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ABSTRACT

Reinforcement learning (RL) has recently become the dominant paradigm for
strengthening the reasoning abilities of large language models (LLMs). Yet the
rule-based reward functions commonly used on mathematical or programming
benchmarks assess only answer format and correctness, providing no signal as
to whether the induced Chain-of-Thought (CoT) actually improves the answer.
Furthermore, such task-specific training offers limited control over logical depth
and therefore may fail to reveal a model’s genuine reasoning capacity. We propose
Dynamic Reasoning Efficiency Reward (DRER) — a plug-and-play RL reward
framework that reshapes both reward and advantage signals. (i) A Reasoning Qual-
ity Reward assigns fine-grained credit to those reasoning chains that demonstrably
raise the likelihood of the correct answer, directly incentivising the trajectories with
beneficial CoT tokens. (ii) A Dynamic Length Advantage decays the advantage of
responses whose length deviates from a validation-derived threshold, stabilising
training. To facilitate rigorous assessment, we also release LogicTree, a dynamically
constructed deductive reasoning dataset that functions both as RL training data and
as a comprehensive benchmark. Experiments show that DRER achieves significant
improvements in reasoning accuracy and CoT quality over baseline methods across
diverse training settings, while also reducing token usage during inference. More-
over, it demonstrates strong generalization on both reasoning and mathematical
benchmarks, such as GPQA and AIME24. These results indicate that DRER, as a
plug-and-play fine-grained RL reward framework, reliably strengthens reasoning
behavior and provides a practical pathway toward enhancing the reasoning capabil-
ities of large language models. All code and data are available in our anonymous
repository https://anonymous.4open.science/r/DRER-D34E.

1 INTRODUCTION

Recent reasoning models (DeepMind, 2024; Qwen, 2024; Team et al., 2025), including R1-like
reproductions (Team et al., 2025; Mei et al., 2025; Yu et al., 2025; Shao et al., 2024; Hu, 2025; Kool
et al., 2019; Ahmadian et al., 2024; Sutton et al., 1998), have adopted reinforcement learning (RL)
to enhance chain-of-thought reasoning. By systematically exploring verifiable reasoning paths that
lead to correct answers, these methods incrementally boost performance and deliver remarkable
gains. Current RL-driven CoT approaches typically train on mathematics and programming bench-
marks (OpenAI, 2024; Guo et al., 2025; Cobbe et al., 2021; Chen et al., 2021), whose inherently
stepwise solution procedures serve as natural proxies for logical inference (Wang et al., 2024a; Li
et al., 2024), and they rely on rule-based reward (OpenAI, 2024; Guo et al., 2025) functions that
assess only final answer correctness and formatting. This reliance stems from the straightforward
evaluability of math and code tasks, where simple answer extraction or format checks suffice to
assign reward signals and compute policy advantages.

However, this approach still faces two critical challenges. First, by relying solely on final-answer
correctness as the reward signal, the model cannot distinguish which reasoning steps statistically
boost the likelihood of the correct answers (Paul et al., 2024), nor quantify each token’s substantive
contribution to the conclusion; instead, it may lean on “decorative” chains that diverge from genuine

1

https://anonymous.4open.science/r/DRER-D34E


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

deductive paths (Zhang et al., 2024), thereby undermining the accurate evaluation and effective
training of its reasoning ability.

Second, the corpora used to reinforce “reasoning ability” are almost entirely drawn from execution-
verifiable domains (Sprague et al., 2024b)—such as mathematical problem sets and code synthesis
tasks—while unified training data targeting pure formal logical inference remains severely lack-
ing (Morishita et al., 2024). Such constrained training regimens risk conceptual overextension (Paul
et al., 2024), whereby success on specific tasks is misconstrued as evidence of broadly applicable
logical reasoning skills, potentially leading to an overestimation of the model’s true inferential
competence.
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Figure 1: Overview of the Dynamic Reasoning Efficiency Reward (DRER) framework. Length95
and Length5 represent the 95th and 5th percentile lengths, respectively, computed from the validation
set, and are used to normalize reasoning trajectory lengths according to task type or difficulty.

To address the limitations of outcome-only reward modeling in reasoning tasks, we propose Dynamic
Reasoning Efficiency Reward (DRER), a plug-and-play reinforcement learning framework that
reshapes both reward and advantage signals. DRER introduces two key mechanisms: (1) a Reasoning-
Quality Reward, which assigns fine-grained credit to reasoning chains that statistically improve the
likelihood of the correct answer, thereby reinforcing the utility of CoT tokens; and (2) a Dynamic-
Length Advantage, which attenuates the policy advantage of responses whose lengths deviate from
a validation-derived threshold, improving training stability. The overall framework is illustrated in
Figure 1. In addition, we release LogicTree, a domain-agnostic deductive reasoning dataset carefully
constructed to provide focused training supervision and to serve as a clean evaluation benchmark for
identifying pathological reasoning behaviours.

Our experiments demonstrate that DRER significantly improves chain-of-thought (CoT) reasoning
quality across different baseline algorithms and training corpora by providing fine-grained reward
signals. When trained on the General Reasoning dataset, DRER consistently yields substantial
improvements over both GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025) base algorithms,
achieving superior reasoning accuracy and CoT quality across a wide range of benchmarks. When
trained on the LogicTree dataset, the combination of DRER and DAPO increases the accuracy of
Qwen2.5-7B-Instruct-1M from 13.2% to 60.0%, while reducing token consumption by approximately
75% and achieving higher reasoning consistency. Taken together, these results show that DRER, as a
plug-and-play fine-grained reward framework, reliably enhances the reasoning capabilities of LLM
in diverse training settings and offers significant advantages over existing baseline methods.

The main contributions of this paper are summarized as follows:

• We propose DRER (Dynamic Reasoning Efficiency Reward), a novel reinforcement learning
rewawrd framework that adaptively reshapes both reward and advantage signals to improve CoT
reasoning.

• We release LogicTree, a domain-agnostic benchmark for formal deductive reasoning that serves
dual purposes: functioning as both a focused training set and a clean evaluation benchmark, while
providing highlight insights into LLMs reasoning behaviours.

• We systematically validate our approach through extensive experiments, confirming the effective-
ness of our methodology in improving both reasoning quality and efficiency.

2 PRELIMINARY

Modeling Language Generation as a Token-Level MDP Reinforcement learning aims to learn
a policy that maximizes cumulative reward through interaction with an environment. We model
language generation as a sequential decision process within a Markov Decision Process (MDP)
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framework (Ouyang et al., 2022). Let x = (x0, . . . , xm) be the input prompt and y = (y0, . . . , yT )
the generated response, with both drawn from a finite vocabulary A. At step t, the state is st =
(x0, . . . , xm, y0, . . . , yt), and the action a = yt+1 ∈ A selects the next token. Transitions are
deterministic: P(st+1 | st, a) = 1, where st+1 = (x0, . . . , xm, y0, . . . , yt+1). Generation ends upon
producing a terminal token ω. The reward function R(s, a) provides scalar feedback on output quality.
The initial state s0 is the tokenized prompt, sampled from a distribution d0 over inputs. This MDP
formulation allows reinforcement learning—both value-based and value-free—to align language
model generation with desired objectives and human preferences.

Group Relative Policy Optimization (GRPO) GRPO(Shao et al., 2024) removes the value
function used in PPO(Schulman et al., 2017b) and estimates the advantages within a group of G
responses sampled by the behavior policy πθold for each pair of questions-answers (q, a). GRPO
maximizes a PPO-style clipped objective with an explicit KL penalty:
JGRPO(θ) = E(q,a)∼D, {oi}∼πθold[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,tÂi,t, clip(ri,t, 1−ϵ, 1+ϵ)Âi,t

)
− βDKL(πθ ∥ πref)

)]
,

(1)

where

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, Âi,t =

Ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

GRPO first averages token-level losses within each response and then across the group, a sample-level
aggregation that can implicitly favor longer responses and thus influence training dynamics (Liu et al.,
2025).

Decouple Clip and Dynamic Sampling Policy Optimization (DAPO) DAPO(Yu et al., 2025)
shares GRPO’s group-based sampling and advantage normalization, but differs in two key aspects.
First, it replaces GRPO’s symmetric clipping with asymmetric clipping bounds, allowing for unbal-
anced exploration and conservative updates. Second, it introduces a dynamic sampling constraint that
requires both correct and incorrect responses in the sampled group to ensure meaningful advantage
shaping. The resulting objective is:

JDAPO(θ) = E(q,a)∼D, {oi}∼πθold[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,tÂi,t, clip(ri,t, 1−εlow, 1+εhigh)Âi,t

)]
,

(3)

where optimization is applied only if the sampled responses are not all equivalent to the reference
answer. ri,t and Âi,t are defined as in Equation 2.

Reward Modeling Reward modeling in RL for LLMs is typically categorized into two approaches:
rule-based rewards and learned reward models (RMs). Reward models, including outcome and process
reward models (PRMs), learn a function through supervised learning, enabling finer-grained evalua-
tion of intermediate reasoning steps. MATH-SHEPHERD (Wang et al., 2024b) and OmegaPRM (Luo
et al., 2024a) show that PRMs improve reasoning consistency and generalization, but they also raise
annotation costs, introduce potential data bias (e.g., MCTS-generated traces), and reduce reliability
in early-step evaluation, which can destabilize training.

Rule-based rewards are more widely adopted, where simple criteria such as answer correctness and
syntactic validity are used to evaluate model outputs. Representative works (Lyu et al., 2025; Xie
et al., 2025; Li et al., 2025) like DeepSeek-R1 (Guo et al., 2025) utilize correctness-based signals to
construct efficient and interpretable training pipelines. The primary advantages of rule-based rewards
are twofold: firstly, they exhibit low implementation cost and, secondly, they are characterised by
high transparency. These properties render them well-suited for large-scale RL training. However,
their limitations are also evident: these methods only evaluate final outcomes, ignoring the quality of
intermediate reasoning steps. As a result, models may learn to "shortcut" reasoning, producing correct
answers without coherent or logically valid chains of thought—leading to misalignment between
reasoning processes and outputs (Zhang et al., 2025).
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3 METHOD

3.1 DRER

Rule-based rewards, such as answer correctness and format validity, minimal signals neglect to
consider the reasoning trajectory that culminates in the ultimate response. Consequently, they
may permit verbose, irrelevant chains of thought, which compromise reasoning transparency and
reliability.

In order to address this limitation, a novel reward framework, Dynamic Reasoning Efficiency Reward
(DRER), is introduced. This plug-and-play system has been designed to shape not only the correctness
of final outputs, but also the efficiency and utility of intermediate reasoning steps.

Given an input question x, the large-language model (LLM) πθ produces an output sequence y
autoregressively:

πθ(y | x) =

T∏
t=1

Pπθ

(
yt | x, y<t

)
, (4)

where the sequence y = [c, a] denotes the model’s output sequence, where the first contiguous
segment c = (c1, . . . , cTc) comprises the CoT tokens and the second segment a = (a1, . . . , aTa)
contains the answer tokens. The overall sequence length satisfies T = Tc + Ta.

We believe that if the generated CoT tokens c are positive and coherent with the correct answer, it
should increase the model’s confidence in predicting ground-truth answer token:

ℓCoT =
1

Ta

Ta∑
t=1

log πθ

(
a⋆t | xCoT , c, a

⋆
<t

)
, ℓNoCoT =

1

Ta

Ta∑
t=1

log πθ

(
a⋆t | xNoCoT , a

⋆
<t

)
, (5)

CoT reasoning tokens that positively contribute to the model’s ability to infer the correct answer
should satisfy

ℓCoT > ℓNoCoT. (6)

where xCoT and xNoCoT denote the CoT and no CoT input question respectively; c = (c1, . . . , cTc)
is the generated CoT of length Tc; a⋆ = (a⋆1, . . . , a

⋆
Ta
) is the ground-truth answer consisting of Ta

tokens, and a⋆<t stands for its prefix up to position t−1; Finally, πθ is the autoregressive language
model policy parameterised by θ.

To validate this hypothesis, we conduct experiments using Qwen2.5-7B-Instruct-1M on benchmarks.
We first evaluate model-generated CoT trajectories using GPT-5.1 under a unified step-wise rubric,
and examine how CoT quality scores correlate with the delta of log-probabilities. We then perform a
CoT-disturbance test by comparing original CoT traces with shuffled and cross-question variants to
assess delta of log-probabilities relevance to reasoning structure and semantic relevance. Finally, we
analyze the impact of CoT on answer correctness by comparing likelihood shifts between CoT and
no-CoT and examining fix and break rates across datasets. Full experimental details and results are
provided in section 4.6.

Reasoning Quality Reward To make the confidence-boosting property in equation 6 learnable, we
define for each training instance x the log-likelihood margin

∆(x) = ℓCoT − ℓNoCoT, (7)

where ℓCoT and ℓNoCoT are given in equation 5. A positive ∆(x) indicates that the generated CoT
reasoning tokens enhance the model’s confidence in the correct answer, whereas a negative value
reveals detrimental or spurious reasoning.

To obtain a numerically stable reward, we pass the margin through a smooth, bounded squashing
function

Rq = tanh
(
∆(x)

)
, (8)

yielding the reasoning-quality reward. The hyperbolic tangent preserves the sign of the margin, caps
extreme values.

4
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We incorporate Rq into the overall reinforcement-learning objective by maximising the expected
composite return

R = Rtask + λqRq, (9)
where Rtask denotes the task-level reward (e.g., answer and format correctness) and λq > 0 is a
weighting coefficient that balances task success and reasoning quality. This formulation directly
rewards reasoning chains that demonstrably increase the likelihood of the correct answer while
penalising uninformative or misleading chains, thereby systematically improving the model’s logical
reliability and interpretability.

Dynamic Length Advantage After every validation round we record the lengths {Li} of responses
that are both correct and structurally valid within each difficulty bucket1. The empirical 5% and 95%

quantiles define a dynamic lower and upper length bound, L(d)
min and L

(d)
max, respectively, for bucket d.

For a training sample i with effective response length ℓi, we introduce a multiplicative attenuation
coefficient

gi = exp
(
− max{0, L(d)

min − ℓi , ℓi − L
(d)
max}

τ

)
, τ > 0, (10)

where L
(d)
min denotes the 5th-percentile response length observed in the previous validation step for

bucket d, while L
(d)
max corresponds to the 95th percentile in the same distribution. The variable ℓi

represents the effective response length of the current sample i, and τ ∈ [5, 10] is a temperature
hyperparameter that controls the decay rate of the attenuation function.

The attenuation is then applied to the advantage computed by GROUP COMPUTATION, Âi = gi Ai,

so that responses that are excessively short (ℓi < L
(d)
min) or verbose (ℓi > L

(d)
max) are exponentially

down-weighted. This mechanism penalises pathological length behaviours while preserving the
signal of well-sized, high-quality chains of thought. The complete algorithm procedure of DRER is
detailed in Appendix 1.

3.2 LOGICTREE

Most ’reasoning’ benchmarks still fail to isolate formal deduction. Difficulty is inflated by inject-
ing domain facts or arithmetic tricks, so logical skill is confounded with knowledge retrieval and
calculation (Lin et al., 2025; Sprague et al., 2024b). Logical depth and structure remain almost uncon-
trollable: items rarely reveal how accuracy decays as inference chains lengthen, and no systematic
consistency checks can be run across paraphrased versions of the same proof pattern (Saparov et al.,
2023; Sprague et al., 2024a). Finally, intermediate steps are almost never evaluated; model capability
is judged solely by the final answer (Paul et al., 2024).

Figure 2: The framework of LOGICTREE automatic construction pipeline. We first sample atomic
logic structures and sentences from seven deduction logic rules and four sentential logics, then fill
it with natural statements in filtered AscentKB (Nguyen et al., 2021), and eventually construct the
nested argument tree. Those intermediate will be hidden and transformed into questions.

Therefore, we present the LogicTree dataset, based on nested deductive reasoning rules that poses
significant challenges to state-of-the-art LRMs. Solving these problems requires models to not only

1A bucket may correspond to a task type, question template, or any other granularity used in specific tasks.
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recognize and correctly apply reasoning logic across diverse contexts but also to strategically plan
hierarchical inference steps. Specifically, our dataset exhibits following key features:

Programmatic Construction, The reasoning depth, breadth, and number of sub-questions are fully
controllable as shown in Figure 2 and Appendix A.2. Beyond evaluating models’ judgment on root
conclusions, intermediate reasoning steps are extracted and expanded into sub-questions. Compared
to prior deductive reasoning benchmarks, this enables granular assessment of models’ hierarchical
reasoning accuracy.

Diverse Logical Forms, In contrast to grid puzzles or other logic games, LogicTree incorporates
seven deductive reasoning rules and four sentential logic patterns, with each problem featuring
distinct rule combinations. This significantly elevates the logical complexity.

Probing LLMs’ Foundational Reasoning, We undertake multifaceted efforts to examine models’
core logical capabilities. First, the dataset is decoupled from domain-specific knowledge to ensure
models focus solely on pure logical reasoning. Second, we propose a logical consistency metric
to evaluate models’ ability to comprehend identical underlying logic across varying contextual
representations.

Table 1: Deductive reasoning rules statistics on LogicTree 9.6k problems spanning depth 1-8.

Deductive Rule Logical Form Amount

Modus Ponens (p → q) ∧ p =⇒ q 6 760
Modus Tollens (p → q) ∧ ¬q =⇒ ¬p 6 750
Hypothetical Syllogism (p → q) ∧ (q → r) =⇒ (p → r) 4 230
Disjunctive Syllogism (p ∨ q) ∧ ¬p =⇒ q 6 865
Reductio ad Absurdum (p → q) ∧ (p → ¬q) =⇒ ¬p 6 780
Constructive Dilemma (p → q) ∧ (r → s) ∧ (p ∨ r) =⇒ (q ∨ s) 1 900
Disjunction Elimination (p ∨ q) ∧ (p → s) ∧ (q → s) =⇒ s 6 625

Evaluation The LogicTree dataset is programmatically generated with full control over logical
depth, sub-problem quantity, and reasoning variations, which enables multifaceted analysis of models’
logic mechanism from novel perspectives.

We introduce three evaluation metrics: (1) Accuracy: Standard correctness rate, only credited when
every sub-question is correctly answered; (2) Consistency Ratio: Reasoning stability across logically
equivalent queries, measured as consistent correctness over several isomorphic questions; (3) Fβ-
Score: Balances Answer Rate (proportion of valid True/False responses) and Precision (accuracy
among valid responses) with parameter β.

Note that, unlike traditional NLI datasets with three-class classification (Cheng et al., 2025; Liu
& Zhang, 2024) (True, False, or Uncertain), we restrict labels to True/False to mitigate semantic
ambiguity that often artificially inflates accuracy by encouraging defaulting to Uncertain. LLMs may
respond with Unknown during inference, reducing statistical noise from random guessing.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

In the experiment section, we conduct 400-step post-training of the Qwen2.5-7B-Instruct-1M model
using two baseline algorithms, DAPO and GRPO, with two distinct training datasets: LogicTree
Data, focused on deductive logic, and General Reasoning Data, which blends mathematical and multi-
domain reasoning data. This diversified training setup fully demonstrates the generality of the DRER
framework. Specific experimental settings can be found in Appendix D.1. The main experiments
evaluate the model on multiple public benchmarks and the LogicTree benchmark, confirming the
enhancement of logical reasoning capability. Additionally, we perform detailed attribution and
ablation studies to elucidate the mechanism and validate the effectiveness of each module within
DRER.

6
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4.2 MAIN RESULTS

Training Throughout 400 training steps, we observe a monotonic rise in the model’s accuracy on
the LogicTree from 7% at the outset to nearly 60% in figure 5. Additionally, the reasoning steps
are streamlined for greater conciseness and clarity. Detailed evaluation data are in Table 19. In
both settings, DRER consistently improves final accuracy and accelerates convergence. Figure 3
and Figure 11 indicates the step at which the baseline (DAPO or GRPO) reaches its final precision,
showing that DRER achieves a significantly higher or comparable performance earlier, highlighting
its efficiency in guiding learning through structured reasoning signals.

Figure 3: Accuracy on the LogicTree during post-training with DAPO (left) and GRPO (right), with
and without DRER.

Model AIME 24 MATH-500 TheoremQA MMLU-Pro GPQA LogiQA2.0 ZebraLogic LogicTree
Qwen2.5-7B 12.8 55.8 21.1 38.8 27.9 45.7 30.9 13.2

Training on LogicTree Data
GRPO 13.1 54.7 18.2 38.4 27.1 47.1 33.5 45.1
GRPO+DRER 13.4 56.2 18.9 38.1 29.0 52.6 36.2 54.2
DAPO 13.9 55.9 17.6 40.1 33.5 46.5 32.3 52.4
DAPO+DRER 16.5 56.0 17.5 39.3 35.2 51.2 33.4 60.0

Traning on General Reasoning Data
GRPO 14.8 56.4 24.2 39.1 29.9 45.3 31.8 11.0
GRPO+DRER 17.2 59.2 25.1 39.7 35.4 46.7 31.6 14.1
DAPO 14.5 56.6 23.9 38.5 32.3 45.6 31.1 13.0
DAPO+DRER 18.3 61.8 22.8 39.0 38.6 47.5 32.4 12.1

Table 2: Performance on Mathematic and Reasoning benchmarks. Qwen2.5-7B model is referring to
Qwen/Qwen2.5-7B-Instruct-1M. AIME24 and LogicTree results are reported as Avg@32
and Avg. score, respectively; all other datasets use standard accuracy.

Table 3: Comparison of Accuracy on LogicTree. For the complete results referring to Table 19.

Model / Depth 1 2 3 4 5 6 7 8 Avg.

Qwen3-235B-A22B 0.96 0.83 0.66 0.71 0.46 0.32 0.25 0.07 0.53
Deepseek-R1 0.85 0.76 0.61 0.47 0.36 0.18 0.19 0.07 0.44
Claude-3.7-Sonnet 0.76 0.67 0.21 0.10 0.07 0.02 0.02 0.00 0.23
GPT-o4-mini 0.74 0.64 0.25 0.20 0.10 0.06 0.05 0.02 0.26
GRPO 0.81 0.71 0.58 0.42 0.45 0.20 0.20 0.11 0.45
GRPO+DRER 0.87 0.75 0.69 0.54 0.61 0.35 0.27 0.22 0.54
DAPO 0.88 0.73 0.66 0.47 0.60 0.36 0.23 0.20 0.52
Ours (DAPO+DRER) 0.90 0.83 0.76 0.59 0.67 0.45 0.31 0.31 0.60↑0.47

Evaluation The main experimental findings are presented in Table 2, where we evaluated the trained
7B model under different training configurations across various benchmarks. Overall, our DRER
framework, by performing fine-grained reward optimization on CoT tokens, consistently outperforms

7
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baseline methods in eliciting the model’s reasoning potential and enhancing its performance. Further-
more, it can be observed that when the model is trained exclusively on deductive reasoning data from
LogicTree, it not only achieves notable improvements on LogiQA2.0 and ZebraLogic—both of which
assess similar logical abilities—but also demonstrates generalization capability on mathematical
benchmarks such as AIME24 and TheoremQA. When trained on General Reasoning, the model
exhibits steady gains across mathematical benchmarks as well as multi-domain reasoning benchmarks
including MMLU-Pro and GPQA, underscoring the broad applicability of the DRER framework.

For the detailed results on LogicTree, as demonstrated in Table 3, even advanced models such as
GPT-o3-mini, DeepSeek-R1, and Claude3.7 achieve accuracy scores below 20% across reasoning
depths of 7-8 in LogicTree. The best performing model, Qwen3-235B, maintains the highest accuracy
of 25% on problems with reasoning depth of 7, with an average accuracy of 53%. This reveals
significant deficiencies in the complex deductive reasoning capabilities of existing reasoning models.
In contrast, our trained 7B model achieves state-of-the-art performance in terms of average accuracy,
showing substantial improvement over the base model, and maintains a 31% accuracy rate even at
maximum reasoning depth.

Additionally, our experiments reveal distinct Unknown response tendencies across models. While
GPT-o4-mini exhibits stronger reasoning capability than GPT-4o, their comparable accuracy stems
from GPT-o4-mini’s overcaution (excessive Unknown responses). However, GPT-o4-mini achieves
significantly higher Precision and Fβ-Score scores in valid responses (details in Appendix 9).

4.3 ABLATION STUDY

To investigate the contribution of different design choices in DRER, we perform an ablation study.

Effect of Reasoning Quality Reward. We compare training runs with and without the Reasoning
Quality Reward (RQR). As shown in Table 4, introducing RQR—which provides fine-grained credit
assignment for CoT quality—leads to a substantial improvement in reasoning accuracy, whereas
removing it results in a clear performance drop on both AIME24 and GPQA. Moreover, the training
dynamics in Appendix Figure4 further corroborate this effect: the reasoning-quality reward steadily
increases and eventually stabilizes at a high value during training, indicating that DRER consistently
guides the policy toward CoT trajectories that enhance the model’s confidence in the correct answer.
Overall, RQR offers a precise and stable supervisory signal that enables the model to learn reasoning
steps with genuine contribution, thereby improving both the quality of its reasoning process and the
final prediction accuracy.

Table 4: Ablation experiment result on DRER.
Compare the performance w/o Reasoning Qual-
ity Reward(RQR) or Dynamic Length Ad-
vantage(DLA). Avg@32 score is reported on
AIME24.

Method AIME 24 GPQA

DRER 18.3 38.6
w/o RQR 14.7↓3.6 33.1↓5.5

w/o DLA 16.2↓2.1 35.3↓3.3

Table 5: Training dynamics of model response
length w/o Dynamic Length Advantage(DLA).

Effect of Dynamic Length Advantage. In the early stages of training, a small number of extreme-
length responses can disproportionately influence the model’s learned response-length distribution,
leading to instability in optimization. Dynamic Length Advantage (DLA) mitigates this issue by
applying advantage-level attenuation to such outlier trajectories, preventing them from dominating
the learning dynamics. We compare training runs with and without DLA, and the results in Table4
and Table5 support its effectiveness. When DLA is removed, the model exhibits a slight drop in
performance and shows substantially larger fluctuations in response length throughout training. These
observations indicate that DLA effectively suppresses the destabilizing impact of extreme-length
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Table 6: Comparison of Consistency Ratio on LogicTree. For the complete results referring to
Table 20

Model / Depth 1 2 3 4 5 6 7 8 Avg.

Qwen3-235B-A22B 0.90 0.65 0.30 0.50 0.15 0.00 0.00 0.00 0.32
Deepseek-R1 0.70 0.55 0.20 0.15 0.10 0.00 0.00 0.00 0.22
Claude-3.7-Sonnet 0.65 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.12
GPT-o4-mini 0.50 0.35 0.00 0.05 0.00 0.00 0.00 0.00 0.11
GRPO 0.55 0.50 0.40 0.25 0.45 0.20 0.15 0.00 0.29
GRPO+DRER 0.65 0.50 0.25 0.25 0.25 0.10 0.00 0.00 0.25
DAPO 0.65 0.45 0.45 0.20 0.50 0.10 0.05 0.10 0.31
Ours (DAPO+DRER) 0.70 0.70 0.60 0.35 0.50 0.35 0.05 0.10 0.41↑0.40

samples while allowing DRER to focus optimization on reasoning quality rather than being driven by
pathological length patterns.

4.4 DOES MODEL REALLY LEARN THE LOGICAL PARADIGM?

A key question remains whether models truly understand logic or merely memorize puzzles. While
prior work (Cheng et al., 2025) reveals models’ tendency for self-contradiction on logically equivalent
propositions, LogicTree naturally evaluates this through problems sharing identical logical structures
but varying linguistic instantiations. Our Consistency Ratio metric quantifies this capability.

As shown in Table 6, most models can understand simple deductive reasoning logic, but at reasoning
depths of 7-8, even state-of-the-art models such as GPT-o3-mini, Qwen3-235B, deepseek-r1, and
Claude3.7 demonstrate consistency rates approaching zero, revealing current models’ insufficient
capability for consistent extended thinking and complex combinatorial logic.

Additionally, we analyzed whether models explicitly utilized certain deductive reasoning rules in their
responses. Results in the Appendix provide word-frequency statistics and examples for GPT-o4-mini,
DeepSeek-R1, Qwen3-235B, and our model, indicating a drop in explicit paradigm mentions with
growing logical complexity and uneven competence across paradigms. Moreover, there exhibits
varying capabilities across different logical paradigms. For example, DeepSeek-R1 responses most
frequently reference "Modus Tollens", while "Disjunction Elimination" appears substantially less
often. This disparity may stem from either the inherent complexity of the latter rule or inadequate
exposure during pre-training. Our framework shows improved rule identification capacity with
increasing response length and logical complexity.

4.5 WHY DOES RQR ACCURATELY MEASURE REASONING QUALITY?

Information-theoretic interpretation. In information theory, the mutual information between two
random variables Z and Y is defined as

I(Z;Y ) = Ez,y

[
log

p(z, y)

p(z) p(y)

]
= Ez,y [log p(y | z)− log p(y)] . (11)

Then, the mutual information between the chain-of-thought z and the correct answer y∗ conditioned
on the input x can be expressed as:

I(z; y∗ | x) = Ez,y∗|x [log p(y
∗ | x, z)− log p(y∗ | x)] . (12)

As shown in Eq.7 and Eq.8, the RQR can be viewed as a sample-based estimator of the conditional
mutual information I(z; y∗ | x) between the CoT and the correct answer. This quantity measures the
information gain contributed by CoT tokens toward predicting the correct answer.

To further validate whether RQR can faithfully measure the quality of chain-of-thought (CoT)
reasoning, we design more complementary experiments in Appendix E.
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GPT-5.1–Based CoT Quality Scoring To assess whether RQR provides a meaningful estimate
of reasoning quality, we conduct a series of controlled evaluations using GPT-5.1 as an external
judge of Chain-of-thought quality. At a high level, we compare CoT trajectories generated by the
base model, the DAPO-only model, and the DAPO+DRER model, and examine how GPT-5.1’s CoT
quality scores correlate with the learned RQR. The full evaluation protocol and scoring rubric are
provided in the appendix E.1.

The results show a clear monotonic relationship: trajectories assigned higher quality scores by
GPT-5.1 consistently obtain higher RQR values, confirming that RQR tracks genuine improvements
in reasoning behavior. Moreover, DRER training produces a decisive shift toward higher-quality CoT,
with substantially higher GPT-5.1 scores than those of both the base and DAPO-only models. These
findings demonstrate that RQR not only reflects reasoning quality but also serves as an effective
training signal that leads to stronger, more coherent CoT reasoning.

4.6 DOES MODEL’S REASONING BEHAVIOUR BECOME MORE EFFECTIVE?

To isolate the effect of explanatory CoT on answer confidence, We test Qwen2.5-7B-Instruct-1M on
500 GSM8K and 500 LogicTree problems, generating for each prompt a direct answer (No-CoT)
and a step-by-step CoT. We mark a CoT as effective if the model is incorrect in the No-CoT setting
but correct with CoT. We compute the log-probability gain of the ground-truth answer tokens a⋆t as
ℓCoT − ℓNoCoT.

Samples are categorized into four groups based on answer correctness: (WR) wrong No-CoT / right
CoT, (RR) right No-CoT / right CoT, (WW) wrong in both, and (RW) right No-CoT / wrong CoT.
Statistics are reported in Tables 15 and 16.

We further split the data by the sign of ∆ℓ (Tables 17 and 18). For positive ∆ℓ, the model shows a
higher fix rate (proportion of WR is higher), with a significant increase in transitions from wrong to
correct answer. For negative ∆ℓ, the break rate is higher and the fix rate lower, making transitions
from correct to wrong more likely.

Figure 12 and Figure 13 show the prediction distribution for a difficulty-3 problem from 100 samples.
Compared to the DAPO 400-step baseline, the DRER-trained policy produces a markedly sharper
peak around the ground-truth answer, indicating that the learnt reasoning tokens help concentrate
probability mass on the correct solution.

Finally, Figure 6 and Figure 7 show that DRER keeps the average response length stable at fewer
tokens, saving tokens per problem relative to the baseline while achieving higher accuracy. This
validates DRER’s ability to simultaneously improve reasoning quality and reduce inference cost.

5 CONCLUSION AND FUTURE WORK

We propose DRER, a plug-and-play reinforcement learning framework that explicitly links the
contribution of each reasoning step to the model’s confidence in the final answer. By jointly optimizing
the reasoning-quality reward and the dynamic-length advantage, DRER encourages the model to
produce logically meaningful and length-efficient chains of thought. In addition, we introduce
LogicTree, a programmatically constructed benchmark with controllable logical depth, designed for
rigorous evaluation of deductive reasoning in LLMs.

Extensive experiments demonstrate that DRER significantly improves reasoning accuracy, reasoning
quality, and training convergence over baseline methods, confirming that reinforcing high-quality
reasoning signals enhances robustness and transferability of reasoning capabilities. These results
validate the practical effectiveness of fine-grained CoT reward shaping and highlight LogicTree as a
reliable diagnostic environment for analyzing reasoning mechanisms in LLMs.

We release all code and the complete LogicTree corpus to ensure transparency and reproducibility.
Together, DRER and LogicTree provide a lightweight, theoretically grounded basis for reasoning-
aligned RL, enabling safer and more interpretable LLMs in logic-critical domains. Future work
should extend this framework to richer logics and multimodal data.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

Table 7: An example of a logictree puzzle.

An example of a logictree puzzle

Paragraph:
On the condition that coral reefs need light to grow so only occur in shallow waters, it is
definitely the case that in addition to this, olive oil is also ideal for frying and is the most
stable fat when heated.If in addition to this, olive oil is also ideal for frying and is the
most stable fat when heated, then if ribbons relate post : How to sew trims, then titanium
dioxide and zinc oxide also functioned in this fashion.It is a fact that either the anus of this
invertebrate is located on top of its body or coral reefs need light to grow so only occur in
shallow waters.The statement that ’the anus of this invertebrate is located on top of its body’
is incorrect.

Question:
It is a common misconception that if ribbons relate post : How to sew trims, then titanium
dioxide and zinc oxide also functioned in this fashion.

Solution:
False

A.1 SEVEN DEDUCTIVE PARADIGMS IN LOGICTREE

LogicTree centres on seven classic deductive paradigms that constitute the atomic reasoning units of
every sample. Each paradigm is implemented as a dedicated Python class (see logic.py) whose
constructor generates the required premises and the logically entailed conclusion. The table below
summarises their formal schemata together with bilingual surface examples.

A.2 LOGICTREE: TEMPLATE AND CONSTRUCTION

We construct LogicTree through three automated steps:

1. Logical Node Sampling. Atomic premises and target conclusions are sampled from seven classical
deductive rules (e.g., Modus Ponens, Modus Tollens) and four sentential logics, generating
symbolic propositions.

2. Natural-Language Instantiation. Each symbolic proposition is mapped to natural declarative
statements retrieved from the filtered AscentKB corpus Nguyen et al. (2021), excluding ambiguous
expressions or compound sentences to enhance lexical diversity while maintaining clarity.

3. Nested-Tree Assembly. The instantiated nodes are recursively composed into reasoning trees
with configurable depth and width. Intermediate conclusions are masked from given premises,
then transformed into sub-questions to create multi-step problem instances. This design ensures
the inference process depends solely on logical form rather than sentence semantics, effectively
decoupling reasoning from world knowledge.

15

https://arxiv.org/abs/2505.02835


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Model Response of logictree.

Model Response of logictree

Paragraph:
When the notion that ’if the statement that states the worms also eat the food scraps and worm
bin bedding is false, then the statement ’emergent wetland vegetation is rooted in soil that
is under the water for most of the time’ can be considered false’ is untrue is true, it follows
that hydrangeas need minimal care in well-drained, fertile soil, and are shade lovers.One may
reasonably assume that if the notion that ’if the statement that states the worms also eat the
food scraps and worm bin bedding is false, then the statement ’emergent wetland vegetation
is rooted in soil that is under the water for most of the time’ can be considered false’ is
untrue, then those that suggest hydrangeas need minimal care in well-drained, fertile soil,
and are shade lovers are wrong.Assuming sometimes, cancer cells left behind after treatment
eventually form new tumors, we know that if either eggs from common ducks require about
28 days to hatch or the island was originally inhabited by Ligures Ilvates, who gave it the
ancient name Ilva, then if the statement that states the worms also eat the food scraps and
worm bin bedding is false, then emergent wetland vegetation is rooted in soil that is under
the water for most of the time.The statement that states sometimes, cancer cells left behind
after treatment eventually form new tumors is right.Whenever the claim that either eggs
from common ducks require about 28 days to hatch or the island was originally inhabited
by Ligures Ilvates, who gave it the ancient name Ilva is false is true, the following statement
is also true: the bowl acts as a carb hole.Whenever the claim that either eggs from common
ducks require about 28 days to hatch or the island was originally inhabited by Ligures Ilvates,
who gave it the ancient name Ilva is false is true, the following statement is also true: the
statement ’the bowl acts as a carb hole’ can be considered false.

Question:
The statement ’the worms also eat the food scraps and worm bin bedding’ can be considered
true.
It is a common misconception that if the statement that states the worms also eat the food
scraps and worm bin bedding is false, then emergent wetland vegetation is rooted in soil that
is under the water for most of the time.

Model Response:
1. Analyze the logical structure of the given statements.
2. Identify the conditions and implications in each statement.
3. Determine the truth value of the given statements and how they relate to each other.
4. Check the consistency of the statements with the provided premises.
5. Deduce the implications of the given statements on the conclusion.
6. Evaluate the final conclusion based on the logical consistency and the given premises.
</think>
<answer>[True, False]</answer>

Solution:
True
False

A.3 PRIMITIVE AND COMPOUND PROPOSITIONS

LogicTree expresses every deductive instance in terms of one primitive statement and four compound
connectives. The primitive Statement captures an atomic fact—e.g. “Alice studies.”— while the
four connectives build larger formulas: negation, conjunction, implication, and inclusive disjunction.
Each connective is implemented as a dedicated class whose method .nl() randomly selects a
surface template from expressions.json. Table 12 summarises the five constructs, their formal
notation, and representative English renderings.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Full Chain-of-Thought (CoT) Prompt Template Used for DRER Training and Evaluation.

COT prompt

System Input:
<|im_start|>system
You are a helpful assistant. The assistant first thinks step by step about the reasoning process
in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> . . . </think> and <answer> . . .
</answer> tags, respectively, i.e.
<think> Write the reasoning process for the given paragraph here </think>
<answer> Fill in the final answer list for {num_q} question(s) here: True, False or Unknown.
Like this: [True, False. . . ] </answer>
You must choose one of the following answers:
– TRUE: if the premises entail the statement
– FALSE: if the premises contradict the statement
– UNKNOWN: if you cannot determine the truth value of the statement from the premises
You will be given a paragraph of logical premises and a statement. Perform logical reasoning
strictly based on the premises using propositional logic.
Assume all premises are true. Do not rely on prior world knowledge.
<|im_end|>

User Input:
<|im_start|>user
Paragraph: {paragraph}
{current_question}
<|im_end|> <|im_start|>assistant <think>

Variable meanings:
{num_q}: Number of questions in the current prompt.
{paragraph}: The paragraph containing the logical premises.
{current_question}: The specific statement whose truth value is to be evaluated.

Lexicalization. When generating a sample, the pipeline first creates Statement objects for
the chosen entities, then composes them with the connectives above. For example, calling
Negation(S).nl() yields a randomly chosen negated template such as “The claim that S
is false.”; calling Conditional(P,Q).nl() may return “Provided that P, we know that Q.”.
This template sampling, combined with optional adverb or negator insertion, gives LogicTree a high
level of lexical diversity while preserving formal truth values.

B RELATED WORK

In this section, we review prior work related to our problem setting, including logical reasoning
datasets (Section B.1) and reasoning-improvement methods (Section B.2).

B.1 RELATED DATASETS

Logical reasoning datasets can broadly be categorized into three types. The first type focuses
on deductive reasoning. The second type is based on grid-based logic puzzles. The third category
comprises datasets based on multi-hop or strategic question answering. These datasets assess language
models’ logical capabilities from various perspectives, including formal logic, multi-step planning,
structural induction, and strategy analysis. In addition, there are general-purpose reasoning datasets
that are also frequently used to evaluate LLMs’ logical reasoning abilities.
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Table 10: Full No-CoT Prompt Template used for DRER training and evaluation.

No-CoT Prompt

System Input:
<|im_start|>system
You are a helpful assistant. You answer questions by solely using
logical reasoning.
You will be given a paragraph of logical premises and a statement.
Perform logical reasoning strictly based on the premises using
propositional logic.
Assume all premises are true. Do not rely on prior world
knowledge.

<answer> Fill in the final answer list for {num_q} question(s) here:
True, False or Unknown. Like this: [True, False...] </answer>
You must choose one of the following answers:
- TRUE: if the premises entail the statement
- FALSE: if the premises contradict the statement
- UNKNOWN: if you cannot determine the truth value of the statement
based on the premises

<|im_end|>

User Input:
<|im_start|>user
Paragraph: {paragraph}
{current_question}
<|im_end|>
<|im_start|>assistant
<answer> . . . </answer>

Variable meanings:
{num_q}: Number of questions in the current prompt.
{paragraph}: Paragraph containing the logical premises.
{current_question}: Statement whose truth value is to be evaluated.

B.1.1 DEDUCTIVE REASONING

ConTRoL (Liu et al., 2021), consisting of 8,325 pairs of expert-designed datasets, is a challenging
segment-level NLI dataset to evaluate model’s contextual reasoning capacity from police recruitment
tests. RuleTaker (Clark et al., 2020) is a benchmark dataset designed to test whether language models
can logically reason about natural language rules and facts by determining whether the conclusions
follow, do not follow, or are uncertain. LogiQA (Liu et al., 2020) is a benchmark of 8,678 civil
service exam questions designed to evaluate models’ reading comprehension and deductive reasoning
across five logical types by requiring conclusion drawing from textual premises. LogiQA2.0 (Liu
et al., 2023) is the enchanced version of LogiQA (Liu et al., 2020), featuring improved translations,
expert-verified annotations, and new NLI tasks, designed to evaluate logical reasoning and reading
comprehension in MRC and NLI formats. FOLIO Han et al. (2022) is an maually annotated dataset
containing 1,430 logically complex natural language reasoning examples with first-order logic (FOL)
annotations, designed to evaluate and benchmark the deductive reasoning and NL-FOL translation
capabilities of Large Language models. PrOntoQA (Saparov & He, 2022) is a benchmark proposed
in 2022 to evaluate LLMs’ reasoning by generating question-answer pairs from first-order logic,
revealing their struggles with multi-step proof planning despite valid individual steps. Compared with
PrOntoQA (Saparov & He, 2022), PrOntoQA-OOD (Saparov et al., 2023) is designed to evaluate the
general deductive reasoning abilities of LLMs by testing their ability to generalize to more complex,
compositional proofs, particularly those that are out-of-distribution (OOD). JustLogic (Chen et al.,
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Algorithm 1 DRER: Dynamic Reasoning Efficiency Reward.

Require: Prompts P = {qb}Bb=1, ground-truth answers Y ⋆ = {a⋆b}Bb=1,
1: policy πθ, rule reward Rrule(·), reasoning weight λq ,
2: bucket IDs {db}Bb=1, bounds

(
L
(d)
min, L

(d)
max

)
, temperature τ

Ensure: Advantages A ∈ RB×L

(1) Build trajectories
3: C ← πθ(P,mode = cot) ▷ CoT trajectories
4: for b = 1 to B do
5: tn[b]← NOCOTPROMPT(qb) ∥ FORMATANSWER(a⋆b)
6: Replace answer span in C[b] with a⋆b → tc[b]; record span Ab

7: end for
(2) Reasoning-quality reward

8: for b = 1 to B do
9: ℓc =

1
|Ab|

∑
t∈Ab

log pθ(a
⋆
b,t | tc[b])

10: ℓn = 1
|Ab|

∑
t∈Ab

log pθ(a
⋆
b,t | tn[b])

11: Rq[b]← tanh(ℓc − ℓn)
12: Rseq[b]← Rrule(C[b]) + λqRq[b]
13: Expand Rseq[b] to token reward rb,· on C[b]
14: end for

(3) Group-wise normalisation
15: for all prompt group g do
16: µg ← mean(rm,·), σg ← std(rm,·) (m∈g)
17: for m ∈ g do ▷ raw advantage Ã

18: Ãm,· ←
rm,· − µg

σg + ε
19: end for
20: end for

(4) Dynamic-length attenuation
21: for b = 1 to B do
22: ℓb ← LENGTH(C[b]), d← db

23: gb ← exp
(
−max{0, L(d)

min − ℓb, ℓb − L
(d)
max}

τ

)
24: Ab,· ← gb · Ãb,·
25: end for
26: return A

2025) a generated deductive reasoning benchmark designed to evaluate LLMS, featuring high
complexity, being independent of prior knowledge, and conducting in-depth error analysis in terms
of reasoning depth and argumentative form.

However, the existing logical reasoning datasets still have some limitations. Most datasets have
fixed or limited reasoning depth and breadth, which limits their ability to conduct a comprehensive
evaluation of complex multi-step reasoning models. Many datasets entwine semantic information
with logic, which may lead the model to rely on semantic cues rather than pure logical reasoning.

Furthermore, the majority focus only on final answer correctness, lacking assessment of the interme-
diate reasoning process and overall explanation quality.

In contrast, the LogicTree dataset we proposed has significant advantages: it is programmed and
dynamically constructed, allowing for flexible control over the depth, breadth, and difficulty of
inference; It separates semantics from logic to precisely evaluate pure deductive reasoning; It
introduces a new logical consistency metric across multiple logical equivalence problems to measure
the model’s grasp of the underlying logical structure.
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Table 11: Seven deductive paradigms that serve as the atomic reasoning units in LOGICTREE.

Paradigm Formal Schema Surface Realisation

Modus Ponens (p→q) ∧ p ⇒ q If Alice studies, she will pass. Alice studies. Therefore, she will
pass.

Modus Tollens (p → q) ∧ ¬q ⇒
¬p

If it rains, the road is wet. The road is not wet. Thus, it did not
rain.

Hypothetical Syllogism (p → q) ∧ (q →
r) ⇒ (p→r)

If A wins, B celebrates. If B celebrates, C is happy. Hence, if A
wins then C is happy.

Disjunctive Syllogism (p ∨ q) ∧ ¬p ⇒ q Either today is Monday or Tuesday. Today is not Monday.
Therefore, today is Tuesday.

Reductio ad Absurdum (p → q) ∧ (p →
¬q) ⇒ ¬p

Assume the number is both even and odd. This leads to a
contradiction. Thus, the number is not both even and odd.

Constructive Dilemma (p→q)∧ (r→s)∧
(p ∨ r) ⇒ (q ∨ s)

If it rains, we stay in; if it is sunny, we picnic. Either it rains or it
is sunny. Hence, we either stay in or picnic.

Disjunction Elimination (p ∨ q) ∧ (p→s) ∧
(q→s) ⇒ s

Either I study or I work. If I study, I will learn. If I work, I will
learn. Thus, I will learn.

Table 12: Primitive and compound proposition types used in LOGICTREE.

Construct Logical Form Example Surface Realisation (EN)
Statement (atomic) p Alice studies.

Negation ¬p It is not true that Alice studies.
Conjunction P ∧ q Alice studies and Bob plays chess.

Implication (Conditional) P → q If it rains, then the road becomes wet.
Inclusive Disjunction P ∨ q Either today is Monday or Tuesday.

B.1.2 GRID-BASED LOGIC PUZZLES

BoardgameQA(Kazemi et al., 2023) is a dataset designed to evaluate the reasoning ability of language
models when dealing with contradictory information. GridPuzzle(Tyagi et al., 2024) is a dataset
of grid-based logic puzzles designed to evaluate LLMs’ structured, multi-step reasoning abilities
through both final answers and detailed reasoning chains. The Knights and Knaves(Xie et al., 2025)
dataset is an reasoning dataset designed to test logical deduction, where characters are either knights
(truth-tellers) or knaves (liars), featuring controlled difficulty levels, procedural generation, and
verifibility.

Existing datasets, such as GridPuzzle (Tyagi et al., 2024), Knights and Knaves (KK) (Xie et al.)
provide valuable reasoning benchmarks, but they all have limitations. For example, KK (Xie et al.)
entangles logical reasoning with semantic cues, taking the risk of rapid learning through keyword
associations. Some logic puzzle focuses on the final answer without verifying the intermediate steps,
allowing the model to guess without sufficient reasoning.

On the contrary, LogicTree evaluates the final and intermediate steps and executes the complete
reasoning chain. It also introduces a logical consistency rate among variants of the same logical form
and uses semantic-logical unentanglement to ensure that the model relies on reasoning rather than
superficial clues.

B.1.3 MULTI-HOP OR STRATEGIC QUESTION ANSWERING

HotpotQA (Yang et al., 2018) is a multi-hop question-answering dataset that requires reasoning across
multiple documents and provides supporting facts to enhance the interpretability of the QA system.
StrategyQA (Geva et al., 2021) is a benchmark dataset designed to evaluate implicit multi-step
reasoning in LLMs across 15 domains and 13 strategies. SPAG (Cheng et al., 2024) is self-laying
based adversarial language game dataset designed to enhance and evaluate the reasoning ability
through a game involving indirect communication and strategic reasoning about hidden target words.
LOGICGAME (Gui et al., 2024) is a benchmark designed to evaluate LLMs’ ability to understand,
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execute, and plan based on predefined rules through diverse, verifiable game scenarios requiring
multi-step logical reasoning. AutoLogi (Zhu et al., 2025) is benchmark test for open-ended logic
puzzles with controllable difficulty and program-based verification, designed to evaluate the reasoning
ability of LLM.

Compared with datasets such as HotpotQA (Yang et al., 2018), StrategyQA (Geva et al., 2021), they
emphasize various forms of multi-step or strategic reasoning across natural language problems, but
there are still obvious limitations: The reasoning strategies in existing datasets are often broad and
empirical rather than based on formal logical deduction frameworks (for example, StrategyQA (Geva
et al., 2021) relies on heuristic and empirical categories). Many datasets focus on language pattern
matching or cross-document evidence aggregation rather than verifying the true formal reasoning
process (for example, HotpotQA (Yang et al., 2018)). LogicTree, on the other hand, strictly adheres
to classical mathematical logic, adopting clear and well-defined deduction rules, and does not rely on
common sense knowledge, providing a pure logical reasoning environment.

B.1.4 GENERAL-PURPOSE DATASETS

MMLU-Pro(Wang et al., 2024d) is an advanced benchmark of 12,000 expert-reviewed, 10-option
questions across 14 disciplines, designed to better evaluate LLM performance with greater difficulty
and reduced noise than the original MMLU (Hendrycks et al., 2021). However, it primarily evaluates
broad knowledge and reasoning abilities rather than focusing on strong formal logical reasoning. Thus,
it is not specifically designed to test models’ capabilities in complex multi-step logical deduction.

B.2 RELATED REASONING METHODS

Recent research has explored improving LLM reasoning through critique-based or reward-model-
based mechanisms. Below we summarize the most relevant directions and clarify how our approach
differs.

B.2.1 CRITIQUE-BASED REASONING APPROACHES

Early self-improvement methods such as Self-Refine, Reflexion, and CRITIC require models to
generate critique text to revise their own answers (Madaan et al., 2023; Shinn et al., 2023; Gou
et al., 2023). Subsequent analyses report that such iterative critique loops can be unstable or rely on
superficial linguistic artifacts rather than genuine logical reasoning (Huang et al., 2023; Valmeekam
et al., 2023).

Other work focuses on supervised critique generation, such as Critique Fine-Tuning (CFT), which
trains models to imitate human- or teacher-provided critique trajectories (Wang et al., 2025a;b).
Similarly, Critique-Guided Distillation uses an external critic to score outputs and distills these scores
into the model (Kapusuzoglu et al., 2025).

These methods rely on explicit critique traces or external critic models and supervise critique content.
In contrast, DRER evaluates whether the reasoning chain itself improves the likelihood of the correct
answer, without requiring critique generation or additional supervision.

B.2.2 POSITIONING DRER RELATIVE TO CFT AND CRL

Critique Reinforcement Learning (CRL) incorporates critiques into RL by rewarding models for
predicting correct True/False judgments about candidate solutions (Ruan et al., 2025). CRL therefore
optimizes judgment correctness, whereas DRER optimizes the causal contribution of reasoning steps
via CoT–NoCoT likelihood margins.

CFT-based methods supervise the generation or imitation of critique traces (Wang et al., 2025a;b),
while self-reflection methods rely on iterative critique production (Madaan et al., 2023; Shinn et al.,
2023). DRER differs in that it introduces a counterfactual, gold-grounded reward that directly
measures the usefulness of reasoning steps, without learning to critique or to judge solutions.
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B.2.3 PROCESS-LEVEL REINFORCEMENT LEARNING FOR REASONING

Another line of work improves reasoning through reinforcement learning that directly optimizes model
behavior on reasoning tasks without relying on critique generation. Early RLHF-style approaches
focus on outcome rewards (Schulman et al., 2017a) but do not supervise intermediate steps.

More recently, process-level RL methods such as GRPO and DAPO (Shao et al., 2024; Yu et al.,
2025) use step-dependent rewards or decomposition strategies to encourage more stable reasoning
trajectories. RLVR-style methods further incorporate structured or rule-based verification to provide
process supervision (Wen et al., 2025). These approaches demonstrate that reinforcing intermediate
reasoning behaviors can improve both accuracy and consistency.

DRER shares the goal of process-level supervision but differs fundamentally in how reasoning quality
is evaluated: instead of using rule-based scoring or explicit correctness checks, DRER introduces a
counterfactual, likelihood-based reward that measures whether the CoT reasoning trajectory increases
model support for the correct answer. This avoids the need for handcrafted rules or verifiers while
still providing a process-level training signal.

B.2.4 REWARD-MODEL-BASED REASONING

Another family of methods trains reward models to evaluate reasoning steps or final answers (Wang
et al., 2024c; Luo et al., 2024b). These systems can improve reasoning quality but require substantial
labeled comparisons or step-by-step critiques. In contrast, DRER does not require a separate reward
model; instead, it uses a counterfactual log-likelihood difference derived directly from the model’s
own outputs, providing a lighter-weight and verifiable training signal.

B.2.5 OVERALL METHODOLOGICAL POSITIONING

Critique-based approaches supervise critique production or correctness, while reward-modeling
approaches train external evaluators of reasoning quality. Process-oriented RL methods, such as
RLVR-style training, supervise only the final answer.

DRER occupies a distinct space: it introduces a counterfactual, gold-grounded reward that measures
whether the reasoning chain genuinely increases support for the correct answer. Thus, DRER
complements rather than overlaps with critique-based or reward-modeling paradigms.

C PROMPT TEMPLATES

Tables 9 and 10 list the exact prompts used in our experiments: a Chain-of-Thought (CoT) version that
elicits step-by-step reasoning, and a No-CoT variant that asks for the final answer only. Curly-braced
placeholders are replaced at runtime ({paragraph}, {current_question}, {num_q}). The
two prompts share identical task instructions, so performance differences isolate the effect of showing
or hiding the reasoning chain.

D TRAINING DETAILS

D.1 TRAINING SETTING

Table 13 records important training parameters. Experiments are conducted on 4×H20 (80G) GPUs
with CUDA 12.0, PyTorch 2.6.0, transformers 4.47.1. The Main Experiment phase (DAPO+DRER)
trains for 400 training steps and takes approximately 50 hours. Training is carried out with a learning
rate of 3× 10−7, a maximum response length of 4096 tokens, the batch size is 16 and 16 responses
per prompt. For GRPO, the KL divergence coefficient is set to 0.001. In the DRER framework, we
set λq = 1 and τ = 8.

As shown in Equation 9, there are two parts of reward in DRER framework. Our Reasoning Quality
Reward Rq is range from [−λ, λ] to measure whether those CoT tokens help to choose the correct
answer. The general task reward Rtask depends on the specific training data, usually to verify the
model’s answer and format correctness. In our experiment, hyperparameter λ is set to 1, the total task
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Table 13: Important Training Parameters.

Algorithm Train Batch Size Rollout N KL Coef Max Response Len
GRPO 16 16 0.001 4096
DAPO 16 16 – 4096

reward is computed as:
Rtask = Sformat + Sanswer

where the format score (Sformat) evaluates whether the model’s response adheres to the required output
structure:

Sformat =

{
1, if format is correct
−1, if format is incorrect

And the answer score (Sanswer) evaluates the correctness of the response content against the ground
truth.

Sanswer =


2, if the answer fully matches the ground truth
−1.5, if the answer partially mismatches the ground truth
−2, if the answer cannot be parsed or is missing

D.2 TRAINING DYNAMICS

Figure 4: Reasoning quality reward on the LogicTree during post-training with DRER.
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Figure 5: Training dynamic of the DAPO baseline with the DRER framework over 400 steps.

Figure 6: Comparison of response lengths over training steps between DAPO and DAPO+DRER.
The integration of DRER leads to a reduction in response length, indicating enhanced efficiency with
concise output.

Figure 7: Comparison of response lengths over training steps between GRPO and GRPO+DRER.
The integration of DRER leads to a reduction in response length, indicating enhanced efficiency with
concise output.
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E SUPPLEMENTARY EXPERIMENTS

E.1 EXPERIMENT A: GPT-5.1–BASED COT QUALITY SCORING

To further validate whether our Reward for Quality Reasoning (RQR) corresponds to genuine
reasoning quality, we conduct an additional external evaluation using GPT-5.1.

We randomly sample 4000 chain-of-thought (CoT) trajectories from the evaluation set, including
outputs from the base model, the DAPO-only model, and the DAPO+DRER model. GPT-5.1 is
instructed to evaluate each trajectory in a step-wise manner. For every reasoning step, GPT-5.1
assigns binary judgments along three dimensions: correctness, coherence, and necessity. The detailed
evaluation rubric and prompt are provided in Table 25, and a representative annotated example is
shown in Table 24. For each trajectory, we aggregate the step-wise labels into a single CoT quality
score, bucket the examples by this CoT Score, and compute the mean RQR within each bucket to
examine how RQR correlates with externally assessed reasoning quality.

For a CoT consisting of T steps, we define:

Correctness =
1

T

T∑
t=1

correctnesst, Necessity =
1

T

T∑
t=1

necessityt.

To penalize chains whose logical flow breaks early, let

k = min{t | coherencet = 0}
be the index of the first coherence error. Coherence is defined as:

Coherence =

{
1, if coherencet = 1 ∀t,
α(T−k), otherwise,

with α = 0.7.

We combine the three dimensions into a single CoT quality score:

CoT Score = 0.5 · Correctness + 0.3 · Coherence + 0.2 · Necessity.

We bucket all examples by CoT Score and compute the mean RQR within each bucket.

Figure 8: Comparison of CoT score distributions and corresponding mean RQR values across three
training settings: Base model, DAPO-only, and DAPO+DRER. Bars represent the frequency of
samples within each CoT score bucket, while the line plots show the mean RQR computed over the
same buckets. DRER produces a clear shift toward higher-quality CoT trajectories and consistently
higher RQR across all buckets.

The results reveal a clear and consistent trend: CoT trajectories with higher GPT-5.1 quality scores
obtain substantially higher RQR values, whereas trajectories receiving low scores consistently yield
lower RQR. After DRER training, both the distribution of GPT-5.1 CoT scores and the corresponding
RQR values shift markedly toward higher-quality regions.
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These observations indicate that RQR assigns larger rewards to more logically coherent and effective
reasoning chains, demonstrating that the learned reward signal aligns with genuine reasoning quality
rather than surface-level patterns.

Across both the DAPO-only and DAPO+DRER models, we observe that:

• Higher CoT Score consistently corresponds to higher RQR;

• DRER training increases RQR across all buckets, with the largest improvements in the
high-quality CoT region.

Overall, these findings confirm that RQR is well aligned with GPT-5.1’s step-wise evaluation of
reasoning, capturing meaningful aspects of logical correctness and procedural validity.

E.2 EXPERIMENT B: COT DISTURBANCE TEST

To assess whether the Reward for Quality Reasoning (RQR) is sensitive to the structural and semantic
validity of reasoning trajectories, we conduct a controlled CoT–perturbation study on 4,000 randomly
sampled questions from our evaluation set.

For each question, we construct three variants of the chain-of-thought (CoT):

• Original CoT: the unmodified reasoning trajectory generated by the model.

• Shuffled CoT: a sentence-level random permutation of the same trajectory, disrupting
logical order while preserving content.

• Cross-question CoT: a CoT drawn from a different evaluation question, approximately
length-matched but semantically unrelated.

For each variant, we compute the RQR defined in Eq. (8). Table 14 reports the mean RQR, standard
deviation, and proportion of positive RQR values.

CoT Variant Mean RQR ↑ Std RQR % RQR > 0 ↑
Original CoT 0.29 0.42 73%
Shuffled CoT 0.08 0.31 41%
Cross-question CoT -0.34 0.33 7%

Table 14: Experiment B: RQR under different CoT perturbations on 2,000 randomly sampled
evaluation questions. The ordering Original > Shuffled > Cross demonstrates that RQR aligns with
reasoning quality and task relevance.

Summary of Results. These results indicate that RQR exhibits clear sensitivity to both the semantic
relevance and structural coherence of the reasoning chain, rather than displaying a simple preference
for the presence of CoT tokens. The significant differences across perturbation types suggest that
RQR captures the degree to which intermediate reasoning steps either support or hinder the correct
answer probability, reflecting their contribution in the problem-solving process.

E.3 EXPERIMENT C: ANALYSIS OF THE EFFECTS OF COT

Table 15: Average ℓCoT − ℓNoCoT by answer transition in GSM8K.

Original ↓ / With CoT→ Wrong (W) Correct (R)

Wrong (W) -4.32 2.46
Correct (R) -5.00 -0.47
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Table 16: Average ℓCoT − ℓNoCoT by answer transition in LogicTree.

Original ↓ / With CoT→ Wrong (W) Correct (R)

Wrong (W) -1.13 1.81
Correct (R) -3.79 -4.76

Table 17: Answer-transition proportions conditioned on the sign of ∆ℓ = ℓCoT − ℓNoCoT on GSM8K
(N=500). p(W→R) is the fix rate; p(R→W) is the break rate.

Group by ∆ℓ sign #Instances Mean ∆ℓ p(W→R) p(R→W)
∆ℓ > 0 (CoT favored) 140 +2.20 0.74 0.02
∆ℓ < 0 (NoCoT favored) 360 -2.60 0.02 0.24

E.4 EXPERIMENT D: LOGICTREE EVALUATION

This section lists full evaluation on LogicTree as logic benchmark.

Table 19 exhibits the full evaluation data of Accuracy on LogicTree benchmark across various
reasoning depths.

Table 20 presents the complete evaluation data of Consistency Ratio on LogicTree benchmark.

Figure 9 plots the complete evaluation data of Fβ-Score, which provides a balanced metric to compare
the comprehensive performance across those LLMs.

Figure 9: Fβ-Score, Answer Rate and Precision metrics Comparison across various models.

Figure 10 shows the distribution of those deduction logical key words in LLMs response.

Figure 11 compares the reasoning token efficiency between DeepSeek-R1 and our model.

Figure 12 compares the output distribution between models trained with DAPO and DAPO+DRER
respectively. The DAPO+DRER model demonstrates significantly higher confidence in correct
answers, as shown by a strong concentration of predictions on the fully correct label set ([true,
true, true]). In contrast, the baseline DAPO model produces more scattered outputs, indicating
lower certainty. This highlights the effectiveness of DRER in combination with CoT reasoning for
improving answer consistency and correctness.

Figure 12 compares the output distribution between base model and variant trained with
DAPO+DRER. The DAPO+DRER model produces highly concentrated predictions on the fully
correct label ([true, true, true]), indicating strong confidence and consistency. In contrast, Qwen2.5-
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Table 18: Answer-transition proportions conditioned on the sign of ∆ℓ = ℓCoT− ℓNoCoT on LogicTree
(N=500). p(W→R) is the fix rate; p(R→W) is the break rate.

Group by ∆ℓ sign #Instances Mean ∆ℓ p(W→R) p(R→W)
∆ℓ > 0 (CoT favored) 120 +1.70 0.67 0.04
∆ℓ < 0 (NoCoT favored) 380 -3.90 0.05 0.23

Table 19: Comparison of LRM’s(above) and LLM’s(below) accuracy on LogicTree across various
logical depth.

Model 1 2 3 4 5 6 7 8 Avg.

Qwen3-235B-A22B 0.96 0.83 0.66 0.71 0.46 0.32 0.25 0.07 0.53
Deepseek-R1 0.85 0.76 0.61 0.47 0.36 0.18 0.19 0.07 0.44
Claude-3.7-Sonnet 0.76 0.67 0.21 0.10 0.07 0.02 0.02 0.00 0.23
Qwen3-8B 0.86 0.83 0.49 0.44 0.32 0.11 0.14 0.08 0.41
GPT-o4-mini 0.74 0.64 0.25 0.20 0.10 0.06 0.05 0.02 0.26
GPT-o3-mini 0.66 0.56 0.07 0.07 0.03 0.02 0.01 0.00 0.18
Qwen3-4B 0.74 0.74 0.39 0.29 0.29 0.06 0.09 0.04 0.33

Gemini-2.5-Flash-Preview 0.86 0.64 0.41 0.31 0.24 0.11 0.06 0.00 0.33
GPT-4o 0.63 0.60 0.28 0.13 0.13 0.00 0.00 0.00 0.22
Phi-4-14B 0.72 0.67 0.31 0.27 0.19 0.04 0.01 0.01 0.28
Gemma-3-27B 0.65 0.41 0.15 0.04 0.00 0.00 0.00 0.00 0.16
Deepseek-v3 0.39 0.24 0.05 0.06 0.00 0.00 0.00 0.00 0.09
GPT-4o-mini 0.44 0.24 0.27 0.11 0.12 0.02 0.02 0.01 0.15

Qwen2.5-7B-Instruct-1M 0.36 0.29 0.15 0.12 0.08 0.01 0.01 0.00 0.13
GRPO 0.81 0.71 0.58 0.42 0.45 0.20 0.20 0.11 0.45
GRPO+DRER 0.87 0.75 0.69 0.54 0.61 0.35 0.27 0.22 0.54
DAPO 0.88 0.73 0.66 0.47 0.60 0.36 0.23 0.20 0.52
DAPO+DRER (Ours) 0.90 0.83 0.76 0.59 0.67 0.45 0.31 0.31 0.60↑0.47

7B-Instruct-1M predictions are widely dispersed across incorrect and partially correct categories,
reflecting lower answer certainty. This highlights the effectiveness of DRER combined with CoT in
guiding the model toward accurate and confident output.

Tables 21 records the average evaluation results on 15 graduate students who had received systematic
training in mathematical logic or introductory logic courses. The results show that for problems of
simple to moderate difficulty (reasoning depth 1–5), human participants consistently identified the
implicit logical rules and produced correct answers. For deeper reasoning levels (6–8), although the
problems remain theoretically solvable, the context length can exceed 1k tokens, making manual
step-by-step deduction extremely tedious and error-prone. For this reason, depth-6–8 questions were
excluded from human testing.

Tables 22 shows the exactly models’ name and snapshot that we evaluated in experiment.

F LIMITATIONS

Despite the empirical gains achieved by DRER and LogicTree, several limitations remain:

• Logic coverage. LogicTree is limited to the deductive reasoning paradigm, while more diverse
forms such as analogical reasoning, inductive reasoning, or traceable reasoning have not yet been
evaluated.

• Model scale and cost. All experiments use Qwen-2.5-7B-Instruct-1M as backbone. The memory
and latency overhead of token-level rewards on 70 B-scale or MoE models is unknown and may
be prohibitive.

• Evaluation bias. Training and evaluation rely on an automatic logic verifier and confidence scores;
no human preference or chain-quality annotation is included, which may overlook subjective
aspects of reasoning quality.
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Table 20: Comparison of Consistency Ratio on LogicTree across various logical depth.

Model 1 2 3 4 5 6 7 8 Avg.

Qwen3-235B-A22B 0.90 0.65 0.30 0.50 0.15 0.00 0.05 0.00 0.32
Deepseek-R1 0.70 0.55 0.20 0.15 0.10 0.00 0.05 0.00 0.22
Claude-3.7-Sonnet 0.65 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.12
Qwen3-8B 0.65 0.70 0.05 0.05 0.05 0.00 0.00 0.00 0.19
GPT-o4-mini 0.50 0.35 0.00 0.05 0.00 0.00 0.00 0.00 0.11
GPT-o3-mini 0.45 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.09
Qwen3-4B 0.40 0.30 0.05 0.05 0.00 0.00 0.00 0.00 0.10

Gemini-2.5-Flash-Preview 0.75 0.50 0.15 0.05 0.00 0.00 0.00 0.00 0.18
GPT-4o 0.40 0.35 0.00 0.05 0.00 0.00 0.00 0.00 0.10
Phi-4-14 0.35 0.35 0.05 0.05 0.00 0.00 0.00 0.00 0.10
Gemma-3-27B 0.25 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Deepseek-v3 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
GPT-4o-mini 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.03

Qwen2.5-7B-Instruct-1M 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
GRPO 0.55 0.50 0.40 0.25 0.45 0.20 0.15 0.00 0.29
GRPO+DRER 0.65 0.50 0.25 0.25 0.25 0.10 0.00 0.00 0.25
DAPO 0.65 0.45 0.45 0.20 0.50 0.10 0.05 0.10 0.31
DAPO+DRER (Ours) 0.70 0.70 0.60 0.35 0.50 0.35 0.00 0.10 0.41↑0.4

Table 21: Comparison of LLM and Human accuracy on LogicTree across various logical depth.

Model 1 2 3 4 5 6 7 8 Avg.

Qwen3-235B-A22B 0.96 0.83 0.66 0.71 0.46 0.32 0.25 0.07 0.53
Deepseek-R1 0.85 0.76 0.61 0.47 0.36 0.18 0.19 0.07 0.44
Claude-3.7-Sonnet 0.76 0.67 0.21 0.10 0.07 0.02 0.02 0.00 0.23
GPT-o4-mini 0.74 0.64 0.25 0.20 0.10 0.06 0.05 0.02 0.26
DAPO+DRER (Ours) 0.90 0.83 0.76 0.59 0.67 0.45 0.31 0.31 0.60

Human 1.00 1.00 0.98 0.93 0.85 - - - -

Table 22: Details of the organization and model source (model version for proprietary models, and
Huggingface model name for open-source models) for the LLMs evaluated in LogicTree.

Model Organization Size Notes Source

DeepSeek-R1 DeepSeek 671B MoE deepseek-ai/DeepSeek-R1
DeepSeek-V3 DeepSeek 671B MoE deepseek-ai/DeepSeek-V3
Claude 3.7 Sonnet Anthropic – claude-3-7-sonnet-20250219
Gemini 2.0 Flash Thinking Preview Google – gemini-2.5-flash-preview-04-17
Gemma-3-27B Google 27B google/gemma-3-27b-it
Qwen3-235B-A22B Alibaba 235B MoE qwen3-235b-a22b
Qwen3-30B-A3B Alibaba 30B MoE qwen3-30b-a3b
Qwe3-8B Alibaba – qwen3-8b
Qwen3-4B Alibaba – qwen3-4b
Qwen2.5-7B-Instruct-1M Alibaba – MoE qwen2.5-7b-instruct-1m
Phi-4-14B Microsoft 14B microsoft/phi-4
GPT-o4-mini OpenAI – o4-mini-2025-04-16
GPT-o3 OpenAI – o3-mini-2025-01-31
GPT-4o-mini OpenAI – gpt-4o-mini-2024-07-18
GPT-4o OpenAI – gpt-4o-2024-11-20

• Synthetic corpus and social bias. LogicTree sentences are synthetically generated; potential
social biases or misuse risks in real-world deployments have not been systematically analysed.

In future work we plan to extend DRER to higher-order logic, explore low-cost reward approximations,
and incorporate human evaluation and bias auditing to mitigate these limitations.
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Figure 10: Word frequencies of seven deductive reasoning terms explicitly mentioned in LLMs
response DRER.

G BROADER IMPACT

Our work aims to align large language models with formal logical principles, potentially improving
the reliability and interpretability of machine reasoning. By releasing the LOGICTREE dataset and
DRER code under a permissive licence, we enable researchers and practitioners to build verifiable
agents for education, scientific discovery, and safety- critical auditing, where transparent deductive
chains are preferable to opaque heuristics.

G.1 POSITIVE SOCIETAL OUTCOMES.

A reasoning-aligned model can serve as a didactic tutor in introductory logic courses, assist engineers
in detecting faulty assumptions in software specifications, and support legal or medical professionals
by highlighting which premises lead to a conclusion rather than merely producing an answer. The
synthetic nature of LOGICTREE limits exposure to personal data and reduces the risk of privacy leaks.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8
Depth

0%

20%

40%

60%

80%

100%
Ac

cu
ra

cy
90%

83%

76%

59%

67%

45%

31% 31%

85%

76%

61%

47%

36%

18% 19%

7%

DAPO+DRER
DeepSeek-R1

0

2k

4k

6k

8k

Av
er

ag
e 

To
ke

ns

Figure 11: Comparison of DeepSeek-R1’s and our model’s accuracy and average response token on
LogicTree.

Figure 12: Prediction distribution comparison between DAPO and DAPO+DRER under Chain-of-
Thought (CoT) prompting.

G.2 POTENTIAL RISKS.

More persuasive and logically consistent outputs could be weaponised for misinformation or overly
authoritative automation. Over-reliance on synthetic benchmarks might also hide biases that appear in
real-world discourse. Furthermore, token-level reward signals expose fine-grained model behaviour,
which could be exploited to reverse-engineer proprietary system prompts.

G.3 MITIGATIONS.

We distribute our resources with an explicit no-malicious-use clause, encourage downstream users to
apply bias and misinformation audits, and recommend human oversight for high-stakes deployment.
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Figure 13: Prediction distribution comparison between our model (DAPO+DRER) and Qwen2.5-7B-
Instruct-1M under Chain-of-Thought (CoT) prompting.

Future work will extend DRER to real-world corpora and incorporate human preference feedback,
allowing broader yet safer adoption of reasoning-aligned reinforcement learning.

H CASE STUDY: CHAIN-OF-THOUGHT QUALITY

To complement the quantitative evaluation, we present a case study based on the example shown in
Table 23, which compares reasoning traces produced by different models on the same LogicTree
instance. This case study highlights how DRER improves both the clarity and efficiency of chain-of-
thought (CoT) reasoning.

H.1 DAPO+DRER (OURS)

Driven by DRER’s token-level reward and dynamic-length mask, the trace is both concise and
transparent: six orderly steps map directly onto the formal pipeline identify rule→ resolve disjunction
→ propagate truth. Expressions such as “apply transitivity” signal an explicit shift toward symbolic
reasoning, the behaviour DRER is designed to promote. At roughly ∼70 tokens—far shorter than the
100+ tokens typical of vanilla DAPO—the chain remains fully verifiable, demonstrating DRER’s
combined gains in effectiveness and efficiency.

H.2 O4MINI

Although it yields the correct answer, steps 2–4 compress several entailments into a single sentence
and omit rule names, reducing transparency. With a length of about ∼40 tokens, it illustrates the
“shallow-but-correct” pattern observed in §4.2.

H.3 QWEN2.5-7B-INSTRUCT

This trace shows the greatest length drift: more than 110 tokens, many of them descriptive filler
unrelated to logic, matching the “decorative-token inflation” failure mode in our diagnostics. Despite
some correct premise restatement, the model ultimately outputs Unknown, confirming that verbosity
does not equal confidence.
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Table 23: Four-model CoT Comparison (Prompt-style)

Four-model CoT Comparison

Question
It is a common misconception that if ribbons relate post : How to sew trims, then
titanium dioxide and zinc oxide also functioned in this fashion.

dapo+drer
Chain-of-Thought

1. Analyze the logical structure of the premises.
2. Identify conditional statements and their parts.
3. Resolve the disjunction via the invertebrate–coral premise.
4. Propagate truth to the olive-oil statement.
5. Apply transitivity to obtain ribbons→ TiO2/ZnO.
6. Compare with the question’s claim.

Answer: False

Qwen2.5-7B-Instruct-1M
Chain-of-Thought

Let’s analyze step by step: 1) Coral reefs need light and thus occur only
in shallow waters. 2) Olive oil is heat-stable. 3) If ribbons→ TiO2/ZnO.
4) “Anus on top” is false⇒ coral-reef statement true. 5) No evidence of
misconception. Hence information is insufficient.

Answer: Unknown

o4mini
Chain-of-Thought

1. “Anus on top” is false.
2. Therefore coral-reef-light is true.
3. Thus olive-oil statement is true.
4. Hence conditional ribbons→ TiO2/ZnO is true.
5. The question claims this conditional is a misconception.
6. Contradiction⇒ question is false.

Answer: False

deepseekr1
Chain-of-Thought

I need to analyze consistency; I will break down each conditional and test
with the premises.

Answer: False

H.4 DEEPSEEK-R1

Provides only a meta-level remark (“break down each conditional”) before jumping to the answer,
leaving the derivation invisible; such hidden reasoning yields the lowest Consistency Ratio in our
evaluation across paraphrastic variants.
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H.5 SUMMARY.

dapo+drer offers the clearest, rule-grounded, and length-controlled chain of thought; o4mini is
concise but omits warrants and lacks length regularisation; Qwen2.5-7B-Instruct is verbose yet
uncertain; and DeepSeek-R1 lacks an explicit chain. The contrast underscores DRER’s targeted
improvements in symbolic clarity, response economy, and process–outcome alignment.
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Table 24: CoT Comparison (DAPO and DAPO+DRER)

CoT on AIME (DAPO)

Question
Let x, y, and z be positive real numbers that satisfy the following system of equa-
tions:

log2

(
x

yz

)
=

1

2

log2

( y

xz

)
=

1

3

log2

(
z

xy

)
=

1

4

Then the value of
∣∣log2(x4y3z2

)∣∣ is m
n , where m and n are relatively prime positive

integers. Find m+ n.

DAPO
Given the system of equations:

log2

(
x

yz

)
=

1

2
, log2

( y

xz

)
=

1

3
, log2

(
z

xy

)
=

1

4
,

we rewrite each in exponential form:
x

yz
= 21/2,

y

xz
= 21/3,

z

xy
= 21/4.

Multiplying all three equations:(
x

yz

)( y

xz

)( z

xy

)
= 21/2+1/3+1/4,

and the left-hand side simplifies to

xyz

x2y2z2
=

1

xyz
,

so
1

xyz
= 213/12 ⇒ xyz = 2−13/12.

Let log2 x = a, log2 y = b, log2 z = c. Then

a+ b+ c = log2(xyz) = −
13

12
.

Using the original equations:

a− (b+ c) =
1

2
, b− (a+ c) =

1

3
, c− (a+ b) =

1

4
.

However, the incorrect solution attempted to compute:

4a+ 3b+ 2c = 4

(
1

2

)
+ 3

(
1

3

)
+ 2

(
1

4

)
Unsupported Equation

= 2 + 1 +
1

2
=

7

2
,

which assumes
a =

1

2
, b =

1

3
, c =

1

4
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Table 24: CoT Comparison (DAPO and DAPO+DRER) (continued)

CoT on AIME (DAPO)

Thus the final claim: ∣∣log2(x4y3z2)
∣∣ = 7

2
m+ n = 9

Answer: 9 (×)

DAPO+DRER
To solve the given system of equations involving logarithms, we start by letting
a = log2 x, b = log2 y, and c = log2 z.
The system becomes:

a− b− c =
1

2
, b− a− c =

1

3
, c− a− b =

1

4
.

Solving:

(a− b− c) + (b− a− c) =
1

2
+

1

3
=⇒ −2c = 5

6
=⇒ c = − 5

12
.

Substitute into the third equation:

− 5

12
− a− b =

1

4
=⇒ a+ b = −2

3
.

Substitute into the first equation:

a− b+
5

12
=

1

2
=⇒ a− b =

1

12
.

Solving the two-equation system:

a = − 7

24
, b = −3

8
.

Thus:
c = − 5

12
.

Compute:

log2(x
4y3z2) = 4a+ 3b+ 2c = −25

8
.

Since
m

n
=

25

8
, we have m+ n = 25 + 8 = 33.

Answer: 33 (√)
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Table 25: GPT-5.1 prompt for scoring CoT trajectories

GPT-5.1 Prompt

You are an expert judge for mathematical and logical reasoning steps.
You will be given:

• A problem statement (QUESTION).
• A full sequence of reasoning steps.
• The current reasoning step to evaluate (CURRENT_STEP), which is step

{t}.

1. correctness: whether the content inside this step is mathematically or
logically correct.

2. coherence: whether this step is consistent with the QUESTION and
ALL_STEPS, and a reasonable next move.

3. necessity: whether this step contributes essential progress toward solving
the problem.

Strict Scoring Rubric [correctness]

Score 1 if:
• There is no mathematical or logical error in this step, and
• It does not contradict the QUESTION or earlier correct steps.

Score 0 if:
• There is an algebraic or logical mistake, or
• A rule is misapplied, or
• The step contradicts the problem statement or prior correct steps.

[coherence]
Score 1 if:

• The step naturally follows from the QUESTION and ALL_STEPS, and
• Any new notation or assumptions are properly introduced.

Score 0 if:
• The step makes an unjustified assumption or conclusion, or
• It reverses earlier conclusions without reason, or
• It is disconnected from the reasoning flow.

[necessity]
Score 1 if:

• The step introduces new, nontrivial information or structure used later, or
• Removing the step would make the solution less complete or harder to

follow.
Score 0 if:

• The step merely restates previous information, or
• It is meta-commentary, or
• It explores a direction not used in the main reasoning.
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GPT-5.1 Prompt

Output Format (Mandatory).

You must output exactly one JSON dictionary with the following four fields:
{

"correctness": 0/1,
"coherence": 0/1,
"necessity": 0/1,
"analysis": "2--4 sentences explaining your scores."

}

Rules:
• Output must be valid JSON.
• Only these four fields may appear.
• No lists, markdown, backticks, or extra commentary.

Final Instruction.

Evaluate the current step:

QUESTION: {QUESTION}

ALL_STEPS: {ALL_STEPS}

CURRENT_STEP (step {t}): {CURRENT_STEP}
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I LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.
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