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ABSTRACT

Recent advances in Large Language Models (LLMs) have stimulated a significant
paradigm shift in evolutionary optimization, where hand-crafted search heuristics
are gradually replaced with LLMs serving as intelligent search operators. How-
ever, these studies still bear some notable limitations, including a challenge to
balance exploitation with exploration, often leading to inferior solution diversity,
as well as poor generalizability of problem solving across different task settings.
These unsolved issues render the prowess of LLMs in robot design automation
largely untapped. In this work, we present LASeR – Large Language Model-
Aided Evolutionary Search for Robot Design Automation. Leveraging a novel
reflection mechanism termed DiRect, we elicit more knowledgeable exploratory
behaviors from LLMs based on past search trajectories, reshaping the exploration-
exploitation tradeoff with dual improvements in optimization efficiency and solu-
tion diversity. Additionally, with evolution fully grounded in task-related back-
ground information, we unprecedentedly uncover the inter-task reasoning capabil-
ities of LLMs, facilitating generalizable design processes that effectively inspire
zero-shot robot proposals for new applications. Our simulated experiments on
voxel-based soft robots showcase distinct advantages of LASeR over competitive
baselines.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated remarkable reasoning, decision
making, and generalization capabilities (Achiam et al., 2023; Touvron et al., 2023; Team et al., 2023;
Team, 2023), sparking a flurry of research interest in their application to optimization problems.
Earlier efforts embarked on leveraging LLMs to aid traditional search heuristics within evolutionary
algorithms (EAs), such as selecting parent solutions for mutation and crossover (Liu et al., 2024a;
Ye et al., 2024) or serving as surrogate model and candidate sampler in Bayesian Optimization (Liu
et al., 2024b). More and more recent studies have explored the use of LLMs as “intelligent search
operators”. By receiving previously found solutions through prompts, LLMs effectively draw upon
their in-context learning and pattern completing abilities to iteratively propose improved candidate
solutions (Brahmachary et al., 2024; Huang et al., 2024b; Yang et al., 2024; Morris et al., 2024;
Romera-Paredes et al., 2024; Lange et al., 2024). Such LLM-aided evolutionary frameworks have
shown great promise in minimizing reliance on handcrafted search heuristics, facilitating convenient
problem specification in natural language and rendering evolutionary processes more interpretable.
To date, they have showcased proficiency in classic optimization problems such as the Traveling
Salesman Problem and numerical functions, (Liu et al., 2024a; Brahmachary et al., 2024; Huang
et al., 2024a), as well as real-world scenarios spanning code generation (Morris et al., 2024; Romera-
Paredes et al., 2024), robotic control (Lange et al., 2024), protein design (Tran & Hy, 2024), etc.

Despite the promising results, we contend that existing studies exhibit two major limitations. For
one, as many of them have noted that LLMs often struggle to balance exploration and exploita-
tion and yield inferior solution diversity (Huang et al., 2024b; Tran & Hy, 2024), only expedient
measures have been taken to address this issue, including adjustments to the temperature parameter
(Yang et al., 2024; Liu et al., 2024a; Pluhacek et al., 2024; Ma et al., 2024) or utilizing pre-existing
natural selection techniques such as binary tournament selection and “island models” (Qiu et al.,
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2024; Romera-Paredes et al., 2024). It remains to be investigated whether the reasoning capabilities
of LLMs could be further harnessed to guide more intelligent exploratory behaviors in the search
space. For the other, current LLM-aided evolutionary approaches generally lack a strong connection
to the specific nature of real-world problems, which leads to suboptimal performances and solutions
that can not generalize well.

Recently, LLMs have also made their way into the realm of robot design automation, which repre-
sents a persistent challenge in modern robotics that aims to evolve robot morphology with minimal
human intervention (Hu et al., 2022; 2023; Song et al., 2024a). However, related work is sparse
and only represent rudimentary attempts. To our best knowledge, the only pertinent studies are
Zhang (2024), Qiu et al. (2024) and Lehman et al. (2023). While Zhang (2024) utilizes LLMs to
tune the hyperparameters of traditional EAs, the latter two pioneer the use of LLMs as search op-
erators for robot design. Nonetheless, they bear the same limitations as listed above, which greatly
hinder the application of LLMs to robot design automation. In particular, with growing interest in
soft robots due to their versatility and biomimetic properties, their vast design spaces and intricacy
of interaction dynamics among body parts cause existing search algorithms to generally fall short,
highlighting the need for more judicious exploration that navigate a variety of design options while
ensuring progressive enhancement in functionality. (Bhatia et al., 2021; Shah et al., 2021; Song
et al., 2024a; Saito & Oka, 2024). Furthermore, as it is common to have access to a repository of
pre-designed robots from related tasks when designing for new applications, it is highly relevant to
explore the inter-task reasoning capabilities of LLMs to facilitate positive transfer of prior design
experience, thus fostering more generalizable design processes.

To address the aforementioned limitations, here we propose LASeR – Large Language Model-
Aided Evolutionary Search for Robot Design Automation. LASeR distinguishes itself from previ-
ous LLM-aided evolutionary frameworks with a more delicate exploration strategy and generalizable
optimization processes. Specifically, we present a novel Diversity Reflection Mechanism termed Di-
Rect, which strategically instruct an LLM to reflect upon previously generated designs and suggest
viable modifications to enhance diversity while preserving essential functional substructures. This
mechanism thus fosters more knowledgeable exploratory behaviors that closely align with task ob-
jectives. Furthermore, by exploiting the abundant descriptive information available in robotic tasks,
we not only yield substantially accelerated convergence to high-performing designs, but also un-
precedentedly uncover the potential of LLMs to reason across different tasks and assimilate prior
design experience for zero-shot robot proposals in new tasks.

To summarize, our contributions are as follows: (i) By interleaving evolutionary processes with
diversity-oriented reflective thinking, we reshape the exploration-exploitation tradeoff of LLM-aided
evolution with simultaneous improvements in solution diversity and optimization effciency. The for-
mer is particularly relevant for enhancing the robustness of robotic systems in volatile environments.
(ii) With evolution firmly grounded in the background information of optimization tasks, we unlock
the inter-task reasoning capabilities of LLMs in evolutionary computation, hopefully inspiring fu-
ture work on further promoting generalizability of LLM-aided evolutionary processes across differ-
ent problem settings. (iii) By fully unleashing the prowess of LLMs for robot design automation,
we also aim to inspire future work that synergizes both design and control with LLMs, achieving
closed-loop development of embodied agents.

2 RELATED WORK

Large Language Models as Evolutionary Search Operators. Large Language Models (LLMs)
represent a class of deep generative neural networks comprising billions or trillions of parameters
and pretrained on web-scale texual data. In recent years, LLMs have demonstrated impressive rea-
soning, decision making, and generalization capabilities (Achiam et al., 2023; Touvron et al., 2023;
Team et al., 2023; Team, 2023), which have sparked a flurry of research into exploiting them for op-
timization problems (Huang et al., 2024b; Wu et al., 2024). By receiving history search trajectories
from the prompt (or context), LLMs have demonstrated effectiveness as pattern completion engines
(Mirchandani et al., 2023), proposing improved solutions and facilitating evolutionary optimization
through iterative interactions. Moreover, LLMs are adept at conditioning problem-solving processes
on various kinds of prior knowledge expressed in natural language, without needing tedious mathe-
matical formulations (Song et al., 2024b). All these favorable attributes position LLMs as promising
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substitutes for the manually designed search heuristics in traditional evolutionary algorithms (EAs),
acting as novel, intelligent search operators. Since Lehman et al. (2023) introduced this LLM-
aided evolutionary paradigm, subsequent studies have extended its methodology and showcased its
proficiency in classic optimization tasks like the Traveling Salesman Problem (TSP) and numeri-
cal functions (Liu et al., 2024a; Brahmachary et al., 2024; Huang et al., 2024a), as well as practical
problems spanning prompt optimization (Guo et al., 2023; Yang et al., 2024), code generation (Mey-
erson et al., 2023; Morris et al., 2024; Romera-Paredes et al., 2024), robotic control (Lange et al.,
2024), etc. However, we argue that the use of LLMs as search operators is still in its early stage,
with much of their potential untapped. Notably, existing studies have focused solely on single-task
optimization, overlooking the intriguing possibility of LLMs to transfer experience across different
tasks. Additionally, although LLMs have been shown to trail behind traditional EAs in balancing ex-
ploration and exploitation (Huang et al., 2024a; Tran & Hy, 2024), this nuanced aspect has received
limited attention from previous research. We aim to tackle these limitations in this work.

Robot Design Automation. As Artificial Intelligence (AI) continues to revolutionize academia
and industry, there is an increasing focus on integrating the perceptual and planning capabilities
of multi-modal foundation models into various physical embodiments capable of interacting with
their environments – a research field known as Embodied AI (Roy et al., 2021; Liu et al., 2024c).
These advancements highlight the significance of autonomous robot design. Earlier works on robot
design automation relied on traditional evolutionary algorithms and primarily targeted rigid robots
(Sims, 1994; Chocron & Bidaud, 1997; Leger, 2012; Wang et al., 2019). In recent years, modular
soft robots have garnered broad attention due to their flexibility, expressiveness, and biomimetic
characteristics (Hiller & Lipson, 2011; Bhatia et al., 2021; Medvet et al., 2021). However, these
advantages are accompanied by a combinatorially vast design space, necessitating more efficient
search algorithms (Cheney et al., 2014). Consequently, an emerging line of research resorts to the
estimation-of-distribution algorithms (EDAs) to enhance sample efficiency by explicitly tracking the
distribution of high-performing robot designs. These approaches further leverage deep generative
models, such as Generative Adversarial Networks (GANs; Goodfellow et al., 2020) and Variational
Autoencoders (VAEs; Kingma, 2013), to bolster the representational capacity of EDAs (Hu et al.,
2022; Song et al., 2024a). Despite their promising results, these models still require problem-specific
mathematical formulation and neural architecture design, which is highly dependent on domain
expertise and poorly generalizable. In this respect, Large Language Models, with their strong in-
context learning abilities and extensive prior knowledge, hold the promise to transform the robotic
design process (Stella et al., 2023). Nevertheless, the exploration of LLMs in this respect is sparse
and warrants further investigation (Lehman et al., 2023; Zhang, 2024; Qiu et al., 2024). While our
work is based on simulation, we note that there is ongoing research on the realization of soft robotics
in the physical world, using polymers with pneumatic chambers (Kriegman et al., 2020b; Legrand
et al., 2023) or even self-replicating cells (Kriegman et al., 2020a; 2021) and continually narrowing
the sim-to-real gap. We believe that with the collective efforts of material scientists, computer
scientists, (bio)mechanical engineers, etc., soft robotics would see rapid advances and finds its way
to everyday life in the near future.

3 LASER: LLM-AIDED EVOLUTIONARY SEARCH FOR ROBOT DESIGN
AUTOMATION

In this section, we first present an overview of our algorithm, and then delve into the details of our
prompt design and the novel Diversity Reflection Mechanism. Subsequently, we describe how LLMs
can be instructed to facilitate effective knowledge transfer across different tasks, followed by a brief
introduction to our fitness evaluation protocols.

3.1 ALGORITHM FRAMEWORK

As illustrated in Figure 1(a) and detailed by Algorithm 1 in Appendix R, we integrate an LLM into
the bi-level optimization framework commonly employed in robot design automation. Specifically,
the inner loop optimizes a controller for each robot morphology through reinforcement learning,
with the resulting task performance serving as the fitness evaluation. The outer loop evolves a
population of robot morphologies by carrying out natural selection and generating new offspring
solutions in each generation. Here, instead of traditional evolutionary algorithms (EAs) that rely on
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(a) Algorithm Overview of LASeR
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Figure 1: (a) algorithm overview of LASeR; (b) the Diversity Reflection (DiRect) Mechanism; (c)
an example illustrating how Diversity Reflection works on a carrying robot. The illustration takes
voxel-based soft robots (VSRs; Bhatia et al., 2021) as an example. Each VSR is represented as
a two-dimensional material matrix, where each entry, ranging from 0 to 4, represents the material
type at the corresponding position. , , , and denote rigid voxels, soft voxels, horizontal
actuators, vertical actuators and empty voxels, respectively.

manually designed search heuristics for generating offspring, an LLM is properly prompted to be
our search operator. This is achieved by providing the LLM with previously evaluated robots and
various kinds of metadata as context. However, we still bootstrap the evolutionary process with a
few generations of conventional EAs before letting the LLM play its part, as this warm start would
provide the LLM with an initial momentum (i.e., improving directions) to build upon. Evolution
terminates when a maximum number of robot evaluations is reached. We term our approach LASeR,
short for LLM-Aided Evolutionary Search for Robot Design Automation. The following subsections
elaborate on the key components of LASeR. Note that while the introduction takes voxel-based soft
robots (VSRs) proposed in Bhatia et al. (2021) as an example, our approach is readily applicable to
other robot types. For a detailed introduction to VSRs, please refer to Bhatia et al. (2021).

3.2 PROMPT DESIGN

As discussed in Section 3.1, the LLM is prompted to propose new offspring designs in each gen-
eration. As effective prompt design is crucial to elicit desired responses from LLMs, we craft a
well-structured prompt comprising the following essential components:

• Task-related metadata: this part includes various auxiliary information to in-context adapt
the LLM to serve as a search operator, including task objectives, descriptions of simulation
environment, constraints on robot designs, etc. This component is largely derived from
the official documents of EvoGym (Bhatia et al., 2021), with minimal modifications.This
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metadata is largely missing in previous studies. We would showcase in our experiments
that by fully grounding the evolutionary process on task-related metadata, we not only
achieve more efficient design optimization, but also elicit inter-task reasoning capabilities
from LLMs that greatly boost the generalization of design experience.

• Elite design-fitness pairs: this part includes robot designs that have survived natural selec-
tion, each accompanied by its fitness score. These designs are sorted in ascending order
of fitness, so as to make it easier for the LLM to infer continuation patterns and construct
potentially improved designs.

• Target fitness: we instruct the LLM to extrapolate from the sequence of elite designs and
generate new designs that meet a pre-specified fitness score (e.g. 120% of current maximal
fitness). This is referred to as the “just-ask” query in previous studies (Lim et al., 2024).

Additionally, we include some basic requirements into the system prompt to better align the behavior
of the LLM with our intention. For instance, the LLM is strictly demanded to output new robot
designs in numpy array format, enclosed between <solution> and </solution>, to allow for easier
parsing. Even so, LLMs are still not guaranteed to generate valid robot designs in every interaction.
To keep runtime and cost under control, we set an upper limit on interactions; once the limit is
reached, we revert to a conventional EA to generate the remaining offspring. For full prompts please
refer to Appendix A.

3.3 DIRECT: DIVERSITY REFLECTION MECHANISM

The exploration-exploitation tradeoff is a longstanding dilemma in evolutionary computation. Prop-
erly timed exploratory behavior would contribute to search processes that not only are less prone
to getting stuck in local optima, but also produce more diversified solutions. The latter property
is particularly relevant for developing robotic systems in dynamic environments, where first-choice
robots, once fail, must be immediately replaced with alternatives. However, it has been shown that
LLMs often struggle to balance exploration and exploitation, yielding inferior solution diversity to
existing EAs (Huang et al., 2024a; Tran & Hy, 2024). While many previous studies addressed this
issue by tuning the temperature parameter of LLMs or resorting to diversity-preserving selection
techniques, in this work we introduce a novel Diversity Reflection Mechanism (DiRect) that lever-
ages the reasoning capabilities of LLMs to guide exploratory behaviors.

The idea of DiRect is straightforward. As depicted in Figure 1(b), for each newly proposed robot
design, we assess its similarity to previously evaluated designs with a probability p. The new design
is said to fail the similarity check if it shares more than s voxels with at least one existing robot.
In this case, the DiRect mechanism is triggered. Specifically, the LLM is first prompted to suggest
modifications to voxels that could enhance variability without compromising fitness, with existing
high-performing examples as reference. The LLM is then asked to return the modified robot design
according to these suggestions. In section 4 we show that this reflection mechanism fosters more
beneficial exploratory behavior in the search space, leading to more diversified robot designs while
maintaining relevance to the task objective. Figure 1(c) displays a specific example where DiRect
helps to modify a newly proposed carrying robot. We include general principles for choosing the
similarity threshold s, supported by experimental evaluations, in Appendix N.

3.4 LLM FOR INTER-TASK KNOWLEDGE TRANSFER

The algorithm described thus far treats the robot design of each task independently, starting with
a randomly initialized population. However, it is often the case that we already have access to a
repository of pre-designed robots from existing tasks when designing for a new one. Under this
circumstance, leveraging the prior design experience in one way or another would hopefully afford
a boost in sample efficiency. However, to discern functional substructures from highly abstract robot
morphologies (e.g. voxel-based soft robots), as well as to speculate which substructures will benefit
a new task, poses a major challenge to humans. Our work represents a pioneering effort to exploit
the reasoning capabilities of LLMs for this purpose. Specifically, by specifying the characteristics of
task A and B, along with a collection of high-performing robot designs from task A, we instruct an
LLM to analyze the similarities and differences between the two tasks and infer potentially favorable
substructures (such as specific patterns of voxel assembly) for task B. Based on this analysis, the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

LLM then proposes robot designs for task B, thus enabling zero-shot robot proposals (where “zero-
shot” means that no evaluated robot samples from the new task are required). These robot proposals
can then serve as an informative initialization to initiate further design search for task B.

3.5 FITNESS EVALUATION

In this work, we use the Proximal Policy Optimization (PPO) algorithm to optimize a separate con-
troller for each robot design. The PPO algorithm enhances conventional gradient-based reinforce-
ment learning algorithms by incorporating importance sampling into gradient estimation, allowing
for the reuse of sample trajectories across multiple parameter updates. The PPO algorithm alternates
between two key phases – data collection and policy update – until a predefined number of iterations
is completed. With an optimized controller that maps environmental observations to appropriate
actuation signals, we measure the fitness of a robot by calculating the cumulative reward it receives
over a complete episode, which reflects its performance in accomplishing a given task. For further
details on the PPO algorithm, please refer to Schulman et al. (2017).

4 EXPERIMENTS

We begin this section with an introduction to our experimental setups, and then analyze the results
of our comparison and ablation studies in detail. Our code is available on anonymous GitHub for
replicability1. Our experiments are designed to address the following questions:

• Q1: Can LASeR outperform state-of-the-art baselines in robot design automation?

• Q2: To what extent does DiRect improve the exploration-exploitation tradeoff of LLM-aided
evolution?

• Q3: Does task metadata bring additional benefits to single-task robot design automation? More-
over, does it aid inter-task experience transfer and enable zero-shot robot design for new tasks?

• Q4: Previous studies have shown that different temperature parameters and versions of LLMs
yield varying evolutionary outcomes. What are the specific impacts of these factors in our context?

4.1 EXPERIMENTAL SETUPS

Benchmark Setting. We base our experiments on Evolution Gym (EvoGym; Bhatia et al., 2021), a
simulation environment designed for voxel-based soft robots (VSRs). In EvoGym, VSRs are repre-
sented in a grid-like layout and consist of five types of voxels: rigid voxels, soft voxels, horizontal
actuators, vertical actuators, and empty voxels. VSRs achieve motion control by altering the sizes of
actuators either horizontally or vertically according to action signals. For benchmarking, we select
three task instances: one locomotion task, Walker-v0, which requires a robot to walk as quickly as
possible on flat terrain, and two manipulation tasks, Carrier-v0 and Pusher-v0, where the robot must
carry or push a rectangular object besides fast locomotion. A detailed introduction to these tasks is
provided in Appendix B. For more information on EvoGym, please refer to Bhatia et al. (2021).

Baselines. We compare our method against the following baselines: (i) Bayesian Optimization
(BO; Kushner, 1964; Mockus, 1974), a classic algorithm designed to optimize expensive-to-
evaluate functions. It employs a probabilistic model (e.g. Gaussian Process) as a surrogate for
the objective function and determines where to sample based on predicted mean and uncertainty. (ii)
Speciated Evolver (SE; Medvet et al., 2021), a variant of the genetic algorithm (GA; Michalewicz,
2013) that divides the population into species to preserve diversity and prevent premature conver-
gence. (iii) RoboGAN (Hu et al., 2022), an estimation-of-distribution algorithm (EDA) that utilizes
the Generative Adversarial Network (GAN) to track the distribution of high-performing robot de-
signs and generate new candidate solutions. (iv) The last baseline, which we term LLM-Tuner, is
adapted from Zhang (2024) that uses LLMs to supervise the hyperparameter tuning of a genetic al-
gorithm. Drawing comparison with LLM-Tuner would directly verify the benefits of LLMs serving
as intelligent search operators. We additionally draw comparisons with two latest baselines, with
results presented in Appendix G.

1https://anonymous.4open.science/r/LASeR-D5C2
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Evaluation Metrics. We employ the following metrics to evaluate the performance of various
approaches: (i) Maximal Fitness, defined as the fitness of the best-performing robot design achieved
within a specific number of evaluations. This metric is commonly used in robot design automation to
assess optimization efficiency. (ii) Diversity: Given the significance of developing diverse robotic
ecosystems to handle volatile environments, we measure the diversity of high-performing robot
designs2 from two perspectives: one is the average edit distance among all pairs of high-performing
robot designs (Saito & Oka, 2024), and the other is the total number of distinct high-performing
robot designs. We further aggregate the two values via weighted averaging, where the latter is
multiplied by 0.1 so that they are roughly on the same scale and given equal importance. Please
refer to Appendix L for a detailed discussion on diversity measurement. We also include an analysis
of computational efficiency in Appendix Q.

Implementation Details. We use GPT-4o-mini for both LASeR and LLM-Tuner, with the temper-
ature parameter set as 0.7. For ablation studies, we additionally try out GPT-3.5-Turbo and tempera
tures of 1 and 1.5. Following the common practice in previous VSR studies (Song et al., 2024a; Saito
& Oka, 2024; Dong et al., 2023; Bhatia et al., 2021), we choose the simple yet effective control pro-
tocol for fitness evaluation, i.e. Multilayer Perceptron (MLP) as the controller for each robot design
and PPO algorithm for policy training. Following previous studies on VSR design (Song et al.,
2024a; Saito & Oka, 2024; Dong et al., 2023; Bhatia et al., 2021), robot designs are constrained to
a 5× 5 bounding box for an expressive yet tractable search space. Nevertheless, as demonstrated in
Appendix I, our approach is scalable to larger design spaces. For fair comparison, each method is
permitted 1000 robot evaluations. Experimental results are averaged across three independent runs
to reduce randomness (we have currently implemented two more sets of repeated experiments for
LASeR and LLM-Tuner, the most competitive baseline, and the results (with significance tests) are
reported in Appendix H). Our experiments are conducted on a server equipped with Intel Xeon pro-
cessors running at 2.20 GHz and four NVIDIA Tesla RTX GPUs, with the system operating under
Ubuntu 22.04. We relegate additional parameter settings to Appendix C. For further implementation
details, please refer to our code repository.

4.2 COMPARISON STUDIES

4.2.1 SINGLE-TASK OPTIMIZATION

We begin our analysis by examining single-task optimization performances. As demonstrated in
Figure 2, LASeR nearly consistently outperforms all baselines across the three tasks with significant
margins. Specifically, LASeR achieves rapid convergence speeds to optimal robot designs, with
only one exception on Walker-v0, where LLM-Tuner demonstrates slightly faster convergence in the
early stage of evolution but ends up further from optimality. The superior performance of LASeR
compared to LLM-Tuner highlights that LLMs have more important roles to play beyond merely
tuning hyperparameters for traditional EAs.
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Figure 2: Comparative Results of Single-Task Optimization

Table 1 further demonstrates the diversity of high-performing robot designs achieved by different
methods. We observe that LASeR surpasses all baselines without exception. For visualizations of

2Specifically, we first calculate the 90% quantile of fitnesses obtained by all methods, and consider robot
designs with fitness exceeding this threshold as high-performing.
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evolved robot designs please refer to Appendix K. We additionally compare the fitness performance
of robot designs before and after being modified by DiRect, and find no significant difference (see
Appendix F for quantitative results and examples of DiRect modifications). This suggests that our
Diversity Reflection Mechanism indeed encourages the LLM to introduce variability into robot de-
sign while keeping its functionality largely intact. All these results combine to prove the distinct
advantage of DiRect to promote beneficial exploratory behaviors directed towards high-performing
regions. It is worth noting that the Bayesian Optimization algorithm, known for a balance between
exploration and exploitation in its acquisition function, actually compromises a great deal of opti-
mization efficiency for exploration and fails to generate high-performing robots in many cases. On
the contrary, we reshape the exploration-exploitation tradeoff of LLM-aided evolution to yield dual
benefits in optimization efficiency and diversity. We performed additional comparison on Catcher-
v0, one of the most challenging tasks in EvoGym, to further showcase the effectiveness of LASeR
(see Appendix E).

Table 1: Comparative Results of Diversity

Walker-v0 Carrier-v0 Pusher-v0
BO N/A 8.35 (N/A) 11.31 (N/A)
SE 5.40 (0.30) 15.84 (0.77) 6.61 (3.45)
RoboGAN N/A 10.94 (N/A) N/A
LLM-Tuner 19.21 (11.25) 20.33 (6.53) 16.75 (5.95)
LASeR(ours) 20.77 (4.77) 22.11 (3.88) 27.56 (1.66)

Note 1: Since we have three repeated experiments, the results are reported as “mean(standard deviation)”. The
same is true for Table 2.
Note 2: When no more than one high-performing robot design is produced, diversity cannot be calculated.
When this is the case across all repeated experiments (e.g. BO on Walker-v0), the cell is filled with “N/A”. If
this is the case for two repeated experiments (e.g. BO on Carrier-v0), the standard deviation is unavailable and
only the mean is reported.
Note 3: For separate results of edit distance and the number of high-performing designs, please refer to
Appendix L.

4.2.2 INTER-TASK KNOWLEDGE TRANSFER

Now we proceed to explore the ability of LLMs to transfer design experience across different tasks.
To achieve this purpose, we introduce two more tasks: BridgeWalker-v0 and UpStepper-v0. Specif-
ically, both BridgeWalker-v0 and UpStepper-v0 bear some resemblance to Walker-v0, but differ in
their terrains: BridgeWalker-v0 involves locomotion on a soft rope-bridge, whereas UpStepper-v0
requires climbing stairs of varying lengths. The LLM is prompted to generate robot designs for
each new task, given elite Walker-v0 robot designs. As shown in Figure 3(b)3, the zero-shot pro-
posals by LLM outperform both randomly generated designs and those provided elite Walker-v0
designs which have finished their evolving with LASeR, in terms of accomplishing the new tasks.
This serves as sound evidence that the LLM is not simply replicating examplars in its context, but
rather assimilating design experience that is beneficial for new settings. This is largely owing to our
incorporation of task-related metadata that provokes inter-task reasoning within the LLM. For illus-
tration, Figure 3(a) demonstrates some insights that the LLM drew from Walker-v0 elites to transfer
to BridgeWalker-v0.

The zero-shot proposals are then leveraged as the initial population for further optimization. Fig-
ure 3(c-1) and 3(c-2) demonstrate that this informative initialization results in faster evolution than
starting from scratch, and pulls away from baseline algorithms with even greater advantage. Also
note that the zero-shot proposals for BridgeWalker-v0 turn out to be already near optimal before un-
dergoing marginal improvement with evolution. These promising results unprecedentedly uncover
the possibility of generalizable evolutionary processes driven by LLMs and hopefully inspire closer
investigation in future work. Please note that while here we focused on intuitively similar task in-
stances, we prove in Appendix O that this prior knowledge regarding inter-task relationships is not
necessary for successful experience transfer.

3The result is averaged over ten robot designs in each case.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Example of Design Experience Transferred from Walker-v0 to BridgeWalker-v0

(b) Zero-Shot Performance (c-2) UpStepper-v0(c-1) BridgeWalker-v0

Figure 3: Effectiveness of Inter-Task Knowledge Transfer

4.3 ABLATION STUDIES

4.3.1 EFFECTIVENESS OF DIRECT

As shown in Table 2, the Diversity Reflection Mechanism fosters a robust increase in diversity com-
pared to an ablated version. It is further demonstrated in Figure 4 that the exploratory behaviors led
by DiRect also facilitate more efficient navigating of design spaces, leading to reduced susceptibility
to local optima and higher optimization efficiency. These results combine to underscore the distinct
superiority of DiRect to yield dual benefits in optimization efficiency and diversity by exploiting the
reasoning capabilities of LLMs.

Table 2: Ablative Results of Diversity

Walker-v0 Carrier-v0 Pusher-v0
LASeR 20.77 (4.77) 22.11 (3.88) 27.56 (1.66)
LASeR w/o DiRect 16.96 (1.38) 7.28 (1.13) 10.50 (1.04)
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Figure 4: Effectiveness of DiRect
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4.3.2 EFFECTIVENESS OF TASK-RELATED METADATA

As explained in Section 3.2, current LLM-aided evolutionary frameworks mostly lack sufficient
grounding in task-related background information, which potentially impedes their performances
in real-world applications. We test this conjecture by removing descriptions of task objectives and
simulation environment from our prompts, and see a significant performance drop (Figure 5(a)),
hence justifying our prompt design. For finer-grained ablations on individual components of our
prompt, please see Appendix M.

4.3.3 IMPACT OF LLM VERSION AND TEMPERATURE PARAMETER

Previous work has shown that the temperature parameter of LLMs has an unignorable influence
on evolutionary outcomes, with higher temperatures tending to yield better results (Pluhacek et al.,
2024). However, we observe a reverse effect where a lower temperature turns out slightly more
favorable (Figure 5(b)). We suspect that this is partly due to the complexity within VSR design,
which necessitates precise extrapolation from an ascending sequence of solutions. Any deviation
could lead to substantial performance drops, outweighing the benefits of random exploration. This
again underscores the superiority of our proposed DiRect mechanism, which resorts to more edu-
cated exploration strategies. Meanwhile, we note that the ablation studies with temperature as 1.5
fail similarity checks only about 70% as often as when temperature equals 0.7. In words, higher tem-
peratures would lead to greater but ineffective variability in candidate solutions so that they could
bypass diversity reflection. These results suggest that lower output temperatures are required for
our approach to work better. Additionally, we observe the same improvement resulted from more
up-to-date LLMs as in past literature (Figure 5(c)). This shows promise of robot design automation
directly benefiting from better language models, which puts us in a strategic position to ride the
wave of rapidly progressing LLMs.
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Figure 5: Additional ablation studies on Carrier-v0

5 CONCLUDING REMARKS

We present LASeR – Large Language Model-Aided Evolutionary Search for Robot Design Au-
tomation. With a novel diversity-oriented reflection mechanism termed DiRect, we elicit intelligent
exploratory behaviors from LLMs that reshape the exploration-exploitation tradeoff with dual im-
provements in optimization efficiency and diversity. We additionally propose to ground robot design
on rich task-related metadata and uncover the intriguing inter-task reasoning capabilities of LLMs to
foster generalizable design processes across different applications. Our experiments with simulated
voxel-based soft robots demonstrate superior performances of our approach compared to competitive
baselines. Scaling up LASeR for multi-task optimization would hopefully further harness the inter-
task reasoning abilities of LLMs to boost sample efficiency. The recent advancements in prompt
engineering, such as Chain-of-Thoughts (Wei et al., 2022) and Tree-of-Thoughts (Yao et al., 2024),
also hold promise for further unleashing the potential of LLMs in robot design automation and war-
rant further examination. Moreover, it is interesting to investigate how LLM-aided control strategies
(Wang et al., 2023a) could be integrated into our framework, so that LLMs are not only responsible
for action planning, but also enabled to design their own embodiments, hence exploiting the synergy
between design and control. We leave these for our future work. For more detailed discussions of
limitations and open problems for future research, please see Appendix P.
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ETHICS STATEMENT

This work uses simulated task environments which have been commonly used in previous research
of robot design automation and should not be regarded controversial. Our use of Large Language
Models is strictly confined to simulated robot design generation without real-world deployment, and
therefore does not involve any safety risks.

REPRODUCIBILITY STATEMENT

Our code is readily available on anonymous GitHub. This work uses GPT-3-turbo and GPT-4o-
mini, whose APIs are publicly accessible. However, due to the uncontrollable random generator
seeds behind close-source LLMs, experiments involving these models generally suffer from poor
reproducibility (Huang et al., 2024a). Developing reproducible methods for API calls would signif-
icantly improve the replicability of research outcomes involving Large Language Models.
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APPENDIX

A FULL PROMPTS

A.1 SYSTEM PROMPT FOR GENERATING OFFSPRING ROBOT DESIGNS

Now you will serve as an intelligent search operator in an Evolutionary Algorithm. In each generation

you are given a number of evaluated solutions in the format of numpy array, together with their fitness

scores. Each solution and its fitness score are separated by a comma. Different solutions are separated

by semicolons. The solutions are sorted according to their fitness scores in ascending order. Higher

fitness scores are better. Your job is to output a new solution that meets a desired fitness. Please

try your best to logically analyze the relationship between the evaluated solutions and their fitness

scores, and adhere to this information while proposing the new solution. A solution is a 5 times 5 matrix,

where each entry is an integer between zero and four. Please begin the new solution with <solution>

and end it with </solution>. The new solution should be formatted in numpy array fashion. The new solution

must be distinct from the evaluated solutions. Only generate the new solution. No explanation.

A.2 USER PROMPT FOR GENERATING OFFSPRING ROBOT DESIGNS (CARRIER-V0 AS AN
EXAMPLE)

## Description of VSRs

We are going to design the structure of a two-dimensional voxel-based soft robot (VSR) in a simulation

environment. VSRs are composed of square-shaped voxels of different types, aligned into a 5 * 5 matrix.

Adjacent voxels (that is, in either the same row or the same column) are connected together; Voxels

located in diagonal positions are not connected together. The robot is subject to gravity, and the bottom

row touches the ground. There are 5 types of voxels available, including soft voxels (for which elastic

deformation is possible), rigid voxels (which can not deform), horizontal and vertical actuators (which

can change their sizes horizontally or vertically), and empty voxels (which basically mean that the

corresponding position is empty). Empty voxels, rigid voxels, soft voxels, horizontal actuators and

vertical actuators are represented as 0, 1, 2, 3 and 4, respectively.

## Description of simulation environment

The simulation represents objects and their environment as a 2D mass-spring system in a grid-like layout,

where objects are initialized as a set of non-overlapping, connected voxels. The simulation converts

all objects into a set of point masses and springs by turning each voxel into a cross-braced square,

which may undergo deformation as the simulation progresses. The springs obey Hooke's law. Note that

adjacent voxels share point masses and springs on their common edge. All point masses in the simulation

have the same mass and the equilibrium lengths of axis-aligned and diagonal springs are constants for

simplicity. However, the spring constants assigned vary based on voxel material-type, with ties broken

in favor of the more-rigid spring. The actuators undergo gradual expansion/contraction either

horizontally or vertically according to action signals, by changing the lengths of the corresponding

springs.

## Task description

Your job is to propose robot designs suitable for completing the following task. A three-voxel wide

box is initialized right above the robot, and the robot is required to keep the box on top of its head

stably without letting it slip off, while locomoting rightwards as quickly as possible.

## Constraints

There are two constraints to VSR designs: 1. all voxels must form an entirety and should not fall apart;

That is, the four voxels, if any, above, below, to the left and to the right of a non-empty voxel mustn't

be empty at the same time. An example that violates such a constraint is

[[2,2,2,2,2],[1,0,1,0,1],[0,4,3,4,0],[1,3,1,0,1],[0,4,2,4,0]], in which the voxel '1' in the fourth

row and fifth column would fall off because it is not connected to any non-empty voxel; (2) there must

be at least one actuator (that is, either 3 or 4), so that the robot could interact with the environment.

## Additional requirements

Please carefully analyze the relationship between evaluated solutions and their fitness scores, and

make use of this information to propose the new solution. Please make use of empty voxels cleverly so

that complex functional substructures could be produced to fulfill the purposes of both carrying and

locomoting. Note that a high-performing robot design is not necessarily symmetric.

(elite design-fitness pairs omitted, sorted in ascending order)

## “Just-ask” query

Now please generate a new robot design that has a fitness of {str(1.2*current_max_fitness)}.
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## Description of VSRs

We are going to design the structure of a two-dimensional voxel-based soft robot (VSR) in a simulation

environment. VSRs are composed of square-shaped voxels of different types, aligned into a 5 * 5 matrix.

Adjacent voxels (that is, in either the same row or the same column) are connected together; Voxels

located in diagonal positions are not connected together. The robot is subject to gravity, and the bottom

row touches the ground. There are 5 types of voxels available, including soft voxels (for which elastic

deformation is possible), rigid voxels (which can not deform), horizontal and vertical actuators (which

can change their sizes horizontally or vertically), and empty voxels (which basically mean that the

corresponding position is empty). Empty voxels, rigid voxels, soft voxels, horizontal actuators and

vertical actuators are represented as 0, 1, 2, 3 and 4, respectively.

## Description of simulation environment

The simulation represents objects and their environment as a 2D mass-spring system in a grid-like layout,

where objects are initialized as a set of non-overlapping, connected voxels. The simulation converts

all objects into a set of point masses and springs by turning each voxel into a cross-braced square,

which may undergo deformation as the simulation progresses. The springs obey Hooke's law. Note that

adjacent voxels share point masses and springs on their common edge. All point masses in the simulation

have the same mass and the equilibrium lengths of axis-aligned and diagonal springs are constants for

simplicity. However, the spring constants assigned vary based on voxel material-type, with ties broken

in favor of the more-rigid spring. The actuators undergo gradual expansion/contraction either

horizontally or vertically according to action signals, by changing the lengths of the corresponding

springs.

## Task description

Your job is to propose robot designs suitable for completing the following task. A three-voxel wide

box is initialized right above the robot, and the robot is required to keep the box on top of its head

stably without letting it slip off, while locomoting rightwards as quickly as possible.

## Constraints

There are two constraints to VSR designs: 1. all voxels must form an entirety and should not fall apart;

That is, the four voxels, if any, above, below, to the left and to the right of a non-empty voxel mustn't

be empty at the same time. An example that violates such a constraint is

[[2,2,2,2,2],[1,0,1,0,1],[0,4,3,4,0],[1,3,1,0,1],[0,4,2,4,0]], in which the voxel '1' in the fourth

row and fifth column would fall off because it is not connected to any non-empty voxel; (2) there must

be at least one actuator (that is, either 3 or 4), so that the robot could interact with the environment.

## Additional requirements

Please carefully analyze the relationship between evaluated solutions and their fitness scores, and

make use of this information to propose the new solution. Please make use of empty voxels cleverly so

that complex functional substructures could be produced to fulfill the purposes of both carrying and

locomoting. Note that a high-performing robot design is not necessarily symmetric.

(elite design-fitness pairs omitted, sorted in ascending order)

## “Just-ask” query

Now please generate a new robot design that has a fitness of {str(1.2*current_max_fitness)}.

A.3 USER PROMPT OF DIRECT

The solution that you just generated is too similar with an existing one. It needs further modification

toimprovediversity. Please decidewhichvoxels in the solutioncanbe replaced byother types ofmaterials,

without harming its fitness score. Change no more than 3 voxels. Please base your analysis on the

characteristics of the evaluated solutions given to you. Meanwhile, make sure that the modification

does not violate the constraints of VSRs. Now please tell me which voxels exactly do you think can be

alterted, and explain the reason.

(LLM suggesting modifications)

Based on your analysis above, please generate the resulting solution. The number of voxels changed should

not exceed three. Do not provide further texual explanation.

A.4 USER PROMPT FOR INTER-TASK KNOWLEDGE TRANSFER (WALKER-V0→
BRIDGEWALKER-V0 AS AN EXAMPLE)

(Descriptions of VSRs, simulation environment and constraints are same as those in A.1 and therefore

omitted. )

We already have some high-performing robot designs from a task named 'Walker', where the robot is required

to locomote rightwards as quickly as possible on rigid flat terrain. The robot designs are as follows:

(Elite Walker-v0 designs omitted. )

Now your job is to propose ten high-performing robot designs for another task named 'BridgeWalker',

where the robot is required to locomote rightwards as quickly as possible on a soft rope-bridge rather

than rigid flat terrain. Please analyze the potential correlation between the two tasks, identify the

knowledge that can be transferred from Walker to BridgeWalker, and give ten robot designs that are suitable

for BridgeWalker. Give your answer in numpy array fashion. Enclose each design between <Solution> and

</Solution>.

B INTRODUCTION TO TASK INSTANCES

In this section, we briefly introduce the tasks we adopted for benchmarking in Evolution Gym. This
introduction is heavily borrowed from their original paper (Bhatia et al. 2021).

We first define some notations that would be used later.

• Position: Denote with po the position of the center of mass of an object o, which consists
of two components pox and poy , i.e. the positions on x and y axis. po is derived by averaging
the positions of all the point-masses that make up object o;

• Velocity: Denote with vo the velocities of the center of mass of an object o, which consists
of two components vox and voy , i.e. the velocity on x and y axis. vo is computed by averaging
the velocities of all point masses that make up object o;
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• Orientation: Denote with θo, a vector of length one, the orientation of an object o. Denote
the position of point mass i of object o as pi, and θo is computed by averaging over all i
the angle between the vector pi − po at current time and the initial state. This average is
weighted by ||pi − po|| in the initial state.

• Other observations: Let co be a vector of length 2n that describes the relative positions
of all n point masses of object o to the center of mass. Let ho

b(d) characterize the terrain
information around a robot below its center of mass. More specifically, for some integer
x ≤ d, the corresponding entry in vector ho

b(d) will be the highest point of the terrain which
is lower than poy between a range of [x, x+ 1] voxels from pox in the x-direction.

• Besides, we would denote the robot as object r, the box that it is trying to manipulate as
object b, the number of point masses in r as n, the observation vector as S, and the reward
function as R.

B.1 WALKER-V0

Figure 6: Walker-v0

In this task, the robot is required to walk as far as possible on flat terrain. S ∈ Rn+2 consists of vr
and cr with lengths 2 and n. R = ∆prx rewards the robot for moving in the positive x-direction. The
robot is also given a one-time reward of 1 for reaching the end of the terrain.

B.2 CARRIER-V0

Figure 7: Carrier-v0

In this task, the robot is required to catch a box initialized above it and carries it as far as possible.
S ∈ Rn+6 consists of vb, pb − pr, vr and cr with lengths 2, n, 2 and 2 respectively. R = R1 +R2,
where R1 = 0.5 · ∆prx + 0.5 · ∆pbx rewards the robot and the box for moving in the positive x-
direction, and R2 = 0 if pby ≥ ty and otherwise 10 ·∆pby penalizes the robot for dropping the box
below a threshold height ty . The robot is also given a one-time reward of 1 for reaching the end of
the terrain.

B.3 PUSHER-V0

Figure 8: Pusher-v0

In this task, the robot is required to push a box initialized in front of it. S ∈ Rn+6 consists of
vb, pb − pr, vr and cr with lengths 2, n, 2 and 2 respectively. R = R1 + R2, where R1 =
0.5 · ∆prx + 0.75 · ∆pbx rewards the robot and the box for moving in the positive x-direction, and
R2 = −∆|pbx − prx| penalizes the robot and the box for separating in the x-direction. The robot is
also given a one-time reward of 1 for reaching the end of the terrain.

B.4 BRIDGEWALKER-V0

In this task, the robot is required to walk as far as possible on a soft rope-bridge. S ∈ Rn+3 consists
of vr, θr and cr with lengths 2, 1 and n respectively. R = ∆prx rewards the robot for moving in
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Figure 9: BridgeWalker-v0

the positive x-direction. The robot is also given a one-time reward of 1 for reaching the end of the
terrain.

B.5 UPSTEPPER-V0

Figure 10: UpStepper-v0

In this task, the robot is required to mount stairs of varying lengths. S ∈ Rn+14 consists of vr, θr,
cr and hr

b(5) with lengths 2, 1, n and 11, respectively. R = ∆prx rewards the robot for moving in the
positive x-direction. The robot is given a one-time reward of 2 for reaching the end of the terrain,
and a one-time penalty of -3 for rotating more than 75 degrees from its original orientation in either
direction (after which the environment is reset).

C HYPERPARAMETER SETTINGS

Table 3: Hyperparameter settings
hyperparameter value

LASeR

robot size (height × width) 5× 5
upper limit of LLM interactions 200

probability of similarity check in DiRect 0.4
similarity threshold in DiRect no more than 20 identical voxels

percentage of survivors in natural selection linearly decreasing from 60% to 8%

PPO Policy Training

number of parallel sampling processes 4
number of time steps in each process 128

learning rate 2.5× 10−4

ϵ in the clip function of PPO 0.1
number of iterations 1000

number of epochs per iteration 4
number of mini-batches per epoch 4

λ in generalized advantage estimation (GAE) 0.95

D PROLONGED EXPERIMENTS OF LLM-TUNER

We re-implemented LLM-Tuner, the most competitive baseline, for 2000 robot evaluations, which
is double the number we employed in our original experiments. These experiments are intended
to further verify that our rapid convergence is neither due to local optima or unreasonably easy
task settings. Notably, as showcased in Figure 11, LLM-Tuner does not end up with higher fitness
levels than those achieved by LASeR, largely confirming that our algorithm has not been stuck in
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local optima. Meanwhile, the evidently slower convergence of LLM-Tuner, which is especially
pronounced in Walker-v0 and Pusher-v0, indicates that our fast convergence is more likely due to
the effectiveness afforded by LLM-aided evolution and diversity reflection mechanism, rather than
an artifact of task difficulty.
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(a) Walker-v0
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(b) Carrier-v0
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(c) Pusher-v0

Figure 11: LASeR (red) compared with LLM-Tuner (purple), when the latter is implemented for
2000 robot evaluations. The colored bands represent mean±1.96×standard deviation. The results
of LLM-Tuner are averaged across 3 independent runs, while those of LASeR are averaged over 5
runs.

E EVALUATION ON CATCHER-V0

We additionally performed comparison between LASeR and LLM-Tuner (the most competitive
baseline algorithm) on Catcher-v0, one of the most challenging task instances in EvoGym where
the robot is required to catch a fast-moving, rotating box. As shown in Figure 12, the advantage
of LASeR remains evident. Notably, despite staring with inferior initialization, LASeR is able to
swiftly catch up with and surpass LLM-Tuner. We plan to continue with our evaluations on more
complex tasks to fully demonstrate the effectiveness of LASeR.

0 200 400 600 800 1000
Number of Evaluations

−0.25

0.00

0.25

0.50

0.75

M
ax

im
al

 F
itn

es
s

Figure 12: Comparison of LASeR (red) and LLM-Tuner (purple) on Catcher-v0. The experimental
results are averaged across three independent runs.

F COMPARISON WITH RANDOM VOXEL EDITING

To further showcase the effectiveness of our diversity reflection mechanism (DiRect), we re-
implemented our experiments with DiRect replaced by random voxel mutations. Specifically, we
implemented random editing by substituting the diversity reflection (DiRect) mechanism with ran-
dom voxel mutation, which is supported by a built-in function of EvoGym. Specifically, we found
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that the number of voxels edited by DiRect in each design is about 2.61 on average. Thus, for ran-
dom mutation, we set the mutation rate to be 0.1, i.e. each voxel will, with a probability of 0.1,
be randomly replaced by a different material. Given that a robot design consists of 25 voxels, this
results in 2.5 voxels being edited on average, which we believe is reasonably close to DiRect editing.

We conducted a paired two-tailed Student’s t-test, and found that the fitnesses of randomly mutated
robot designs are significantly lower than their pre-editing counterparts (p < 0.001). In contrast,
the fitnesses of robot designs before and after DiRect modification show no significant difference
(p = 0.19). The evolution with random editing also suffers from reduced optimization efficiency
(Figure 13), as the stochastic exploratory behavior often disrupts essential functional structures.
LLM-aided diversity reflection, on the other hand, holds a distinct “informed” nature. Specifically, it
builds on successful designs discovered along the evolutionary trajectory, and promotes exploration
without compromising functionality.
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Figure 13: Comparison between diversity reflection (red solid line) and random editing (red dashed
line). It is worth noting that LASeR w/ DiRect was able to swiftly catch up with and surpass LASeR
w/ random editing, despite the inferior initialization.

For illustrative purposes, here we present two examples of diversity reflection, including both the
pre- and post-editing morphologies, along with explanations provided by the LLM for its modifica-
tions. It can be seen from Figure 14 that the LLM is indeed able to identify critical substructures
within robot designs, and modifies only the voxel placements that do not affect functionality, yet
promote diversity. These results provide sound evidence that DiRect is reliably functioning as an
intelligent mutation operator.

G COMPARISON WITH TWO ADDITIONAL BASELINES

In response to the reviewers’ suggestions, we conducted comparative studies between LASeR and
two additional baseline algorithms. The first one is OPRO (Yang et al., 2024), another evolutionary
strategy that uses LLMs as search operators, which we adapted for voxel-based soft robot (VSR)
design. The second one is MorphVAE (Song et al., 2024a), a state-of-the-art co-design algorithm
that does not employ LLMs but is also developed on the EvoGym platform.

As shown in Figure 15, LASeR consistently outperforms the two baselines in terms of optimiza-
tion efficiency, reflected by its steeper fitness curves. Here we would like to clarify that we have
deliberately chosen a sufficiently large number of robot evaluations, i.e. 1000, to hopefully allow
all algorithms to converge for fair comparison. This explains why different algorithms end up with
rather similar fitness levels. However, in the context of robot design automation, the convergence
rate is an important aspect for evaluating design algorithms, as the evaluation of robot designs usu-
ally involves computationally expensive control learning, let alone the manufacturing costs of phys-
ical robots when deployed in real-world application. In this regard, LASeR exhibits considerable
performance gains.
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(a) An example of DiRect modifications on Walker-v0

(b) An example of DiRect modifications on Pusher-v0

Figure 14: Illustrative examples of DiRect modifications. Each example includes the pre- (left) and
post- (right) editing designs, together with the modifications and justifications provided by an LLM
to enhance morphological diversity.

Furthermore, as demonstrated in Table 4, LASeR achieves the highest diversity in two out of four
tasks, while MorphVAE is dominant in the remaining two tasks. Despite the competitive perfor-
mance of MorphVAE, we note that LASeR holds distinct advantages: (a) with the novel diversity
reflection mechanism, LASeR is capable of achieving a more favorable trade-off between opti-
mization efficiency and diversity, whereas MorphVAE proposes two variants, each of which focuses
on one aspect and compromises the other; (b) MorphVAE leverages a variational autoencoder to
approximate the high-performing robot distribution and generate offspring solutions, which lacks
interpretability. On the contrary, LASeR can instruct an LLM to explicitly explain its design choices
and thus provide valuable insights of robot design (see Appendix J). LASeR is also capable of more
intelligent knowledge transfer across different tasks, utilizing the reasoning capabilities of LLMs.
Furthermore, the inferior diversity outcomes of OPRO once again reveal the inefficiency of LLMs to
balance exploitation with exploration on their own, and highlight the significance of our proposed
diversity reflection mechanism.
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Figure 15: Comparison between LASeR (red), MorphVAE (blue) and OPRO (green) in terms of
optimization efficiency. Both MorphVAE and OPRO were implemented 3 times independently. In
the original paper of MorphVAE (Song et al., 2024a), two variants are proposed that focus on either
optimization efficiency or diversity. We take an average of them to reflect the overall performance
of MorphVAE. This is also the case for Table 4.

Table 4: Comparison between LASeR, MorphVAE and OPRO in terms of diversity. The results are
reported as mean±standard deviation.

Walker-v0 Carrier-v0 Pusher-v0 Catcher-v0
LASeR (ours) 23.09 (5.33) 20.87 (4.27) 20.91 (8.85) 6.15 (1.33)
MorphVAE 16.2 (N/A) 33.16 (16.59) 18.18 (12.48) 11.00 (3.09)
OPRO 20.77 (7.34) 5.06 (2.49) 9.55 (2.92) 6.76 (N/A)

H ADDITIONAL REPEATED EXPERIMENTS

In response to reviews’ suggestions, we conducted two more sets of repeated experiments on LASeR
and LLM-Tuner (the most competitive baseline), and now present the averaged results from a total
of 5 repeated experiments. As demonstrated in Figure 16, the advantageous optimization efficiency
of LASeR remains obvious. We also conduct hypothesis testing (specifically two-tailed t-test) to
prove statistical significance. Since in this work we have chose a sufficiently large number of robot
evaluations (i.e. 1000) to give ample opportunity to all algorithms to converge, it becomes more
relevant to compare the convergence speed rather than entire fitness curves. To this end, we first
average the eventual fitness values obtained by all repeated experiments (denoted as f ) within a
given task, and then record the number of evaluations that each experiment took to reach this average
fitness (denoted as n). For those that did not reach f , n is simply recorded as 1000. We then conduct
a two-tailed t-test to compare the n’s of different algorithms. For Carrier-v0, f is 10.69, and n
is on average 719.2 and 979 for LASeR and LLM-Tuner, respectively (p =0.029). For Pusher-
v0, f is 12.95, and n is on average 528 and 888.6 with p =0.054. For Walker-v0, since none
of the experiments of LLM-Tuner reach f=10.65, we instead compare the eventual fitness values
achieved by LASeR and LLM-Tuner, which are on average 10.67 and 10.63, with p <0.001. Since
we are comparing against the best-performing baseline, we believe the above analysis confirms the
significant advantage of LASeR in terms of optimization efficiency.
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The morphological diversity achieved by LASeR remains higher than LLM-Tuner on average (Table
5). However, we note that both LASeR and LLM-Tuner exhibit relatively high variability in their
diversity outcomes, suggesting that even more repetitions would be needed to establish statistical
significance. To this end, we will continue with additional repeated experiments.
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(a) Walker-v0
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(b) Carrier-v0
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(c) Pusher-v0

Figure 16: Comparison between LASeR (red) and LLM-Tuner (purple) based on five repeated ex-
periments, in terms of optimization efficiency. The colored bands represent mean±1.96×standard
deviation. We will continue with the remaining baselines and include the complete results in our
paper once they are available.

Table 5: Comparison between LASeR and LLM-Tuner in terms of morphological diversity, based
on five repeated experiments. The results are reported as mean±standard deviation.

Walker-v0 Carrier-v0 Pusher-v0
LASeR (ours) 23.09 (5.33) 20.87 (4.27) 20.91 (8.85)
LLM-Tuner 11.60 (4.35) 18.26 (6.00) 14.17 (6.83)

I EVALUATION ON 10X10 WALKER-V0

In this work, we adhered to the standard setup used in previous VSR studies, specifically a 5x5
body size with five different materials, as this configuration is proven already expressive enough for
complex and diverse morphological structures to emerge (Song et al., 2024a; Saito & Oka, 2024;
Dong et al., 2023; Wang et al., 2023a;b). Nevertheless, to evaluate the scalability of our approach
to larger design spaces, we tested both LASeR and LLM-Tuner (the best-performing baseline) on
Walker-v0 with a 10x10 body size. Our findings, as presented in Figure 17, demonstrate that LASeR
continues to outperform the baseline in terms of optimization efficiency, even in this larger design
space. We attribute this success to the unique advantage of LLMs. Specifically, LLMs leverage
their reasoning capabilities to identify favorable voxel assembly patterns within high-performing
designs, instead of relying on random mutations (as seen in genetic algorithms and other heuristics),
to generated offspring solutions. This is also demonstrated in Appendix F and J, where we show
that LLMs are able to provide justifications for their decision making when generating offspring
solutions and carrying out diversity reflection. It is worth noting that the 10x10 configuration
results in a design space that is 2.65× 1052 times larger than the 5x5 case, due to combinatorial
explosion. Therefore, the promising results indicate a remarkable potential of our approach to scale
to even larger and more complex robot design problems.

J LLM’S INTERPRETATION OF ROBOT DESIGN

In our preliminary experiments, we included explicit LLM reasoning, where the LLM was prompted
to explain its design choices (similar to chain-of-thought). However, we observed no significant per-
formances gains by doing so, and therefore opted to remove the reasoning process to speed up
evolution and save computational costs. Nevertheless, we would like to clarify that our approach
is capable of affording higher interpretability. This can readily be achieved by explicitly in-
structing the LLM to explain its decision-making process, rather than serving as a black box. We
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Figure 17: Comparison of LASeR (red) and LLM-Tuner (purple) on 10x10 Walker-v0. The current
results are averaged across two independent runs. We plan to conduct three runs but there remains
one of them unfinished. We would include the complete results once they are available. For reader’s
reference, we notice that our experiments on 10x10 Walker-v0 take on average 1.5 times longer
than the 5x5 case.

provide in Figure 18 the output generated by GPT-4o-mini after receiving a collection of high-
performing Catcher-v0 designs and instructed to generate a new one with higher performance. The
explanations provided are insightful and reasonable, revealing the advantageous structures present
in high-performing designs. This suggests that LLMs are indeed able to align specific voxel assem-
bly patterns with high performance, and leverage these principles to generate improved offspring
solutions.

K VISUALIZATION OF EVOLVED ROBOT DESIGNS

Following reviewers’ suggestions, here we provide visualizations of robot designs evolved by
LASeR and baseline algorithms. We take Pusher-v0 as an example, and randomly select five high-
performing robot designs obtained by each algorithm in a single run of experiment. It can be seen
from Figure 19 that the robot designs evolved by LASeR seem to exhibit the highest level of vari-
ability. However, we would like to make two notes here. First, as we are only able to display a small
fraction of robot designs, this visualization could only serve as a qualitative and intuitive verification
of results presented in Section 4.2.1, rather than a valid means of evaluation on its own. Second,
as we detailed in Appendix L, the number of evolved high-performing designs should also be taken
into account when measuring morphological diversity. To this end, we believe the quantitative
results reported in Section 4.2.1 still serve as the most comprehensive and reliable evaluation
of diversity.

L FURTHER DISCUSSION ON DIVERSITY MEASUREMENT

Diversity is an important aspect for evaluating robotic systems and, in turn, the performance of robot
design algorithms, as diversified design alternatives are crucial for handling dynamic environments
and increasing robustness of robotic systems. To our knowledge, previous studies have predomi-
nantly employed two methods for quantifying diversity: (a) averaged measures of distinctiveness
within a group of robots, such as per-voxel entropy (Song et al., 2024a) and pair-wise edit distance
(Saito & Oka, 2024); (b) manual categorization of robot designs into distinct classes, followed by
the calculation of the Simpson index, which is analogous to an entropy measure of class distribution
(Medvet et al., 2021). The latter method becomes impractical when dealing with more abstract mor-
phologies without clear subpopulations. The former, on the other hand, presents a paradox (Figure
20): including a new robot design into an existing collection can reduce diversity, even if the new
design is distinct, provided that it falls within the distribution of this collection. Here, by “falling
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Figure 18: The LLM-generated output on Catcher-v0. In this example, the LLM is prompted to
explain its decision-making process when generating a new robot design.

within the distribution” we mean that the distance between the new design and existing ones is on
average smaller than that within the original collection.

To address the above issue, we incorporate the number of distinct robot designs into our measure-
ment as a correction. Thus, our two measures – edit distance (measuring the distinctiveness of
evolved designs) and the number of distinct designs – complement each other, providing a more
comprehensive and reasonable characterization of diversity. However, we acknowledge that the
weights assigned to these quantities (1.0 and 0.1) are somewhat expedient and primarily intended
to bring them onto the same scale. This is based on our preliminary experiments where we found
that the number of distinct high-performing designs obtained in a single run of experiment typi-
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Figure 19: Visualizations of evolved high-performing robot designs on Pusher-v0. For each algo-
rithm, five designs are randomly chosen for display. Annotated on the right are total numbers of
high-performing designs obtained. The result of RoboGAN is absent because it fails to obtain robot
designs that surpass the fitness threshold (i.e. the 90% quantile of fitnesses achieved by all algo-
rithms).

Figure 20: A paradox with diversity measurement. The inclusion of a new, distinct robot design
decreases, rather than increases, the diversity when solely measured as the edit distance. This is
counter-intuitive as the addition of a distinct alternative should benefit diversity.

cally ranged from several dozens to around two hundred, while the edit distance is defined to range
between 0 and 25. Given the lack of universally accepted metrics for measuring morphological
diversity, we hope our approach could inspire future work to devise even more reasonable and com-
prehensive approaches.

We additionally provide both the separate measures of diversity (Table 6 and 7) and their weighted
average (Table 8). These results also include two additional SOTA baselines and Catcher-v0 (a
hard task). Our finding suggests that LASeR has more of a advantage in discovering distinct high-
performers than achieving high averaged edit distance. We cannot actually state which approach
is more favorable, as both benefit diversity in their own way. However, combining the results of
optimization efficiency (i.e. the fitness curves), it is clear that LASeR better balances exploration
with exploitation.

Meanwhile, as we pointed out above, we believe that the results in Table 7 are somewhat misleading,
because edit distance in itself does not suffice as a valid diversity metric. Even if a group of robot
designs has another group as its subset, the former might still have a lower edit distance (even much
lower, due to the paradox in Figure 20). The comparative results in Table 7 might not be in our favor,
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but we choose to display them to reveal an open problem regarding diversity measurement and
hopefully inspire future work to investigate further.

We additionally come up with yet another diversity metric – the total number of different voxels
between all pairs of high-performing robots (i.e. edit distance without being averaged). We
believe this metric more naturally aggregates distinctiveness and number of distinct high performers
without needing pre-specified weighting coefficients, thus benefiting from better interpretability.
The results are reported in Table 9, which show that LASeR ranks first in Walker-v0 and second in
the remaining tasks. The major competitor here is MorphVAE, which achieves an average rank of
2.5 across four tasks. LASeR, on the other hand, achieves 1.75. This means that, according to this
newly proposed metric, LASeR still achieves the highest overall diversity.

Table 6: Comparative Results of Aggregated Diversity

Walker-v0 Carrier-v0 Pusher-v0 Catcher-v0
BO N/A 8.35 (N/A) 11.31 (N/A) 19.35 (1.15)
SE 5.40 (0.30) 15.84 (0.77) 6.61 (3.45) 14.13 (2.90)
RoboGAN N/A 10.94 (N/A) N/A 18.46 (1.74)
LLM-Tuner 11.60 (4.35) 18.26 (6.00) 14.17 (6.83) 13.89 (7.32)
MorphVAE 16.20 (N/A) 33.16 (16.59) 18.18 (12.48) 11.00 (3.09)
OPRO 20.77 (7.34) 5.06 (2.49) 9.55 (2.92) 6.76 (N/A)
LASeR(ours) 23.09 (5.33) 20.87 (4.27) 20.91 (8.85) 6.15 (1.33)

Table 7: Comparative Results of Average Edit Distance

Walker-v0 Carrier-v0 Pusher-v0 Catcher-v0
BO N/A 6.65 (N/A) 9.61 (N/A) 19.00 (1.00)
SE 3.95 (0.55) 12.31 (3.23) 5.87 (3.61) 13.33 (2.58)
RoboGAN N/A 10.64 (N/A) N/A 18.21 (1.79)
LLM-Tuner 8.23 (1.79) 12.76 (1.69) 9.54 (3.42) 13.33 (7.21)
MorphVAE 16.00 (N/A) 9.04 (3.36) 8.03 (3.72) 9.90 (4.00)
OPRO 5.52 (1.34) 4.03 (1.63) 3.92 (0.27) 5.56 (N/A)
LASeR(ours) 6.51 (0.09) 4.67 (0.34) 5.07 (0.43) 4.82 (0.67)

Table 8: Comparative Results of the Number of Distinct High-Performing Designs

Walker-v0 Carrier-v0 Pusher-v0 Catcher-v0
BO N/A 17.00 (N/A) 17.00 (N/A) 3.50 (1.50)
SE 14.50 (2.50) 35.33 (33.71) 7.33 (4.50) 8.00 (3.27)
RoboGAN N/A 3.00 (N/A) N/A 2.50 (0.50)
LLM-Tuner 33.75 (41.54) 55.00 (67.02) 46.25 (70.90) 5.67 (1.70)
MorphVAE 2.00 (N/A) 241.17 (179.83) 101.50 (133.73) 11.00 (10.18)
OPRO 152.50 (38.50) 10.33 (11.09) 56.33 (22.95) 12.00 (N/A)
LASeR(ours) 165.80 (53.09) 162.00 (43.23) 158.40 (88.68) 13.33 (8.34)

M FINER-GRAINED ABLATION ON PROMPT DESIGN

The prompt used in our study consists of three major components: task-related metadata, elite
design-fitness pairs, and target fitness.
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Table 9: Comparative Results of Total Edit Distance (Measured in Thousands)

Walker-v0 Carrier-v0 Pusher-v0 Catcher-v0
BO N/A 0.09 (N/A) 0.13 (N/A) 0.01 (0.01)
SE 0.53 (0.13) 5.08 (3.58) 0.84 (0.91) 3.92 (3.66)
RoboGAN N/A 0.01 (N/A) N/A 0.02 (0.01)
LLM-Tuner 1.10 (1.80) 4.09 (7.42) 2.77 (4.78) 0.02 (0.02)
MorphVAE 0.00 (N/A) 37.46 (32.06) 10.56 (18.23) 0.05 (0.07)
OPRO 7.57 (4.88) 0.06 (0.09) 0.72 (0.44) 0.04 (N/A)
LASeR(ours) 9.83 (5.45) 6.62 (3.55) 8.48 (6.24) 0.06 (0.07)

Note: LASeR ranks first in Walker-v0 and second in the remaining tasks. The major competitor here is
MorphVAE, which achieves an average rank of 2.5 across four tasks. LASeR, on the other hand, achieves
1.75. This means that, according to total edit distance, LASeR still achieves the highest overall diversity.

• The task-related metadata primarily includes descriptions of task objectives and the sim-
ulation environment. This component is largely derived from the official documents of
EvoGym (Bhatia et al., 2021), with minimal modifications. This metadata, which is often
overlooked in previous works on LLM-aided robot design, serves two main purposes: to
ground the evolutionary process in the specific context of the problem, and to facilitate the
transfer of knowledge between different tasks.

• The second component consists of elite design-fitness pairs previously evaluated, where
the designs are sorted according to their fitness in ascending order. This sorting is intended
to leverage the pattern-completion capabilities of LLMs, a technique shown to be effective
in prior research (Lange et al., 2024; Yang et al., 2024).

• The third component, the target fitness (also referred to as the “just-ask query” in Lim
et al. (2024)), is introduced as a means of aligning the LLM’s outputs with our desired
results.

We have demonstrated the indispensability of task-related metadata in Section 4.3.2. To further jus-
tify our prompt design and to complement the intuitive explanations provided above, we conducted
finer-grained ablation studies and the results are reported in Figure 21. Specifically, we remove the
following components one at a time: (a) the description of the simulation engine; (b) the description
of task objectives; (c) the just-ask query (or target fitness); in this case, the LLM is simply prompted
to generated robot designs with higher fitness; and (d) the ascending ordering of elite design-fitness
pairs according to fitness. Our findings suggest that removing any of these components leads to
performance drops. The just-ask query is proven the most essential, while simulation description
and ordering play less important roles.
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Figure 21: Finer-grained ablation studies on prompt design.

We would like to note that the phrasing of these components is intentionally left simple and intu-
itive, without applying special techniques of prompt engineering. As such, our experimental results
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possess a certain level of robustness and do not hinge on the specifics of prompt designs. However, it
would be a promising direction to integrate various prompting techniques, such as chain-of-thought
(Wei et al., 2022) and tree-of-thought (Yao et al., 2024), into our framework for better performances.

N FURTHER DISCUSSION ON THE SIMILARITY THRESHOLD

In our diversity reflection mechanism (DiRect), a similarity threshold is needed to decide whether a
newly generated robot design is overly similar to existing ones and therefore should undergo modi-
fications by diversity reflection. This threshold is indeed a crucial hyper-parameter that controls the
performance of LASeR. The choice of this threshold reflects the extent of diversity that one expects
to see in the evolved solutions, and hence should be driven by the user’s specific preferences.
For instance, setting it as 20 (as we did in our experiments) means that if a newly generated design
shares more than 20 identical voxels with any existing solution, it will be modified by DiRect to
introduce more variability.

Here, we present some general principles for choosing this parameter. These principles are sup-
ported by our additional experiments with several different values of threshold (as shown in Fig-
ure 22). High similarity thresholds, like threshold=23, are generally not recommended, as they
would hinder the beneficial exploration enabled by LLMs. Conversely, excessively low thresholds
(such as threshold=15) might increase diversity but also risk overly aggressive exploration that com-
promises functionality and, in turn, harms optimization efficiency. We believe this is due to the
poor extrapolation performance of LLMs when required to propose robot designs that are much
different from given examples. Any moderate values in the middle should lead to desirable per-
formances. In fact, our findings suggest that a threshold of 18 leads to further performance gains
beyond 20, which we have chosen in our study. However, we note that lower thresholds also more
frequently trigger DiRect, which means more LLM API calls. Hence, the threshold choice also in-
volves a trade-off between evolutionary performance (including both optimization efficiency and
diversity) and computational costs, and should be considered case by case. We believe adaptive
threshold scheduling, based on problem specifics and evolutionary outcomes, could be a promising
direction for future research.
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Figure 22: Additional experiments with several different similarity thresholds. The diversity results
of these experiments are N/A, 28.51, 23.09, and 13.46 in the order of 15, 18, 20 and 23. The diversity
is not available for 15 because the corresponding experiment failed to generate more than one high-
performing robot designs.

O GENERALIZATION ACROSS DIFFERENT TASKS

In Section 4.2.2, we focused on transferring design experience between task instances that are in-
tuitively similar (i.e. Walker-v0, BridgeWalker-v0 and UpStepper-v0). These experimental designs
are largely based on the structural similarities between tasks as revealed in Wang et al. (2023b). Here
we demonstrate that this prior knowledge of task relationships is not strictly necessary for success-
ful inter-task generalization. Specifically, we performed an additional zero-shot design experiment

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(Figure 23) where the LLM was given elite samples of Walker-v0, but instructed to propose designs
for a significantly different task, Jumper-v0, in which the robot is required to jump as high as possi-
ble. Despite the discrepancy between task objectives, we find that the LLM is able to dig deeper into
the underlying inter-task associations and identify rather general, low-level design principles that are
still relevant to the new task. Moreover, the zero-shot designs generated by LLM still outperform
randomly sampled ones. See Figure 24 for visualizations of some elite Walker-v0 designs, together
with a Jumper-v0 design generated by LLM. These findings suggest that LLMs possess substantial
potential for generalizing experience across seemingly different optimization problems, as long as
they share some common ground and are not completely irrelevant to one other (such as robot design
and the Traveling Salesman Problem).

Figure 23: Additional zero-shot design experiment on Jumper-v0. The zero-shot performance is
averaged over 10 robot designs for both random sampling and LLM proposals. Despite the task
discrepancy, the LLM is still able to identify general principles, such as the importance of actuators
for shape change and rigid voxels for stability, to transfer to the new task.

Figure 24: A visualization of some elite Walker-v0 designs (left), and the Jumper-v0 design gen-
erated by LLM (right). The Jumper-v0 design seems different than its Walker-v0 counterparts, but
they still share some underlying design principles, such as rigid voxels in the bottom row, soft
voxels in the middle rows and well-distributed mass. These features largely mirror the analysis by
LLM in Figure 23.

P FURTHER DISCUSSION ON LIMITATIONS AND FUTURE WORK

In response to reviewers’ suggestions, here we expand the discussion of limitations within this work,
and outline several open problems that we find promising for future research.

• In this work, we developed our approach on voxel-based soft robots (VSRs), and adhered
to the 5x5 body size commonly adopted in previous VSR studies. However, we would like
to note that our approach is conceptually adaptable to larger design spaces (as verified in
Appendix I) and potentially other types of robots. We look forward to seeing our LLM-
based evolutionary framework evaluated in more extensive and complex design problems.
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• Regarding inter-task generalization, we focused on intuitively similar tasks in our paper.
However, we proved that this prior knowledge of task relationships is not necessary for
successful transfer of design experience (as demonstrated in Appendix O). It would be
promising to investigate how this inter-task reasoning capability of LLMs could be lever-
aged in a broader range of optimization problems.

• Currently, we employed LLMs in the most cost-effective way for robot design automa-
tion, that is, through in-context learning (or instruction tuning). It remains to be studied
whether fine-tuning LLMs could lead to further performance gains. To our knowledge,
fine-tuning Large Language Models typically involves substantially higher costs, both in
terms of computational resources and the need of a sufficiently large and carefully curated
dataset. However, performance might not be guaranteed due to issues like overfitting and
catastrophic forgetting. Nevertheless, the prospect of a general-purpose LLM fine-tuned for
various combinatorial optimization problems is intriguing, and represents an open problem
for future research.

• In this work, we followed the standard control learning approach used in previous EvoGym-
based studies, i.e., PPO algorithm with MLPs serving as control networks. Since our pri-
mary focus is on the evolutionary capabilities of LLMs, we chose this simple yet effective
approach for fitness evaluation. That being said, a broad range of alternatives, such as
value-based methods and differential simulations (Strgar et al., 2024; Cochevelou et al.,
2023), could be tried out, with their impact on LLM-aided evolution examined. We also
find it an interesting direction to integrate LLM-aided control strategies (such as those in
Wang et al. (2023a), Brohan et al. (2023) and Cheang et al. (2024)) into our framework, so
that LLMs are capable of both designing and controlling their own embodiments.

• Morphological diversity is an important aspect for evaluating robot design algorithms, as
diversified designs are crucial for ensuring the robustness of robotic systems in highly
volatile environments. We pointed out the limitations of previous diversity measures in
Appendix L and proposed to make a correction by taking both distinctiveness and the num-
ber of distinct designs into account. We hope our work could inspire future work to develop
even more reasonable and hopefully universally acceptable metrics for diversity.

Q AN ANALYSIS OF COMPUTATIONAL EFFICIENCY

According to the data released on LLM Leaderboard (https://artificialanalysis.ai/leaderboards/models),
for GPT-4o-mini, the median rate of output token generation is 99.8 tokens per second, and the
latency (i.e. time to first token) is reported as 0.5 seconds. Given that LASeR makes an average of
130 API calls per generation, with each call involving approximately 180 output tokens (here we
assume the worst case where each newly generated robot design triggers DiRect), this results in an
overhead of around 5 minutes per generation, or 5 hours in total.

The latency issue could be mitigated with locally deployed LLMs, which are less affected by net-
work delays and request queuing. However, we believe it is more pertinent to compare the overall
running time of different methods, with optimization efficiency taken into account. Specifically,
by checking the log messages of our programs, we find that, for Carrier-v0, in order to reach the
same level of fitness, LASeR requires 7 hours, in contrast to the most competitive baseline, LLM-
Tuner, which takes 15 hours. For Pusher-v0, the difference is greater: LASeR requires 11 hours,
whereas LLM-Tuner takes 46 hours. On Walker-v0, LASeR is even capable of reaching a fitness
unattainable by baselines. Hence, the rapid convergence enabled by LLMs outweighs the addi-
tional computation overhead, rendering the latter perfectly worthwhile.

R PSEUDO CODE OF LASER
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Algorithm 1: LASeR: LLM-Aided Evolutionary Search for Robot Design Automation
Input: A task instance T , maximum number of evaluations M , population size N , survival

rate r, maximum number of LLM interactions in each generation L, probability of similarity
check p, similarity threshold s.

Output: M robot designs together with their fitness scores.
Randomly initialize a population P . //Or initialize with zero-shot proposals from LLM
S ← P //S keeps all the evaluated robot designs and their fitness scores
Warm start with several generations of a traditional EA.
while |S| < M do

attempts← 0 //Track the number of LLM interactions
P ← the top N × r robot designs among P; survivors← P //Natural selection
while |P| < N and attempts < L do

target fitness← max fitness(S)×1.2 //Calculate target fitness as 1.2 × current max
prompt← {metadata of task T , survivors in ascending order, target fitness}
robot← LLM(prompt) //Query the LLM for a new offspring solution
attempts← attempts+ 1
u ∼ U(0, 1)
if u < p then

//Enter similarity check with probability p
Check the similarity rate s′ of robot to existing robot designs.
if s′ < s then
P ← P

⋃
{robot} //Pass the similarity check

else
robot←DiRect(robot) //Modify with Diversity Reflection Mechanism
Check the similarity rate s′ of robot to existing robot designs.
if s′ < s then
P ← P

⋃
{robot} //Pass the similarity check after modification

if |P| < N then
//LLM has not generated enough robots
Generate the remaining offspring with the traditional EA.

for robot in P do
//Control optimization and fitness evaluation
if robot not in survivors then

Optimize a controller for robot. Evaluate the cumulative reward as its fitness f .
S ← S

⋃
{(robot, f)}

Return: S
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