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ABSTRACT

Trajectory prediction aims to forecast an agent’s future trajectories based on its
historical observed trajectories, which is a critical task for various applications such
as autonomous driving, robotics, and surveillance systems. Most existing trajectory
prediction methods assume that the observed trajectories collected for forecasting
are clean. However, in real-world scenarios, noise is inevitably introduced into
the observations due to errors from sensors, detection, and tracking processes,
resulting in the collapse of the existing approaches. Therefore, it is essential to
perform robust trajectory prediction based on noisy observations, which is a more
practical scenario. In this paper, we propose NoisyTraj, a noise-agnostic approach
capable of tackling the problem of trajectory prediction with arbitrary types of noisy
observations. Specifically, we put forward a mutual information-based mechanism
to denoise the original noisy observations. This mechanism optimizes the produced
trajectories to exhibit a pattern that closely resembles the clean trajectory pattern
while deviating from the noisy one. Considering that the trajectory structure may
be destroyed through the only optimization of mutual information, we introduce an
additional reconstruction loss to preserve the structure information of the produced
observed trajectories. Moreover, we further propose a ranking loss based on the
intuitive idea that prediction performance using denoised trajectories should surpass
that using the original noisy observations, thereby further enhancing performance.
Because NoisyTraj does not rely on any specific module tailored to particular noise
distributions, it can handle arbitrary types of noise in principle. Additionally, our
proposed NoisyTraj can be easily integrated into existing trajectory prediction
models. Extensive experiments conducted on the ETH/UCY and Stanford Drone
datasets (SDD) demonstrate that NoisyTraj significantly improves the accuracy of
trajectory prediction with noisy observations, compared to the baselines.

1 INTRODUCTION

The objective of trajectory prediction is to anticipate the future trajectories for agents given their
past observed trajectories, which is an essential and emerging task in numerous applications, such
as autonomous driving (Phong et al., 2024; Wang et al., 2023b; Zhou et al., 2023; 2022), drones
(Corbetta et al., 2019), surveillance systems (Valera & Velastin, 2005), and robotics (Jetchev &
Toussaint, 2009; Rösmann et al., 2017). In recent years, trajectory prediction has garnered significant
attention in the computer vision and machine learning communities, with numerous methods proposed
(Bae et al., 2023; Choi et al., 2023; Chen et al., 2023b;a). Among these methods, they typically
assume the observed historical trajectories are clean, and leverage them to predict future trajectories.
Recent advances have demonstrated promising performance in trajectory prediction by learning from
such clean observed trajectory data.

However, in real-world scenarios, the acquisition of trajectory data is inevitably accompanied by the
introduction of noise. For instance, in an autonomous driving system’s trajectory acquisition pipeline,
object detection is initially performed to determine the positions and categories of objects. This
process is susceptible to noise stemming from sensor errors (e.g., cameras or LiDARs) or inaccuracies
in the detection algorithm. Subsequently, object tracking algorithms are employed to associate the
same object across multiple timestamps, thereby forming trajectories. At this stage, noise may be
introduced due to occlusions and inherent errors in the tracking algorithms.
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Figure 1: Performance drop of various trajectory prediction methods, including GraphTern (Bae &
Jeon, 2023), EqMotion (Xu et al., 2023a), SocialVAE (Xu et al., 2022b) and MID (Gu et al., 2022),
on the ETH/UCY (Pellegrini et al., 2009; Leal-Taixé et al., 2014) and Stanford Drone datasets (SDD)
(Robicquet et al., 2016). The start of each arrow indicates the performance under clean observations,
while the end represents the degraded performance under noisy observations (We add Gaussian noise
N (0, σ = 0.4) to the clean observations.). Best viewed in color.

The presence of noise in the observed trajectories significantly hinders the performance of existing
trajectory prediction methods. To substantiate this point, we corrupt the input observed trajectories by
adding noise in both the training and testing stages. We then conduct experiments on the ETH/UCY
(Pellegrini et al., 2009; Leal-Taixé et al., 2014) and Stanford Drone datasets (SDD) (Robicquet et al.,
2016) using several recently proposed trajectory prediction approaches. We compare the performance
before and after introducing noise to the observations. As shown in Figure 1, the presence of noise
in the observed trajectories leads to a significant performance drop for various trajectory prediction
methods on both the ETH/UCY and SDD datasets. Specifically, on the ETH/UCY dataset, the Final
Displacement Error (FDE) increases from approximately 0.35-0.45 meters in the clean observation
setting to 0.60-0.75 meters in the noisy observation setting. Similarly, on the SDD dataset, the FDE
rises from around 13-15 pixels to 18-20 pixels This significant performance degradation highlights
the detrimental impact of noise on trajectory prediction accuracy, even for state-of-the-art models.
Therefore, it is crucial to devise a robust method for predicting future trajectories based on noisy
observations.

In this paper, we propose NoisyTraj, a noise-agnostic method designed to address the challenge of
trajectory prediction with arbitrary types of noisy observations. Specifically, we first propose a mutual
information-based mechanism to filter noise from the original observations. This mechanism ensures
the produced trajectories closely resemble the patterns of noise-free trajectories while deviating
from the noisy patterns. To this end, we maximize the mutual information between the produced
trajectories and the clean future trajectories (i.e., ground-truth), while simultaneously minimizing
the mutual information between the produced trajectories and the original noisy observations. In
this way, the produced trajectories are forced to collate information from both the noisy trajectories
and clean future trajectories, thereby preserving the necessary information while filtering out noise.
However, solely relying on optimizing mutual information for denoising may disrupt the structure
of the trajectory. Therefore, we propose to randomly mask several observations and attempt to
reconstruct the masked locations. By jointly optimizing the mutual information and reconstruction
losses, the trajectory denoise model can effectively eliminate noise while preserving the structure
information of the trajectory. In the meantime, we design a ranking loss to facilitate the ability of the
trajectory prediction module based on an intuitive thought: predictions using the produced denoised
observations will be superior to those using noisy observations. It is noteworthy that the ranking loss
optimizes not only the trajectory prediction module but also the denoising module, which can further
assist in filtering noise to some extent. Since NoisyTraj does not rely on any specific module tailored
to a particular noise distribution, it can handle arbitrary noise in principle. Essentially, our proposed
NoisyTraj is a plug-and-play approach that is compatible with existing trajectory prediction models,
enabling them to gracefully handle cases with noisy observations.

Our main contributions are summarized as follows: 1) We investigate a new problem setting for
trajectory prediction with noisy observations, addressing a more practical scenario. To tackle this,
we propose a noise-agnostic, plug-and-play approach called NoisyTraj. 2) We design a denoising
module that incorporates a mutual information-based loss along with a reconstruction loss, effectively
denoising observed trajectories while preserving their structural information. 3) We propose a ranking
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loss to ensure that denoised observations yield superior future predictions compared to their noisy
counterparts, thereby enhancing the accuracy of trajectory predictions. 4) We conduct extensive
experiments on the ETH/UCY and SDD datasets, demonstrating that our method significantly
outperforms the baselines in predicting trajectory with noisy observations.

2 RELATED WORKS

2.1 TRAJECTORY PREDICTION WITH CLEAN OBSERVATIONS

Trajectory prediction has been an active area of research in the computer vision and machine learning
communities. Early works employ physics-based methods to model the trajectories of agents (Luber
et al., 2010; Pellegrini et al., 2009). Subsequently, learning-based approaches are proposed, which
significantly enhance the performance of trajectory prediction (Zhu et al., 2023a; Rowe et al., 2023;
Wang et al., 2023a; Xu et al., 2023b). They model trajectory temporal information and the interaction
between agents (Alahi et al., 2016; Altché & de La Fortelle, 2017; Shi et al., 2022; Xue et al.,
2018; Mohamed et al., 2020). One representative approach is social pooling, which aggregates
hidden state information of neighbors within a spatial grid (Gupta et al., 2018; Sadeghian et al.,
2019). Additionally, attention mechanisms (Fernando et al., 2018; Vemula et al., 2018), graph neural
networks (Li et al., 2019; Kosaraju et al., 2019; Sun et al., 2020b) and transformers (Yuan et al., 2021;
Zhu et al., 2023b; Shi et al., 2023) have also been exploited to model interactions among agents. To
further enhance prediction performance, researchers delve into incorporating the map information.
Works such as (Shafiee et al., 2021; Dendorfer et al., 2021; Sun et al., 2020a; Mangalam et al., 2021;
Meng et al., 2022) encode RGB scene information, while (Ye et al., 2021; Gu et al., 2021; Zhao et al.,
2021; Kang et al., 2024) incorporate lane and road traffic information. Moreover, due to the inherent
uncertainty associated with agents, researchers have proposed a series of models to predict multiple
plausible future trajectories, including GANs (Liang et al., 2021; Li, 2019; Zhao et al., 2019), VAEs
(Lee et al., 2022; 2017; Sun et al., 2021), and diffusion models (Rempe et al., 2023; Li et al., 2024b;
Jiang et al., 2023). Recently, several new task settings have been introduced to address more practical
trajectory prediction problems, including momentary trajectory prediction (Li et al., 2024a; Monti
et al., 2022; Sun et al., 2022; Li et al., 2024b), long-tailed distribution in trajectory prediction (Zhang
et al., 2024; Mercurius et al., 2024; Wang et al., 2023c), and distribution shift in trajectory prediction
(Stoler et al., 2023; Xu et al., 2022c; Kong et al., 2024).

Despite these methods having shown promising performance, they rely on sufficiently clean observed
trajectories. As aforementioned, when the observed trajectories are corrupted by noise, the model
performance severely deteriorates. In contrast to these approaches, we attempt to tackle the problem
of predicting future trajectories with noisy observed trajectories.

2.2 TRAJECTORY ANOMALY DETECTION

The goal of trajectory anomaly detection is to identify abnormal patterns in trajectories, such as
abnormal deviations, trajectory repetitions, and missing segments. Trajectory anomaly detection
methods can be categorized as supervised learning, semi-supervised learning, and unsupervised
learning approaches (Fan et al., 2009; Quispe-Torres et al., 2021; Zhang et al., 2018; Sillito & Fisher,
2008; Chebiyyam et al., 2018; Jiao et al., 2023; Mondal et al., 2021; Liatsikou et al., 2021). Supervised
anomaly detection entails training a deep supervised binary or multi-class classifier using labeled data
of both normal and anomalous trajectories. For instance, the work in (Chebiyyam et al., 2018) extracts
statistical features from trajectories to train a multi-class SVM for classifying trajectories as normal
or anomalous. Despite their promising performance, supervised methods require substantial effort to
label trajectory data. To mitigate this labeling burden, researchers have explored semi-supervised
anomaly detection, where only normal trajectory data are labeled. A common approach involves
employing deep autoencoders trained in a semi-supervised manner (Minhas & Zelek, 2020; Song
et al., 2017). These methods assume that the autoencoder will accurately encode and decode normal
samples while failing to reconstruct anomalous data. Moreover, in scenarios where labeled data
is scarce or unavailable, researchers have proposed unsupervised methods for trajectory anomaly
detection by leveraging intrinsic data properties. Clustering is a popular unsupervised technique for
trajectory anomaly detection. For example. Hu et al. (2006) clusters trajectories based on spatial and
temporal information, and each motion pattern is represented with a chain of Gaussian distributions.
Then, they detect anomalies based on these motion patterns. Fan et al. (Fan et al., 2009) propose
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Figure 2: Overview of the proposed NoisyTraj framework. The framework is composed of two
modules: a Trajectory Denoise Model (TDM) and a Trajectory Prediction Backbone (TPB). The LMI

denoises the produced trajectories X̂obs by maximizing mutual information between X̂obs and the
clean ground-truth Yfut, while minimizing the mutual information between X̂ and noisy observations
Xobs. The Lrec reconstructs the masked location of the original trajectories. By jointly optimizing
Lrec and LMI , the trajectory denoise model can learn to denoise trajectories while preserving the
structure information. The ranking loss Lrank constrains the predictions based on the denoised
observations X̂obs to be superior to those based on the noisy observations Xobs, thereby further
filtering out noise and enhance the ability of trajectory prediction.

to represent trajectories with Hidden Markov Models (HMMs) and propose a dynamic hierarchical
clustering method to differential normal and abnormal patterns.

While trajectory anomaly detection can identify abnormal trajectories, they cannot usually correct
these trajectories. In contrast to these methods, our objective is to eliminate noise from observed
trajectories and enhance the performance of trajectory prediction.

3 METHODS

3.1 PROBLEM FORMULATION

Let Xobs = {x1obs, x2obs, . . . , x
Tobs
obs } denote the observed trajectories, where Tobs is the observation

length, and xiobs ∈ R2 is the ith location. We assume the observations are given by Xobs = Sobs+N ,
where Sobs = {s1obs, s2obs, . . . , s

Tobs
obs } are clean observed trajectories, and N is noise sample from

an arbitrary distribution, such as Gaussian noise and Possion noise. Moreover, we denote the
ground-truth future trajectories as Yfut = {y1fut, y2fut, . . . , y

Tfut
fut }, where yifut ∈ R2 represents

the ith locations, and Tfut is the length of the ground-truth future trajectories. In this work, we
simplify the problem by assuming Yfut are clean, and only the observed trajectory is noisy, which is a
reasonable assumption 1. Different from previous works that typically utilize clean observations Sobs
for future trajectory prediction, our goal is to develop a robust trajectory prediction method using
noisy observations, which is a more practical scenario. Specifically, we aim to use noisy observations
Xobs to forecast K plausible future trajectories {Ŷfut}Kk=1 under the supervision of Yfut.

3.2 OVERALL FRAMEWORK

The overall framework of the proposed NoisyTraj is shown in Figure 2. Our framework consists
of two parts: a Trajectory Denoise Model (TDM) and a Trajectory Prediction Backbone (TPB).
To eliminate noise from the noisy observations Xobs, we first propose a mutual information-based
mechanism, which encourages the produced trajectories X̂obs exhibit patterns similar to the noise-

1In practical scenarios, we can use an autonomous vehicle equipped with both cameras and LiDAR to collect
training data. We can treat camera-derived trajectories as noisy data and LiDAR-derived trajectories as clean
ground-truth for training. Once the model is learned based on the training data, we can deploy it on a vehicle
equipped with only cameras for trajectory prediction with noisy observations.
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free ground-truth future trajectories Yfut, while deviating from the patterns of the noisy observed
trajectories Xobs. This is achieved through a loss function LMI that simultaneously maximizes the
mutual information between X̂obs and Yfut while minimizing the mutual information between X̂obs

and Xobs. In this way, the produced trajectories X̂obs are forced to collate information from both the
noisy trajectories Xobs and clean future trajectories Yfut, thereby filtering out noise. Given that only
optimizing mutual information-based loss potentially disrupts the structure of the trajectories, we
propose a reconstruction strategy to mitigate this issue. Specifically, we randomly mask M locations
of the noisy observations Xobs to obtain Xmask

obs . The Xmask
obs is then fed into the TDM to reconstruct

the masked portion of the original noisy input Xobs using Lrec. By jointly optimizing LMI and Lrec,
the TDM is able to learn to denoise while preserving the structure information of the trajectories.
To facilitate more accurate trajectory prediction, we devise a ranking loss. We first input both the
denoised observations X̂obs and the original noisy observations Xobs into the TPB to forecast future
trajectories. Then the ranking loss is applied to encourage the future trajectories predicted from the
denoised observations to be more precise than those predicted from the noisy observations, thereby
enhancing the trajectory prediction performance. The TDM and TPB modules can benefit from each
other: the ranking loss in TPB helps TDM filter noise more effectively, while the denoised trajectories
generated by TDM enable TPB to predict future trajectories more accurately. As NoisyTraj is not
dependent on any module specialized for a particular noise distribution, it is capable of handling
arbitrary noise in principle. In addition, NoisyTraj is essentially a plug-and-play approach and can
be readily integrated into existing trajectory prediction models, enabling them to effectively handle
scenarios with noisy observations.

3.3 TRAJECTORY PREDICTION WITH NOISY OBSERVATIONS

In this section, we introduce the details of our NoisyTraj. We first present the mutual information-
based denoising mechanism, followed by the designed ranking loss.

3.3.1 MUTUAL INFORMATION-BASED DENOISING MECHANISM.

Given noisy observations Xobs, we expect the noise can be eliminated through a trajectory denoising
model ΦTDM. Inspired by Information Bottleneck (Tishby et al., 2000), we encourage the produced
trajectories to exhibit patterns closely resembling noise-free trajectory patterns while deviating from
noisy patterns. This is achieved by maximizing the mutual information between the produced trajec-
tories and noise-free ground-truth future trajectories Yfut while minimizing the mutual information
between the produced trajectories and the original noisy observations Xobs. We define the objective
function as:

JMI = min
X̂obs

αI(Xobs; X̂obs)− I(X̂obs;Yfut), (1)

where I(· ; ·) represents the mutual information and α is a trade-off parameter.

However, directly calculating JMI is intractable. Therefore, we estimate the upper bound of
I(Xobs; X̂obs) by utilizing CLUB (Cheng et al., 2020), and the lower bound of I(X̂obs;Yfut) by
leveraging the method described in MINE (Belghazi et al., 2018). We first calculate the upper bound
of I(Xobs; X̂obs).

Theorem 3.1. Given two random variables x and y, the mutual information I(x; y) has the following
upper bound

I(x; y) ≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)]. (2)

Proof. See proof in the Appendix 6.3.

By substituting Xobs and X̂obs to the Equation (2), we can obtain the upper bound of I(Xobs; X̂obs):

I(Xobs; X̂obs) ≤ Ep(Xobs,X̂obs)[log p(X̂obs|Xobs)]− Ep(Xobs)Ep(X̂obs)[log p(X̂obs|Xobs)]. (3)

Since p(X̂obs|Xobs) is unknown, we introduce a variational approximation distribution
qϕ(X̂obs|Xobs) to approximate p(X̂obs|Xobs) with parameter ϕ, following (Cheng et al., 2020).

5
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Thus, the upper bound can be written as:

I(Xobs; X̂obs) ≤ Iµ(Xobs; X̂obs)

= Ep(Xobs,X̂obs)[log qϕ(X̂obs|Xobs)]− Ep(Xobs)Ep(X̂obs)[log qϕ(X̂obs|Xobs)]. (4)

Next, we calculate the lower bound of the mutual information I(X̂obs;Yfut).
Theorem 3.2 (Donsker-Varadhan representation (Donsker & Varadhan, 1983)). Given two probability
distributions P, Q. The Kullback Liebler Divergence admits the following dual representation:

DKL(P||Q) = sup
T :Ω→R

EP[T ]− logEQ[e
T ], (5)

Proof. See the proof in the Appendix 6.4.

Based on the Theorem 3.2, we can obtain the I(X̂obs, Yfut) by:

I(X̂obs, Yfut) = DKL(p(X̂obs, Yfut)||p(X̂obs)p(Yfut)) (6)

= sup
T :Ω→R

Ep(X̂obs,Yfut)[T ]− logEp(X̂obs)p(Yfut)[e
T ], (7)

where Ω = X̂obs × Yfut is the input space. Let F be any class of functions T : Ω → R, and the
lower bound of I(X̂obs, Yfut) can be expressed as:

I(X̂obs, Yfut) ≥ IF (X̂obs, Yfut) = sup
T∈F

Ep(X̂obs,Yfut)[T ]− logEp(X̂obs)p(Yfut)[e
T ]. (8)

We choose F to be the family of functions Tψ : X̂obs×Yfut → R, parameterized by a neural network
ψ. Thus, the lower bound can be written as:

I(X̂obs, Yfut) ≥ Iψ(X̂obs, Yfut) = sup
ψ

Ep(X̂obs,Yfut)[Tψ]− logEp(X̂obs)p(Yfut)[e
Tψ ]. (9)

Based on Equation (4) and (9), we derive the upper bound LMI of the JMI as:

JMI ≤ LMI = αIµ(Xobs; X̂obs)− Iψ(X̂obs, Yfut)

= αEp(Xobs,X̂obs)[log qϕ(X̂obs|Xobs)]− Ep(Xobs)Ep(X̂obs)[log qϕ(X̂obs|Xobs)]

− sup
ψ

Ep(X̂obs,Yfut)[Tψ] + logEp(X̂obs)p(Yfut)[e
Tψ ]. (10)

By minimizing the upper bound LMI , we can obtain an approximation solution to Equation (1),
enabling the trajectory denoise model to learn how to denoise trajectories.

However, only optimizing the mutual information may destroy the structure of the produced trajecto-
ries. Therefore, we propose a reconstruction strategy to preserve the structure information. As shown
in the left part of Figure 2, we mask locations within the noisy observed trajectories Xobs to generate
Xmask
obs , which can be formulated as:

Xmask
obs = Xobs ⊙Mobs, (11)

where ⊙ represents the element-wise multiplication. Mobs is a 0-1 mask vector, where the value
0 represents the corresponding locations are masked. Subsequently, the Xmask

obs is fed into the
trajectory denoise model ΦTDM to produce observed trajectories X̂mask

obs . To enable TDM to preserve
the structural information of the trajectories, we reconstruct the masked locations in the produced
trajectories. We define the reconstruction loss as follows:

Lrec = J (X̂mask
obs ⊙ (1−Mobs), Xobs ⊙ (1−Mobs)), (12)

where J denotes the distance metric, and we empirically adopt L2 distance in this work. Through
optimizing Lrec, the trajectory denoise model can learn to preserve the structure information of the
observations. By jointly optimizing the reconstruction loss Lrec with LMI , the mutual information-
based mechanism effectively denoises the trajectories while preserving their structural information.
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3.3.2 TRAJECTORY PREDICTION BASED ON RANKING LOSS.

After obtaining the denoised observed trajectories X̂obs, we design a ranking loss to enhance future
trajectory prediction performance. The ranking loss is based on an intuitive thought: leveraging
denoised observed trajectories should yield more accurate future predictions compared to using
noisy observations. To accomplish this, we first input the denoised observations into the trajectory
prediction backbone ΦTPB. Then, we can predict K plausible future trajectories:

{Ŷ kfut}Kk=1 = ΦTPB(ΦTDM(Xobs)), (13)

Similarly, we can also predict K possible trajectories based on the noisy observed trajectories:

{Ỹ kfut}Kk=1 = ΦTPB(Xobs). (14)

After obtaining K possible trajectories based on the denoised and noisy observed trajectories,
respectively, we then select the minimal distances ddenoise and dnoise by calculating the distances
between each predicted trajectory and ground-truth trajectory, respectively. Formally,

ddenoise = min
1≤k≤K

||Ŷ kfut − Yfut||2, dnoise = min
1≤k≤K

||Ỹ kfut − Yfut||2. (15)

Then, we employ the ground-truth future trajectories as supervision for the best-predicted trajectory:

Lpred = ||Ŷ bestfut − Yfut||2 + ||Ỹ bestfut − Yfut||2, (16)

where best represents the trajectory with a minimal distance to the ground-truth. Subsequently, we
design a ranking loss to constrain the best prediction Ŷ bestfut using the denoised observations to be
more accurate than that Ỹ bestfut using the noisy observations:

Lrank = max(0, ddenoise − dnoise +∆), (17)

where ∆ is a margin. Since the ranking loss optimizes both the trajectory prediction backbone and
the trajectory denoise model, it not only aids in better trajectory prediction but also facilitates the
denoising ability of the trajectory denoise model.

3.4 OPTIMIZATION AND INFERENCE

Optimization. We define the total loss function as:

L = Lpred + βLrank + δLrec + γLMI , (18)

where β, δ, and γ are trade-off hyperparameters. The training details are shown in Appendix 6.7.

Inference. After training, the model can be utilized for trajectory prediction based on noisy obser-
vations. As shown in the blue arrow in Figure 2, we first feed the noisy trajectories Xobs into the
trajectory denoise model ΦTDM to obtain denoised trajectories X̂obs. Subsequently, the trajectory
prediction backbone ΦTPB takes X̂obs as input to obtain the predicted future trajectories {Ŷ kfut}Kk=1.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset. We evaluate our proposed NoisyTraj on two widely used datasets: the ETH/UCY (Pellegrini
et al., 2009; Leal-Taixé et al., 2014) and SDD dataset (Robicquet et al., 2016). The ETH/UCY
dataset is composed of 5 scenes, including ETH, HOTEL, UNIV, ZARA1, and ZARA2, with 1,536
pedestrians recorded in total. Following (Huang et al., 2019; Xu et al., 2022b; Mangalam et al., 2020;
Bae et al., 2023), we adopt the "leave-one-out" strategy, where the models are trained on 4 scenes
and tested on the remaining scene. SDD consists of 20 scenes captured using a drone in a top-down
view around the university campus containing several moving agents such as humans, bicyclists,
skateboarders, and vehicles, which contains 5,232 trajectories in total. We follow a common setting
among existing works, where 8 frames of trajectories (3.2 seconds) are used as observations to predict
the next 12 frames (Wong et al., 2022; Gu et al., 2022). To verify the robustness of NoisyTraj against
noise, we add noise into existing publicly available trajectory prediction datasets, ETH/UCY and

7
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Table 1: Comparison of different methods on the ETH/UCY dataset. The evaluation metrics are ADE
and FDE (Unit: meters). The best results are highlighted in bold.

Noise Method ETH HOTEL UNIV ZARA1 ZARA2 AVG
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

σ = 0.2

GraphTern 0.56 0.81 0.27 0.39 0.39 0.59 0.37 0.58 0.34 0.50 0.39 0.57
EqMotion 0.51 0.70 0.17 0.24 0.36 0.56 0.33 0.54 0.25 0.37 0.32 0.48

MID 0.74 0.86 0.37 0.36 0.45 0.58 0.43 0.52 0.40 0.47 0.48 0.56
SocialImplict 0.67 1.28 0.31 0.49 0.46 0.77 0.39 0.71 0.35 0.63 0.44 0.78
SocialVAE 0.56 0.89 0.18 0.25 0.40 0.63 0.32 0.49 0.25 0.38 0.34 0.53

Wavelet+GraphTern 0.50 0.72 0.23 0.35 0.37 0.56 0.32 0.50 0.30 0.42 0.34 0.51
EMA+GraphTern 0.53 0.76 0.26 0.37 0.38 0.57 0.34 0.54 0.31 0.48 0.36 0.53

NoisyTraj+GraphTern 0.48 0.68 0.19 0.26 0.35 0.53 0.28 0.44 0.27 0.36 0.31 0.45
Wavelet+EqMotion 0.48 0.64 0.16 0.22 0.32 0.52 0.31 0.48 0.23 0.32 0.30 0.44
EMA+EqMotion 0.49 0.66 0.16 0.22 0.34 0.53 0.31 0.48 0.23 0.33 0.31 0.44

NoisyTraj+EqMotion 0.47 0.61 0.16 0.21 0.29 0.47 0.28 0.44 0.21 0.29 0.28 0.40

σ = 0.4

GraphTern 0.67 0.99 0.40 0.51 0.49 0.69 0.51 0.71 0.46 0.61 0.51 0.70
EqMotion 0.65 0.87 0.25 0.34 0.43 0.64 0.42 0.62 0.34 0.48 0.42 0.59

MID 0.88 1.08 0.51 0.49 0.60 0.73 0.59 0.84 0.57 0.72 0.63 0.77
SocialImplict 0.74 1.39 0.40 0.64 0.54 0.86 0.59 0.88 0.53 0.76 0.56 0.61
SocialVAE 0.67 1.01 0.24 0.32 0.48 0.73 0.41 0.58 0.31 0.43 0.42 0.61

Wavelet+GraphTern 0.60 0.83 0.33 0.43 0.46 0.64 0.42 0.63 0.37 0.49 0.44 0.60
EMA+GraphTern 0.64 0.92 0.36 0.46 0.46 0.66 0.47 0.67 0.41 0.58 0.47 0.66

NoisyTraj+GraphTern 0.55 0.77 0.29 0.41 0.42 0.61 0.38 0.56 0.34 0.42 0.40 0.55
Wavelet+EqMotion 0.62 0.74 0.23 0.29 0.41 0.58 0.39 0.56 0.32 0.43 0.39 0.52
EMA+EqMotion 0.63 0.75 0.23 0.29 0.42 0.63 0.40 0.58 0.31 0.42 0.43 0.53

NoisyTraj+EqMotion 0.57 0.71 0.20 0.25 0.35 0.51 0.35 0.51 0.29 0.41 0.35 0.48

SDD. We employ two settings: i) we first add Gaussian noise N (0, σ) based on the Central Limit
Theorem (Kwak & Kim, 2017), which suggests that combination of various noise sources—such as
sensor error, detection error, and tracking error—tend to approximate a Gaussian distribution. To
verify the effectiveness of NoisyTraj under different levels of noise, we set σ to different values, e.g.,
0.2 and 0.4. (Forde & Daniel, 2021); ii) to verify the noise-agnostic property of NoisyTraj, we add
various types of noise including Poisson noise, mixed noise, and multiplicative noise.

Evaluation Metrics. Following previous works (Mao et al., 2023; Gu et al., 2022; Sadeghian et al.,
2019; Shi et al., 2021), we employ Average Displacement Error (ADE) and Final Displacement Error
(FDE) to evaluate the predicted trajectories. ADE is the average L2 error between all future timesteps,
and FDE is the error at the final timestamp. We take the best out of K = 20 predictions to account
for the multi-modality for trajectory prediction, as in (Salzmann et al., 2020; Xu et al., 2022a).

Backbones and Compared Baselines. To validate the efficacy of NoisyTraj, we integrate it into
two popular trajectory prediction backbones GraphTern (Bae & Jeon, 2023) and EqMotion (Xu
et al., 2023a). We first compare our method against five state-of-the-art trajectory prediction models,
including GraphTern, EqMotion, MID (Gu et al., 2022), SocialImplict (Mohamed et al., 2022)
and SocialVAE (Xu et al., 2022b). These methods take original noisy observations as input to
predict future trajectories. Considering there are few works focusing on trajectory prediction with
noisy observations, we establish two trajectory denoising baselines by integrating Wavelet and EMA
with the trajectory prediction backbones, respectively, for a more comprehensive comparison. The
Wavelet utilizes the wavelet transform to decompose the signal into multiple scales, obtaining wavelet
coefficients of different frequencies. Then the noise in high-frequency coefficients is removed by the
thresholding method. The EMA smooths the current trajectory location by taking an exponentially
weighted average of the current location and past locations.

4.2 RESULTS AND ANALYSIS

Performance on Trajectory Predictions with Noisy Observations. We evaluate the performance of
our proposed NoisyTraj and compare it with various baselines on the ETH/UCY and SDD datasets.
The results are listed in Table 1 and Table 2. Based on the two tables, NoisyTraj+GraphTern and
NoisyTraj+EqMotion significantly outperforms GraphTern and EqMotion on the two datasets under
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Table 2: Comparison of different methods on the SDD dataset. The evaluation metrics are ADE and
FDE (Unit: pixels). The best results are highlighted in bold.

Noise Method SDD Noise Method SDD
ADE FDE ADE FDE

σ = 0.2

GraphTern 11.67 18.37

σ = 0.4

GraphTern 13.74 19.77
EqMotion 10.62 15.68 EqMotion 13.46 19.60

MID 10.26 15.38 MID 12.86 18.35
SocialImplicit 15.92 26.82 SocialImplicit 18.07 29.98

SocialVAE 11.67 17.62 SocialVAE 13.73 19.71
Wavelet+GraphTern 10.52 16.86 Wavelet+GraphTern 12.98 18.50
EMA+GraphTern 11.03 17.42 EMA+GraphTern 13.21 19.11

NoisyTraj+GraphTern 10.08 15.64 NoisyTraj+GraphTern 12.35 17.28
Wavelet+EqMotion 10.36 15.24 Wavelet+EqMotion 12.38 18.25
EMA+EqMotion 10.32 15.22 EMA+EqMotion 12.79 18.64

NoisyTraj+EqMotion 10.06 14.67 NoisyTraj+EqMotion 11.92 17.65

the setting of σ = 0.2 and σ = 0.4 meters. This illustrates current state-of-the-art methods cannot
well tackle the case of noisy observations. However, when integrating our proposed NoisyTraj into
these two models, the performance can be significantly improved. This demonstrates the effectiveness
of our method for trajectory prediction with noisy observations, and also highlights its compatibility
with different trajectory prediction models. Furthermore, NoisyTraj outperforms the Kalman and
EMA denoising methods, further underscoring the superiority of our proposed approach.

Table 3: Ablation Studies on each component of
NoisyTraj. The best results are highlighted in bold.

Component ETH/UCY SDD
LMI Lrec Lrank ADE FDE ADE FDE

0.51 0.70 13.74 19.77
✓ 0.47 0.65 13.21 18.79
✓ ✓ 0.42 0.59 12.74 17.96
✓ ✓ ✓ 0.40 0.55 12.35 17.28

Ablation Studies. We conduct ablation stud-
ies on the components of our proposed method.
We utilize GraphTern as the backbone and set
σ to 0.4 meters. The results are listed in Table
3. We first incorporate the mutual information
loss LMI into GraphTern, the performance is
improved, demonstrating our denoising mech-
anism is effective. We then add Lrec into our
method to reconstruct the masked locations for
preserving the structure information of the tra-
jectories. We observe a further improvement in performance, which demonstrates its effectiveness.
Finally, we add the ranking loss Lrank, which enables our method to achieve the best performance.
This indicates that Lrank enhances the capability of the trajectory prediction model.

Table 4: Comparison of different methods under different noise setting on the SDD dataset. The
evaluation metrics are ADE and FDE (Unit: pixels). The best results are highlighted in bold.

(a) Possion Noise (λ = 0.4).

Noise Method SDD
ADE FDE

λ = 0.4

EqMotion 14.05 19.46
Wavelet+EqMotion 12.95 17.97
EMA+EqMotion 13.15 17.58

NoisyTraj+EqMotion 12.22 16.23

(b) Mixed noise composed of Gaussian noise (σ =
0.2) and Poisson noise (λ = 0.2).

Noise Method SDD
ADE FDE

σ = 0.2
λ = 0.2

EqMotion 14.66 20.27
Wavelet+EqMotion 13.48 18.30
EMA+EqMotion 13.82 18.97

NoisyTraj+EqMotion 12.96 17.09
(c) Noise randomly multiplied by δ ∈ [0.95, 1.0].

Noise Method SDD
ADE FDE

δ ∈
[0.95, 1.0]

EqMotion 17.48 19.10
Wavelet+EqMotion 16.17 18.18
EMA+EqMotion 16.25 18.38

NoisyTraj+EqMotion 15.66 17.39

(d) Gaussian Noise sampled from σ ∈ {0.2, 0.4}.

Noise Method SDD
ADE FDE

σ ∈
{0.2, 0.4}

EqMotion 13.33 18.92
Wavelet+EqMotion 12.82 15.66
EMA+EqMotion 12.76 15.50

NoisyTraj+EqMotion 12.28 15.15
Performance under Different Noise Setting. We conduct experiments to verify the effectiveness
of NoisyTraj for various noise settings. we added (1) Poisson noise, (2) Mixed noise (Gaussian +
Poisson), (3) Noise randomly multiplied by δ ∈ [0.95, 1] and (4) Gaussian noise randomly sampled
from σ ∈ {0.2, 0.4}. The results are listed in Table 4. We observe our method consistently
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outperforms the baselines across various settings, which demonstrates the effectiveness of Noisytraj
and it is agnostic to noise distributions in principle.

Generalizability of NoisyTraj. To verify the generalizability of our method, we conduct additional
experiments where the noise in the training and validation/testing set is different. Specifically, we
train the model using trajectories with Gaussian noise (σ = 0.4) and then test it with Gaussian noise
(σ = 0.2) and Poisson noise (λ = 0.4). The results, as listed in Table 5, show that our NoisyTraj
can achieve denoising effectively, and still outperforms the baselines. This also indicates that our
method possesses generalization ability when noise is different in the training and testing/validation
set. Therefore, we believe our method still works when facing real-world noisy trajectories.

Table 5: Comparison of different methods when noise is different between training and testing on
the SDD dataset. The evaluation metrics are ADE and FDE (Unit: pixels). The best results are
highlighted in bold.

Noise Method SDD
ADE FDE

Train:
σ = 0.4

Test:
σ = 0.2

EqMotion 11.47 16.82
Wavelet+EqMotion 10.86 16.07
EMA+EqMotion 10.99 16.24

NoisyTraj+EqMotion 10.72 15.89

Noise Method SDD
ADE FDE

Train:
σ = 0.4

Test:
λ = 0.4

EqMotion 15.03 19.35
Wavelet+EqMotion 14.40 18.56
EMA+EqMotion 14.57 18.98

NoisyTraj+EqMotion 14.26 18.32

Qualitative Results. We visualize the denoised observations and predicted future trajectories
generated by EWA, Wavelet, and NoisyTraj, using GraphTern as the backbone. The results are
shown in Figure 3. We observe that NoisyTraj can generate less noisy observed trajectories and
more accurate future trajectories compared to other methods. This demonstrates the proposed mutual
information-based mechanism effectively denoises the observations, and the ranking loss aids in
forecasting more precise future trajectories.

a)

b)

c)

Figure 3: Visualization of predicted trajectories via (a) EMA+GraphTern, (b) Wavelet+GraphTern,
(c) NoisyTraj+GraphTern on the ETH/UCY Dataset. The clean, noisy, and denoised observations
are shown in green, blue, and red, respectively. The noisy observations are obtained through adding
Gaussian noise N (0, σ = 0.4) into clean observations. The ground-truth and predicted future
trajectories are shown in orange and cyan, respectively.

5 CONCLUSION

In this paper, we investigated an extremely challenging task of trajectory prediction with noisy obser-
vations. We proposed NoisyTraj, a framework that simultaneously filters out noise and predicts future
trajectories, enabling them to benefit from each other. To remove the noise from the observations,
we designed a denoising mechanism by jointly optimizing a mutual information-based loss and a
reconstruction loss. Moreover, we devised a ranking loss that requires the prediction performance
using denoised observed trajectories to be superior to that using the original noisy observations,
thereby further improving the performance of the model. Extensive experiments demonstrated the
effectiveness of NoisyTraj and its compatibility with various trajectory prediction models.
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6 APPENDIX

6.1 VISUALIZATION OF MUTUAL INFORMATION-BASED DENOISING MECHANISM

To further demonstrate the efficacy of the proposed Mutual Information-Based Denoising Mechanism,
we visualize the denoised trajectory and future predicted trajectory on the ETH dataset. As shown in
Figure 4(a), optimizing solely for mutual information leads to the destruction of structural information.
However, as depicted in the Figure 4(b), when we incorporate the reconstruction loss Lrec, the
structure of the trajectory is preserved, and more accurate future trajectory predictions based on these
well-structured observations. This underscores the effectiveness of our proposed method.

(a) Results of applying LMI (b) Results of applying LMI + Lrec

Figure 4: Visualization of trajectories on ETH dataset by employing (a) LMI and (b) LMI + Lrec.
The clean, noisy, and denoised observations are shown in green, blue, and red, respectively. The
ground-truth and predicted future trajectories are shown in orange and cyan, respectively.

6.2 MORE ANALYSIS OF NOISYTRAJ

Performance under low/no noise settings. We evaluate NoisyTraj under low or no noise by setting
the Gaussian noise σ to 0.05 and 0. The results presented in Table 6 indicate that after integrating
NoisyTraj into EqMotion, the performance is still superior to baselines when at a low noise level
(σ = 0.05). Additionally, NoisyTraj+EqMotion performs comparably to EqMotion when σ = 0.
This demonstrates NoisyTraj does not degrade the performance when noise is not introduced.

Table 6: Comparison of different methods under different noise setting on the SDD dataset. The
evaluation metrics are ADE and FDE (Unit: pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.05

EqMotion 8.48 13.49
Wavelet+EqMotion 8.39 13.37
EMA+EqMotion 8.42 13.36

NoisyTraj+EqMotion 8.32 13.28

Noise Method SDD
ADE FDE

σ = 0

EqMotion 8.08 13.12
Wavelet+EqMotion 8.16 13.42
EMA+EqMotion 8.22 13.57

NoisyTraj+EqMotion 8.11 13.08

Table 7: Comparison with baselines using MID backbone. The evaluation metrics are ADE and FDE
(Unit: pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

MID 12.86 18.35
Wavelet+MID 12.26 17.88
EMA+MID 12.45 18.01

NoisyTraj+MID 11.97 17.41

Performance on diffusion-based backbones. In addition to GraphTern and EqMotion, we integrate
NoisyTraj into MID, a diffusion-based model for trajectory prediction. Specifically, we first use
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TDM to denoise the noisy observations Xobs, obtaining X̂obs . Then, using both the denoised and
original observations, we sample normal noise from a standard Gaussian distribution to generate
Ŷfut and Ỹfut, respectively. To optimize the model, We apply Lpred and Lrank alongside the MID
loss . The results shown in Table 7 show that NoisyTraj still outperforms the baselines, which further
underscores its adaptability.

Comparison with frozen predictor. We conduct an experiment where we freeze the predictor and
only train the denoiser. We first load the predictor trained on clean observations, freeze its parameters,
and then integrate NoisyTraj, training only the denoiser. The results, shown in Table 8, reveal a
performance decrease when the predictor’s parameters are frozen. This indicates the necessity of
jointly learning the denoiser and predictor.

Table 8: Comparison with NoiseTraj where the predictor is freezed. The best results are highlighted
in bold

Noise Method SDD
ADE FDE

σ = 0.4
EqMotion 13.46 19.60

NoisyTraj+EqMotion (freeze) 12.19 17.95
NoisyTraj+EqMotion 11.92 17.65

Comparison with Learning-based baseline. To our knowledge, our work is the first to address
trajectory prediction with noisy observations, with no existing learning-based baselines for this
problem. We use Noise2Void [1], a learning-based denoiser originally for image denoising, as
another baseline. We first denoise the observed trajectories, and then perform future trajectory
prediction based on the observations. The results in Table 9 of the attached PDF show that NoisyTraj
outperforms Noise2Void, demonstrating the effectiveness of our method.

Table 9: Comparison with baselines on SDD dataset. The evaluation metrics are ADE and FDE (Unit:
pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

EqMotion 13.46 19.60
Wavelet+EqMotion 12.38 18.25
EMA+EqMotion 12.79 18.64

Noise2Void+EqMotion 12.46 18.52
NoisyTraj+EqMotion 11.92 17.65

6.3 PROOF OF THEOREM 3.1

Theorem 6.1 (Theorem 3.1 restated). Given two random variables x and y, the mutual information
I(x; y) has the following upper bound

I(x; y) ≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] (19)

Proof. The definition of mutual information between variables x and y is

I(x; y) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
= Ep(x,y)[log p(y|x)]− Ep(x,y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)] (20)

By the definition of the marginal distribution, we have:

p(y) =

∫
p(y|x)p(x)dx = Ep(x)[p(y|x)]. (21)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

By substituting Equation (21) to , we have:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]] (22)

Note that the log(·) is a concave function, by Jensen’s Inequality, we have

−Ep(y)[logEp(x)[p(y|x)]] ≤ −Ep(y)Ep(x)[log p(y|x)]
= Ep(x)Ep(y)[log p(y|x)] (23)

By applying this inequality to Equation (22), we obtain:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]]
≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] (24)

6.4 PROOF OF THEOREM 3.2

Theorem 6.2 (Therorem 3.2 restated). Given two probability distributions P, Q. The Kullback
Liebler Divergence admits the following dual representation:

DKL(P||Q) = sup
T :Ω→R

EP[T ]− logEQ[e
T ], (25)

Proof. The proof comprises two steps. Firstly, we prove the existence of the supremum in the dual
representation. Subsequently, we demonstrate that this representation serves as the lower bound of
the Kullback-Liebler Divergence.

Lemma 1. There exist a function T ∗ : Ω → R, such that:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (26)

Proof. We choose a function T ∗ = log P
Q , then we have:

EP(T
∗)− logEQ[e

T∗
] = EP

[
log

P
Q

]
− logEQ[e

log P
Q ] (27)

= DKL(P||Q)− logEQ

[
P
Q

]
(28)

= DKL(P||Q)− log

∫
Ω

Q
P
Q
dω (29)

= DKL(P||Q)− log

∫
Ω

Pdω (30)

= DKL(P||Q)− log 1 (31)
= DKL(P||Q) (32)

Lemma 2. For any function T : Ω → R, the following equality holds:

DKL(P||Q) ≥ EP[T ]− logEQ[e
T ] (33)

Proof. We define the probability density function G as:

G ≜
QeT

EQ[eT ]
(34)
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Note that G satisfies the non-negativity and the integral of its probability density function (PDF) over
the input space equals 1: ∫

Ω

Gdω =

∫
Ω

QeT

EQ[eT ]
dω =

∫
Ω

EQ[e
T ]

EQ[eT ]
dω = 1 (35)

Then, we calculate the difference between the two sides of 42 to obtain:

DKL(P||Q)− EP[T ] + logEQ[e
T ] = EP

[
log

P
Q

− T

]
+ logEQ[e

T ] (36)

= EP

[
log

P
QeT

+ logEQ[e
T ]

]
(37)

= EP

[
log

PEQ[e
T ]

QeT

]
(38)

= EP

[
log

P
G

]
(39)

= DKL(P||G) ≥ 0 (40)

Based on the Lemma 1 and Lemma 2, we show that by choosing T ∗ = log P
Q , we obtain:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (41)

Additionally, for any function T : Ω → R,

DKL(P||Q) ≥ EP[T ]− logEQ[e
T ] (42)

holds. Hence,
DKL(P||Q) = sup

T :Ω→R
EP[T ]− logEQ[e

T ], (43)

6.5 IMPLEMENTATION DETAILS

The trajectory denoise model ΦTDM is implemented using a 3-layer Transformer with a feature
dimension of 256 and the attention head is set to 4. The number of masked locations is set to 2 in
our experiments. We empirically set the trade-off parameter β to 0.01 and the margin ∆ to 0.05.
Additionally, we set the trade-off parameters α, δ, and γ to 0.01, 1 and 0.01, respectively. For the
Wavelet denoising method, we utilize the Daubechies wavelet to decompose the signals, and the level
is set to 2. We employ the soft-threshold method, with a threshold value set to 0.2. Regarding the
EMA method, we empirically determine the Weighted parameter to be 0.75. It is worth noting that
these parameter selections are based on experiments aimed at ensuring optimal performance. All
experiments are conducted on the PyTorch platform with 4 NVIDIA RTX3090 GPUs.

6.6 BROADER IMPACTS

This work addresses the challenge of trajectory prediction based on noisy observations. It enhances
robustness against noise in the trajectory prediction task, benefiting various applications including
autonomous driving, robotic navigation, and surveillance systems, thereby contributing to safer
deployment.

6.7 TRAINING ALGORITHM OF NOISYTRAJ

We provide the training algorithm of NoisyTraj in the Algorithm 1.

6.8 DISCUSSSION AND LIMITATIONS

In this paper, we simplify the problem by assuming that only the observed trajectory is noisy, which
is a reasonable assumption in certain scenarios. For example, when using an autonomous vehicle
equipped with both cameras and LiDAR, we can treat camera-derived trajectories as noisy data and
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Algorithm 1: Training Procedure of NoisyTraj
Input: Noisy observations Xobs, ground-truth future trajectories Yfut. Four trade-off

hyper-parameters: α, β, δ and γ.
Output: Network parameters: ΦTDM, ΦTPB, ψ, and ϕ.
Initialize: Randomly initialize ΦTDM, ΦTPB, ψ, and ϕ.
while Model not converges do

Random mask the noisy observations using the mask vector: Xmask
obs = Xobs ⊙Mobs

Obtain the trajectories X̂mask
obs = ΦTDM(Xmask

obs )

Calculate reconstruction loss Lrec = ||X̂mask
obs ⊙ (1−Mobs)−Xobs ⊙ (1−Mobs)||2

Input noisy observations to ΦTDM for denoising: X̂obs = ΦTDM(Xobs)
Employ Mutual Information-based mechanism for further denoising:
LMI = αEp(Xobs,X̂obs)[log qϕ(X̂obs|Xobs)]− Ep(Xobs)Ep(X̂obs)[log qϕ(X̂obs|Xobs)]

− sup
ψ

Ep(X̂obs,Yfut)[Tψ] + logEp(X̂obs)p(Yfut)[e
Tψ ]

Obtain the future predictions based on denoised observations: {Ŷ kfut}Kk=1 = ΦTPB(X̂obs)

Obtain the future predictions based on noisy observation: {Ỹ kfut}Kk=1 = ΦTPB(Xobs)
Calculate ddenoise and dnoise:
ddenoise = min

1≤k≤K
||Ŷ kfut − Yfut||2, dnoise = min

1≤k≤K
||Ỹ kfut − Yfut||2

Calculate Lpred and Lrank as
Lpred = ||Ŷ bestfut − Yfut||2 + ||Ỹ bestfut − Yfut||, Lrank = max(0, ddenoise − dnoise +∆)

Optimizing L = Lpred + βLrank + δLrec + γLMI by gradient descent to update the ΦTDM
and ΦTPB.

end

LiDAR-derived trajectories as clean ground-truth for training. Once the model is trained on this
data, it can be deployed on a vehicle equipped with only cameras. This camera-only approach is
adopted by top industry Tesla to design the Autopilot system, which has been successfully deployed
in real-world scenarios [2].

While this work focuses on addressing trajectory prediction based on noisy observed trajectories, it is
important to acknowledge that the collected future ground-truth trajectories may also be contaminated
with noise. In such cases, the proposed mutual information-based denoising mechanism may not
be effective, as NoisyTraj assumes the future trajectories are noise-free and uses them as additional
information for denoising the observations. Future research could explore methods for predicting
future trajectories based on both noisy observations and noisy future ground-truths.
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