO-based model (Redmon et al., 2016) was
trained on 200 annotated nanomaterials figures (mAP = 0.93 at IoU 0.5) to detect figures, tables, and
plots. While GPT-4o is used for interpreting these elements, it performs poorly when figure captions
are minimal. YOLO helps by reliably localizing the visual content, which is then passed to GPT-4o
for interpretation. This approach boosts the extraction of visual-only data (e.g., Cmin, Cmax) with
only 2–3 seconds of added overhead per paper.

The final outputs are structured into JSON and tables, supporting downstream analysis and database
integration. Performance is evaluated using multiple metrics, with per-paper assessments based on
1–6 experiments and 100 repetitions per measurement. The system is optimized for speed using 8-
thread parallel processing, achieving an average runtime of 200 seconds per article, plus 8 seconds
for data formatting. All tests were conducted on a local machine with a Ryzen 5 5600X CPU, 32
GB RAM, and NVIDIA RTX 3080 GPU. Timing includes both local and API-based model latency,
i.e. GPT-4o.

Finally, performance of the extraction pipeline is evaluated with precision, recall, and normalized
Levenshtein distance to ensure that numerical and categorical parameters are accurately captured
(details in A.1). Each paper contained between 1 and 6 experiments with each experiment corre-
sponding to one measurement of a parameter. Precision and recall for each paper were evaluated
separately. Each experimental parameter was extracted 100 times to ensure reliability and statistical
significance in comparative analysis.

3 RESULTS

Figure 1 presents the architecture components and the main processing steps of nanoMINER. Au-
tomated structured data extraction from scientific literature is a challenging task with broad impli-
cations if solved. Our evaluation on the DiZyme nanomaterials dataset revealed significant insights
into the current state of automated scientific data extraction and highlighted several persistent chal-
lenges in the field.

We evaluated nanoMINER on a subset of the DiZyme nanomaterials dataset (Razlivina et al., 2024),
which comprises 19 articles and 25 unique experiments manually annotated with parameters such
as chemical formula, crystalline system, particle sizes, and surface modification. Our evaluation
measured extraction performance using precision and recall for numerical parameters and normal-
ized Levenshtein distance for categorical parameters. We tested three configurations in our experi-
ments: (i) text-only extraction using GPT-4o, (ii) text extraction combined with vision processing,

2



tokenisation entity extraction structured data

formula: ‘Fe3O4’, 

activity: ‘peroxidase’,

surface: ‘PVP’,

Vmax: 104 M/s, 

Temperature: 37 oC,

Csub: 1-100 mM, 

Ccosub: 1 mM,

Ccat: 0.05 mg/ml.

2567 9494 4568 4452 45

578 342 982 34 12 7 3475

Research paper + SI

Preprocessing data

Multi-agent system for data extraction

Action:  Need NER agent

Action:  Need NER agent

Action:  Send to main agent

Action:  Send to main agent

Action:  Summarize. 
Finish 

text  
data  
extractionpdf mapping

pdf extraction
Main agent 

formula: ‘Fe3O4’, 

activity: ‘peroxidase’,

surface: ‘PVP’,

Vmax: 104 M/s, 

Temperature: 37 oC,

Csub: 1-100 mM, 

Ccosub: 1 mM,

Ccat: 0.05 mg/ml.

structured data

formula: ‘Fe3O4’, 

activity: ‘peroxidase’,

crystal system: ‘cubic’,

surface: ‘PVP’,

size: 20 x 20 x 20 nm,

Km: 0.22 mM, 

Reaction: ‘TMB + H2O2’,

ph: 7.0, 

Temperature: 37 oC,

Csub: 0.01-10 mM, 

Ccosub: 10 mM,

Ccat: 0.05 mg/ml,

C min, sub,mM: ‘0.1’, 

C max, sub,mM: 1.6

formula: ‘Fe3O4’, 

activity: ‘peroxidase’,

crystal system: ‘cubic’,

surface: ‘PVP’,

size: 20 x 20 x 20 nm,

Km: 11.41  mM, 

Reaction: ‘H2O2 +TMB’,

ph: 7.0, 

Temperature: 37 oC,

Csub: 1-100 mM, 

Ccosub: 1 mM,

Ccat: 0.05 mg/ml,

C min, sub,mM: ‘2’, 

C max, sub,mM: 34

,

Final structured data

figures detection

figure 0.96

figures data extraction

C min, sub, mM: ‘2’, 

C max, sub, mM: 34,

Km: 11.41 mM, 

C min, sub, mM: ‘0.1’, 

C max, sub, mM: 1.6,

Km: 0.22 mM,  


structured data

NER agent 
Function:  

Entity recognition

Vision agent 
Function: 

Graph processing

Figure 1: Pipeline of nanoMINER: a multi-agent system for rapid and accurate extraction of struc-
tured data from scientific literature, integrating text extraction, visual data processing, and named
entity recognition.

and (iii) a comprehensive approach integrating GPT-4o for text extraction, vision processing, and
NER augmentation using fine-tuned Mistral-7B and Llama-3-8B. Our models effectively extracted
key molecular properties from scientific texts with high consistency. For example, the extraction
of the molecular weight of coating molecules (Mw(coat)) consistently achieved precision values
between 0.62 and 0.66 and recall between 0.73 and 0.86. These strong results demonstrate the
models’ capability to identify and extract explicit molecular parameters directly stated in the text.
Parameters such as particle width and depth—often underreported in spherical nanoparticle descrip-
tions—yielded lower scores (precision around 0.54-0.57 and recall approximately 0.32-0.35), high-
lighting the difficulty of extracting spatially related information from text (Table 1). Notably, we
observed no significant improvement with the addition of vision processing for general nanomate-
rials parameters, as most relevant parameters were consistently present within the text rather than
exclusively in figures or diagrams.

Moreover, the extraction of chemical formulas yielded nearly zero normalized Levenshtein dis-
tances, indicating strong alignment with manual annotations (Figure 2). The Surface parameter
demonstrated similar accuracy but with a heavy tail due to molecular name variations. The crystal
system parameter displayed a bimodal distribution, and additional testing revealed 86% accuracy in
predictions based solely on chemical formulas.

Building upon the nanomaterials framework, nanoMINER was extended to extract nanozyme
data—targeting nanomaterials with enzyme-like catalytic properties. This transition highlights the
adaptability of our system. Nanozymes combine nanotechnology and enzymology, exhibiting cat-
alytic activities similar to natural enzymes. To thoroughly capture the characteristics of these arti-
ficial enzymes, we identified and extracted ten critical parameters, including catalytic activity type,
kinetic constants, and reaction conditions. The integrated configuration (combining text, vision, and
NER) consistently outperformed text-only and partially integrated setups (Table 1). Substrate con-
centration parameters (Cmin and Cmax) achieved precision values ranging from 0.90 to 0.98, while
kinetic parameters such as Km and Vmax were extracted with precisions of 0.97 and 0.96, respec-
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Parameter Precision Recall
Text only Text+vision All agents Text only Text+vision All agents

Length, nm 0.65±0.03 0.65±0.03 0.66±0.03 0.51±0.03 0.51±0.03 0.55±0.03

Width, nm 0.54±0.04 0.54±0.04 0.56±0.04 0.32±0.03 0.32±0.03 0.35±0.03

Depth, nm 0.57±0.04 0.57±0.04 0.56±0.04 0.32±0.03 0.32±0.03 0.32±0.03

Mw(coat), g/mol 0.62±0.07 0.62±0.07 0.66±0.07 0.73±0.12 0.73±0.12 0.86±0.12

Km, mM 0.97±0.02 0.97±0.02 0.97±0.02 0.87±0.02 0.87±0.02 0.91±0.02

Cmin(sub), mM 0.90±0.05 0.97±0.04 0.97±0.04 0.38±0.03 0.54±0.03 0.54±0.03

Cmax(sub), mM 0.91±0.05 0.98±0.04 0.97±0.04 0.35±0.02 0.53±0.02 0.53±0.02

C co-sub, mM 0.79±0.03 0.79±0.04 0.78±0.04 0.51±0.03 0.51±0.03 0.51±0.03

Ccat, mg/mL 0.88±0.03 0.88±0.03 0.88±0.03 0.82±0.03 0.81±0.03 0.81±0.03

pH 0.89±0.03 0.89±0.02 0.89±0.03 0.83±0.03 0.83±0.03 0.82±0.03

Temperature, °C 0.68±0.02 0.68±0.02 0.70±0.02 0.88±0.03 0.88±0.04 0.96±0.04

Vmax, mM/s 0.96±0.02 0.96±0.02 0.96±0.02 0.79±0.02 0.79±0.02 0.83±0.02

Table 1: Evaluation of data extraction using different configurations (Text only, Text+Vision, and
Text+Vision+NER). Performance evaluation of the system in extracting four key numerical exper-
imental parameters from nanomaterials literature, using mean precision and recall with standard
deviation to measure extraction based on a test dataset of 19 articles.

tively. Although temperature extraction showed high recall (0.96), its precision was lower (0.68)
due to the sparse reporting typical of such data. Additionally, normalized Levenshtein distances for
categorical parameters (catalytic activity and reaction type) were centered near zero. The occasional
long tails reaching Levenshtein distance of one were primarily due to terminology variations, such
as synonyms or alternate phrasing that the system could not fully reconcile (Figure 2).

We conducted a detailed error analysis to understand the limited impact of the vision agent on pa-
rameters beyond Cmin and Cmax. In 19 test articles, figures and tables relevant to these parameters
were rare (1 figure and 1 table per paper), and the text extraction agent already captured most numer-
ical data (e.g., Km, Vmax). Thus, the vision agent’s main value lies in extracting Cmin and Cmax
when they appear only in figures. However, its performance drops with partially labeled or ambigu-
ous plots, limiting its broader utility. Improving figure interpretation and label clarity remains an
open challenge for expanding its effectiveness. While the vision agent can provide critical data when
it appears solely on figures, further improvements in figure interpretation and label disambiguation
are necessary to boost its performance on parameters beyond Cmin and Cmax.

Furthermore, using the developed tool, we expanded the existing nanozyme database to 100 samples
from 42 articles and automatically identified seven articles lacking experimental measurements,
which were filtered out during processing. The system’s ability to detect papers without quantitative
data eliminates the need to screen unsuitable articles manually. The total processing of 49 articles
took 2 hours and 48 minutes. Thus, nanoMINER allows us to rapidly expand the existing state-of-
the-art database through automated data extraction and validation, opening new research avenues in
design and discovery of new materials.

4 CONCLUSION, DISCUSSION, AND FUTURE WORK

NanoMINER represents the first-of-its-kind multi-agent solution for automated nanomaterials data
extraction. The system accurately and rapidly extracts structured data from complex nanomateri-
als and nanozyme literature. By integrating NLP, computer vision, and NER techniques, we have
achieved significant extraction quality—up to 0.98 precision for nanozyme-specific kinetic parame-
ters and near-perfect extraction of chemical formulas and other properties, as evidenced by near-zero
normalized Levenshtein distances. Furthermore, the dramatic reduction in processing time (approx-
imately 3.5 minutes per article versus roughly 90 minutes manually) addresses a critical bottleneck
in materials research. While nanoMINER effectively automates this complex and time-consuming
process in many cases, we acknowledge certain limitations and opportunities for improvement in
our approach.
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Figure 2: The performance of categorical nanozyme parameter extraction using normalized Leven-
shtein distance (A) is depicted for chemical formula (B), crystal system (C), surface molecule (D),
catalytic activity (E) and reaction type (F) parameters.

The acceleration in data collection provided by nanoMINER has transformative implications for
discovering new materials. The rapid transition from unstructured scientific texts to curated datasets
will facilitate hypothesis generation and testing. Comprehensive materials databases will make it
possible to implement AI-first approaches to materials design. Despite these advancements, sev-
eral challenges remain. First, our analysis shows that visual data extraction does not significantly
improve extraction accuracy for general parameters beyond Cmin and Cmax. A deeper breakdown
of when figure processing is critical—such as in cases where information is exclusively present in
charts or supplementary information—could help refine our approach. The system’s generalizability
to highly varied journal styles, noisy scans, or low-quality OCR outputs requires further evaluation.
Future work should assess robustness under real-world conditions, including inconsistencies in for-
matting and document quality.

Another key area for improvement is validation and feedback mechanisms. Currently, nanoMINER
focuses on producing structured outputs, but incorporating real-time verification—such as cross-
checking extracted values with known material constraints—could further enhance reliability. Adap-
tive feedback loops, where models iteratively refine their outputs based on confidence scores or
external validation sources, represent a promising direction for future development.

Addressing these challenges can further optimize nanoMINER for scalability, accuracy, and adapt-
ability, ensuring its effectiveness across a wider range of scientific literature and application do-
mains. More generally, future studies should explore integration of dynamic feedback loops within
multi-agent frameworks, enabling real-time adjustments during data extraction. Furthermore, incor-
porating anomaly detection and on-the-fly data correction will pave the way for fully autonomous
and adaptive extraction pipelines. These developments will not only streamline workflows in ma-
terials science but also extend to other domains such as biomedicine, environmental sciences, and
more.

In conclusion, our work with nanoMINER demonstrates both the significant progress and substantial
remaining challenges in automated scientific data extraction. By focusing research efforts on the
identified open problems, particularly in scientific figure understanding, multimodal integration,
validation, and format generalization, the community can develop tools that dramatically accelerate
materials discovery through truly comprehensive and reliable data extraction.
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A APPENDIX

A.1 PERFORMANCE METRICS

To rigorously evaluate our extraction system, we employ several complementary metrics that assess
different aspects of performance. All evaluations were conducted on our manually annotated test
dataset, comprising 19 papers with 1-6 experiments per paper. Each experiment corresponds to
one measurement for a parameter, and measurements were repeated 100 times to ensure statistical
robustness.

We define our evaluation criteria at the experiment level rather than at the parameter level:

• True Positive (TP): An experiment where all extracted parameters correctly match the
gold-standard annotation.

• False Positive (FP): An experiment that either does not exist in the gold-standard or con-
tains one or more incorrect parameters.

• False Negative (FN): A valid experiment from the gold-standard that the system fails to
extract.

• True Negative (TN): Correct identification that no experiment is present when none exists
in the gold-standard.

A.1.1 PRECISION

For each paper i, precision quantifies the proportion of correctly extracted experiments relative to
all extracted experiments:

Precisioni =
TPi

TPi + FPi
(1)

The overall precision is calculated as the average across all papers:

Precision =
1

N

N∑
i=1

Precisioni =
1

N

N∑
i=1

TPi

TPi + FPi
(2)

6



A.1.2 RECALL

For each paper i, recall measures the proportion of correctly extracted experiments relative to all
experiments that should have been extracted:

Recalli =
TPi

TPi + FNi
(3)

The overall recall is calculated as the average across all papers:

Recall =
1

N

N∑
i=1

Recalli =
1

N

N∑
i=1

TPi

TPi + FNi
(4)

A.1.3 NORMALIZED LEVENSHTEIN DISTANCE

The Levenshtein distance L(s1, s2) measures the minimum number of single-character edits (in-
sertions, deletions, or substitutions) required to transform string s1 into string s2. To facilitate
interpretation across strings of different lengths, we utilized the normalized Levenshtein distance:

NLD(s1, s2) = 1− L(s1, s2)

max(|s1|, |s2|)
(5)

Where |s1| and |s2| are the lengths of strings s1 and s2, respectively. This normalization produces
values in the range [0, 1], where:

• NLD = 0: Perfect match (identical strings)
• NLD = 1: Maximum dissimilarity (completely different strings)

This formulation is particularly useful when comparing strings of significantly different lengths, as
it provides a more balanced similarity assessment.

A.2 NER AGENT TRAINING AND HYPERPARAMETER TUNING

We used pre-trained language models (PLMs) for further fine-tuning in our system. We carefully
tuned the accumulation step, warmup steps, optimizer, and learning rate to achieve the best results
with a Tree-structured Parzen Estimator (TPE). A Bayesian optimization technique aims to find the
optimal set of hyperparameters that maximize (or minimize) an objective function. The accumula-
tion step determines the number of gradients combined before updating the model weights, which
can help stabilize training and reduce memory consumption. Warmup steps gradually increase the
learning rate during the initial training phase, preventing the model from diverging due to large
gradients. Llama-3-8B was finetuned using a cross-entropy loss function, and the training process
was carefully monitored to ensure convergence and optimal performance. We employed a learning
rate scheduler with a linear warmup period followed by cosine annealing, which has been shown to
improve generalization. As shown in Figure 3, the warmup period was set to 334 steps, with an
initial learning rate of 1.4e-6, gradually increasing to a maximum of 3e-6. The learning rate was
then annealed according to the cosine annealing schedule over the remaining training steps. We
used the AdamW 41 optimizer with a weight decay of 0.01 and a batch size of 1. The accumulation
step was set to 16, allowing for more efficient use of GPU memory while maintaining a larger ade-
quate batch size. Figure 3 illustrates the learning rate schedule and the corresponding training loss
throughout training. As shown in Figure 3B, the model achieved convergence after approximately
1,500 steps, with the validation loss stabilizing satisfactorily. Mistral-7B was fine-tuned similarly
but with different hyperparameters.(Figure 4) Specifically, it was also trained using cross-entropy
loss. Still, it employed approximately 368 warmup steps. The initial learning rate was set to 5e-7,
and the training process utilized a batch size of 4 with an accumulation step of 4. Additionally, we
employed the Adafactor optimizer 42 for the fine-tuning process. These adjustments in the training
configuration allowed for a more tailored approach to fine-tuning the Mistral-7B model, potentially
impacting its performance and adaptation to the specific task at hand.
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Figure 3: Llama-3-8B tuning process with original and smoothed curves: A) training loss function,
B) learning rate, C) validation loss function.
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Figure 4: Mistral-7B tuning process with original and smoothed curves: A) training loss function,
B) learning rate, C) validation loss function.
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