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Abstract

Recent advancements in Large Language Models (LLMs)001
and Vision-Language Models (VLMs) have made them pow-002
erful tools in embodied navigation, enabling agents to003
leverage commonsense and spatial reasoning for efficient004
exploration in unfamiliar environments. Existing LLM-005
based approaches convert global memory, such as semantic006
or topological maps, into language descriptions to guide007
navigation. While this improves efficiency and reduces re-008
dundant exploration, the loss of geometric information in009
language-based representations hinders spatial reasoning,010
especially in intricate environments. To address this, VLM-011
based approaches directly process ego-centric visual inputs012
to select optimal directions for exploration. However, re-013
lying solely on a first-person perspective makes navigation014
a partially observed decision-making problem, leading to015
suboptimal decisions in complex environments. In this pa-016
per, we present a novel vision-language model (VLM)-based017
navigation framework that addresses these challenges by018
adaptively retrieving task-relevant cues from a global mem-019
ory module and integrating them with the agent’s egocen-020
tric observations. By dynamically aligning global con-021
textual information with local perception, our approach022
enhances spatial reasoning and decision-making in long-023
horizon tasks. Experimental results demonstrate that the024
proposed method surpasses previous state-of-the-art ap-025
proaches in object navigation tasks, providing a more ef-026
fective and scalable solution for embodied navigation.027

1. Introduction028

Embodied navigation is a crucial component of embod-029
ied artificial intelligence, with widespread applications in030
diverse scenarios such as domestic environments, office031
settings, logistics and delivery, and factory inspections032
[4, 22, 34]. Its significance stems from its ability to enable033
agents to autonomously navigate and perform tasks within034
physical environments [13, 17].035

Embodied navigation poses two key challenges. First, 036
unlike autonomous driving, which typically occurs in struc- 037
tured outdoor environments, embodied navigation requires 038
operating in diverse indoor and industrial settings such as 039
factories, shopping malls, and offices. These spaces feature 040
intricate layouts and obstacles, demanding advanced per- 041
ception and planning [4, 16, 20, 26]. Second, it necessitates 042
a high degree of autonomy, as agents must adapt to unfamil- 043
iar environments without relying on predefined maps. They 044
must interpret human instructions and dynamically interact 045
with their surroundings to navigate effectively. This work 046
focuses on Object Goal Navigation (ObjectNav), a task in 047
which agents must locate specified objects within complex 048
spaces [2, 15]. 049

In recent years, the rapid advancement of large language 050
models (LLMs) has opened new possibilities for embodied 051
navigation [29, 32]. These models enable robots to leverage 052
commonsense reasoning, improving their understanding of 053
natural language commands and enhancing the integration 054
of perceptual data. This allows for navigation decisions 055
that better align with human intentions [10, 28]. Further- 056
more, recent ObjectNav research underscores the impor- 057
tance of historical information in improving environmen- 058
tal understanding, decision-making, and grounding naviga- 059
tion instructions [5, 27]. This has led to the incorporation 060
of memory systems into LLMs, such as episodic memory 061
for past experiences and scene graph memory for structur- 062
ing environmental data. However, because these memory 063
systems often represent memories using natural language, 064
which lacks geometric information, the spatial reasoning 065
capacity of LLMs is compromised. 066

Alongside these advancements, there is growing interest 067
in using images as a primary source of guidance by integrat- 068
ing foundation models with low-level planners [3, 18]. This 069
approach takes advantage of the advanced visual and lan- 070
guage understanding of foundation models, offering an ef- 071
fective alternative to traditional map-based methods, which 072
often rely on costly and disruption-prone depth sensing and 073
localization. However, these methods predominantly rely 074
on a first-person perspective without incorporating global 075
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memory into the decision-making process. As a result, they076
tend to lead to redundant exploration and reduced efficiency077
in complex environments.078

In this paper, we propose a novel Vision-Language079
Model (VLM)-based navigation framework that addresses080
these challenges by adaptively retrieving task-relevant cues081
from a global memory module, which are then mapped to082
the agent’s ego-view visual observations. By integrating083
global contextual information with local perceptual inputs,084
our framework enables more informed action decisions,085
enhancing the agent’s situational awareness and decision-086
making capabilities. The approach significantly enhances087
the agent’s ability to navigate complex, long-horizon tasks088
by dynamically aligning global context with egocentric rea-089
soning, offering a more effective and scalable solution for090
embodied navigation. The experimental results demonstrate091
that our proposed navigation pipeline outperforms state-of-092
the-art baselines. Through an ablation study, we verified093
the essential nature of each component of our method. Us-094
ing our proposed data collection approach, the supervised095
fine-tuned Llama3.2-11B model exhibited superior perfor-096
mance compared to both the vanilla Llama3.2-11B model097
and GPT-4o.098

2. Related Work099

Existing studies that leverage VLMs and LLMs for naviga-100
tion can be categorized into the following directions.101

2.1. LLM-based Navigation102

These approaches often construct a global memory map103
based on image observations and use natural language to104
describe candidate points for navigation, with action deci-105
sions driven by large language models (LLMs).106

Several methods fall within this category, including LFG107
[23], VoroNav [28], ESC [35], and openFMNav [9]. LFG108
uses frontier-based exploration and large language models109
to score potential subgoals and guide navigation based on110
the robot’s observations and exploration progress. VoroNav111
introduces Reduced Voronoi Graphs (RVGs) to optimize112
the robot’s exploration by identifying intersections that pro-113
vide the best observational opportunities, while the LLM114
predicts the next best waypoint. ESC uses commonsense115
knowledge and frontier-based exploration to navigate to-116
ward objects in the environment, while openFMNav ad-117
dresses challenges related to human instructions that imply118
target objects and zero-shot generalization. These methods119
employ LLMs to dynamically update a semantic map as the120
robot explores, enhancing memory and reducing redundant121
exploration.122

While these methods offer the advantage of maintain-123
ing a global map and using high-level reasoning, they also124
face limitations. The language-based reasoning used for125
decision-making sacrifices high-dimensional semantic in-126

formation, such as spatial and geometric details, which can 127
constrain performance in complex environments. Further- 128
more, translating raw ego-view observations into abstract 129
linguistic descriptions may weaken the model’s capacity for 130
precise spatial reasoning. 131

2.2. Value Map-based Navigation 132

In this class of methods, a global value function is computed 133
based on ego-view observations, and actions are chosen 134
based on the generated value map instead of using VLMs 135
for decision-making. 136

Notable approaches in this category include VLFM [31] 137
and InstructNav [14]. VLFM uses a pre-trained vision- 138
language model to generate a language-grounded value 139
map, guiding the agent to explore optimal frontiers. In- 140
structNav extends the idea of goal-directed navigation by 141
introducing a Dynamic Chain of Navigation that breaks 142
down tasks into sequences of actions and landmarks. These 143
methods partially address memory forgetting by integrating 144
global value maps, but they still face challenges. The value 145
map is still constructed based on local observations, and 146
decision-making driven by vision-language models (VLMs) 147
often lacks a comprehensive global perspective. As a re- 148
sult, these approaches frequently lead to suboptimal solu- 149
tions constrained by local decision-making. 150

2.3. VLM-based Navigation 151

These approaches directly leverage first-person perspective 152
images as the input of vision-language models (VLMs) to 153
generate action decisions. By using the spatial reasoning 154
capabilities of VLMs, these methods enable the model to 155
interpret complex environmental features from the robot’s 156
current viewpoint, facilitating more informed and context- 157
aware navigation decisions. 158

CoNVOI [21] and PIVOT [18] exemplify approaches 159
that process first-person images with VLMs to facilitate 160
real-time navigation and decision-making. While effective 161
in leveraging immediate visual inputs, these methods lack 162
mechanisms for incorporating historical observations, often 163
resulting in redundant exploration. This limitation poses 164
challenges in long-horizon tasks, where maintaining con- 165
textual awareness of past actions is critical for efficient nav- 166
igation. VLMNav [6] addresses some of these limitations 167
by integrating both RGB-D images and the robot’s pose in- 168
formation to construct a navigability mask that identifies 169
reachable regions. The model incrementally builds a voxel- 170
based map and refines its action proposals by prioritizing 171
unexplored areas. 172

NoMaD [24] unifies goal-directed navigation and explo- 173
ration by using the robot’s current image and the goal’s im- 174
age as input. The model includes a transformer backbone 175
for processing visual data and a diffusion model for pre- 176
dicting action sequences. A binary mask is applied to the 177
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input to focus on either exploration (excluding the goal) or178
goal-reaching (including the goal). Despite its innovative179
design, NoMaD remains constrained by the absence of a180
global memory, relying solely on the most recent three ob-181
servations. This limitation restricts its capacity for sustained182
long-term exploration.183

Recent methods have sought to integrate VLMs more184
effectively for embodied navigation. OpenIN [25] fo-185
cuses on navigation tasks where the robot must locate spe-186
cific objects that have been moved, introducing a Carrier-187
Relationship Scene Graph (CRSG) to track objects and their188
locations. The system uses VLMs to process multimodal in-189
structions and commonsense knowledge to guide navigation190
decisions.191

Uni-NaVid [33] takes a significant step toward unifying192
different navigation tasks in a single model. It processes193
both video streams and natural language instructions as in-194
put, creating a framework that can generalize across a range195
of navigation tasks. By training on diverse data, including196
video question answering and captioning tasks, Uni-NaVid197
improves its performance in real-world scenarios and en-198
ables asynchronous execution for efficiency.199

These methods move toward integrating both global and200
local information more effectively, enabling the robot to201
navigate complex environments with a better understanding202
of spatial context. However, challenges remain in optimiz-203
ing the trade-off between VLMs’ generalization capabilities204
and the need for precise, real-time navigation.205

3. Method206

3.1. Problem Formulation207

In this work, we focus on the object navigation (ObjNav)208
task, where an agent begins at a random location within an209
unseen environment and is tasked with finding and navigat-210
ing to a target object, denoted by g. The agent has no access211
to a pre-built map and must rely entirely on its sensory in-212
puts for navigation. At each time step t, the agent captures213
an egocentric RGB-D image, denoted by ot, from its on-214
board RGB-D camera. Additionally, the agent has access to215
its current location and orientation, which are represented216
by the extrinsic matrix Mext of the camera. Using these217
inputs, the agent must compute and execute a low-level ac-218
tion, at, that efficiently guides it toward the target object.219

The workflow of our proposed method is illustrated in220
Figure 1. The VLM-based navigation relies on the integra-221
tion of a memory module that encompasses three distinct222
types of memories. The construction and maintenance of223
this memory module, as well as the VLM-based navigation224
process, will be discussed in detail in the subsequent sec-225
tions.226

3.2. Memory Construction 227

The memory module is composed of three distinct types of 228
memories, each serving a different purpose: 229

• Frontier Map: Denoted as Mf , frontier map has been 230
proven to be effective for environment exploration in 231
object navigation tasks, as demonstrated in Shah et al. 232
[23], Zhou et al. [35]. We adopt an approach similar to 233
that used in ESC [35] to construct the frontier map. Using 234
the agent’s position and camera parameters, RGB-D im- 235
ages are transformed into 3D space, where each 2D pixel 236
is mapped to a 3D voxel in the global coordinate system. 237
Voxels located near the floor, with no obstacles along the 238
height dimension, are classified as free space. A fron- 239
tier in this map is defined as the boundary between free 240
and unexplored areas. This frontier map is maintained 241
throughout the navigation task. 242

• Landmark Semantic Memory: Denoted as Ml, this 243
memory stores descriptions of the landmarks that the 244
agent has seen in the past. Each entry includes the 245
global coordinates of the landmark and a description of 246
the nearby semantic information, such as objects or dec- 247
oration texture. For example: ”[13.2, 5.4]: Located on 248
the floor near a sink. There is a bath tub nearby.”. The 249
description of each landmark is generated by the VLMs, 250
as explained in Section 3.3. 251

• Visitation Memory: Denoted as Mv , this memory keeps 252
track of the landmarks that the agent has already visited. 253
By maintaining a record of visited locations, the visita- 254
tion memory serves as a crucial mechanism to prevent re- 255
dundant exploration and improve overall exploration effi- 256
ciency. 257

3.3. Mem2Ego Navigation 258

At each time step t, given the image-based observa- 259
tion ot and the three types of memories—M t

f , M t
l , and 260

M t
v—introduced in section 3.2, the proposed memory-to- 261

egocentric (Mem2Ego) navigation process can be formu- 262
lated as follows: 263

at = fθ(o
t,M t

f ,M
t
l ,M

t
v, g) (1) 264

Further details are provided in the following sections. 265

3.3.1. Panoramic Observation Generation 266

After the environment is initialized or the agent reaches a 267
new location, the agent captures four egocentric RGB-D 268
images by rotating its viewpoint 90 degrees at each step. 269
These images are then stacked to construct a 360-degree 270
panoramic observation otpano (see Equation 2), offering a 271
comprehensive representation of the surrounding environ- 272
ment. Compared to navigation methods relying on a sin- 273
gle egocentric view, this panoramic approach enhances the 274
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[13.2, 5.4]: Located on the
floor near a sink. There is ...
[8.1, 36.7]: Situated at the
base of a desk and a chair ...

...

Landmark
Semantic
Memory

[[7.2, 9.4]， [0.3, 1.5], ... ]Visitation
Memory

Frontier
Map

Observation

Memory Mapping

Update 
Visitation Memory

Undate
Landmark
Memory

Memory Retrieval

Prompt: Based on the
descriptions, please select
at most three number that
are most likely to help find
the stool.

Answer: [2, 4, 1]

Memory Augmented 
Decision Making

Prompt: Based on the numerical
markers present in the image,
please describe the surrounding
environment relative to each
marker's position.

Marker Number: 4
Description: Located near
the corner of a dining table. 
Marker Number: ...

Landmark Memory Update

Map to Global Coordinates

Move To
[15.8, 4.7]

Marker 2

[15.8 4.7]

Update 
Metric Map Memory

Top-k Memory 

[8.1, 36.7]: Situated at the
base ...

[13.2, 5.4]: Positioned near a
fridge ...

1
2

3
4 5

Memory Augmented Observation

Your task is to find the stool. Based on
the numeric marker in the image, visited
positions, landmark memory and their
distance, please select the best marker to
move next ...

Thought: Stool is most likely
found in bedroom...
Action: 2

Figure 1. Workflow of our proposed method. Our method maintains three types of memories and project cues from them onto the egocentric
images for goal location prediction. Further details are provided in Section 3

agent’s spatial awareness and scene understanding. A simi-275
lar strategy has been employed in Long et al. [14].276

otpano = Concatenate([ot0, o
t
π/2, o

t
π, o

t
3π/2]) (2)277

3.3.2. Frontier and Visitation Memory Projection278

Based on the agent’s position and the newly captured depth279
images, the navigation map and corresponding frontiers are280
updated following the method outlined in Section 3.2. Can-281
didate locations, denoted as [C1, ...,CN ] in Equation 3, are282
generated by combining frontier clustering and grid-based283
sampling. The centroid of each frontier segment is com-284
puted by clustering all points within the segment. However,285
using the centroid directly as a candidate may result in un-286
reachable goal positions. To mitigate this, we identify the287
nearest grid point on the floor area to the centroid, ensur-288
ing that the candidate is accessible to the agent. Similarly,289
visited locations, [V1, ...,VM ], are extracted from the visi-290
tation memory M t

v , as shown in Equation 4.291

[C1, ...,CN ] = CandidatesGeneration(M t
f ) (3)292

293
[V1, ...,VM ] = VisitationExtraction(M t

v) (4)294

Once determined, the global coordinates of these candi-295
dates and visitations are projected onto the egocentric im-296
age plane as pixel locations [c1, ..., cN ] and [v1, ...,vM ], as297
shown in Equation 5, where K and Mext represent the cam-298
era intrinsics and extrinsics, respectively.299

ci = Projection(Ci), vi = Projection(Vi)

where ci = (xi, yi), Ci =(Xi, Yi, Zi), similar for vi and Vi

[x′
i, y

′
i, wi]

T = K ·Mext · [Xi, Yi, Zi, 1]
T

(xi, yi) = (
x′
i

wi
,
y′i
wi

)

(5)300

An annotation function is then applied to map these loca- 301
tions onto the panoramic observation otpano, resulting in an 302
annotated observation otanno, as outlined in Equation 6. In 303
the annotated image, candidate locations are depicted as 304
green circles, each labeled with a unique identifier corre- 305
sponding to its position in the image. Similarly, visited lo- 306
cations are marked as blue circles, but only if they are visi- 307
ble within the current view. 308

otanno = AnnotateImage(otpano, [c1, ..., cN ], [v1, ...,vM ])
(6) 309

3.3.3. Landmark Memory Retrieval 310

The panoramic image, augmented with frontier candidates, 311
highlights potential navigation targets within the agent’s im- 312
mediate field of view. However, it is common that no suit- 313
able targets are visible, and more promising options may 314
exist among the landmarks the agent has previously en- 315
countered but not yet explored. These previously encoun- 316
tered landmarks are stored in the dynamic landmark seman- 317
tic memory M t

l . To manage the rapid expansion of this 318
memory during navigation, we utilize large language mod- 319
els (LLMs) to retrieve the top-k landmarks most relevant to 320
the target object. This retrieval process generates an addi- 321
tional observation from memory, otmem, which is then incor- 322
porated into the decision-making process. The prompt used 323
for memory retrieval is detailed in Appendix 5.1. 324

otmem = MemoryRetrievalLLMs(M
t
l , k) (7) 325

3.3.4. Memory Augmented Decision Making 326

At this stage, the panoramic image with annotations, otanno, 327
along with the top-k landmarks retrieved from memory, 328
otmem, is used to query VLMs to select the next target lo- 329
cation to visit (described in Equation 8). The VLMs are 330
tasked with identifying the marker on the image most likely 331
to lead to the target object, while avoiding markers that are 332
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too close to previously visited locations. To ensure consis-333
tency in the output format, the top-k landmarks are num-334
bered, and their descriptions are considered only if no suit-335
able marker is identified directly from the panoramic im-336
age. A Chain-of-Thought (CoT) prompting strategy is em-337
ployed to guide the VLMs in generating a structured rea-338
soning process before producing a single numerical output339
corresponding to the selected marker. The full prompt used340
for decision-making is provided in Appendix 5.1.341

at = fVLMs
(
prompt(g), otanno, o

t
mem

)
(8)342

3.3.5. Action Execution343

The marker selected in step 3.3.4 is transformed to the344
global coordinate system to determine the global coordi-345
nates of the target location. Shortest path follower provided346
by habitat simulator is then executed to navigate agent to347
the target location while avoiding obstacles. Object detec-348
tion is performed each time the agent moves or adjusts its349
viewing angle. The task is deemed successful if the tar-350
get object is detected within the agent’s field of view and351
the agent successfully navigates to the target object’s view-352
points provided by the Habitat dataset. If the target object353
is not detected, the process continues until the agent either354
reaches the designated viewpoints or exceeds the maximum355
allowed number of exploration steps.356

3.3.6. Memory Update357

While only one landmark from the current view is selected358
as the next-step navigation target, other landmarks may still359
be valuable for future exploration. The landmark seman-360
tic memory is updated before target position navigation de-361
scribed in Section 3.3.5. VLMs are prompted to describe362
the surrounding environment near each marker annotated on363
the panoramic image. The output from the VLMs includes364
a list of marker IDs paired with corresponding descriptions.365
The marker IDs are then converted to global coordinates366
and, together with their descriptions, saved to the landmark367
semantic memory for use in future exploration processes.368
The prompt used for landmark description is provided in369
Appendix 5.1.370

Meanwhile, the navigation map is updated along the nav-371
igation process, using the RGB-D images captured along372
the way. Additionally, the agent’s most recent location is373
added to the visitation memory to facilitate future explo-374
ration.375

3.4. Data Collection and Model Finetuning376

To enhance the capabilities of open-sourced VLMs and377
narrow their performance gap with GPT-4o, we design a378
pipeline to collect training data for supervised finetuning379
(SFT). The data collection pipeline is illustrated in Figure 2.380
To improve data diversity and validate the generalization381
ability of the model, we gather 40 new categories of objects382

from the HSSD dataset, rather than using the original 6 cat- 383
egories provided. First, new target objects are sampled from 384
the HSSD scenes. For each frame of data, ground-truth tra- 385
jectories from the current position to these targets are calcu- 386
lated based on the A∗ algorithm and subsequently smoothed 387
using Bézier curves. Egocentric images and the correspond- 388
ing ground-truth target pixel (x, y) (defined as the endpoint 389
of the ground-truth trajectory shown in the image) for each 390
image are saved. To construct the multiple marker anno- 391
tated image that VLMs encounter in the marker selection 392
task, we generate a few candidate landmarks for each image 393
by sampling from the edge of the floor area. Both ground- 394
truth and sampled candidate landmarks are annotated on the 395
egocentric image in the same way as in the Section 3. 396

We collect two types of data for VLM fine-tuning: 397
marker description and target marker selection with ra- 398
tionale. To generate marker description data, we use GPT- 399
4o to describe the surrounding environment of each marker 400
on the image. For example, “Marker Number: 1 Descrip- 401
tion: Positioned near a dining chair...; Marker Number: 2 402
...”. Each target marker selection data entry includes both 403
a rationale and the ID of the selected marker. To ensure 404
a robust rationale, we utilizes egocentric images annotated 405
with the ground-truth trajectory and employ a dual-phase 406
prompting strategy: first, GPT-4o is prompted to describe 407
all the objects along the ground-truth trajectory, then to 408
predict the location of the target marker based on its rela- 409
tionship to these objects. Importantly, the rationale gen- 410
erated by GPT-4o must not reference the ground-truth tra- 411
jectory itself; the trajectory is only used to guide the gen- 412
eration of the rationale. The generated rationale is then 413
automatically validated using GPT-4o, assessing both the 414
accuracy of detected objects and the correctness of the ra- 415
tionale. This dual-phase prompting strategy has proven to 416
be more reliable than a single-phase prompting approach. 417
The prompts used for rationale generation are provided in 418
Appendix 5.2. The validated rationale is then concate- 419
nated with the ground-truth marker ID to enforce a CoT- 420
like thinking process. An example of the resulting response 421
is ”Think: The candle is most likely located on the shelf on 422
the right side ... Action: 2”. Note that the resulting marker 423
selection data used for model fine-tuning relies on images 424
annotated with numerical markers, rather than those anno- 425
tated with the ground-truth trajectory. In total, we generated 426
30,352 visual question answer (VQA) pairs of data from 427
104 scenes and 5678 object navigation tasks. This data was 428
used to fine-tune a Llama3.2-11B-Vision model [7] follow- 429
ing the configuration recommended by official Llama repos- 430
itory. The model was fine-tuned for 3 epochs with a learning 431
rate of 1e-5 and an effective batch size of 128. 432
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Ground-truth Trajectory

Floor Edge

Target Marker
Extraction

Candidate Marker
Sampling

Image 
Annotation

Marker 2 (0.84, 0.32)

Marker 1 (0.15, 0.11)
Marker 3 (0.74, 0.13) Ego Image with Markers

Response:
Marker Number: 1
Description: Located near the corner of a kitchen
counter. In front of a stove.
Marker Number: ...

Prompt: Based on the numerical
markers present in the image,
please describe the surrounding
environment relative to each
marker's position ...

Prompt: First, please identify the
objects near the red line in the
image. Second, knowning that the
bathtub could be found after following
the red trajectory, you need to predict
the location of the bathtub ...

Image: <image_path>
User: "Based on the numerical markers present in ..."
Assistant: "Marker Number: 1\nDescription: Located ..."

Rationale:
The bathtub is most likely located in the washroom at
the end of the hallway ...

Image: <image_path>
User: "You task is to find the bathtub. Please select one
marker to move next. Please provide your step-by-step
thinking process ...“
Assistant: "Thought: The bathtub is most likely...

    Action: 2"

Marker Description Data Marker Selection Data

Rationale Verification 
& Data Processing

Dual Phase
Rationale Generation

Data Generation

Data Processing

Figure 2. Pipeline of SFT data collection. The ground-truth tra-
jectory and floor edge are used to extract target marker and candi-
date markers, respectively. Marker description and selection data
is generated for model fine-tuning.

4. Experiments433

4.1. Experimental Setup434

We evaluated our method on the navigation tasks using435
the Habitat 3.0 [19] simulation platform. We adopt simi-436
lar setup as the Habitat ObjectNav 2022 challenge [30] for437
all the experiments. The action space of the agent consists438
of: STOP, MOVE FORWARD, TURN LEFT, TURN RIGHT,439
with a forward movement distance of 0.25 meters and a440
turning angle of 30 degrees per step. For low-level move-441
ment control, we utilized Habitat’s built-in shortest-path442
follower. The maximum number of steps allowed per task443
is set to 500 by default. Due to limitations in the image444
quality within the Habitat environment and the suboptimal445
performance of state-of-the-art perception modules, such as446
GroundingDINO [12], we opted for Habitat’s built-in se-447
mantic ground truth with object size conditions as the per-448
ception module. In this context, we can assume that the449
perception module is sufficiently effective. The LLMs and450
VLMs used in this study was GPT-4o and Llama3.2-11B.451

4.2. Datasets452

Our method is evaluated on the following two object navi-453
gation datasets:454

• Habitat Synthetic Scenes Dataset (HSSD) [8]: We455
use the HSSD validation dataset to evaluate our method.456
HSSD consists of 41 scenes and six object goal cat-457
egories: chair, couch, potted plant, bed,458
toilet, and tv. To ensure task diversity, we select only459
one episode per scene-object pair. After filtering out er-460
roneous episodes—such as cases where the agent’s initial461

position was in mid-air—the final number of evaluated 462
episodes is 213. 463

• HSSD-Hard: Since some HSSD episodes are relatively 464
easy, with the agent finding the target object in just a 465
few steps, we created a more challenging dataset, HSSD- 466
Hard, by selecting HSSD episodes with longer search 467
distance. We calculated the geodesic distance from the 468
agent’s starting point to the target object for each episode 469
and selected the top 50% of episodes with the longest 470
searching distances to form the HSSD-Hard dataset. The 471
total number of episodes in HSSD-Hard is 102. 472

4.3. Baselines 473

We compare our method against the following state-of-the- 474
art (SOTA) baselines that represent different strategies to 475
address the object navigation problem: 476
• PIVOT [18]: This approach casts the navigation task as 477

an iterative visual question answering problem by anno- 478
tating the image with numerical markers that represent 479
the navigation subgoals. The method is adapted for the 480
HSSD object navigation tasks. Without a frontier map, 481
visitation memory, and landmark semantic memory, our 482
proposed navigation pipeline degenerates to PIVOT. 483

• LFG [23]: This method employs frontier-based explo- 484
ration and LLMs to score potential subgoals and guide 485
the navigation. 486

• VLFM [31]: The approach utilizes VLMs to generate a 487
language-grounded value map, from which the location 488
with the highest value is selected as the next subgoal for 489
navigation. 490

• InstructNav [14]: InstructNav introduces a Dynamic 491
Chain of Navigation, breaking down navigation tasks into 492
sequences of actions and landmarks. It employs four 493
value maps, each with different semantic representations, 494
to assist in selecting the appropriate landmark. 495

• VLMNav [6]: This approach relies on a voxel map built 496
from RGB-D images and the agent’s pose to narrow down 497
action space. 498

To ensure a fair comparison, all experimental setups are 499
conducted under the same conditions described earlier. 500

4.4. Metrics 501

We employ the following metrics to evaluate the perfor- 502
mance of all the methods: 503
• Success Rate (SR): A task was deemed successful when 504

the distance between the agent and any viewpoint of the 505
target object was less than 0.2 meters. 506

• Success Weighted by Path Length (SPL) [1]: This met- 507
ric evaluates how efficient the agent’s path is compared to 508
the optimal path. SPL is calculated as: 509

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(9) 510
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Table 1. Main results. Our proposed method is compared to the
baselines on HSSD and HSSD-Hard datasets. SR: Success Rate.
SPL: Success Weighted by Path Length. All experiments are con-
ducted using gpt-4o.

HSSD HSSD-Hard

SR ↑ SPL ↑ SR ↑ SPL ↑
LFG 0.6244 0.3371 0.6176 0.3454
VLMNav 0.6526 0.3620 0.5294 0.1973
InstructNav 0.7605 0.3722 0.6372 0.4187
VLFM 0.7652 0.5574 0.6078 0.4270
PIVOT 0.7840 0.5658 0.6372 0.4744
Ours 0.8685 0.5788 0.7647 0.4790

where li is the length of the optimal path for episode i. pi511
is the length of path taken by the agent. Si is the binary512
indicator of success in episode i.513

4.5. Main Results514

We evaluate our method and all baselines on both HSSD515
and HSSD-Hard datasets using the same setup described in516
Section 4.1, with results summarized in Table 1. Perfor-517
mance is evaluated based on Success Rate (SR) and Suc-518
cess weighted by Path Length (SPL). While SR indicates519
the overall ability to find the target object, SPL measures520
the efficiency of the navigation process. Notably, these two521
metrics are not correlated, as a method can achieve a high522
SR by sacrificing navigation efficiency. As shown in Ta-523
ble 1, on the HSSD dataset, our proposed method achieves524
an SR of 0.8685 and an SPL of 0.5788, both of which are525
higher than all the baseline methods.526

Compared to HSSD, tasks in the HSSD-Hard dataset are527
more challenging due to the relatively longer search dis-528
tance, requiring additional steps to locate target objects.529
As shown in Figure 1, the performance of all methods de-530
creases on the HSSD-Hard dataset, though the impact varies531
by model. Notably, our method demonstrate an even greater532
advantages in these more difficult scenarios, achieving an533
SR that is 12.75% higher than the second-best baseline534
(PIVOT). Additonally, our method outperforms others in535
SPL as well, further highlighting its efficiency. These re-536
sults underscore the effectiveness and robustness of our ap-537
proach in tackling challenging navigation tasks.538

Figure 3 illustrates the memory-augmented decision-539
making process from a real HSSD episode. VLMs, such540
as GPT-4o, analyze all memory cues on the image before541
reasoning about the most likely location of the target object542
and selecting the next marker to explore. The full prompt543
and responses for this case are provided in Appendix 5.3.544

Most failed cases with our method result from reaching545
the maximum allowable number of steps. This can occur546
due to the VLM selecting a suboptimal position or the task547

Memory Augmented Observation

You are a robot and after 360 degrees observation,
you can see the given panorama image. The
panorama image combines 4 images from different
angles. Your task is to find the {goal_object} ...

Prompt Template

Goal Object 
TV

97: The environment near this marker is a well-
furnished bedroom featuring a bed with grey and
white bedding ... 
Distance to current location: 0.22.
98: The marker is located near the doorway ...

Landmark Memory with Distance

The blue circle marker on the floor indicates the
previously explored position. It is better to choose a
numeric marker that is not close to the blue circle
marker.

Visitation History

Thought: I need to find the TV in this panorama image. The available markers inside
the image are 0, 1, 2, 3, and 4. The markers outside of the image, specifically 97 and
98, describe a bedroom and another room with a bed. Since a TV is more likely to be
in a living room or common area rather than a bedroom, and given that we're currently
in what appears to be a common area or living room (as indicated by the dining area
and kitchen), it makes more sense to explore the nearby markers in the current area.
Marker 2: In the direction of a long room which might be a living room and could have
a TV.
...

Prompt
Generation

Prompt: You are a robot and after 360 degrees
observation, you can see ...

Action: 2

User

Assistant

Figure 3. Demonstration of memory-augmented decision making
process from a real HSSD episode. The full prompts and GPT-4o
response are provided in Appendix 5.3

being inherently challenging. Additionally, we occasion- 548
ally observe that even state-of-the-art VLMs like GPT-4o 549
can exhibit visual hallucinations [11], where they select a 550
marker ID that does not appear in the image or prompt. We 551
have provided two examples in the Appendix 5.4. 552

Table 2. Results with different VLM models. The fine-tuned
Llama3.2-11B model (SFT Llama3.2-11B) trained on our col-
lected data outperforms GPT-4o, achieving the best overall per-
formance.

HSSD HSSD-Hard

SR ↑ SPL ↑ SR ↑ SPL ↑
GPT-4o 0.8685 0.5788 0.7647 0.4790

Vanilla Llama 0.7511 0.5582 0.7352 0.4626

SFT Llama 0.8732 0.5995 0.7843 0.5274

4.6. VLM Model Supervised Fine-tuning (SFT) 553

To evaluate the impact of the VLM used, we assess the per- 554
formance of various VLMs within our proposed method. 555
As shown in Table 2, the vanilla Llama3.2 model performs 556
significantly worse than GPT-4o. Given the substantial dif- 557
ferences in model size and training data, it is not surpris- 558
ing that smaller open-source VLMs like Llama3.2-11B un- 559
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derperform compared to state-of-the-art proprietary models560
such as GPT-4o. Failure analysis reveals that Llama3.2-11B561
is more prone to visual hallucinations and struggles with in-562
struction following, particularly in marker selection and de-563
scription tasks. This may stem from a lack of relevant train-564
ing data for Llama3.2-11B, limiting its ability to generalize565
effectively in these scenarios.566

To improve the performance of VLMs, we collected over567
30,000 VQA samples by generating data from 40 new ob-568
ject categories within the HSSD dataset. Rationales gener-569
ated using a dual-phase prompting strategy are used to guide570
the marker selection process. We then fine-tuned Llama3.2-571
11B following the approach detailed in Section 3.4. As572
shown in Table 2, the performance of Llama3.2 is improved573
significantly after supervised fine-tuning (SFT), surpassing574
GPT-4o in both SR and SPL metrics on the HSSD and575
HSSD-Hard datasets. These results are particularly promis-576
ing, considering that Llama3.2-11B is substantially smaller577
than GPT-4o (11B vs. an estimated 175B) and more cost-578
effective to train and deploy. This highlights the effec-579
tiveness of our data collection strategy and fine-tuning ap-580
proach. This performance improvement can be attributed581
to enhanced instruction adherence and a more effective rea-582
soning process grounded in the given environment.583

Figure 4. Results for different maximum steps. Experiments are
conducted on the HSSD dataset. While SFT Llama3.2-11B consis-
tently achieves the best performance, its advantage over the other
two models is most pronounced at 300 maximum steps.

Numerous factors influence the performance of the nav-584
igation pipeline, particularly the maximum number of al-585
lowed steps. Consequently, we assessed the impact of this586
factor on performance. As shown in Figure 4, with the max-587
imum number of steps increasing, both the Success Rate588
(SR) and Success weighted by Path Length (SPL) improve589
for each model. When the maximum number of steps is590
relatively low, such as 200 or fewer, all methods exhibit591
suboptimal performance, with only minor differences be-592
tween models. This is likely because the limited step count593
prevents the full exploitation of each model’s capabilities.594
Conversely, when the maximum number of steps is large,595
such as 500 or more, all models reach their respective per-596
formance limits, making the differences between them less597
distinct. It is noteworthy that the performance gap between598

different models becomes more apparent when the maxi- 599
mum number of steps is set to 300 or 400. 600

4.7. Ablation Study 601

To assess the contribution of each component in our pro- 602
posed method, we conducted an ablation study by evaluat- 603
ing its performance without landmark semantic memory or 604
visitation memory. As shown in Table 3, removing either of 605
these memory modules leads to a decline in performance. 606
The frontier map could not be excluded from this analy- 607
sis, as it is essential for marker generation. The absence of 608
visitation memory results in redundant exploration in some 609
cases, thus reducing both the success rate and navigation 610
efficiency. Meanwhile, without landmark semantic mem- 611
ory, the agent is unable to select a navigation goal globally 612
when no suitable marker is present in its current view, which 613
harms the performannce as well. These findings highlight 614
the crucial role of both memory modules in fully leveraging 615
the potential of our proposed method. 616

Table 3. Ablation study. Removing any of the main components
of our design leads to degraded performance on HSSD dataset.

HSSD HSSD-Hard

SR ↑ SPL ↑ SR ↑ SPL ↑
Ours 0.8685 0.5788 0.7647 0.4790

w/o Visitation 0.8450 0.5761 0.7450 0.4961

w/o Landmark
Semantic

0.8356 0.5669 0.7352 0.4795

5. Conclusion 617

This study proposes an efficient fusion strategy that inte- 618
grates task-relevant global memory information with first- 619
person perspective information, thereby overcoming the 620
suboptimal solution problem associated with existing mul- 621
timodal navigation frameworks due to local observabil- 622
ity. Moreover, this method can simultaneously activate and 623
utilize the complex spatial understanding, reasoning, and 624
commonsense reasoning capabilities of VLMs, thus signif- 625
icantly enhancing the ability and efficiency of navigation 626
decisions in complex spatial scenarios. Theoretically, en- 627
hanced spatial cognitive abilities can reduce the required 628
travel distance and number of actions, thereby increasing 629
the task completion success rate and overall efficiency of 630
the navigation scheme. 631

References 632

[1] Peter Anderson, Angel Chang, Devendra Singh Chaplot, 633
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana 634
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, 635

8



CVPR
#13

CVPR
#13

CVPR 2025 Submission #13. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

et al. On evaluation of embodied navigation agents. arXiv636
preprint arXiv:1807.06757, 2018. 6637

[2] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Olek-638
sandr Maksymets, Roozbeh Mottaghi, Manolis Savva,639
Alexander Toshev, and Erik Wijmans. Objectnav revisited:640
On evaluation of embodied agents navigating to objects.641
arXiv preprint arXiv:2006.13171, 2020. 1642

[3] Wenzhe Cai, Siyuan Huang, Guangran Cheng, Yuxing Long,643
Peng Gao, Changyin Sun, and Hao Dong. Bridging zero-644
shot object navigation and foundation models through pixel-645
guided navigation skill. In 2024 IEEE International Confer-646
ence on Robotics and Automation (ICRA), pages 5228–5234.647
IEEE, 2024. 1648

[4] Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and649
Cheston Tan. A survey of embodied ai: From simulators to650
research tasks. IEEE Transactions on Emerging Topics in651
Computational Intelligence, 6(2):230–244, 2022. 1652

[5] Rui Fukushima, Kei Ota, Asako Kanezaki, Yoko Sasaki,653
and Yusuke Yoshiyasu. Object memory transformer for ob-654
ject goal navigation. In 2022 International conference on655
robotics and automation (ICRA), pages 11288–11294. IEEE,656
2022. 1657

[6] Dylan Goetting, Himanshu Gaurav Singh, and Antonio Lo-658
quercio. End-to-end navigation with vision language mod-659
els: Transforming spatial reasoning into question-answering.660
arXiv preprint arXiv:2411.05755, 2024. 2, 6661

[7] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and662
et al. The llama 3 herd of models, 2024. 5663

[8] Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay664
Haresh, Brennan Shacklett, Dhruv Batra, Alexander Clegg,665
Eric Undersander, Angel X Chang, and Manolis Savva.666
Habitat synthetic scenes dataset (hssd-200): An analysis of667
3d scene scale and realism tradeoffs for objectgoal naviga-668
tion. In Proceedings of the IEEE/CVF Conference on Com-669
puter Vision and Pattern Recognition, pages 16384–16393,670
2024. 6671

[9] Yuxuan Kuang, Hai Lin, and Meng Jiang. Openfm-672
nav: Towards open-set zero-shot object navigation via673
vision-language foundation models. arXiv preprint674
arXiv:2402.10670, 2024. 2675

[10] Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu676
Zhou, Sanjana Srivastava, Cem Gokmen, Tony Lee, Li Erran677
Li, Ruohan Zhang, et al. Embodied agent interface: Bench-678
marking llms for embodied decision making. arXiv preprint679
arXiv:2410.07166, 2024. 1680

[11] Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiu-681
tian Zhao, Ke Wang, Liping Hou, Rongjun Li, and Wei Peng.682
A survey on hallucination in large vision-language models.683
arXiv preprint arXiv:2402.00253, 2024. 7684

[12] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao685
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,686
Hang Su, et al. Grounding dino: Marrying dino with687
grounded pre-training for open-set object detection. In688
European Conference on Computer Vision, pages 38–55.689
Springer, 2025. 6690

[13] Yang Liu, Weixing Chen, Yongjie Bai, Xiaodan Liang,691
Guanbin Li, Wen Gao, and Liang Lin. Aligning cyber space692

with physical world: A comprehensive survey on embodied 693
ai. arXiv preprint arXiv:2407.06886, 2024. 1 694

[14] Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, 695
and Hao Dong. Instructnav: Zero-shot system for generic 696
instruction navigation in unexplored environment. arXiv 697
preprint arXiv:2406.04882, 2024. 2, 4, 6 698

[15] Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy 699
Hoffman, and Dhruv Batra. Zson: Zero-shot object-goal 700
navigation using multimodal goal embeddings. Advances 701
in Neural Information Processing Systems, 35:32340–32352, 702
2022. 1 703

[16] Christoforos Mavrogiannis, Patrı́cia Alves-Oliveira, Wil 704
Thomason, and Ross A Knepper. Social momentum: Design 705
and evaluation of a framework for socially competent robot 706
navigation. ACM Transactions on Human-Robot Interaction 707
(THRI), 11(2):1–37, 2022. 1 708
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Mem2Ego: Empowering Vision-Language Models with Global-to-Ego Memory
for Long-Horizon Embodied Navigation

Supplementary Material

5.1. Prompts for inference796

Prompt 1

You are an automated system with
the capability to analyze the
provided image. Based on the
numerical markers present in the
image, please describe the
surrounding environment relative
to each marker’s position. Ensure
that descriptions of different
markers are distinct to maintain
the uniqueness of each marker.
The marker number should not
appear in the description. Please
adhere to the following format:
Marker Number: [insert the number
of the first marker here]
Description: [provide a
description corresponding to the
first marker here]
Marker Number: [insert the number
of the second marker here]
Description: [provide a
description corresponding to the
second marker here]
...
Marker Number: [insert the number
of the last marker here]
Description: [provide a
description corresponding to the
last marker here]

797

Prompt 2

Based on the provided descriptions
for each number, please select at
most three number whose
corresponding descriptions are
most likely to help identify the
{goal object}. {Number:
Description; Number: Description;
... Number: Description} If the
total number is less than 3,
please use -1 to occupy the empty
position. Please adhere to the

798

following format for the output:
Number List: [first number,
second number, third number]

799

Prompt 3

You are a robot and after 360
degrees observation, you can see
the given panorama image. The
panorama image combines 4 images
from different angles. Your task
is to find the {goal object}.
Based on the numerical markers in
the image, select one of these
numbers to move next. If you’re
not confident in moving to the
marker to find the {goal object},
you can choose one of the
numerical markers located outside
of this image. The descriptions
of these markers are as follows:
{the top 3 numbers with
descriptions, corresponding to the
response of Prompt 2}.
If you’re still not confident in
moving to the marker to find the
{goal object}, your action should
be ’None’. The blue circle marker
on the floor indicates the
previously explored position. It
is better to choose a numeric
marker that is not close to the
blue circle marker. Please note
all closed doors cannot be opened.
Please follow the format like
this,
Thought: [put your step-by-step
thinking process here]
Action: [put a single marker id
or None here]

800
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5.2. Prompts for SFT data generation801

802

Prompt for dual-phase rational generation

You are given an image with a red
movement trajectory on it. Please
first identify the objects near
the red line in the given image.
If there is no red trajectory in
the image, please directly return
"None". Second, knowning that
{goal object} could be found after
following the red trajectory, you
need to predict the location of
goal object or the region where
{goal object} could be most likely
located. This can be achieved by
reasonably imagining the unseen
areas after the red trajectory
based on the room layout. **Do
not mention the red
trajectory/line or "the image" in
your output!** Please structure
your output in the following way:
OBJECTS RED LINE:
LOCATION PREDICTION AND REASONING:

803

Prompt for rationale filtering

You are given an image with a
movement trajectory marked in a
red line. Please first verify if
all of the objects in a given list
are present near the red line in
the given image. If there is no
red line in the image or any of
the objects not present, please
ignore the rest and directly
return "NONE". Second, verify if
the reasonings of why {goal object}
may be put close to the objects in
the list. A good reasoning should
be logical and perfectly reflect
common sense knowledge. A good
reasoning gives convincing reasons
while a bad reasoning gives vague
or untruthful reasons. If the
reasonings are good, output "GOOD
REASONINGS", otherwise, output
"BAD REASONINGS". Example of a
good reasoning: "The book is most
likely located on the shelves in
the background. The shelves are a

804

common place for storing books,
and they are visible in the room
at the end of the path.". Example
of a bad reasoning: "The mirror
is most likely located on the dark
wall to the right of the doorway.
This is inferred from the visible
portion of the mirror reflecting
the room, indicating its position
on the dark wall.". Please
structure your output in the
following way:
OBJECTS PRESENCE CHECK:
REASONING CHECK:
Object list: object list
Reasonings: reasonings

805

5.3. Case Study 806

Prompt and response for case study

Prompt: You are a robot and after
360 degrees observation, you can
see the given panorama image. The
panorama image combines 4 images
from different angles. Your task
is to find the tv. Based on the
numerical markers in the image,
select one of these numbers to
move next. If you’re not
confident in moving to the marker
to find the tv, you can choose one
of the numerical markers located
outside of this image. The
descriptions of these markers are
as follows: 97: The environment
near this marker is a
well-furnished bedroom featuring a
bed with grey and white bedding.
There is a grey headboard attached
to the wall, from which two
contemporary pendant lights hang.
Next to the bedside is a white
nightstand with drawers. In the
background, large windows or glass
doors bring light into the room.
To the far right, through the
doorway, part of an adjacent room
is visible where a small trolley
or shelf holding white objects can
be seen. 98: The marker is
located near the doorway of a

807
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room. To the left of the marker,
there is a green potted plant.
Through the doorway, the room is
furnished with a bed positioned
near the wall with large windows
that extend almost to the floor,
allowing for an expansive view of
the outside. Additionally, there
is a chair or possibly a sofa
situated to the left inside the
room. The floor is covered with a
dark blue surface adding a touch
of color to the environment. If
you’re still not confident in
moving to the marker to find the
tv, your action should be ’None’.
The blue circle marker on the
floor indicates the previously
explored position. It is better
to choose a numeric marker that is
not close to the blue circle
marker. Please note all closed
doors cannot be opened. Please
follow the format like this,
Thought: [put your step-by-step
thinking process here] Action:
[put a single marker id or None
here]
Response: Thought: I need to
find the TV in this panorama
image. The available markers
inside the image are 0, 1, 2, 3,
and 4. The markers outside of the
image, specifically 97 and 98,
describe a bedroom and another
room with a bed. Since a TV is
more likely to be in a living room
or common area rather than a
bedroom, and given that we’re
currently in what appears to be a
common area or living room (as
indicated by the dining area and
kitchen), it makes more sense to
explore the nearby markers in the
current area. Marker 0: Leads to
a kitchen area, not likely to have
a TV. Marker 1: Near a closed
door with a blue circle, so less
likely. Marker 2: In the
direction of a long room which
might be a living room and could
have a TV. Marker 3: Looks like
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Figure 5. Visual Hallucination Example 1

Figure 6. Visual Hallucination Example 2

another part of the same long
room, potentially a living area.
Marker 4: Seems to be in the
dining area, also less likely to
have a TV. Action: 2
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Visual Hallucination Example 1

Thought: 1. The top-left,
bottom-left, and bottom-right
sections of the panorama show
closed doors and walls. 2. The
top-right section shows an open
doorway leading to another room
that might be more likely to have
a toilet. 3. The numeric marker
"2" is located near the open
doorway in the top-right section.
Action: 2
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Visual Hallucination Example 2

Thought: The given panorama shows
parts of a room and possibly
adjacent areas. The upper left
image shows a workspace with a
computer, the upper right shows a
hallway and another room, the
lower left has a part of a bed,
and the lower right includes
windows with curtains. There is
no indication of a couch in these
views. The only promising lead is
the room visible through the
doorway marked with a green number
"1" in the upper right image,
which might show a larger area
including a couch. Action: 1
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