

000 RETHINKING REASONING QUALITY IN LARGE LAN- 001 GUAGE MODELS THROUGH ENHANCED CHAIN-OF- 002 THOUGHT VIA RL 003

004 **Anonymous authors**
005

006 Paper under double-blind review
007

008 ABSTRACT 009

010 Reinforcement learning (RL) has recently become the dominant paradigm for
011 strengthening the reasoning abilities of large language models (LLMs). Yet the
012 rule-based reward functions commonly used on mathematical or programming
013 benchmarks assess only answer format and correctness, providing no signal as
014 to whether the induced Chain-of-Thought (CoT) actually improves the answer.
015 Furthermore, such task-specific training offers limited control over logical depth
016 and therefore may fail to reveal a model’s genuine reasoning capacity. We propose
017 **Dynamic Reasoning Efficiency Reward (DRER)** — a plug-and-play RL reward
018 framework that reshapes both reward and advantage signals. (i) A *Reasoning Qual-
019 ity Reward* assigns fine-grained credit to those reasoning chains that demonstrably
020 raise the likelihood of the correct answer, directly incentivising the trajectories with
021 beneficial CoT tokens. (ii) A *Dynamic Length Advantage* decays the advantage of
022 responses whose length deviates from a validation-derived threshold, stabilising
023 training. To facilitate rigorous assessment, we also release *LogicTree*, a dynamically
024 constructed deductive reasoning dataset that functions both as RL training data and
025 as a comprehensive benchmark. Experiments show that DRER achieves significant
026 improvements in reasoning accuracy and CoT quality over baseline methods across
027 diverse training settings, while also reducing token usage during inference. More-
028 over, it demonstrates strong generalization on both reasoning and mathematical
029 benchmarks, such as GPQA and AIME24. These results indicate that DRER, as a
030 plug-and-play fine-grained RL reward framework, reliably strengthens reasoning
031 behavior and provides a practical pathway toward enhancing the reasoning capabili-
032 ties of large language models. All code and data are available in our anonymous
033 repository <https://anonymous.4open.science/r/DRER-D34E>.
034

035 1 INTRODUCTION 036

037 Recent reasoning models (DeepMind, 2024; Qwen, 2024; Team et al., 2025), including R1-like
038 reproductions (Team et al., 2025; Mei et al., 2025; Yu et al., 2025; Shao et al., 2024; Hu, 2025; Kool
039 et al., 2019; Ahmadian et al., 2024; Sutton et al., 1998), have adopted reinforcement learning (RL)
040 to enhance chain-of-thought reasoning. By systematically exploring verifiable reasoning paths that
041 lead to correct answers, these methods incrementally boost performance and deliver remarkable
042 gains. Current RL-driven CoT approaches typically train on mathematics and programming bench-
043 marks (OpenAI, 2024; Guo et al., 2025; Cobbe et al., 2021; Chen et al., 2021), whose inherently
044 stepwise solution procedures serve as natural proxies for logical inference (Wang et al., 2024a; Li
045 et al., 2024), and they rely on rule-based reward (OpenAI, 2024; Guo et al., 2025) functions that
046 assess only final answer correctness and formatting. This reliance stems from the straightforward
047 evaliability of math and code tasks, where simple answer extraction or format checks suffice to
048 assign reward signals and compute policy advantages.
049

050 However, this approach still faces two critical challenges. First, by relying solely on final-answer
051 correctness as the reward signal, the model cannot distinguish which reasoning steps statistically
052 boost the likelihood of the correct answers (Paul et al., 2024), nor quantify each token’s substantive
053 contribution to the conclusion; instead, it may lean on “decorative” chains that diverge from genuine

deductive paths (Zhang et al., 2024), thereby undermining the accurate evaluation and effective training of its reasoning ability.

Second, the corpora used to reinforce “reasoning ability” are almost entirely drawn from execution-verifiable domains (Sprague et al., 2024b)—such as mathematical problem sets and code synthesis tasks—while unified training data targeting pure formal logical inference remains severely lacking (Morishita et al., 2024). Such constrained training regimens risk conceptual overextension (Paul et al., 2024), whereby success on specific tasks is misconstrued as evidence of broadly applicable logical reasoning skills, potentially leading to an overestimation of the model’s true inferential competence.

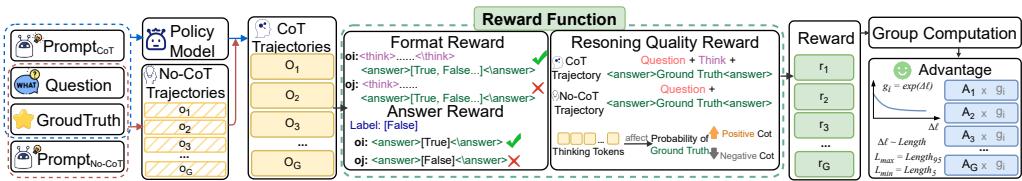


Figure 1: Overview of the Dynamic Reasoning Efficiency Reward (DRER) framework. $Length_{95}$ and $Length_5$ represent the 95th and 5th percentile lengths, respectively, computed from the validation set, and are used to normalize reasoning trajectory lengths according to task type or difficulty.

To address the limitations of outcome-only reward modeling in reasoning tasks, we propose *Dynamic Reasoning Efficiency Reward* (DRER), a plug-and-play reinforcement learning framework that reshapes both reward and advantage signals. DRER introduces two key mechanisms: (1) a *Reasoning-Quality Reward*, which assigns fine-grained credit to reasoning chains that statistically improve the likelihood of the correct answer, thereby reinforcing the utility of CoT tokens; and (2) a *Dynamic-Length Advantage*, which attenuates the policy advantage of responses whose lengths deviate from a validation-derived threshold, improving training stability. The overall framework is illustrated in Figure 1. In addition, we release *LogicTree*, a domain-agnostic deductive reasoning dataset carefully constructed to provide focused training supervision and to serve as a clean evaluation benchmark for identifying pathological reasoning behaviours.

Our experiments demonstrate that DRER significantly improves chain-of-thought (CoT) reasoning quality across different baseline algorithms and training corpora by providing fine-grained reward signals. When trained on the General Reasoning dataset, DRER consistently yields substantial improvements over both GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025) base algorithms, achieving superior reasoning accuracy and CoT quality across a wide range of benchmarks. When trained on the LogicTree dataset, the combination of DRER and DAPO increases the accuracy of Qwen2.5-7B-Instruct-1M from 13.2% to 60.0%, while reducing token consumption by approximately 75% and achieving higher reasoning consistency. Taken together, these results show that DRER, as a plug-and-play fine-grained reward framework, reliably enhances the reasoning capabilities of LLMs in diverse training settings and offers significant advantages over existing baseline methods.

The main contributions of this paper are summarized as follows:

- We propose **DRER (Dynamic Reasoning Efficiency Reward)**, a novel reinforcement learning reward framework that adaptively reshapes both reward and advantage signals to improve CoT reasoning.
- We release *LogicTree*, a domain-agnostic benchmark for formal deductive reasoning that serves dual purposes: functioning as both a focused training set and a clean evaluation benchmark, while providing highlight insights into LLMs reasoning behaviours.
- We systematically validate our approach through extensive experiments, confirming the effectiveness of our methodology in improving both reasoning quality and efficiency.

2 PRELIMINARY

Modeling Language Generation as a Token-Level MDP Reinforcement learning aims to learn a policy that maximizes cumulative reward through interaction with an environment. We model language generation as a sequential decision process within a Markov Decision Process (MDP)

108 framework (Ouyang et al., 2022). Let $x = (x_0, \dots, x_m)$ be the input prompt and $y = (y_0, \dots, y_T)$
 109 the generated response, with both drawn from a finite vocabulary \mathcal{A} . At step t , the state is $s_t =$
 110 $(x_0, \dots, x_m, y_0, \dots, y_t)$, and the action $a = y_{t+1} \in \mathcal{A}$ selects the next token. Transitions are
 111 deterministic: $\mathbb{P}(s_{t+1} | s_t, a) = 1$, where $s_{t+1} = (x_0, \dots, x_m, y_0, \dots, y_{t+1})$. Generation ends upon
 112 producing a terminal token ω . The reward function $R(s, a)$ provides scalar feedback on output quality.
 113 The initial state s_0 is the tokenized prompt, sampled from a distribution d_0 over inputs. This MDP
 114 formulation allows reinforcement learning—both value-based and value-free—to align language
 115 model generation with desired objectives and human preferences.

116 **Group Relative Policy Optimization (GRPO)** GRPO(Shao et al., 2024) removes the value
 117 function used in PPO(Schulman et al., 2017b) and estimates the advantages within a group of G
 118 responses sampled by the behavior policy $\pi_{\theta_{\text{old}}}$ for each pair of questions-answers (q, a) . GRPO
 119 maximizes a PPO-style clipped objective with an explicit KL penalty:
 120

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\} \sim \pi_{\theta_{\text{old}}}} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left(\min(r_{i,t} \hat{A}_{i,t}, \text{clip}(r_{i,t}, 1-\epsilon, 1+\epsilon) \hat{A}_{i,t}) - \beta D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right) \right], \quad (1)$$

121 where

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}, \quad \hat{A}_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}. \quad (2)$$

122 GRPO first averages token-level losses within each response and then across the group, a sample-level
 123 aggregation that can implicitly favor longer responses and thus influence training dynamics (Liu et al.,
 124 2025).

125 **Decouple Clip and Dynamic Sampling Policy Optimization (DAPO)** DAPO(Yu et al., 2025)
 126 shares GRPO’s group-based sampling and advantage normalization, but differs in two key aspects.
 127 First, it replaces GRPO’s symmetric clipping with asymmetric clipping bounds, allowing for unbal-
 128 anced exploration and conservative updates. Second, it introduces a dynamic sampling constraint that
 129 requires both correct and incorrect responses in the sampled group to ensure meaningful advantage
 130 shaping. The resulting objective is:
 131

$$\mathcal{J}_{\text{DAPO}}(\theta) = \mathbb{E}_{(q, a) \sim \mathcal{D}, \{o_i\} \sim \pi_{\theta_{\text{old}}}} \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min(r_{i,t} \hat{A}_{i,t}, \text{clip}(r_{i,t}, 1-\varepsilon_{\text{low}}, 1+\varepsilon_{\text{high}}) \hat{A}_{i,t}) \right], \quad (3)$$

132 where optimization is applied only if the sampled responses are not all equivalent to the reference
 133 answer. $r_{i,t}$ and $\hat{A}_{i,t}$ are defined as in Equation 2.

134 **Reward Modeling** Reward modeling in RL for LLMs is typically categorized into two approaches:
 135 rule-based rewards and learned reward models (RMs). Reward models, including outcome and process
 136 reward models (PRMs), learn a function through supervised learning, enabling finer-grained evalua-
 137 tion of intermediate reasoning steps. MATH-SHEPHERD (Wang et al., 2024b) and OmegaPRM (Luo
 138 et al., 2024a) show that PRMs improve reasoning consistency and generalization, but they also raise
 139 annotation costs, introduce potential data bias (e.g., MCTS-generated traces), and reduce reliability
 140 in early-step evaluation, which can destabilize training.

141 Rule-based rewards are more widely adopted, where simple criteria such as answer correctness and
 142 syntactic validity are used to evaluate model outputs. Representative works (Lyu et al., 2025; Xie
 143 et al., 2025; Li et al., 2025) like DeepSeek-R1 (Guo et al., 2025) utilize correctness-based signals to
 144 construct efficient and interpretable training pipelines. The primary advantages of rule-based rewards
 145 are twofold: firstly, they exhibit low implementation cost and, secondly, they are characterised by
 146 high transparency. These properties render them well-suited for large-scale RL training. However,
 147 their limitations are also evident: these methods only evaluate final outcomes, ignoring the quality of
 148 intermediate reasoning steps. As a result, models may learn to "shortcut" reasoning, producing correct
 149 answers without coherent or logically valid chains of thought—leading to misalignment between
 150 reasoning processes and outputs (Zhang et al., 2025).

162 3 METHOD
163164 3.1 DRER
165

166 Rule-based rewards, such as answer correctness and format validity, minimal signals neglect to
167 consider the reasoning trajectory that culminates in the ultimate response. Consequently, they
168 may permit verbose, irrelevant chains of thought, which compromise reasoning transparency and
169 reliability.

170 In order to address this limitation, a novel reward framework, Dynamic Reasoning Efficiency Reward
171 (DRER), is introduced. This plug-and-play system has been designed to shape not only the correctness
172 of final outputs, but also the efficiency and utility of intermediate reasoning steps.

173 Given an input question x , the large-language model (LLM) π_θ produces an output sequence y
174 autoregressively:

$$175 \pi_\theta(y | x) = \prod_{t=1}^T P_{\pi_\theta}(y_t | x, y_{<t}), \quad (4)$$

176 where the sequence $y = [c, a]$ denotes the model’s output sequence, where the first contiguous
177 segment $c = (c_1, \dots, c_{T_c})$ comprises the CoT tokens and the second segment $a = (a_1, \dots, a_{T_a})$
178 contains the answer tokens. The overall sequence length satisfies $T = T_c + T_a$.

182 We believe that if the generated CoT tokens c are positive and coherent with the correct answer, it
183 should *increase* the model’s confidence in predicting ground-truth answer token:

$$184 \ell_{\text{CoT}} = \frac{1}{T_a} \sum_{t=1}^{T_a} \log \pi_\theta(a_t^* | x_{\text{CoT}}, c, a_{<t}^*), \quad \ell_{\text{NoCoT}} = \frac{1}{T_a} \sum_{t=1}^{T_a} \log \pi_\theta(a_t^* | x_{\text{NoCoT}}, a_{<t}^*), \quad (5)$$

187 CoT reasoning tokens that positively contribute to the model’s ability to infer the correct answer
188 should satisfy

$$189 \ell_{\text{CoT}} > \ell_{\text{NoCoT}}. \quad (6)$$

191 where x_{CoT} and x_{NoCoT} denote the CoT and no CoT input question respectively; $c = (c_1, \dots, c_{T_c})$
192 is the generated CoT of length T_c ; $a^* = (a_1^*, \dots, a_{T_a}^*)$ is the ground-truth answer consisting of T_a
193 tokens, and $a_{<t}^*$ stands for its prefix up to position $t-1$; Finally, π_θ is the autoregressive language
194 model policy parameterised by θ .

195 To validate this hypothesis, we conduct experiments using Qwen2.5-7B-Instruct-1M on benchmarks.
196 We first evaluate model-generated CoT trajectories using GPT-5.1 under a unified step-wise rubric,
197 and examine how CoT quality scores correlate with the delta of log-probabilities. We then perform a
198 CoT-disturbance test by comparing original CoT traces with shuffled and cross-question variants to
199 assess delta of log-probabilities relevance to reasoning structure and semantic relevance. Finally, we
200 analyze the impact of CoT on answer correctness by comparing likelihood shifts between CoT and
201 no-CoT and examining fix and break rates across datasets. Full experimental details and results are
202 provided in section 4.6.

204 **Reasoning Quality Reward** To make the confidence-boosting property in equation 6 learnable, we
205 define for each training instance x the log-likelihood margin

$$206 \Delta(x) = \ell_{\text{CoT}} - \ell_{\text{NoCoT}}, \quad (7)$$

208 where ℓ_{CoT} and ℓ_{NoCoT} are given in equation 5. A positive $\Delta(x)$ indicates that the generated CoT
209 reasoning tokens enhance the model’s confidence in the correct answer, whereas a negative value
210 reveals detrimental or spurious reasoning.

211 To obtain a numerically stable reward, we pass the margin through a smooth, bounded squashing
212 function

$$213 R_q = \tanh(\Delta(x)), \quad (8)$$

215 yielding the *reasoning-quality reward*. The hyperbolic tangent preserves the sign of the margin, caps
extreme values.

216 We incorporate R_q into the overall reinforcement-learning objective by maximising the expected
 217 composite return

$$R = R_{\text{task}} + \lambda_q R_q, \quad (9)$$

219 where R_{task} denotes the task-level reward (e.g., answer and format correctness) and $\lambda_q > 0$ is a
 220 weighting coefficient that balances task success and reasoning quality. This formulation directly
 221 rewards reasoning chains that demonstrably increase the likelihood of the correct answer while
 222 penalising uninformative or misleading chains, thereby systematically improving the model’s logical
 223 reliability and interpretability.

225 **Dynamic Length Advantage** After every validation round we record the lengths $\{L_i\}$ of responses
 226 that are both correct and structurally valid within each difficulty bucket¹. The empirical 5% and 95%
 227 quantiles define a dynamic lower and upper length bound, $L_{\min}^{(d)}$ and $L_{\max}^{(d)}$, respectively, for bucket d .
 228 For a training sample i with effective response length ℓ_i , we introduce a multiplicative attenuation
 229 coefficient

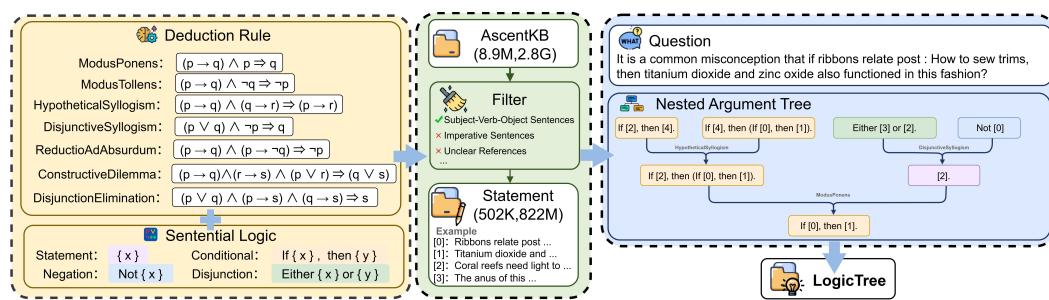
$$g_i = \exp\left(-\frac{\max\{0, L_{\min}^{(d)} - \ell_i, \ell_i - L_{\max}^{(d)}\}}{\tau}\right), \quad \tau > 0, \quad (10)$$

232 where $L_{\min}^{(d)}$ denotes the 5th-percentile response length observed in the previous validation step for
 233 bucket d , while $L_{\max}^{(d)}$ corresponds to the 95th percentile in the same distribution. The variable ℓ_i
 234 represents the effective response length of the current sample i , and $\tau \in [5, 10]$ is a temperature
 235 hyperparameter that controls the decay rate of the attenuation function.

237 The attenuation is then applied to the advantage computed by GROUP COMPUTATION, $\hat{A}_i = g_i A_i$,
 238 so that responses that are excessively short ($\ell_i < L_{\min}^{(d)}$) or verbose ($\ell_i > L_{\max}^{(d)}$) are exponentially
 239 down-weighted. This mechanism penalises pathological length behaviours while preserving the
 240 signal of well-sized, high-quality chains of thought. The complete algorithm procedure of DRER is
 241 detailed in Appendix 1.

243 3.2 LOGICTREE

245 Most ‘reasoning’ benchmarks still fail to isolate formal deduction. Difficulty is inflated by injecting
 246 domain facts or arithmetic tricks, so logical skill is confounded with knowledge retrieval and
 247 calculation (Lin et al., 2025; Sprague et al., 2024b). Logical depth and structure remain almost uncon-
 248 trollable: items rarely reveal how accuracy decays as inference chains lengthen, and no systematic
 249 consistency checks can be run across paraphrased versions of the same proof pattern (Saparov et al.,
 250 2023; Sprague et al., 2024a). Finally, intermediate steps are almost never evaluated; model capability
 251 is judged solely by the final answer (Paul et al., 2024).



262 Figure 2: The framework of LOGICTREE automatic construction pipeline. We first sample atomic
 263 logic structures and sentences from seven deduction logic rules and four sentential logics, then fill
 264 it with natural statements in filtered AscentKB (Nguyen et al., 2021), and eventually construct the
 265 nested argument tree. Those intermediate will be hidden and transformed into questions.

267 Therefore, we present the LogicTree dataset, based on nested deductive reasoning rules that poses
 268 significant challenges to state-of-the-art LMRs. Solving these problems requires models to not only

269 ¹A bucket may correspond to a task type, question template, or any other granularity used in specific tasks.

270 recognize and correctly apply reasoning logic across diverse contexts but also to strategically plan
 271 hierarchical inference steps. Specifically, our dataset exhibits following key features:
 272

273 **Programmatic Construction.** The reasoning depth, breadth, and number of sub-questions are fully
 274 controllable as shown in Figure 2 and Appendix A.2. Beyond evaluating models’ judgment on root
 275 conclusions, intermediate reasoning steps are extracted and expanded into sub-questions. Compared
 276 to prior deductive reasoning benchmarks, this enables granular assessment of models’ hierarchical
 277 reasoning accuracy.

278 **Diverse Logical Forms.** In contrast to grid puzzles or other logic games, LogicTree incorporates
 279 seven deductive reasoning rules and four sentential logic patterns, with each problem featuring
 280 distinct rule combinations. This significantly elevates the logical complexity.

281 **Probing LLMs’ Foundational Reasoning.** We undertake multifaceted efforts to examine models’
 282 core logical capabilities. First, the dataset is decoupled from domain-specific knowledge to ensure
 283 models focus solely on pure logical reasoning. Second, we propose a logical consistency metric
 284 to evaluate models’ ability to comprehend identical underlying logic across varying contextual
 285 representations.

286
 287 Table 1: Deductive reasoning rules statistics on LogicTree 9.6k problems spanning depth 1-8.

Deductive Rule	Logical Form	Amount
Modus Ponens	$(p \rightarrow q) \wedge p \implies q$	6 760
Modus Tollens	$(p \rightarrow q) \wedge \neg q \implies \neg p$	6 750
Hypothetical Syllogism	$(p \rightarrow q) \wedge (q \rightarrow r) \implies (p \rightarrow r)$	4 230
Disjunctive Syllogism	$(p \vee q) \wedge \neg p \implies q$	6 865
Reductio ad Absurdum	$(p \rightarrow q) \wedge (p \rightarrow \neg q) \implies \neg p$	6 780
Constructive Dilemma	$(p \rightarrow q) \wedge (r \rightarrow s) \wedge (p \vee r) \implies (q \vee s)$	1 900
Disjunction Elimination	$(p \vee q) \wedge (p \rightarrow s) \wedge (q \rightarrow s) \implies s$	6 625

297
 298 **Evaluation** The LogicTree dataset is programmatically generated with full control over logical
 299 depth, sub-problem quantity, and reasoning variations, which enables multifaceted analysis of models’
 300 logic mechanism from novel perspectives.

301 We introduce three evaluation metrics: (1) Accuracy: Standard correctness rate, only credited when
 302 every sub-question is correctly answered; (2) Consistency Ratio: Reasoning stability across logically
 303 equivalent queries, measured as consistent correctness over several isomorphic questions; (3) $F\beta$ -
 304 Score: Balances Answer Rate (proportion of valid *True/False* responses) and Precision (accuracy
 305 among valid responses) with parameter β .

306 Note that, unlike traditional NLI datasets with three-class classification (Cheng et al., 2025; Liu
 307 & Zhang, 2024) (*True*, *False*, or *Uncertain*), we restrict labels to *True/False* to mitigate semantic
 308 ambiguity that often artificially inflates accuracy by encouraging defaulting to *Uncertain*. LLMs may
 309 respond with *Unknown* during inference, reducing statistical noise from random guessing.

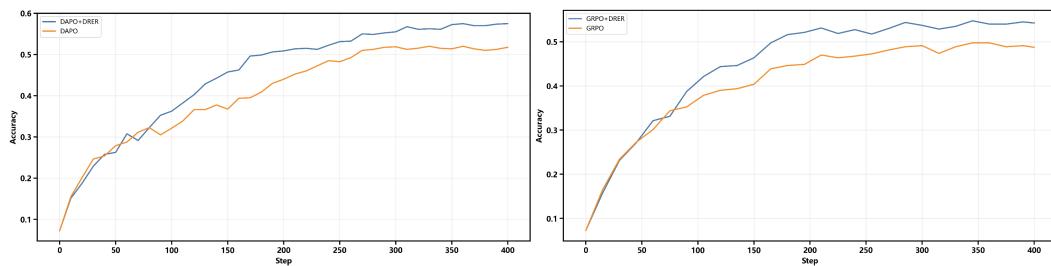
311 4 EXPERIMENT

312 4.1 EXPERIMENTAL SETTINGS

313 In the experiment section, we conduct 400-step post-training of the Qwen2.5-7B-Instruct-1M model
 314 using two baseline algorithms, DAPO and GRPO, with two distinct training datasets: LogicTree
 315 Data, focused on deductive logic, and General Reasoning Data, which blends mathematical and multi-
 316 domain reasoning data. This diversified training setup fully demonstrates the generality of the DRER
 317 framework. Specific experimental settings can be found in Appendix D.1. The main experiments
 318 evaluate the model on multiple public benchmarks and the LogicTree benchmark, confirming the
 319 enhancement of logical reasoning capability. Additionally, we perform detailed attribution and
 320 ablation studies to elucidate the mechanism and validate the effectiveness of each module within
 321 DRER.

324 4.2 MAIN RESULTS
325

326 **Training** Throughout 400 training steps, we observe a monotonic rise in the model’s accuracy on
327 the LogicTree from 7% at the outset to nearly 60% in figure 5. Additionally, the reasoning steps
328 are streamlined for greater conciseness and clarity. Detailed evaluation data are in Table 19. In
329 both settings, DRER consistently improves final accuracy and accelerates convergence. Figure 3
330 and Figure 11 indicates the step at which the baseline (DAPO or GRPO) reaches its final precision,
331 showing that DRER achieves a significantly higher or comparable performance earlier, highlighting
332 its efficiency in guiding learning through structured reasoning signals.



342 Figure 3: Accuracy on the LogicTree during post-training with DAPO (left) and GRPO (right), with
343 and without DRER.
344

Model	AIME 24	MATH-500	TheoremQA	MMLU-Pro	GPQA	LogiQA2.0	ZebraLogic	LogicTree
Qwen2.5-7B	12.8	55.8	21.1	38.8	27.9	45.7	30.9	13.2
Training on LogicTree Data								
GRPO	13.1	54.7	18.2	38.4	27.1	47.1	33.5	45.1
GRPO+DRER	13.4	56.2	18.9	38.1	29.0	52.6	36.2	54.2
DAPO	13.9	55.9	17.6	40.1	33.5	46.5	32.3	52.4
DAPO+DRER	16.5	56.0	17.5	39.3	35.2	51.2	33.4	60.0
Traning on General Reasoning Data								
GRPO	14.8	56.4	24.2	39.1	29.9	45.3	31.8	11.0
GRPO+DRER	17.2	59.2	25.1	39.7	35.4	46.7	31.6	14.1
DAPO	14.5	56.6	23.9	38.5	32.3	45.6	31.1	13.0
DAPO+DRER	18.3	61.8	22.8	39.0	38.6	47.5	32.4	12.1

359 Table 2: Performance on Mathematic and Reasoning benchmarks. Qwen2.5-7B model is referring to
360 Qwen/Qwen2.5-7B-Instruct-1M. AIME24 and LogicTree results are reported as Avg@32
361 and Avg. score, respectively; all other datasets use standard accuracy.

362
363 Table 3: Comparison of Accuracy on LogicTree. For the complete results referring to Table 19.
364

Model / Depth	1	2	3	4	5	6	7	8	Avg.
Qwen3-235B-A22B	0.96	0.83	0.66	0.71	0.46	0.32	0.25	0.07	0.53
Deepseek-R1	0.85	0.76	0.61	0.47	0.36	0.18	0.19	0.07	0.44
Claude-3.7-Sonnet	0.76	0.67	0.21	0.10	0.07	0.02	0.02	0.00	0.23
GPT-o4-mini	0.74	0.64	0.25	0.20	0.10	0.06	0.05	0.02	0.26
GRPO	0.81	0.71	0.58	0.42	0.45	0.20	0.20	0.11	0.45
GRPO+DRER	0.87	0.75	0.69	0.54	0.61	0.35	0.27	0.22	0.54
DAPO	0.88	0.73	0.66	0.47	0.60	0.36	0.23	0.20	0.52
Ours (DAPO+DRER)	0.90	0.83	0.76	0.59	0.67	0.45	0.31	0.31	0.60^{±0.47}

375 **Evaluation** The main experimental findings are presented in Table 2, where we evaluated the trained
376 7B model under different training configurations across various benchmarks. Overall, our DRER
377 framework, by performing fine-grained reward optimization on CoT tokens, consistently outperforms

378 baseline methods in eliciting the model’s reasoning potential and enhancing its performance. Furthermore,
 379 it can be observed that when the model is trained exclusively on deductive reasoning data from
 380 LogicTree, it not only achieves notable improvements on LogiQA2.0 and ZebraLogic—both of which
 381 assess similar logical abilities—but also demonstrates generalization capability on mathematical
 382 benchmarks such as AIME24 and TheoremQA. When trained on General Reasoning, the model
 383 exhibits steady gains across mathematical benchmarks as well as multi-domain reasoning benchmarks
 384 including MMLU-Pro and GPQA, underscoring the broad applicability of the DRER framework.

385 For the detailed results on LogicTree, as demonstrated in Table 3, even advanced models such as
 386 GPT-o3-mini, DeepSeek-R1, and Claude3.7 achieve accuracy scores below 20% across reasoning
 387 depths of 7-8 in LogicTree. The best performing model, Qwen3-235B, maintains the highest accuracy
 388 of 25% on problems with reasoning depth of 7, with an average accuracy of 53%. This reveals
 389 significant deficiencies in the complex deductive reasoning capabilities of existing reasoning models.
 390 In contrast, our trained 7B model achieves state-of-the-art performance in terms of average accuracy,
 391 showing substantial improvement over the base model, and maintains a 31% accuracy rate even at
 392 maximum reasoning depth.

393 Additionally, our experiments reveal distinct *Unknown* response tendencies across models. While
 394 GPT-o4-mini exhibits stronger reasoning capability than GPT-4o, their comparable accuracy stems
 395 from GPT-o4-mini’s overcaution (excessive *Unknown* responses). However, GPT-o4-mini achieves
 396 significantly higher Precision and $F\beta$ -Score scores in valid responses (details in Appendix 9).

398 4.3 ABLATION STUDY

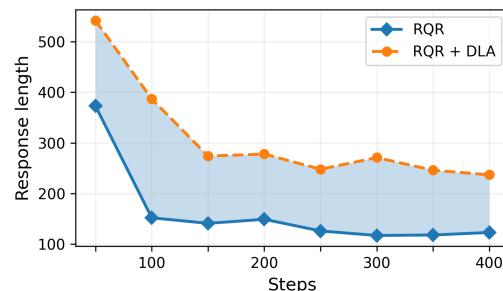
400 To investigate the contribution of different design choices in DRER, we perform an ablation study.

401 **Effect of Reasoning Quality Reward.** We compare training runs with and without the Reasoning
 402 Quality Reward (RQR). As shown in Table 4, introducing RQR—which provides fine-grained credit
 403 assignment for CoT quality—leads to a substantial improvement in reasoning accuracy, whereas
 404 removing it results in a clear performance drop on both AIME24 and GPQA. Moreover, the training
 405 dynamics in Appendix Figure4 further corroborate this effect: the reasoning-quality reward steadily
 406 increases and eventually stabilizes at a high value during training, indicating that DRER consistently
 407 guides the policy toward CoT trajectories that enhance the model’s confidence in the correct answer.
 408 Overall, RQR offers a precise and stable supervisory signal that enables the model to learn reasoning
 409 steps with genuine contribution, thereby improving both the quality of its reasoning process and the
 410 final prediction accuracy.

412 Table 4: Ablation experiment result on DRER.
 413 Compare the performance w/o Reasoning Qual-
 414 ity Reward(RQR) or Dynamic Length Ad-
 415 vantage(DLA). Avg@32 score is reported on
 416 AIME24.

Method	AIME 24	GPQA
DRER	18.3	38.6
w/o RQR	14.7 _{±3.6}	33.1 _{±5.5}
w/o DLA	16.2 _{±2.1}	35.3 _{±3.3}

500 Table 5: Training dynamics of model response
 length w/o Dynamic Length Advantage(DLA).



425 **Effect of Dynamic Length Advantage.** In the early stages of training, a small number of extreme-
 426 length responses can disproportionately influence the model’s learned response-length distribution,
 427 leading to instability in optimization. Dynamic Length Advantage (DLA) mitigates this issue by
 428 applying advantage-level attenuation to such outlier trajectories, preventing them from dominating
 429 the learning dynamics. We compare training runs with and without DLA, and the results in Table4
 430 and Table5 support its effectiveness. When DLA is removed, the model exhibits a slight drop in
 431 performance and shows substantially larger fluctuations in response length throughout training. These
 observations indicate that DLA effectively suppresses the destabilizing impact of extreme-length

432 Table 6: Comparison of Consistency Ratio on LogicTree. For the complete results referring to
 433 Table 20

435 Model / Depth	1	2	3	4	5	6	7	8	Avg.
436 Qwen3-235B-A22B	0.90	0.65	0.30	0.50	0.15	0.00	0.00	0.00	0.32
437 Deepseek-R1	0.70	0.55	0.20	0.15	0.10	0.00	0.00	0.00	0.22
438 Claude-3.7-Sonnet	0.65	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.12
439 GPT-o4-mini	0.50	0.35	0.00	0.05	0.00	0.00	0.00	0.00	0.11
440 GRPO	0.55	0.50	0.40	0.25	0.45	0.20	0.15	0.00	0.29
441 GRPO+DRER	0.65	0.50	0.25	0.25	0.25	0.10	0.00	0.00	0.25
442 DAPO	0.65	0.45	0.45	0.20	0.50	0.10	0.05	0.10	0.31
443 Ours (DAPO+DRER)	0.70	0.70	0.60	0.35	0.50	0.35	0.05	0.10	0.41 ^{±0.40}

444 samples while allowing DRER to focus optimization on reasoning quality rather than being driven by
 445 pathological length patterns.

449 4.4 DOES MODEL REALLY LEARN THE LOGICAL PARADIGM?

450 A key question remains whether models truly understand logic or merely memorize puzzles. While
 451 prior work (Cheng et al., 2025) reveals models' tendency for self-contradiction on logically equivalent
 452 propositions, LogicTree naturally evaluates this through problems sharing identical logical structures
 453 but varying linguistic instantiations. Our Consistency Ratio metric quantifies this capability.

454 As shown in Table 6, most models can understand simple deductive reasoning logic, but at reasoning
 455 depths of 7-8, even state-of-the-art models such as GPT-o3-mini, Qwen3-235B, deepseek-r1, and
 456 Claude3.7 demonstrate consistency rates approaching zero, revealing current models' insufficient
 457 capability for consistent extended thinking and complex combinatorial logic.

458 Additionally, we analyzed whether models explicitly utilized certain deductive reasoning rules in their
 459 responses. Results in the Appendix provide word-frequency statistics and examples for GPT-o4-mini,
 460 DeepSeek-R1, Qwen3-235B, and our model, indicating a drop in explicit paradigm mentions with
 461 growing logical complexity and uneven competence across paradigms. Moreover, there exhibits
 462 varying capabilities across different logical paradigms. For example, DeepSeek-R1 responses most
 463 frequently reference "*Modus Tollens*", while "*Disjunction Elimination*" appears substantially less
 464 often. This disparity may stem from either the inherent complexity of the latter rule or inadequate
 465 exposure during pre-training. Our framework shows improved rule identification capacity with
 466 increasing response length and logical complexity.

468 4.5 WHY DOES RQR ACCURATELY MEASURE REASONING QUALITY?

471 **Information-theoretic interpretation.** In information theory, the mutual information between two
 472 random variables Z and Y is defined as

$$473 \quad 474 \quad I(Z; Y) = \mathbb{E}_{z,y} \left[\log \frac{p(z, y)}{p(z) p(y)} \right] = \mathbb{E}_{z,y} [\log p(y | z) - \log p(y)]. \quad (11)$$

476 Then, the mutual information between the chain-of-thought z and the correct answer y^* conditioned
 477 on the input x can be expressed as:

$$479 \quad I(z; y^* | x) = \mathbb{E}_{z,y^*|x} [\log p(y^* | x, z) - \log p(y^* | x)]. \quad (12)$$

481 As shown in Eq.7 and Eq.8, the RQR can be viewed as a sample-based estimator of the conditional
 482 mutual information $I(z; y^* | x)$ between the CoT and the correct answer. This quantity measures the
 483 *information gain* contributed by CoT tokens toward predicting the correct answer.

485 To further validate whether RQR can faithfully measure the quality of chain-of-thought (CoT)
 reasoning, we design more complementary experiments in Appendix E.

486 **GPT-5.1-Based CoT Quality Scoring** To assess whether RQR provides a meaningful estimate
 487 of reasoning quality, we conduct a series of controlled evaluations using GPT-5.1 as an external
 488 judge of Chain-of-thought quality. At a high level, we compare CoT trajectories generated by the
 489 base model, the DAPO-only model, and the DAPO+DRER model, and examine how GPT-5.1’s CoT
 490 quality scores correlate with the learned RQR. The full evaluation protocol and scoring rubric are
 491 provided in the appendix E.1.

492 The results show a clear monotonic relationship: trajectories assigned higher quality scores by
 493 GPT-5.1 consistently obtain higher RQR values, confirming that RQR tracks genuine improvements
 494 in reasoning behavior. Moreover, DRER training produces a decisive shift toward higher-quality CoT,
 495 with substantially higher GPT-5.1 scores than those of both the base and DAPO-only models. These
 496 findings demonstrate that RQR not only reflects reasoning quality but also serves as an effective
 497 training signal that leads to stronger, more coherent CoT reasoning.

498 4.6 DOES MODEL’S REASONING BEHAVIOUR BECOME MORE EFFECTIVE?

500 To isolate the effect of explanatory CoT on answer confidence, We test Qwen2.5-7B-Instruct-1M on
 501 500 GSM8K and 500 LogicTree problems, generating for each prompt a direct answer (No-CoT)
 502 and a step-by-step CoT. We mark a CoT as **effective** if the model is *incorrect* in the No-CoT setting
 503 but *correct* with CoT. We compute the log-probability gain of the ground-truth answer tokens a_t^* as
 504 $\ell_{\text{CoT}} - \ell_{\text{NoCoT}}$.

505 Samples are categorized into four groups based on answer correctness: **(WR)** wrong No-CoT / right
 506 CoT, **(RR)** right No-CoT / right CoT, **(WW)** wrong in both, and **(RW)** right No-CoT / wrong CoT.
 507 Statistics are reported in Tables 15 and 16.

508 We further split the data by the sign of $\Delta\ell$ (Tables 17 and 18). For positive $\Delta\ell$, the model shows a
 509 higher fix rate (proportion of WR is higher), with a significant increase in transitions from wrong to
 510 correct answer. For negative $\Delta\ell$, the break rate is higher and the fix rate lower, making transitions
 511 from correct to wrong more likely.

512 Figure 12 and Figure 13 show the prediction distribution for a difficulty-3 problem from 100 samples.
 513 Compared to the DAPO 400-step baseline, the DRER-trained policy produces a markedly sharper
 514 peak around the ground-truth answer, indicating that the learnt reasoning tokens help concentrate
 515 probability mass on the correct solution.

516 Finally, Figure 6 and Figure 7 show that DRER keeps the average response length stable at fewer
 517 tokens, saving tokens per problem relative to the baseline while achieving higher accuracy. This
 518 validates DRER’s ability to simultaneously improve reasoning quality and reduce inference cost.

521 5 CONCLUSION AND FUTURE WORK

522 We propose DRER, a plug-and-play reinforcement learning framework that explicitly links the
 523 contribution of each reasoning step to the model’s confidence in the final answer. By jointly optimizing
 524 the reasoning-quality reward and the dynamic-length advantage, DRER encourages the model to
 525 produce logically meaningful and length-efficient chains of thought. In addition, we introduce
 526 LogicTree, a programmatically constructed benchmark with controllable logical depth, designed for
 527 rigorous evaluation of deductive reasoning in LLMs.

528 Extensive experiments demonstrate that DRER significantly improves reasoning accuracy, reasoning
 529 quality, and training convergence over baseline methods, confirming that reinforcing high-quality
 530 reasoning signals enhances robustness and transferability of reasoning capabilities. These results
 531 validate the practical effectiveness of fine-grained CoT reward shaping and highlight LogicTree as a
 532 reliable diagnostic environment for analyzing reasoning mechanisms in LLMs.

533 We release all code and the complete LogicTree corpus to ensure transparency and reproducibility.
 534 Together, DRER and LogicTree provide a lightweight, theoretically grounded basis for reasoning-
 535 aligned RL, enabling safer and more interpretable LLMs in logic-critical domains. Future work
 536 should extend this framework to richer logics and multimodal data.

540 REFERENCES
541

542 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
543 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
544 from human feedback in llms, 2024. URL <https://arxiv.org/abs/2402.14740>.

545 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
546 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
547 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

548 Michael K Chen, Xikun Zhang, and Dacheng Tao. Justlogic: A comprehensive benchmark for
549 evaluating deductive reasoning in large language models. *arXiv preprint arXiv:2501.14851*, 2025.

550 Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert van Rooij, Kun Zhang, and Zhouchen Lin. Em-
551 powering llms with logical reasoning: A comprehensive survey. *arXiv preprint arXiv:2502.15652*,
552 2025.

553 Pengyu Cheng, Yong Dai, Tianhao Hu, Han Xu, Zhisong Zhang, Lei Han, Nan Du, and Xiaolong Li.
554 Self-playing adversarial language game enhances llm reasoning. *Advances in Neural Information
555 Processing Systems*, 37:126515–126543, 2024.

556 Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language.
557 *arXiv preprint arXiv:2002.05867*, 2020.

558 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
559 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
560 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

561 Google DeepMind. Gemini 2.0 flash thinking, 2024. URL <https://deepmind.google/technologies/gemini/flash-thinking/>.

562 Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
563 use a laptop? a question answering benchmark with implicit reasoning strategies. *Transactions of
564 the Association for Computational Linguistics*, 9:346–361, 2021.

565 Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
566 Critic: Large language models can self-correct with tool-interactive critiquing. *arXiv preprint
567 arXiv:2305.11738*, 2023.

568 Jiayi Gui, Yiming Liu, Jiale Cheng, Xiaotao Gu, Xiao Liu, Hongning Wang, Yuxiao Dong, Jie Tang,
569 and Minlie Huang. Logicgame: Benchmarking rule-based reasoning abilities of large language
570 models. *arXiv preprint arXiv:2408.15778*, 2024.

571 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
572 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
573 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

574 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
575 Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
576 first-order logic. *arXiv preprint arXiv:2209.00840*, 2022.

577 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
578 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
579 *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*,
580 volume 1, 2021.

581 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv
582 preprint arXiv:2501.03262*, 2025.

583 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
584 and Denny Zhou. Large language models cannot self-correct reasoning yet. *arXiv preprint
585 arXiv:2310.01798*, 2023.

594 Berkcan Kapusuzoglu, Supriyo Chakraborty, Chia-Hsuan Lee, and Sambit Sahu. Critique-guided dis-
 595 tillation: Improving supervised fine-tuning via better distillation. *arXiv preprint arXiv:2505.11628*,
 596 2025.

597 Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
 598 Ramachandran. Boardgameqa: A dataset for natural language reasoning with contradictory
 599 information. *Advances in Neural Information Processing Systems*, 36:39052–39074, 2023.

600 601 Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline
 602 for free! In *Deep Reinforcement Learning Meets Structured Prediction, ICLR 2019 Workshop*,
 603 *New Orleans, Louisiana, United States, May 6, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=r1lgTGL5DE>.

604 605 Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine,
 606 Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented
 607 code emulator. In *International Conference on Machine Learning*, pp. 28259–28277. PMLR, 2024.

608 609 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling, 2025. URL
 610 <https://arxiv.org/abs/2502.11886>.

611 612 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 613 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. *arXiv*
 614 *preprint arXiv:2502.01100*, 2025.

615 Hanmeng Liu and Yue Zhang. 大模型逻辑推理研究综述(survey on logical reasoning of large
 616 pre-trained language models). In Zhao Xin (ed.), *Proceedings of the 23rd Chinese National*
 617 *Conference on Computational Linguistics (Volume 2: Frontier Forum)*, pp. 48–62, Taiyuan, China,
 618 July 2024. Chinese Information Processing Society of China. URL <https://aclanthology.org/2024.ccl-2.3/>.

619 620 Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang. Natural language inference in context-
 621 investigating contextual reasoning over long texts. In *Proceedings of the AAAI conference on*
 622 *artificial intelligence*, volume 35, pp. 13388–13396, 2021.

623 624 Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, and Yue Zhang. Logiqa
 625 2.0—an improved dataset for logical reasoning in natural language understanding. *IEEE/ACM*
 626 *Transactions on Audio, Speech, and Language Processing*, 31:2947–2962, 2023.

627 628 Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
 629 challenge dataset for machine reading comprehension with logical reasoning. *arXiv preprint*
 630 *arXiv:2007.08124*, 2020.

631 632 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
 633 Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL <https://arxiv.org/abs/2503.20783>.

634 635 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
 636 Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning
 637 in language models by automated process supervision, 2024a. URL <https://arxiv.org/abs/2406.06592>.

638 639 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
 640 Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by automated
 641 process supervision. *arXiv preprint arXiv:2406.06592*, 2024b.

642 643 Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
 644 Shuaibin Li, Qian Zhao, Haian Huang, Weihan Cao, Jiangning Liu, Hongwei Liu, Junnan Liu,
 645 Songyang Zhang, Dahua Lin, and Kai Chen. Exploring the limit of outcome reward for learning
 646 mathematical reasoning, 2025. URL <https://arxiv.org/abs/2502.06781>.

647 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 648 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 649 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

648 Zhiyu Mei, Wei Fu, Kaiwei Li, Guangju Wang, Huachen Zhang, and Yi Wu. Real: Efficient rlhf
 649 training of large language models with parameter reallocation. In *Proceedings of the Eighth*
 650 *Conference on Machine Learning and Systems, MLSys 2025, Santa Clara, CA, USA, May 12-15,*
 651 *2025. mlsys.org*, 2025.

652 Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, and Yasuhiro Sogawa. Enhancing reasoning ca-
 653 pabilities of llms via principled synthetic logic corpus. *Advances in Neural Information Processing*
 654 *Systems*, 37:73572–73604, 2024.

655 Tuan-Phong Nguyen, Simon Razniewski, and Gerhard Weikum. Advanced semantics for com-
 656 monsense knowledge extraction. In *Proceedings of the Web Conference 2021*, pp. 2636–2647,
 657 2021.

658 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

659 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 660 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 661 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 662 27744, 2022.

663 Debjit Paul, Robert West, Antoine Bosselut, and Boi Faltings. Making reasoning matter: Measuring
 664 and improving faithfulness of chain-of-thought reasoning. In *Findings of the Association for*
 665 *Computational Linguistics: EMNLP 2024*, pp. 15012–15032, 2024.

666 Qwen. Qwq-32b: Embracing the power of reinforcement learning, 2024. URL <https://qwenlm.github.io/blog/qwq-32b/>.

667 Chi Ruan, Dongfu Jiang, Yubo Wang, and Wenhui Chen. Critique-coder: Enhancing coder models by
 668 critique reinforcement learning. *arXiv preprint arXiv:2509.22824*, 2025.

669 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 670 of chain-of-thought. *arXiv preprint arXiv:2210.01240*, 2022.

671 Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
 672 Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
 673 models using ood examples. *Advances in Neural Information Processing Systems*, 36:3083–3105,
 674 2023.

675 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 676 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017a.

677 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 678 optimization algorithms, 2017b. URL <https://arxiv.org/abs/1707.06347>.

679 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
 680 and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
 681 models. *arXiv preprint arXiv:2402.03300*, 2024.

682 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 683 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 684 *Systems*, 36:8634–8652, 2023.

685 Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits
 686 of chain-of-thought with multistep soft reasoning. *ICLR*, 2024a.

687 Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
 688 Singh, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-
 689 of-thought helps mainly on math and symbolic reasoning. *arXiv preprint arXiv:2409.12183*,
 690 2024b.

691 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 692 press Cambridge, 1998.

702 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 703 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 704 llms. *arXiv preprint arXiv:2501.12599*, 2025.

705

706 Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin Rrv, Nisarg Patel, Mutsumi Nakamura,
 707 Arindam Mitra, and Chitta Baral. Step-by-step reasoning to solve grid puzzles: Where do llms
 708 falter? *arXiv preprint arXiv:2407.14790*, 2024.

709

710 Karthik Valmecam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
 711 really improve by self-critiquing their own plans? *arXiv preprint arXiv:2310.08118*, 2023.

712

713 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 714 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances
 715 in Neural Information Processing Systems*, 37:95095–95169, 2024a.

716

717 Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
 718 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024b.
 719 URL <https://arxiv.org/abs/2312.08935>.

720

721 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 722 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
 723 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 724 1: Long Papers)*, pp. 9426–9439, 2024c.

725

726 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 727 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 728 task language understanding benchmark. In *The Thirty-eight Conference on Neural Information
 729 Processing Systems Datasets and Benchmarks Track*, 2024d.

730

731 Yubo Wang, Ping Nie, Kai Zou, Lijun Wu, and Wenhua Chen. Unleashing the reasoning potential of
 732 pre-trained llms by critique fine-tuning on one problem. *arXiv preprint arXiv:2506.03295*, 2025a.

733

734 Yubo Wang, Xiang Yue, and Wenhua Chen. Critique fine-tuning: Learning to critique is more effective
 735 than learning to imitate. *arXiv preprint arXiv:2501.17703*, 2025b.

736

737 Xumeng Wen, Zihan Liu, Shun Zheng, Shengyu Ye, Zhirong Wu, Yang Wang, Zhijian Xu, Xiao
 738 Liang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
 739 incentivizes correct reasoning in base llms. *arXiv preprint arXiv:2506.14245*, 2025.

740

741 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
 742 Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. In *The
 743 4th Workshop on Mathematical Reasoning and AI at NeurIPS'24*.

744

745 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 746 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 747 learning, 2025. URL <https://arxiv.org/abs/2502.14768>.

748

749 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 750 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 751 answering. *arXiv preprint arXiv:1809.09600*, 2018.

752

753 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 754 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 755 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 756 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 757 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
 758 llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

759

760 Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-training
 761 via process reward guided tree search. *arXiv preprint arXiv:2406.03816*, 2024.

756 Yi-Fan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu Jiang,
 757 Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang, Tingting Gao,
 758 and Liang Wang. R1-reward: Training multimodal reward model through stable reinforcement
 759 learning, 2025. URL <https://arxiv.org/abs/2505.02835>.

760 Qin Zhu, Fei Huang, Runyu Peng, Keming Lu, Bowen Yu, Qinyuan Cheng, Xipeng Qiu, Xuanjing
 761 Huang, and Junyang Lin. Autologi: Automated generation of logic puzzles for evaluating reasoning
 762 abilities of large language models. *arXiv preprint arXiv:2502.16906*, 2025.

764 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

765 Table 7: An example of a logictree puzzle.

766 An example of a logictree puzzle

767 **Paragraph:**

768 On the condition that coral reefs need light to grow so only occur in shallow waters, it is
 769 definitely the case that in addition to this, olive oil is also ideal for frying and is the most
 770 stable fat when heated. If in addition to this, olive oil is also ideal for frying and is the
 771 most stable fat when heated, then if ribbons relate post : How to sew trims, then titanium
 772 dioxide and zinc oxide also functioned in this fashion. It is a fact that either the anus of this
 773 invertebrate is located on top of its body or coral reefs need light to grow so only occur in
 774 shallow waters. The statement that 'the anus of this invertebrate is located on top of its body'
 775 is incorrect.

776 **Question:**

777 It is a common misconception that if ribbons relate post : How to sew trims, then titanium
 778 dioxide and zinc oxide also functioned in this fashion.

779 **Solution:**

780 False

781 A.1 SEVEN DEDUCTIVE PARADIGMS IN LOGICTREE

782 LogicTree centres on seven classic deductive paradigms that constitute the atomic reasoning units of
 783 every sample. Each paradigm is implemented as a dedicated Python class (see `logic.py`) whose
 784 constructor generates the required premises and the logically entailed conclusion. The table below
 785 summarises their formal schemata together with bilingual surface examples.

786 A.2 LOGICTREE: TEMPLATE AND CONSTRUCTION

787 We construct LogicTree through three automated steps:

- 800 **Logical Node Sampling.** Atomic premises and target conclusions are sampled from seven classical
 801 deductive rules (e.g., Modus Ponens, Modus Tollens) and four sentential logics, generating
 802 symbolic propositions.
- 803 **Natural-Language Instantiation.** Each symbolic proposition is mapped to natural declarative
 804 statements retrieved from the filtered AscentKB corpus Nguyen et al. (2021), excluding ambiguous
 805 expressions or compound sentences to enhance lexical diversity while maintaining clarity.
- 806 **Nested-Tree Assembly.** The instantiated nodes are recursively composed into reasoning trees
 807 with configurable depth and width. Intermediate conclusions are masked from given premises,
 808 then transformed into sub-questions to create multi-step problem instances. This design ensures
 809 the inference process depends solely on logical form rather than sentence semantics, effectively
 decoupling reasoning from world knowledge.

Table 8: Model Response of logictree.

Model Response of logictree	
810	Paragraph:
811	When the notion that 'if the statement that states the worms also eat the food scraps and worm bin bedding is false, then the statement 'emergent wetland vegetation is rooted in soil that is under the water for most of the time' can be considered false' is untrue is true, it follows that hydrangeas need minimal care in well-drained, fertile soil, and are shade lovers. One may reasonably assume that if the notion that 'if the statement that states the worms also eat the food scraps and worm bin bedding is false, then the statement 'emergent wetland vegetation is rooted in soil that is under the water for most of the time' can be considered false' is untrue, then those that suggest hydrangeas need minimal care in well-drained, fertile soil, and are shade lovers are wrong. Assuming sometimes, cancer cells left behind after treatment eventually form new tumors, we know that if either eggs from common ducks require about 28 days to hatch or the island was originally inhabited by Ligures Ilvates, who gave it the ancient name Ilva, then if the statement that states the worms also eat the food scraps and worm bin bedding is false, then emergent wetland vegetation is rooted in soil that is under the water for most of the time. The statement that states sometimes, cancer cells left behind after treatment eventually form new tumors is right. Whenever the claim that either eggs from common ducks require about 28 days to hatch or the island was originally inhabited by Ligures Ilvates, who gave it the ancient name Ilva is false is true, the following statement is also true: the bowl acts as a carb hole. Whenever the claim that either eggs from common ducks require about 28 days to hatch or the island was originally inhabited by Ligures Ilvates, who gave it the ancient name Ilva is false is true, the following statement is also true: the statement 'the bowl acts as a carb hole' can be considered false.
812	Question:
813	The statement 'the worms also eat the food scraps and worm bin bedding' can be considered true.
814	It is a common misconception that if the statement that states the worms also eat the food scraps and worm bin bedding is false, then emergent wetland vegetation is rooted in soil that is under the water for most of the time.
815	Model Response:
816	1. Analyze the logical structure of the given statements.
817	2. Identify the conditions and implications in each statement.
818	3. Determine the truth value of the given statements and how they relate to each other.
819	4. Check the consistency of the statements with the provided premises.
820	5. Deduce the implications of the given statements on the conclusion.
821	6. Evaluate the final conclusion based on the logical consistency and the given premises.
822	</think>
823	<answer>[True, False]</answer>
824	Solution:
825	True
826	False

A.3 PRIMITIVE AND COMPOUND PROPOSITIONS

LogicTree expresses every deductive instance in terms of one *primitive statement* and four *compound connectives*. The primitive Statement captures an atomic fact—e.g. “Alice studies.”— while the four connectives build larger formulas: *negation*, *conjunction*, *implication*, and *inclusive disjunction*. Each connective is implemented as a dedicated class whose method `.nl()` randomly selects a surface template from `expressions.json`. Table 12 summarises the five constructs, their formal notation, and representative English renderings.

864 Table 9: Full Chain-of-Thought (CoT) Prompt Template Used for DRER Training and Evaluation.
865

866 COT prompt	
867	System Input:
868	<lim_startl>system
869	You are a helpful assistant. The assistant first thinks step by step about the reasoning process
870	in the mind and then provides the user with the answer.
871	The reasoning process and answer are enclosed within <think> ... </think> and <answer> ...
872	</answer> tags, respectively, i.e.
873	<think> Write the reasoning process for the given paragraph here </think>
874	<answer> Fill in the final answer list for {num_q} question(s) here: True, False or Unknown.
875	Like this: [True, False...] </answer>
876	You must choose one of the following answers:
877	– TRUE: if the premises entail the statement
878	– FALSE: if the premises contradict the statement
879	– UNKNOWN: if you cannot determine the truth value of the statement from the premises
880	You will be given a paragraph of logical premises and a statement. Perform logical reasoning
881	strictly based on the premises using propositional logic.
882	Assume all premises are true. Do not rely on prior world knowledge.
883	<lim_endl>
884	
885	User Input:
886	<lim_startl>user
887	Paragraph: {paragraph}
888	{current_question}
889	<lim_endl> <lim_startl>assistant <think>
890	
891	Variable meanings:
892	{num_q}: Number of questions in the current prompt.
893	{paragraph}: The paragraph containing the logical premises.
894	{current_question}: The specific statement whose truth value is to be evaluated.
895	
896	
897	
898	

899 **Lexicalization.** When generating a sample, the pipeline first creates `Statement` objects for
900 the chosen entities, then composes them with the connectives above. For example, calling
901 `Negation(S).nl()` yields a randomly chosen negated template such as “*The claim that S*
902 *is false.*”; calling `Conditional(P, Q).nl()` may return “*Provided that P, we know that Q.*”.
903 This template sampling, combined with optional adverb or negator insertion, gives LogicTree a high
904 level of lexical diversity while preserving formal truth values.

905

B RELATED WORK

906 In this section, we review prior work related to our problem setting, including logical reasoning
907 datasets (Section B.1) and reasoning-improvement methods (Section B.2).911

B.1 RELATED DATASETS

912 Logical reasoning datasets can broadly be categorized into three types. The first type focuses
913 on deductive reasoning. The second type is based on grid-based logic puzzles. The third category
914 comprises datasets based on multi-hop or strategic question answering. These datasets assess language
915 models’ logical capabilities from various perspectives, including formal logic, multi-step planning,
916 structural induction, and strategy analysis. In addition, there are general-purpose reasoning datasets
917 that are also frequently used to evaluate LLMs’ logical reasoning abilities.

918 Table 10: Full No-CoT Prompt Template used for DRER training and evaluation.
919

920 921 No-CoT Prompt	
922	System Input:
923	< im_start >system
924	You are a helpful assistant. You answer questions by solely using
925	logical reasoning.
926	You will be given a paragraph of logical premises and a statement.
927	Perform logical reasoning strictly based on the premises using
928	propositional logic.
929	Assume all premises are true. Do not rely on prior world
930	knowledge.
931	<answer> Fill in the final answer list for {num_q} question(s) here:
932	True, False or Unknown. Like this: [True, False...] </answer>
933	You must choose one of the following answers:
934	- TRUE: if the premises entail the statement
935	- FALSE: if the premises contradict the statement
936	- UNKNOWN: if you cannot determine the truth value of the statement
937	based on the premises
938	< im_end >
939	User Input:
940	< im_start >user
941	Paragraph: {paragraph}
942	{current_question}
943	< im_end >
944	< im_start >assistant
945	<answer> ... </answer>
946	Variable meanings:
947	{num_q}: Number of questions in the current prompt.
948	{paragraph}: Paragraph containing the logical premises.
949	{current_question}: Statement whose truth value is to be evaluated.
950	
951	
952	
953	

954 B.1.1 DEDUCTIVE REASONING
955

956 ConTRoL (Liu et al., 2021), consisting of 8,325 pairs of expert-designed datasets, is a challenging
957 segment-level NLI dataset to evaluate model’s contextual reasoning capacity from police recruitment
958 tests. RuleTaker (Clark et al., 2020) is a benchmark dataset designed to test whether language models
959 can logically reason about natural language rules and facts by determining whether the conclusions
960 follow, do not follow, or are uncertain. LogiQA (Liu et al., 2020) is a benchmark of 8,678 civil
961 service exam questions designed to evaluate models’ reading comprehension and deductive reasoning
962 across five logical types by requiring conclusion drawing from textual premises. LogiQA2.0 (Liu
963 et al., 2023) is the enhanced version of LogiQA (Liu et al., 2020), featuring improved translations,
964 expert-verified annotations, and new NLI tasks, designed to evaluate logical reasoning and reading
965 comprehension in MRC and NLI formats. FOLIO Han et al. (2022) is an manually annotated dataset
966 containing 1,430 logically complex natural language reasoning examples with first-order logic (FOL)
967 annotations, designed to evaluate and benchmark the deductive reasoning and NL-FOL translation
968 capabilities of Large Language models. PrOntoQA (Saparov & He, 2022) is a benchmark proposed
969 in 2022 to evaluate LLMs’ reasoning by generating question-answer pairs from first-order logic,
970 revealing their struggles with multi-step proof planning despite valid individual steps. Compared with
971 PrOntoQA (Saparov & He, 2022), PrOntoQA-OOD (Saparov et al., 2023) is designed to evaluate the
972 general deductive reasoning abilities of LLMs by testing their ability to generalize to more complex,
973 compositional proofs, particularly those that are out-of-distribution (OOD). JustLogic (Chen et al.,

Algorithm 1 DRER: Dynamic Reasoning Efficiency Reward.

Require: Prompts $P = \{q_b\}_{b=1}^B$, ground-truth answers $Y^* = \{a_b^*\}_{b=1}^B$,
1: policy π_θ , rule reward $R_{\text{rule}}(\cdot)$, reasoning weight λ_q ,
2: bucket IDs $\{d_b\}_{b=1}^B$, bounds $(L_{\min}^{(d)}, L_{\max}^{(d)})$, temperature τ

Ensure: Advantages $A \in \mathbb{R}^{B \times L}$

(1) **Build trajectories**

3: $C \leftarrow \pi_\theta(P, \text{mode} = \text{cot})$ ▷ CoT trajectories
4: **for** $b = 1$ **to** B **do**
5: $t_n[b] \leftarrow \text{NoCOTPROMPT}(q_b) \parallel \text{FORMATANSWER}(a_b^*)$
6: Replace answer span in $C[b]$ with $a_b^* \rightarrow t_c[b]$; record span \mathcal{A}_b
7: **end for**

(2) **Reasoning-quality reward**

8: **for** $b = 1$ **to** B **do**
9: $\ell_c = \frac{1}{|\mathcal{A}_b|} \sum_{t \in \mathcal{A}_b} \log p_\theta(a_{b,t}^* \mid t_c[b])$
10: $\ell_n = \frac{1}{|\mathcal{A}_b|} \sum_{t \in \mathcal{A}_b} \log p_\theta(a_{b,t}^* \mid t_n[b])$
11: $R_q[b] \leftarrow \tanh(\ell_c - \ell_n)$
12: $R_{\text{seq}}[b] \leftarrow R_{\text{rule}}(C[b]) + \lambda_q R_q[b]$
13: Expand $R_{\text{seq}}[b]$ to token reward $r_{b,\cdot}$ on $C[b]$
14: **end for**

(3) **Group-wise normalisation**

15: **for all** prompt group g **do**
16: $\mu_g \leftarrow \text{mean}(r_{m,\cdot})$, $\sigma_g \leftarrow \text{std}(r_{m,\cdot}) \quad (m \in g)$
17: **for** $m \in g$ **do** ▷ raw advantage \tilde{A}
18: $\tilde{A}_{m,\cdot} \leftarrow \frac{r_{m,\cdot} - \mu_g}{\sigma_g + \varepsilon}$
19: **end for**
20: **end for**

(4) **Dynamic-length attenuation**

21: **for** $b = 1$ **to** B **do**
22: $\ell_b \leftarrow \text{LENGTH}(C[b])$, $d \leftarrow d_b$
23: $g_b \leftarrow \exp\left(-\frac{\max\{0, L_{\min}^{(d)} - \ell_b, \ell_b - L_{\max}^{(d)}\}}{\tau}\right)$
24: $A_{b,\cdot} \leftarrow g_b \cdot \tilde{A}_{b,\cdot}$
25: **end for**
26: **return** A

2025) a generated deductive reasoning benchmark designed to evaluate LLMS, featuring high complexity, being independent of prior knowledge, and conducting in-depth error analysis in terms of reasoning depth and argumentative form.

However, the existing logical reasoning datasets still have some limitations. Most datasets have fixed or limited reasoning depth and breadth, which limits their ability to conduct a comprehensive evaluation of complex multi-step reasoning models. Many datasets entwine semantic information with logic, which may lead the model to rely on semantic cues rather than pure logical reasoning.

Furthermore, the majority focus only on final answer correctness, lacking assessment of the intermediate reasoning process and overall explanation quality.

In contrast, the LogicTree dataset we proposed has significant advantages: it is programmed and dynamically constructed, allowing for flexible control over the depth, breadth, and difficulty of inference; It separates semantics from logic to precisely evaluate pure deductive reasoning; It introduces a new logical consistency metric across multiple logical equivalence problems to measure the model's grasp of the underlying logical structure.

Table 11: Seven deductive paradigms that serve as the atomic reasoning units in LOGICTREE.

Paradigm	Formal Schema	Surface Realisation
Modus Ponens	$(p \rightarrow q) \wedge p \Rightarrow q$	If Alice studies, she will pass. Alice studies. Therefore, she will pass.
Modus Tollens	$(p \rightarrow q) \wedge \neg q \Rightarrow \neg p$	If it rains, the road is wet. The road is not wet. Thus, it did not rain.
Hypothetical Syllogism	$(p \rightarrow q) \wedge (q \rightarrow r) \Rightarrow (p \rightarrow r)$	If A wins, B celebrates. If B celebrates, C is happy. Hence, if A wins then C is happy.
Disjunctive Syllogism	$(p \vee q) \wedge \neg p \Rightarrow q$	Either today is Monday or Tuesday. Today is not Monday. Therefore, today is Tuesday.
Reductio ad Absurdum	$(p \rightarrow q) \wedge (p \rightarrow \neg q) \Rightarrow \neg p$	Assume the number is both even and odd. This leads to a contradiction. Thus, the number is not both even and odd.
Constructive Dilemma	$(p \rightarrow q) \wedge (r \rightarrow s) \wedge (p \vee r) \Rightarrow (q \vee s)$	If it rains, we stay in; if it is sunny, we picnic. Either it rains or it is sunny. Hence, we either stay in or picnic.
Disjunction Elimination	$(p \vee q) \wedge (p \rightarrow s) \wedge (q \rightarrow s) \Rightarrow s$	Either I study or I work. If I study, I will learn. If I work, I will learn. Thus, I will learn.

Table 12: Primitive and compound proposition types used in LOGICTREE.

Construct	Logical Form	Example Surface Realisation (EN)
Statement (atomic)	p	<i>Alice studies.</i>
Negation	$\neg p$	<i>It is not true that Alice studies.</i>
Conjunction	$P \wedge q$	<i>Alice studies and Bob plays chess.</i>
Implication (Conditional)	$P \rightarrow q$	<i>If it rains, then the road becomes wet.</i>
Inclusive Disjunction	$P \vee q$	<i>Either today is Monday or Tuesday.</i>

B.1.2 GRID-BASED LOGIC PUZZLES

BoardgameQA(Kazemi et al., 2023) is a dataset designed to evaluate the reasoning ability of language models when dealing with contradictory information. GridPuzzle(Tyagi et al., 2024) is a dataset of grid-based logic puzzles designed to evaluate LLMs’ structured, multi-step reasoning abilities through both final answers and detailed reasoning chains. The Knights and Knaves(Xie et al., 2025) dataset is an reasoning dataset designed to test logical deduction, where characters are either knights (truth-tellers) or knaves (liars), featuring controlled difficulty levels, procedural generation, and verifiability.

Existing datasets, such as GridPuzzle (Tyagi et al., 2024), Knights and Knaves (KK) (Xie et al.) provide valuable reasoning benchmarks, but they all have limitations. For example, KK (Xie et al.) entangles logical reasoning with semantic cues, taking the risk of rapid learning through keyword associations. Some logic puzzle focuses on the final answer without verifying the intermediate steps, allowing the model to guess without sufficient reasoning.

On the contrary, LogicTree evaluates the final and intermediate steps and executes the complete reasoning chain. It also introduces a logical consistency rate among variants of the same logical form and uses semantic-logical unentanglement to ensure that the model relies on reasoning rather than superficial clues.

B.1.3 MULTI-HOP OR STRATEGIC QUESTION ANSWERING

HotpotQA (Yang et al., 2018) is a multi-hop question-answering dataset that requires reasoning across multiple documents and provides supporting facts to enhance the interpretability of the QA system. StrategyQA (Geva et al., 2021) is a benchmark dataset designed to evaluate implicit multi-step reasoning in LLMs across 15 domains and 13 strategies. SPAG (Cheng et al., 2024) is self-laying based adversarial language game dataset designed to enhance and evaluate the reasoning ability through a game involving indirect communication and strategic reasoning about hidden target words. LOGICGAME (Gui et al., 2024) is a benchmark designed to evaluate LLMs’ ability to understand,

1080 execute, and plan based on predefined rules through diverse, verifiable game scenarios requiring
 1081 multi-step logical reasoning. AutoLogi (Zhu et al., 2025) is benchmark test for open-ended logic
 1082 puzzles with controllable difficulty and program-based verification, designed to evaluate the reasoning
 1083 ability of LLM.

1084 Compared with datasets such as HotpotQA (Yang et al., 2018), StrategyQA (Geva et al., 2021), they
 1085 emphasize various forms of multi-step or strategic reasoning across natural language problems, but
 1086 there are still obvious limitations: The reasoning strategies in existing datasets are often broad and
 1087 empirical rather than based on formal logical deduction frameworks (for example, StrategyQA (Geva
 1088 et al., 2021) relies on heuristic and empirical categories). Many datasets focus on language pattern
 1089 matching or cross-document evidence aggregation rather than verifying the true formal reasoning
 1090 process (for example, HotpotQA (Yang et al., 2018)). LogicTree, on the other hand, strictly adheres
 1091 to classical mathematical logic, adopting clear and well-defined deduction rules, and does not rely on
 1092 common sense knowledge, providing a pure logical reasoning environment.

1093

1094 B.1.4 GENERAL-PURPOSE DATASETS

1095 MMLU-Pro(Wang et al., 2024d) is an advanced benchmark of 12,000 expert-reviewed, 10-option
 1096 questions across 14 disciplines, designed to better evaluate LLM performance with greater difficulty
 1097 and reduced noise than the original MMLU (Hendrycks et al., 2021). However, it primarily evaluates
 1098 broad knowledge and reasoning abilities rather than focusing on strong formal logical reasoning. Thus,
 1099 it is not specifically designed to test models’ capabilities in complex multi-step logical deduction.

1100

1101 B.2 RELATED REASONING METHODS

1102 Recent research has explored improving LLM reasoning through critique-based or reward-model-
 1103 based mechanisms. Below we summarize the most relevant directions and clarify how our approach
 1104 differs.

1105

1106 B.2.1 CRITIQUE-BASED REASONING APPROACHES

1107 Early self-improvement methods such as Self-Refine, Reflexion, and CRITIC require models to
 1108 generate critique text to revise their own answers (Madaan et al., 2023; Shinn et al., 2023; Gou
 1109 et al., 2023). Subsequent analyses report that such iterative critique loops can be unstable or rely on
 1110 superficial linguistic artifacts rather than genuine logical reasoning (Huang et al., 2023; Valmeekam
 1111 et al., 2023).

1112 Other work focuses on supervised critique generation, such as Critique Fine-Tuning (CFT), which
 1113 trains models to imitate human- or teacher-provided critique trajectories (Wang et al., 2025a;b).
 1114 Similarly, Critique-Guided Distillation uses an external critic to score outputs and distills these scores
 1115 into the model (Kapusuzoglu et al., 2025).

1116 These methods rely on explicit critique traces or external critic models and supervise critique *content*.
 1117 In contrast, DRER evaluates whether the reasoning chain itself improves the likelihood of the correct
 1118 answer, without requiring critique generation or additional supervision.

1119

1120 B.2.2 POSITIONING DRER RELATIVE TO CFT AND CRL

1121 Critique Reinforcement Learning (CRL) incorporates critiques into RL by rewarding models for
 1122 predicting correct True/False judgments about candidate solutions (Ruan et al., 2025). CRL therefore
 1123 optimizes judgment correctness, whereas DRER optimizes the causal contribution of reasoning steps
 1124 via CoT-NoCoT likelihood margins.

1125 CFT-based methods supervise the generation or imitation of critique traces (Wang et al., 2025a;b),
 1126 while self-reflection methods rely on iterative critique production (Madaan et al., 2023; Shinn et al.,
 1127 2023). DRER differs in that it introduces a counterfactual, gold-grounded reward that directly
 1128 measures the usefulness of reasoning steps, without learning to critique or to judge solutions.

1134 B.2.3 PROCESS-LEVEL REINFORCEMENT LEARNING FOR REASONING
 1135
 1136 Another line of work improves reasoning through reinforcement learning that directly optimizes model
 1137 behavior on reasoning tasks without relying on critique generation. Early RLHF-style approaches
 1138 focus on outcome rewards (Schulman et al., 2017a) but do not supervise intermediate steps.

1139 More recently, process-level RL methods such as GRPO and DAPO (Shao et al., 2024; Yu et al.,
 1140 2025) use step-dependent rewards or decomposition strategies to encourage more stable reasoning
 1141 trajectories. RLVR-style methods further incorporate structured or rule-based verification to provide
 1142 process supervision (Wen et al., 2025). These approaches demonstrate that reinforcing intermediate
 1143 reasoning behaviors can improve both accuracy and consistency.

1144 DRER shares the goal of process-level supervision but differs fundamentally in how reasoning quality
 1145 is evaluated: instead of using rule-based scoring or explicit correctness checks, DRER introduces a
 1146 counterfactual, likelihood-based reward that measures whether the CoT reasoning trajectory increases
 1147 model support for the correct answer. This avoids the need for handcrafted rules or verifiers while
 1148 still providing a process-level training signal.

1149

1150 B.2.4 REWARD-MODEL-BASED REASONING

1151

1152 Another family of methods trains reward models to evaluate reasoning steps or final answers (Wang
 1153 et al., 2024c; Luo et al., 2024b). These systems can improve reasoning quality but require substantial
 1154 labeled comparisons or step-by-step critiques. In contrast, DRER does not require a separate reward
 1155 model; instead, it uses a counterfactual log-likelihood difference derived directly from the model’s
 1156 own outputs, providing a lighter-weight and verifiable training signal.

1157

1158 B.2.5 OVERALL METHODOLOGICAL POSITIONING

1159

1160 Critique-based approaches supervise critique production or correctness, while reward-modeling
 1161 approaches train external evaluators of reasoning quality. Process-oriented RL methods, such as
 1162 RLVR-style training, supervise only the final answer.

1163

1164 DRER occupies a distinct space: it introduces a counterfactual, gold-grounded reward that measures
 1165 whether the reasoning chain genuinely increases support for the correct answer. Thus, DRER
 1166 complements rather than overlaps with critique-based or reward-modeling paradigms.

1167

C PROMPT TEMPLATES

1168

1169 Tables 9 and 10 list the exact prompts used in our experiments: a *Chain-of-Thought (CoT)* version that
 1170 elicits step-by-step reasoning, and a *No-CoT* variant that asks for the final answer only. Curly-braced
 1171 placeholders are replaced at runtime (`{paragraph}`, `{current_question}`, `{num_q}`). The
 1172 two prompts share identical task instructions, so performance differences isolate the effect of showing
 1173 or hiding the reasoning chain.

1174

D TRAINING DETAILS

1175

D.1 TRAINING SETTING

1176

1177 Table 13 records important training parameters. Experiments are conducted on $4 \times$ H20 (80G) GPUs
 1178 with CUDA 12.0, PyTorch 2.6.0, transformers 4.47.1. The Main Experiment phase (DAPO+DRER)
 1179 trains for 400 training steps and takes approximately 50 hours. Training is carried out with a learning
 1180 rate of 3×10^{-7} , a maximum response length of 4096 tokens, the batch size is 16 and 16 responses
 1181 per prompt. For GRPO, the KL divergence coefficient is set to 0.001. In the DRER framework, we
 1182 set $\lambda_q = 1$ and $\tau = 8$.

1183

1184 As shown in Equation 9, there are two parts of reward in DRER framework. Our Reasoning Quality
 1185 Reward R_q is range from $[-\lambda, \lambda]$ to measure whether those CoT tokens help to choose the correct
 1186 answer. The general task reward R_{task} depends on the specific training data, usually to verify the
 1187 model’s answer and format correctness. In our experiment, hyperparameter λ is set to 1, the total task

1188
1189
1190 Table 13: Important Training Parameters.
1191
1192
1193

Algorithm	Train Batch Size	Rollout N	KL Coef	Max Response Len
GRPO	16	16	0.001	4096
DAPO	16	16	–	4096

1194
1195 reward is computed as:
1196

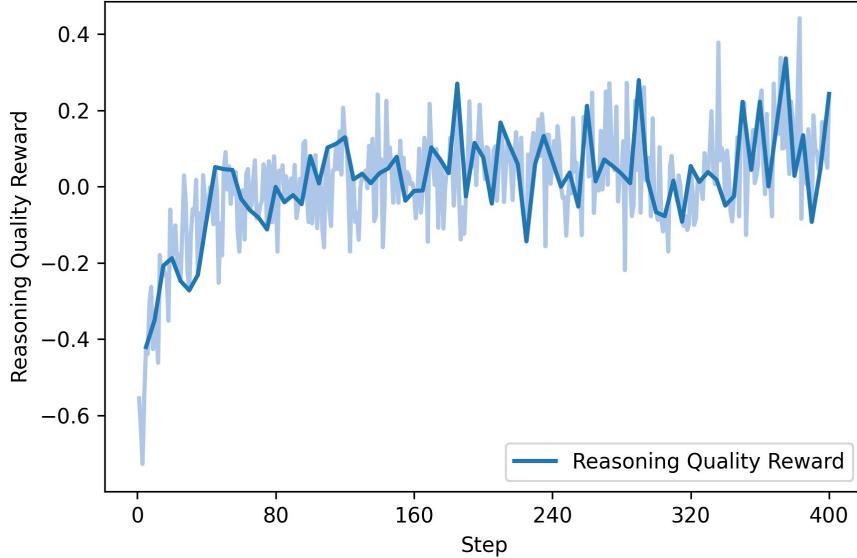
$$R_{\text{task}} = S_{\text{format}} + S_{\text{answer}}$$

1197
1198 where the format score (S_{format}) evaluates whether the model’s response adheres to the required output
1199 structure:

$$S_{\text{format}} = \begin{cases} 1, & \text{if format is correct} \\ -1, & \text{if format is incorrect} \end{cases}$$

1200
1201 And the answer score (S_{answer}) evaluates the correctness of the response content against the ground
1202 truth.

$$S_{\text{answer}} = \begin{cases} 2, & \text{if the answer fully matches the ground truth} \\ -1.5, & \text{if the answer partially mismatches the ground truth} \\ -2, & \text{if the answer cannot be parsed or is missing} \end{cases}$$

1203
1204 D.2 TRAINING DYNAMICS
12051206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231 Figure 4: Reasoning quality reward on the LogicTree during post-training with DRER.
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

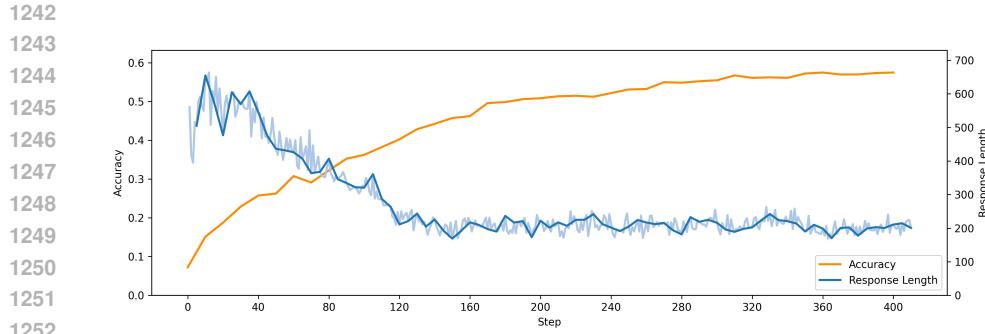
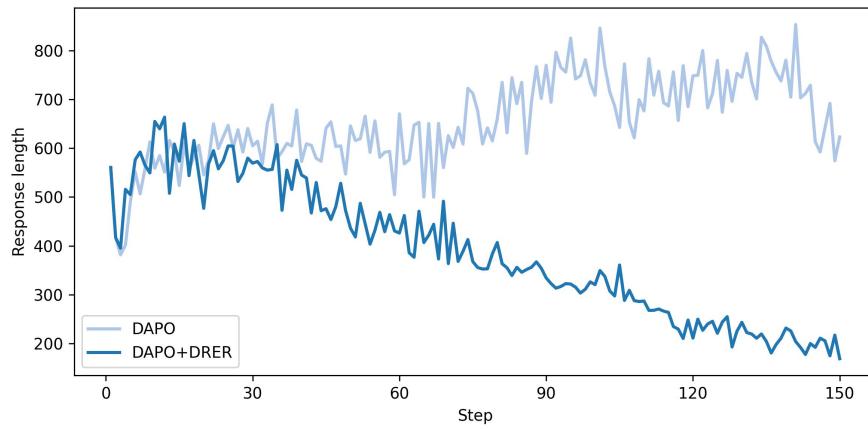
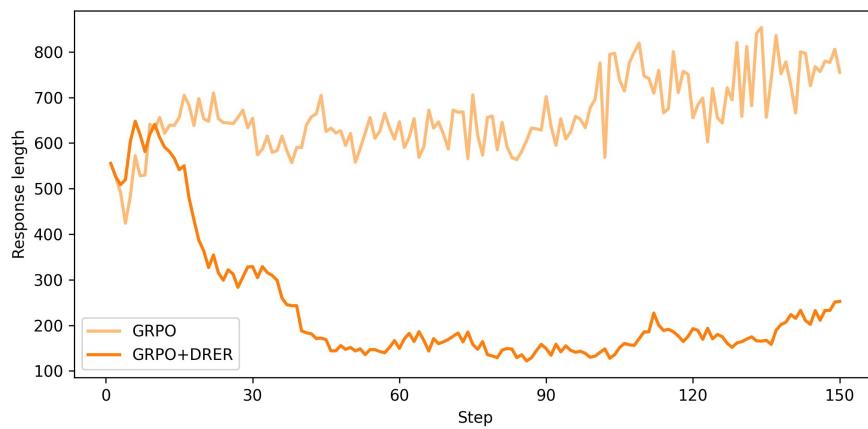


Figure 5: Training dynamic of the DAPO baseline with the DRER framework over 400 steps.



1296 **E SUPPLEMENTARY EXPERIMENTS**
 1297

1298 **E.1 EXPERIMENT A: GPT-5.1-BASED CoT QUALITY SCORING**
 1299

1300 To further validate whether our Reward for Quality Reasoning (RQR) corresponds to genuine
 1301 reasoning quality, we conduct an additional external evaluation using GPT-5.1.

1302 We randomly sample 4000 chain-of-thought (CoT) trajectories from the evaluation set, including
 1303 outputs from the base model, the DAPO-only model, and the DAPO+DRER model. GPT-5.1 is
 1304 instructed to evaluate each trajectory in a step-wise manner. For every reasoning step, GPT-5.1
 1305 assigns binary judgments along three dimensions: *correctness*, *coherence*, and *necessity*. The detailed
 1306 evaluation rubric and prompt are provided in Table 25, and a representative annotated example is
 1307 shown in Table 24. For each trajectory, we aggregate the step-wise labels into a single CoT quality
 1308 score, bucket the examples by this CoT Score, and compute the mean RQR within each bucket to
 1309 examine how RQR correlates with externally assessed reasoning quality.

1310 For a CoT consisting of T steps, we define:

$$1312 \text{Correctness} = \frac{1}{T} \sum_{t=1}^T \text{correctness}_t, \quad \text{Necessity} = \frac{1}{T} \sum_{t=1}^T \text{necessity}_t.$$

1315 To penalize chains whose logical flow breaks early, let

$$1317 k = \min\{t \mid \text{coherence}_t = 0\}$$

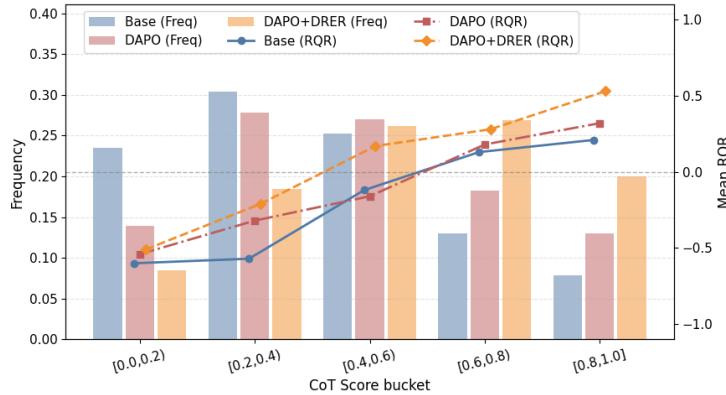
1318 be the index of the first coherence error. Coherence is defined as:

$$1320 \text{Coherence} = \begin{cases} 1, & \text{if } \text{coherence}_t = 1 \forall t, \\ \alpha^{(T-k)}, & \text{otherwise,} \end{cases} \quad \text{with } \alpha = 0.7.$$

1323 We combine the three dimensions into a single CoT quality score:

$$1324 \text{CoT Score} = 0.5 \cdot \text{Correctness} + 0.3 \cdot \text{Coherence} + 0.2 \cdot \text{Necessity}.$$

1326 We bucket all examples by CoT Score and compute the mean RQR within each bucket.



1341 Figure 8: Comparison of CoT score distributions and corresponding mean RQR values across three
 1342 training settings: Base model, DAPO-only, and DAPO+DRER. Bars represent the frequency of
 1343 samples within each CoT score bucket, while the line plots show the mean RQR computed over the
 1344 same buckets. DRER produces a clear shift toward higher-quality CoT trajectories and consistently
 1345 higher RQR across all buckets.

1346 The results reveal a clear and consistent trend: CoT trajectories with higher GPT-5.1 quality scores
 1347 obtain substantially higher RQR values, whereas trajectories receiving low scores consistently yield
 1348 lower RQR. After DRER training, both the distribution of GPT-5.1 CoT scores and the corresponding
 1349 RQR values shift markedly toward higher-quality regions.

1350 These observations indicate that RQR assigns larger rewards to more logically coherent and effective
 1351 reasoning chains, demonstrating that the learned reward signal aligns with genuine reasoning quality
 1352 rather than surface-level patterns.

1353 Across both the DAPO-only and DAPO+DRER models, we observe that:

1354

- 1355 • Higher CoT Score consistently corresponds to higher RQR;
- 1356 • DRER training increases RQR across all buckets, with the largest improvements in the
 1357 high-quality CoT region.

1358 Overall, these findings confirm that RQR is well aligned with GPT-5.1’s step-wise evaluation of
 1359 reasoning, capturing meaningful aspects of logical correctness and procedural validity.

1362 E.2 EXPERIMENT B: COT DISTURBANCE TEST

1363 To assess whether the Reward for Quality Reasoning (RQR) is sensitive to the structural and semantic
 1364 validity of reasoning trajectories, we conduct a controlled CoT-perturbation study on 4,000 randomly
 1365 sampled questions from our evaluation set.

1366 For each question, we construct three variants of the chain-of-thought (CoT):

1367

- 1368 • **Original CoT**: the unmodified reasoning trajectory generated by the model.
- 1369 • **Shuffled CoT**: a sentence-level random permutation of the same trajectory, disrupting
 1370 logical order while preserving content.
- 1371 • **Cross-question CoT**: a CoT drawn from a different evaluation question, approximately
 1372 length-matched but semantically unrelated.

1373 For each variant, we compute the RQR defined in Eq. (8). Table 14 reports the mean RQR, standard
 1374 deviation, and proportion of positive RQR values.

1375 CoT Variant	1376 Mean RQR \uparrow	1377 Std RQR	1378 % RQR $> 0 \uparrow$
Original CoT	0.29	0.42	73%
Shuffled CoT	0.08	0.31	41%
Cross-question CoT	-0.34	0.33	7%

1379 Table 14: Experiment B: RQR under different CoT perturbations on 2,000 randomly sampled
 1380 evaluation questions. The ordering Original $>$ Shuffled $>$ Cross demonstrates that RQR aligns with
 1381 reasoning quality and task relevance.

1382 **Summary of Results.** These results indicate that RQR exhibits clear sensitivity to both the semantic
 1383 relevance and structural coherence of the reasoning chain, rather than displaying a simple preference
 1384 for the presence of CoT tokens. The significant differences across perturbation types suggest that
 1385 RQR captures the degree to which intermediate reasoning steps either support or hinder the correct
 1386 answer probability, reflecting their contribution in the problem-solving process.

1387 E.3 EXPERIMENT C: ANALYSIS OF THE EFFECTS OF COT

1388 Table 15: Average $\ell_{\text{CoT}} - \ell_{\text{NoCoT}}$ by answer transition in GSM8K.

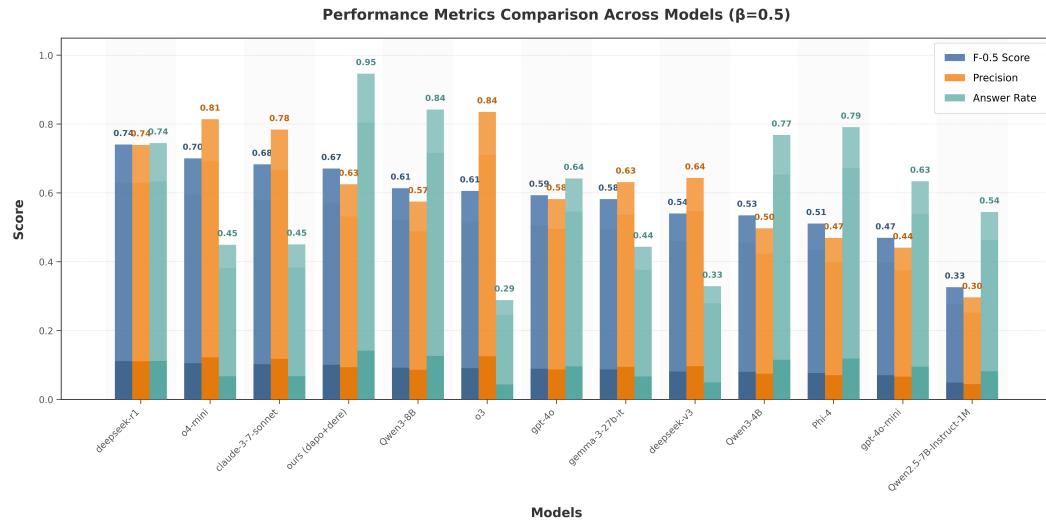
1389 Original \downarrow / With CoT \rightarrow	1390 Wrong (W)	1391 Correct (R)
1392 Wrong (W)	-4.32	2.46
1393 Correct (R)	-5.00	-0.47

1404 Table 16: Average $\ell_{\text{CoT}} - \ell_{\text{NoCoT}}$ by answer transition in LogicTree.
1405

Original ↓ / With CoT →		Wrong (W)	Correct (R)
Wrong (W)		-1.13	1.81
Correct (R)		-3.79	-4.76

1406 Table 17: Answer-transition proportions conditioned on the sign of $\Delta\ell = \ell_{\text{CoT}} - \ell_{\text{NoCoT}}$ on GSM8K
1407 (N=500). $p(W \rightarrow R)$ is the fix rate; $p(R \rightarrow W)$ is the break rate.
1408

Group by $\Delta\ell$ sign	#Instances	Mean $\Delta\ell$	$p(W \rightarrow R)$	$p(R \rightarrow W)$
$\Delta\ell > 0$ (CoT favored)	140	+2.20	0.74	0.02
$\Delta\ell < 0$ (NoCoT favored)	360	-2.60	0.02	0.24

1409
1410
1411 E.4 EXPERIMENT D: LOGICTREE EVALUATION1412
1413 This section lists full evaluation on LogicTree as logic benchmark.
14141415 Table 19 exhibits the full evaluation data of Accuracy on LogicTree benchmark across various
1416 reasoning depths.
14171418 Table 20 presents the complete evaluation data of Consistency Ratio on LogicTree benchmark.
14191420 Figure 9 plots the complete evaluation data of $F\beta$ -Score, which provides a balanced metric to compare
1421 the comprehensive performance across those LLMs.
14221423 Figure 9: $F\beta$ -Score, Answer Rate and Precision metrics Comparison across various models.
14241425
1426 Figure 10 shows the distribution of those deduction logical key words in LLMs response.
14271428 Figure 11 compares the reasoning token efficiency between DeepSeek-R1 and our model.
14291430 Figure 12 compares the output distribution between models trained with DAPO and DAPO+DRER
1431 respectively. The DAPO+DRER model demonstrates significantly higher confidence in correct
1432 answers, as shown by a strong concentration of predictions on the fully correct label set ([true,
1433 true, true]). In contrast, the baseline DAPO model produces more scattered outputs, indicating
1434 lower certainty. This highlights the effectiveness of DRER in combination with CoT reasoning for
1435 improving answer consistency and correctness.
14361437 Figure 12 compares the output distribution between base model and variant trained with
1438 DAPO+DRER. The DAPO+DRER model produces highly concentrated predictions on the fully
1439 correct label ([true, true, true]), indicating strong confidence and consistency. In contrast, Qwen2.5-
1440

1458 Table 18: Answer-transition proportions conditioned on the sign of $\Delta\ell = \ell_{\text{CoT}} - \ell_{\text{NoCoT}}$ on LogicTree
 1459 (N=500). $p(W \rightarrow R)$ is the fix rate; $p(R \rightarrow W)$ is the break rate.

Group by $\Delta\ell$ sign	#Instances	Mean $\Delta\ell$	$p(W \rightarrow R)$	$p(R \rightarrow W)$
$\Delta\ell > 0$ (CoT favored)	120	+1.70	0.67	0.04
$\Delta\ell < 0$ (NoCoT favored)	380	-3.90	0.05	0.23

1464 Table 19: Comparison of LRM’s(above) and LLM’s(below) accuracy on LogicTree across various
 1465 logical depth.

Model	1	2	3	4	5	6	7	8	Avg.
Qwen3-235B-A22B	0.96	0.83	0.66	0.71	0.46	0.32	0.25	0.07	0.53
Deepseek-R1	0.85	0.76	0.61	0.47	0.36	0.18	0.19	0.07	0.44
Claude-3.7-Sonnet	0.76	0.67	0.21	0.10	0.07	0.02	0.02	0.00	0.23
Qwen3-8B	0.86	0.83	0.49	0.44	0.32	0.11	0.14	0.08	0.41
GPT-o4-mini	0.74	0.64	0.25	0.20	0.10	0.06	0.05	0.02	0.26
GPT-o3-mini	0.66	0.56	0.07	0.07	0.03	0.02	0.01	0.00	0.18
Qwen3-4B	0.74	0.74	0.39	0.29	0.29	0.06	0.09	0.04	0.33
Gemini-2.5-Flash-Preview	0.86	0.64	0.41	0.31	0.24	0.11	0.06	0.00	0.33
GPT-4o	0.63	0.60	0.28	0.13	0.13	0.00	0.00	0.00	0.22
Phi-4-14B	0.72	0.67	0.31	0.27	0.19	0.04	0.01	0.01	0.28
Gemma-3-27B	0.65	0.41	0.15	0.04	0.00	0.00	0.00	0.00	0.16
Deepseek-v3	0.39	0.24	0.05	0.06	0.00	0.00	0.00	0.00	0.09
GPT-4o-mini	0.44	0.24	0.27	0.11	0.12	0.02	0.02	0.01	0.15
Qwen2.5-7B-Instruct-1M	0.36	0.29	0.15	0.12	0.08	0.01	0.01	0.00	0.13
GRPO	0.81	0.71	0.58	0.42	0.45	0.20	0.20	0.11	0.45
GRPO+DRER	0.87	0.75	0.69	0.54	0.61	0.35	0.27	0.22	0.54
DAPO	0.88	0.73	0.66	0.47	0.60	0.36	0.23	0.20	0.52
DAPO+DRER (Ours)	0.90	0.83	0.76	0.59	0.67	0.45	0.31	0.31	0.60^{↑0.47}

1487
 1488 7B-Instruct-1M predictions are widely dispersed across incorrect and partially correct categories,
 1489 reflecting lower answer certainty. This highlights the effectiveness of DRER combined with CoT in
 1490 guiding the model toward accurate and confident output.

1491 Tables 21 records the average evaluation results on 15 graduate students who had received systematic
 1492 training in mathematical logic or introductory logic courses. The results show that for problems of
 1493 simple to moderate difficulty (reasoning depth 1–5), human participants consistently identified the
 1494 implicit logical rules and produced correct answers. For deeper reasoning levels (6–8), although the
 1495 problems remain theoretically solvable, the context length can exceed 1k tokens, making manual
 1496 step-by-step deduction extremely tedious and error-prone. For this reason, depth-6–8 questions were
 1497 excluded from human testing.

1498 Tables 22 shows the exactly models’ name and snapshot that we evaluated in experiment.

1500 F LIMITATIONS

1503 Despite the empirical gains achieved by DRER and LogicTree, several limitations remain:

- 1504 • **Logic coverage.** LogicTree is limited to the deductive reasoning paradigm, while more diverse
 1505 forms such as analogical reasoning, inductive reasoning, or traceable reasoning have not yet been
 1506 evaluated.
- 1507 • **Model scale and cost.** All experiments use Qwen-2.5-7B-Instruct-1M as backbone. The memory
 1508 and latency overhead of token-level rewards on 70 B-scale or MoE models is unknown and may
 1509 be prohibitive.
- 1510 • **Evaluation bias.** Training and evaluation rely on an automatic logic verifier and confidence scores;
 1511 no human preference or chain-quality annotation is included, which may overlook subjective
 aspects of reasoning quality.

1512 Table 20: Comparison of Consistency Ratio on LogicTree across various logical depth.
1513

Model	1	2	3	4	5	6	7	8	Avg.
Qwen3-235B-A22B	0.90	0.65	0.30	0.50	0.15	0.00	0.05	0.00	0.32
Deepseek-R1	0.70	0.55	0.20	0.15	0.10	0.00	0.05	0.00	0.22
Claude-3.7-Sonnet	0.65	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.12
Qwen3-8B	0.65	0.70	0.05	0.05	0.05	0.00	0.00	0.00	0.19
GPT-o4-mini	0.50	0.35	0.00	0.05	0.00	0.00	0.00	0.00	0.11
GPT-o3-mini	0.45	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.09
Qwen3-4B	0.40	0.30	0.05	0.05	0.00	0.00	0.00	0.00	0.10
Gemini-2.5-Flash-Preview	0.75	0.50	0.15	0.05	0.00	0.00	0.00	0.00	0.18
GPT-4o	0.40	0.35	0.00	0.05	0.00	0.00	0.00	0.00	0.10
Phi-4-14	0.35	0.35	0.05	0.05	0.00	0.00	0.00	0.00	0.10
Gemma-3-27B	0.25	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.06
Deepseek-v3	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
GPT-4o-mini	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.03
Qwen2.5-7B-Instruct-1M	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
GRPO	0.55	0.50	0.40	0.25	0.45	0.20	0.15	0.00	0.29
GRPO+DRER	0.65	0.50	0.25	0.25	0.25	0.10	0.00	0.00	0.25
DAPO	0.65	0.45	0.45	0.20	0.50	0.10	0.05	0.10	0.31
DAPO+DRER (Ours)	0.70	0.70	0.60	0.35	0.50	0.35	0.00	0.10	0.41 ^{↑0.4}

1532
1533 Table 21: Comparison of LLM and Human accuracy on LogicTree across various logical depth.
1534

Model	1	2	3	4	5	6	7	8	Avg.
Qwen3-235B-A22B	0.96	0.83	0.66	0.71	0.46	0.32	0.25	0.07	0.53
Deepseek-R1	0.85	0.76	0.61	0.47	0.36	0.18	0.19	0.07	0.44
Claude-3.7-Sonnet	0.76	0.67	0.21	0.10	0.07	0.02	0.02	0.00	0.23
GPT-o4-mini	0.74	0.64	0.25	0.20	0.10	0.06	0.05	0.02	0.26
DAPO+DRER (Ours)	0.90	0.83	0.76	0.59	0.67	0.45	0.31	0.31	0.60
Human	1.00	1.00	0.98	0.93	0.85	-	-	-	-

1544
1545 Table 22: Details of the organization and model source (model version for proprietary models, and
1546 Huggingface model name for open-source models) for the LLMs evaluated in LogicTree.
1547

Model	Organization	Size	Notes	Source
DeepSeek-R1	DeepSeek	671B	MoE	deepseek-ai/DeepSeek-R1
DeepSeek-V3	DeepSeek	671B	MoE	deepseek-ai/DeepSeek-V3
Claude 3.7 Sonnet	Anthropic	-		claude-3-7-sonnet-20250219
Gemini 2.0 Flash Thinking Preview	Google	-		gemini-2.5-flash-preview-04-17
Gemma-3-27B	Google	27B		google/gemma-3-27b-it
Qwen3-235B-A22B	Alibaba	235B	MoE	qwen3-235b-a22b
Qwen3-30B-A3B	Alibaba	30B	MoE	qwen3-30b-a3b
Qwe3-8B	Alibaba	-		qwen3-8b
Qwen3-4B	Alibaba	-		qwen3-4b
Qwen2.5-7B-Instruct-1M	Alibaba	-	MoE	qwen2.5-7b-instruct-1m
Phi-4-14B	Microsoft	14B		microsoft/phi-4
GPT-o4-mini	OpenAI	-		o4-mini-2025-04-16
GPT-o3	OpenAI	-		o3-mini-2025-01-31
GPT-4o-mini	OpenAI	-		gpt-4o-mini-2024-07-18
GPT-4o	OpenAI	-		gpt-4o-2024-11-20

1560
1561
1562 • **Synthetic corpus and social bias.** LogicTree sentences are synthetically generated; potential
1563 social biases or misuse risks in real-world deployments have not been systematically analysed.
15641565 In future work we plan to extend DRER to higher-order logic, explore low-cost reward approximations,
1566 and incorporate human evaluation and bias auditing to mitigate these limitations.

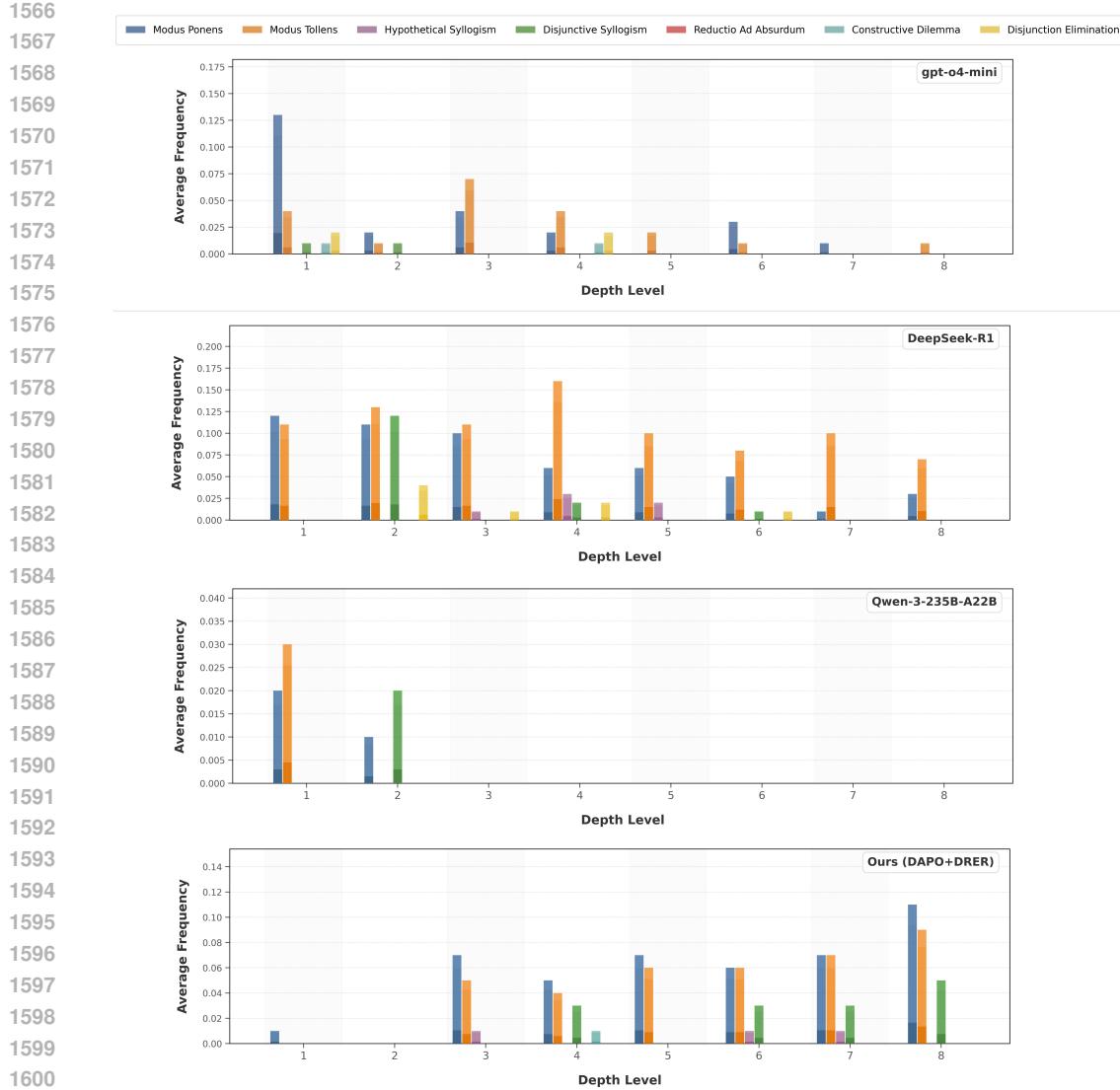


Figure 10: Word frequencies of seven deductive reasoning terms explicitly mentioned in LLMs response DRER.

G BROADER IMPACT

Our work aims to align large language models with formal logical principles, potentially improving the reliability and interpretability of machine reasoning. By releasing the LOGICTREE dataset and DRER code under a permissive licence, we enable researchers and practitioners to build verifiable agents for education, scientific discovery, and safety- critical auditing, where transparent deductive chains are preferable to opaque heuristics.

G.1 POSITIVE SOCIETAL OUTCOMES.

A reasoning-aligned model can serve as a didactic tutor in introductory logic courses, assist engineers in detecting faulty assumptions in software specifications, and support legal or medical professionals by highlighting which premises lead to a conclusion rather than merely producing an answer. The synthetic nature of LOGICTREE limits exposure to personal data and reduces the risk of privacy leaks.

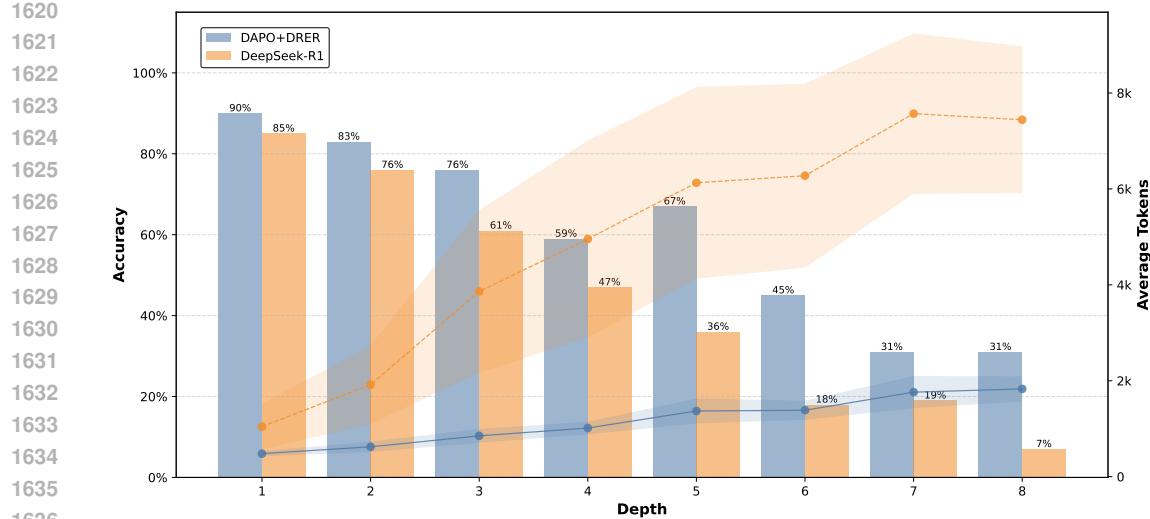


Figure 11: Comparison of DeepSeek-R1’s and our model’s accuracy and average response token on LogicTree.

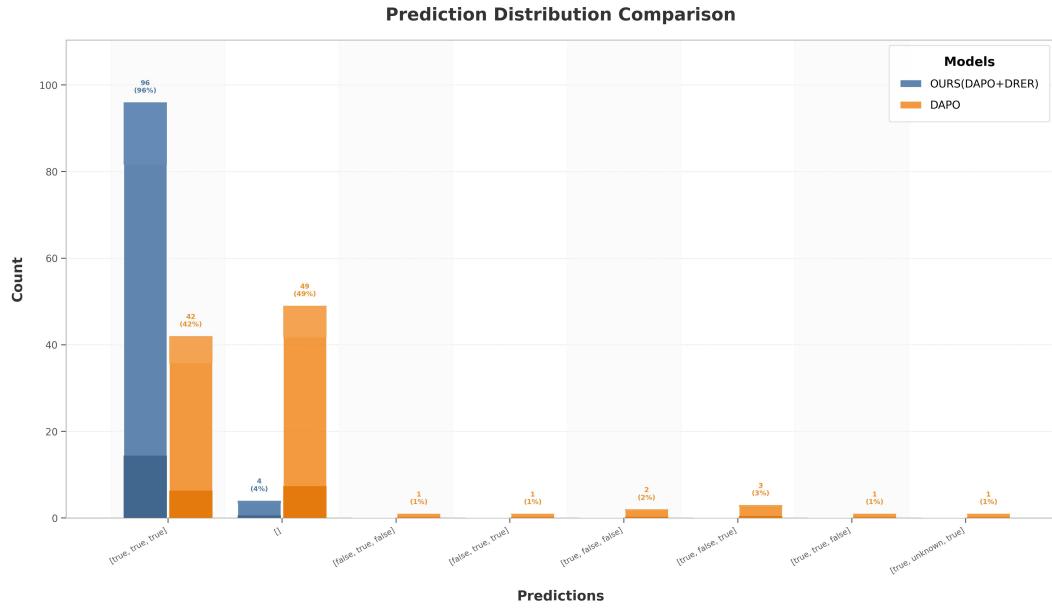


Figure 12: Prediction distribution comparison between DAPO and DAPO+DRER under Chain-of Thought (CoT) prompting.

G.2 POTENTIAL RISKS.

More persuasive and logically consistent outputs could be weaponised for misinformation or overly authoritative automation. Over-reliance on synthetic benchmarks might also hide biases that appear in real-world discourse. Furthermore, token-level reward signals expose fine-grained model behaviour, which could be exploited to reverse-engineer proprietary system prompts.

G.3 MITIGATIONS.

We distribute our resources with an explicit no-malicious-use clause, encourage downstream users to apply bias and misinformation audits, and recommend human oversight for high-stakes deployment.

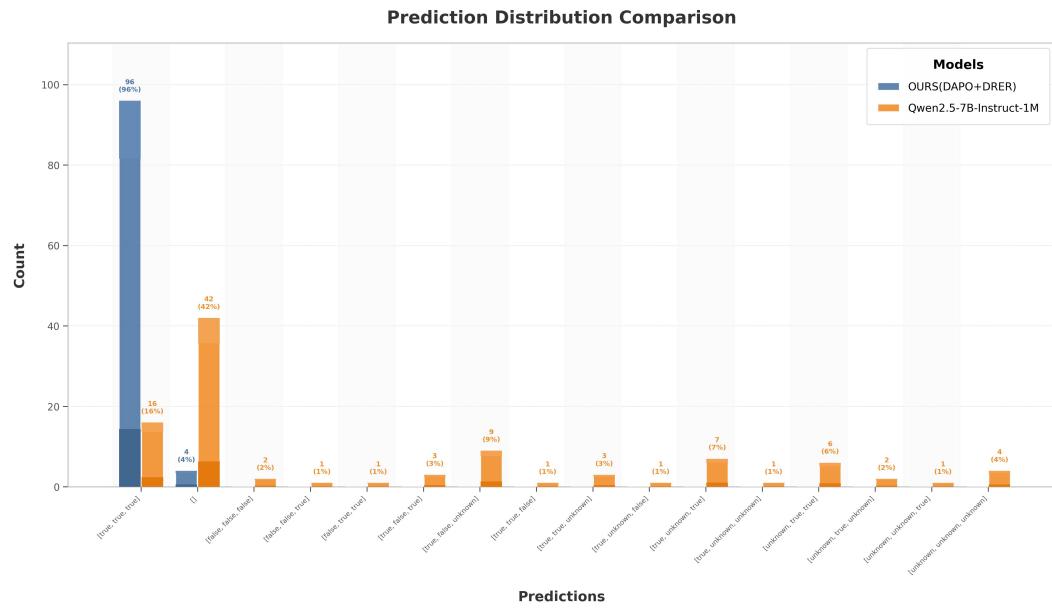


Figure 13: Prediction distribution comparison between our model (DAPO+DRER) and Qwen2.5-7B-Instruct-1M under Chain-of-Thought (CoT) prompting.

Future work will extend DRER to real-world corpora and incorporate human preference feedback, allowing broader yet safer adoption of reasoning-aligned reinforcement learning.

H CASE STUDY: CHAIN-OF-THOUGHT QUALITY

To complement the quantitative evaluation, we present a case study based on the example shown in Table 23, which compares reasoning traces produced by different models on the same LogicTree instance. This case study highlights how DRER improves both the clarity and efficiency of chain-of-thought (CoT) reasoning.

H.1 DAPO+DRER (OURS)

Driven by DRER’s *token-level reward* and *dynamic-length mask*, the trace is both concise and transparent: six orderly steps map directly onto the formal pipeline *identify rule* → *resolve disjunction* → *propagate truth*. Expressions such as “apply transitivity” signal an explicit shift toward symbolic reasoning, the behaviour DRER is designed to promote. At roughly ~70 tokens—far shorter than the 100+ tokens typical of vanilla DAPO—the chain remains fully verifiable, demonstrating DRER’s combined gains in *effectiveness* and *efficiency*.

H.2 O4MINI

Although it yields the correct answer, steps 2–4 compress several entailments into a single sentence and omit rule names, reducing transparency. With a length of about ~40 tokens, it illustrates the “shallow-but-correct” pattern observed in §4.2.

H.3 QWEN2.5-7B-INSTUCT

This trace shows the greatest *length drift*: more than 110 tokens, many of them descriptive filler unrelated to logic, matching the “decorative-token inflation” failure mode in our diagnostics. Despite some correct premise restatement, the model ultimately outputs Unknown, confirming that verbosity does not equal confidence.

1728 Table 23: Four-model CoT Comparison (Prompt-style)
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Four-model CoT Comparison	
Question	It is a common misconception that if <i>ribbons relate post : How to sew trims</i> , then <i>titanium dioxide and zinc oxide also functioned in this fashion</i> .
dapo+drer	
<i>Chain-of-Thought</i>	
	<ol style="list-style-type: none"> Analyze the logical structure of the premises. Identify conditional statements and their parts. Resolve the disjunction via the invertebrate–coral premise. Propagate truth to the olive-oil statement. Apply transitivity to obtain <i>ribbons</i> → TiO_2/ZnO. Compare with the question’s claim.
Answer: False	
Qwen2.5-7B-Instruct-1M	
<i>Chain-of-Thought</i>	Let’s analyze step by step: 1) Coral reefs need light and thus occur only in shallow waters. 2) Olive oil is heat-stable. 3) If <i>ribbons</i> → TiO_2/ZnO . 4) “Anus on top” is false ⇒ coral-reef statement true. 5) No evidence of misconception. Hence information is insufficient.
Answer: Unknown	
o4mini	
<i>Chain-of-Thought</i>	<ol style="list-style-type: none"> “Anus on top” is false. Therefore coral-reef-light is true. Thus olive-oil statement is true. Hence conditional <i>ribbons</i> → TiO_2/ZnO is true. The question claims this conditional is a misconception. Contradiction ⇒ question is false.
Answer: False	
deepseekr1	
<i>Chain-of-Thought</i>	I need to analyze consistency; I will break down each conditional and test with the premises.
Answer: False	

H.4 DEEPSEEK-R1

Provides only a meta-level remark (“break down each conditional”) before jumping to the answer, leaving the derivation invisible; such hidden reasoning yields the lowest Consistency Ratio in our evaluation across paraphrastic variants.

1782 H.5 SUMMARY.
17831784 **dapo+drer** offers the clearest, rule-grounded, and length-controlled chain of thought; **o4mini** is
1785 concise but omits warrants and lacks length regularisation; **Qwen2.5-7B-Instruct** is verbose yet
1786 uncertain; and **DeepSeek-R1** lacks an explicit chain. The contrast underscores DRER’s targeted
1787 improvements in symbolic clarity, response economy, and process–outcome alignment.

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Table 24: CoT Comparison (DAPO and DAPO+DRER)

CoT on AIME (DAPO)

Question

Let x, y , and z be positive real numbers that satisfy the following system of equations:

$$\log_2 \left(\frac{x}{yz} \right) = \frac{1}{2}$$

$$\log_2 \left(\frac{y}{xz} \right) = \frac{1}{3}$$

$$\log_2 \left(\frac{z}{xy} \right) = \frac{1}{4}$$

Then the value of $|\log_2(x^4y^3z^2)|$ is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

DAPO

Given the system of equations:

$$\log_2 \left(\frac{x}{yz} \right) = \frac{1}{2}, \quad \log_2 \left(\frac{y}{xz} \right) = \frac{1}{3}, \quad \log_2 \left(\frac{z}{xy} \right) = \frac{1}{4},$$

we rewrite each in exponential form:

$$\frac{x}{yz} = 2^{1/2}, \quad \frac{y}{xz} = 2^{1/3}, \quad \frac{z}{xy} = 2^{1/4}.$$

Multiplying all three equations:

$$\left(\frac{x}{yz} \right) \left(\frac{y}{xz} \right) \left(\frac{z}{xy} \right) = 2^{1/2+1/3+1/4},$$

and the left-hand side simplifies to

$$\frac{xyz}{x^2y^2z^2} = \frac{1}{xyz},$$

so

$$\frac{1}{xyz} = 2^{13/12} \Rightarrow xyz = 2^{-13/12}.$$

Let $\log_2 x = a$, $\log_2 y = b$, $\log_2 z = c$. Then

$$a + b + c = \log_2(xyz) = -\frac{13}{12}.$$

Using the original equations:

$$a - (b + c) = \frac{1}{2}, \quad b - (a + c) = \frac{1}{3}, \quad c - (a + b) = \frac{1}{4}.$$

However, the incorrect solution attempted to compute:

$$\begin{aligned} 4a + 3b + 2c &= 4 \left(\frac{1}{2} \right) + 3 \left(\frac{1}{3} \right) + 2 \left(\frac{1}{4} \right) && \text{Unsupported Equation} \\ &= 2 + 1 + \frac{1}{2} = \frac{7}{2}, \end{aligned}$$

which assumes

$$a = \frac{1}{2}, \quad b = \frac{1}{3}, \quad c = \frac{1}{4}$$

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Table 24: CoT Comparison (DAPO and DAPO+DRER) (continued)

CoT on AIME (DAPO)	
Thus the final claim:	
	$ \log_2(x^4y^3z^2) = \frac{7}{2}$
	$m + n = 9$
Answer: 9 (✗)	
DAPO+DRER	
To solve the given system of equations involving logarithms, we start by letting $a = \log_2 x$, $b = \log_2 y$, and $c = \log_2 z$.	
The system becomes:	
$a - b - c = \frac{1}{2}, \quad b - a - c = \frac{1}{3}, \quad c - a - b = \frac{1}{4}.$	
Solving:	
$(a - b - c) + (b - a - c) = \frac{1}{2} + \frac{1}{3} \implies -2c = \frac{5}{6} \implies c = -\frac{5}{12}.$	
Substitute into the third equation:	
$-\frac{5}{12} - a - b = \frac{1}{4} \implies a + b = -\frac{2}{3}.$	
Substitute into the first equation:	
$a - b + \frac{5}{12} = \frac{1}{2} \implies a - b = \frac{1}{12}.$	
Solving the two-equation system:	
$a = -\frac{7}{24}, \quad b = -\frac{3}{8}.$	
Thus:	
$c = -\frac{5}{12}.$	
Compute:	
$\log_2(x^4y^3z^2) = 4a + 3b + 2c = -\frac{25}{8}.$	
Since $\frac{m}{n} = \frac{25}{8}$, we have $m + n = 25 + 8 = 33$.	
Answer: 33 (✓)	

Table 25: GPT-5.1 prompt for scoring CoT trajectories

1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

GPT-5.1 Prompt

You are an expert judge for mathematical and logical reasoning steps.
 You will be given:

- A problem statement (QUESTION).
- A full sequence of reasoning steps.
- The current reasoning step to evaluate (CURRENT_STEP), which is step {t}.

1. **correctness**: whether the content inside this step is mathematically or logically correct.
2. **coherence**: whether this step is consistent with the QUESTION and ALL_STEPS, and a reasonable next move.
3. **necessity**: whether this step contributes essential progress toward solving the problem.

Strict Scoring Rubric [correctness]

Score 1 if:

- There is no mathematical or logical error in this step, and
- It does not contradict the QUESTION or earlier correct steps.

Score 0 if:

- There is an algebraic or logical mistake, or
- A rule is misapplied, or
- The step contradicts the problem statement or prior correct steps.

[coherence]

Score 1 if:

- The step naturally follows from the QUESTION and ALL_STEPS, and
- Any new notation or assumptions are properly introduced.

Score 0 if:

- The step makes an unjustified assumption or conclusion, or
- It reverses earlier conclusions without reason, or
- It is disconnected from the reasoning flow.

[necessity]

Score 1 if:

- The step introduces new, nontrivial information or structure used later, or
- Removing the step would make the solution less complete or harder to follow.

Score 0 if:

- The step merely restates previous information, or
- It is meta-commentary, or
- It explores a direction not used in the main reasoning.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

2013 GPT-5.1 Prompt

2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Output Format (Mandatory).

You must output exactly one JSON dictionary with the following four fields:

```
{
    "correctness": 0/1,
    "coherence": 0/1,
    "necessity": 0/1,
    "analysis": "2--4 sentences explaining your scores."
}
```

Rules:

- Output must be valid JSON.
- Only these four fields may appear.
- No lists, markdown, backticks, or extra commentary.

Final Instruction.

Evaluate the current step:

QUESTION: {QUESTION}

ALL_STEPS: {ALL_STEPS}

CURRENT_STEP (step {t}): {CURRENT_STEP}

2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052 **I LLM USAGE**
20532054 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
2055 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
2056 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
2057 grammar checking, and enhancing the overall flow of the text.2058 It is important to note that the LLM was not involved in the ideation, research methodology, or
2059 experimental design. All research concepts, ideas, and analyses were developed and conducted by
2060 the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
2061 the paper, with no involvement in the scientific content or data analysis.2062 The authors take full responsibility for the content of the manuscript, including any text generated or
2063 polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
2064 does not contribute to plagiarism or scientific misconduct.

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105