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ABSTRACT

Learning-based image matching critically depends on large-scale, diverse, and ge-
ometrically accurate training data. 3D Gaussian Splatting (3DGS) enables photo-
realistic novel-view synthesis and thus is attractive for data generation. However,
its geometric inaccuracies and biased depth rendering currently prevent robust
correspondence labeling. To address this, we introduce MatchGS, the first frame-
work designed to systematically correct and leverage 3DGS for robust, zero-shot
image matching. Our approach is twofold: (1) a geometrically-faithful data
generation pipeline that refines 3DGS geometry to produce highly precise corre-
spondence labels, enabling the synthesis of a vast and diverse range of viewpoints
without compromising rendering fidelity; and (2) a 2D-3D representation align-
ment strategy that infuses 3DGS’ explicit 3D knowledge into the 2D matcher,
guiding 2D semi-dense matchers to learn viewpoint-invariant 3D representations.
Our generated ground-truth correspondences reduce the epipolar error by up to 40
times compared to existing datasets, enable supervision under extreme viewpoint
changes, and provide self-supervisory signals through Gaussian attributes. Con-
sequently, state-of-the-art matchers trained solely on our data achieve significant
zero-shot performance gains on public benchmarks, with improvements of up to
17.7%. Our work demonstrates that with proper geometric refinement, 3DGS can
serve as a scalable, high-fidelity, and structurally-rich data source, paving the way
for a new generation of robust zero-shot image matchers.

1 INTRODUCTION

Reliable pixel-level correspondences are fundamental to modern 3D vision, supporting applications
from classical Structure-from-Motion (SfM) (Schonberger & Frahm, 2016) and SLAM (Campos
et al., 2021) to recent advances in 4D reconstruction (Jin et al., 2024; Chen et al., 2025) and radiance
field rendering (Mildenhall et al., 2021; Kerbl et al., 2023). This task of image matching has seen
a paradigm shift from hand-crafted methods like SIFT (Lowe, 2004) to learning-based approaches
such as SuperGlue (Sarlin et al., 2020) and LoFTR (Sun et al., 2021), which now define the state-of-
the-art. However, the success of deep learning approaches critically depends on the scale, diversity,
and accuracy of their training data.

For years, datasets like ScanNet (Dai et al., 2017a) and MegaDepth (Li & Snavely, 2018), captured
with depth sensors or reconstructed via SfM, have been the primary sources for geometric super-
vision. Despite their quality, they are limited in scene and viewpoint diversity. Recent efforts like
GIM (Shen et al., 2024) and L2M (Liang et al., 2025) have sought to expand data availability by
generating pseudo or synthetic labels from large-scale video or image collections. While increasing
data volume, their sampled viewpoints remain constrained by photographers’ views and lack the
global geometric consistency of a fully reconstructed 3D scene. Such dense and globally consis-
tent supervision remains invaluable, as it provides the unambiguous, geometrically-grounded signal
necessary for learning a coherent matching policy robust to variety on viewpoint and surface texture.

Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has demonstrated strong capabilities
in high-fidelity novel view synthesis. It is naturally suited as a data generation pipeline for image
matching due to its support for free-viewpoint sampling. From a reconstructed 3DGS scene, we
can generate a virtually infinite dataset by freely controlling camera poses, intrinsics, and inter-frame
overlap. This allows for the targeted synthesis of challenging cases, such as extreme viewpoint,
large zoom-in/zoom-out variations, and very low overlap, that are rare in real-world datasets and
crucial for improving model robustness. Furthermore, the Gaussian primitives provide an explicit
3D representation, opening the door to training image matchers that are inherently 3D-aware.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝛼 − 𝐵𝑙𝑒𝑛𝑑𝑖𝑛𝑔 Inaccurate Adhering 
Biased Depth 

𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑃𝑙𝑎𝑛𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑃𝑙𝑎𝑛𝑒&𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒Better Adhering 
Unbiased but 
Blocky Depth 

Accurate Adhering 
Unbiased Depth 

Rare View Artifacts 

Accurate Adhering 
Unbiased Depth   

Rare View Quality 

3𝐷𝐺𝑆 
 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑆𝑐𝑒𝑛𝑒

𝑃𝑟𝑒 −
𝑅𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔 

𝐶ℎ𝑒𝑐𝑘𝑠

𝑉𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

𝐷𝑒𝑝𝑡ℎ 
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑇𝑟𝑎𝑖𝑛 𝑉𝑖𝑒𝑤𝑠

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 
𝑉𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑟𝑎𝑖𝑛 
𝑉𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡𝑠

𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠

Rendered
Depth

GT 
Surface

➢ 𝐼𝑚𝑎𝑔𝑒 𝑃𝑎𝑖𝑟𝑠
➢ 𝐷𝑒𝑛𝑠𝑒 𝐿𝑎𝑏𝑒𝑙𝑠
➢ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑀𝑎𝑝𝑠

𝐺𝑜𝑜𝑑 𝑉𝑖𝑒𝑤𝑠
𝑅𝑒𝑛𝑑𝑒𝑟𝑒𝑟

 Viewpoint Diversity
 Geometric Accuracy
 Photo-realism
 Scene Scalability

(a)

(b-1) (b-2) (b-3) (b-4)

Figure 1: (a) illustrates our data generation pipeline. Given train-view images and monocu-
lar depth priors, we first reconstruct the scene using our geometry-improved 3DGS. Augmented
viewpoints are then generated from train views, with pre-rendering checks removing outliers before
rendering usable data. (b-1) to (b-4) compares four depth rendering methods detailed in Sec. 3.1.

However, leveraging 3DGS for geometrically precise annotations is non-trivial. As recent
work Guédon & Lepetit (2024); Jiang et al. (2024) points out, the Gaussian primitives are optimized
for rendering quality, not geometric fidelity. Consequently, they often fail to adhere to the true scene
surface. This geometric inaccuracy is compounded by biased depth maps from the default alpha-
blending renderer. Together, these issues result in significant errors in the final correspondence
labels, including mismatches and missing pairs.

To address these challenges, we introduce MatchGS, a framework designed to unlock the full
potential of 3DGS for zero-shot image matching. Our solution is twofold. First, we propose a
geometrically-faithful data generation pipeline that significantly enhances the precision of stan-
dard 3DGS (Fig. 1). Through systematic geometric corrections and regularization, we produce
dense, accurate, and unbiased correspondence labels suitable for robust training. Second, we intro-
duce a 2D-3D representation alignment strategy that infuses 3DGS’ explicit 3D knowledge into
the 2D matcher (Fig. 3). This derives from attempts at two complementary scales: a contrastive
objective aligns 2D patch features with 3D voxel representations at the coarse scale, while direct
attribute regression guides fine-level matching at the pixel scale.

Our pipeline efficiently generates vast and reliable training data (visualized in Fig. 2), combining
the geometric consistency of a full 3D scene with expansive viewpoint diversity. Furthermore, it is
readily scalable to large-scale multi-view datasets (Ling et al., 2024), enabling broad scene diversity.
Simultaneously, our 2D-3D alignment endows the matcher with viewpoint-invariant 3D representa-
tions, significantly enhancing its robustness to unseen scenes and viewpoint changes. We find this
is most effective when aligning at a coarse, patch-to-voxel scale, which provides a more stable 3D
representation than a noisy pixel-to-primitive mapping.

Extensive experiments validate the effectiveness of MatchGS. First, our generated annotations
exhibit superior geometric precision, reducing epipolar error by 40 times compared to standard
datasets (Li & Snavely, 2018; Dai et al., 2017a). Second, existing matchers trained with MatchGS
achieve significant zero-shot performance gains on public benchmarks. Compared to their baselines
trained on MegaDepth, ELoFTR (Wang et al., 2024) improves by 16.2% on ZEB (Shen et al., 2024)
and 13.9% on ScanNet, while LoFTR (Sun et al., 2021) improves by 11.2% on ZEB and 17.7% on
ScanNet. Our contributions are summarized as follows:

• A High-Fidelity Data Generation Pipeline. Our pipeline corrects 3DGS’ geometry to pro-
duce reliable and dense correspondences, particularly for challenging conditions like large
viewpoint changes that are hard to collect in existing image matching datasets.

• A 2D-3D Representation Alignment Strategy. We leverage explicit 3D attributes from the
3DGS scene to guide 2D image matchers, resulting in representations that are significantly
more robust to viewpoint changes and yield better zero-shot performance.

• Effective Zero-Shot Generalization. Our experiments show that image matching models
trained solely on our data achieve substantial improvements in generalization, outperform-
ing state-of-the-art baselines on multiple public benchmarks.
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Figure 2: Visualization of data generation quality. Our proposed pipeline can freely generate
dense and accurate labels under large variations in viewpoint and scale.

2 RELATED WORK

Image matching datasets. MegaDepth (Li & Snavely, 2018) reconstructs 196 Internet scenes with
COLMAP (Schonberger & Frahm, 2016), but its depth maps remain incomplete and noisy despite
MVS and semantic refinements, causing boundary errors and unreliable ground-truth sampling.
ScanNet (Dai et al., 2017a) reconstructs 1613 indoor scenes with RGBD sensors and BundleFu-
sion (Dai et al., 2017b), ensuring global geometric consistency but requiring physical scene scan-
ning with dedicated devices. Beyond reconstruction, GIM (Shen et al., 2024) generates pseudo
labels from Internet videos with pretrained matchers and temporal propagation, turning hundreds of
hours of videos into potential supervision. But accumulated errors lead MAGSAC (Barath et al.,
2019) to discard many pairs, which results in gradually sparse label density. While dynamic occlu-
sions further undermine propagation reliability. L2M (Liang et al., 2025) lifts 2D images to colored
point clouds and inpaints novel views to form multi-view pairs. While abundant image collections
provide scene diversity, simple point cloud reprojection cannot ensure synthesis fidelity, and inpaint-
ing fails under large pose shifts or complex occlusions, limiting the simulation of wide baselines and
extreme views. Overall, existing approaches have yet to simultaneously achieve global geometric
consistency, which enables dense and reliable supervision across large baselines, and sampling di-
versity, which supports generalization to new viewpoints and scenes. Our pipeline addresses both
aspects by providing scalable scene expansion with consistent geometry and diverse viewpoints.

Image matching methods. Traditional pipelines involve keypoint detection, descriptor extraction,
and matching. Hand-crafted methods such as SIFT (Lowe, 2004) and ORB (Rublee et al., 2011)
follow this paradigm and remain widely used in SfM and SLAM. SuperPoint (DeTone et al., 2018),
extending MagicPoint (DeTone et al., 2017), introduced self-supervised joint detection and descrip-
tion via homography adaptation. SuperGlue (Sarlin et al., 2020) further modeled context-aware
correspondences with a graph neural network, setting a strong benchmark for sparse matching.
LoFTR (Sun et al., 2021) pioneered detector-free dense correspondence learning with Transform-
ers (Vaswani et al., 2017), enabling reliable matches even in low-texture regions. DKM (Edstedt
et al., 2023) later showed that dense methods can excel in two-view geometry, achieving state-of-the-
art results. While most methods optimize for in-domain datasets, hand-crafted RootSIFT (Arand-
jelović & Zisserman, 2012) continues to perform competitively in the wild (Jin et al., 2021; Shen
et al., 2024), motivating greater focus on zero-shot generalization. GIM and L2M enhance gener-
alization by scaling scene diversity, whereas we show that even with limited scenes, free viewpoint
sampling and viewpoint-invariant 3D representations can substantially improve the zero-shot per-
formance of semi-dense matching models.

Representation alignment. Representation alignment has been explored across multiple domains.
CLIP (Radford et al., 2021) uses contrastive learning to align images and text in a shared space,
enabling strong zero-shot transfer. REPA (Yu et al., 2024) aligns hidden states of a diffusion model
with clean image features from a pretrained encoder, improving both training efficiency and gener-
ative quality. In 3D vision, 3DG-STFM (Mao et al., 2022) transfers RGB-D knowledge to RGB via
distillation to enhance feature matching. FiT3D (Yue et al., 2024) fine-tunes 2D backbones with fea-
tures rendered from 3D Gaussian splatting, while L2M (Liang et al., 2025) supervises encoders with
rendered Gaussian maps for multi-view perception. These methods leverage 3D information to su-
pervise model weight updates, thereby implicitly encouraging the model to learn 3D-aware features.
By comparison, our approach constructs a consistent embedding in a unified 2D-3D representation
space, which directly affecting the correlation matrix and mutual nearest-neighbor matching.
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3 METHODOLOGY

In this section, we systematically investigate how to extend 3D Gaussian Splatting (3DGS) (Kerbl
et al., 2023) into a training framework for image matching. This framework includes a data genera-
tion pipeline for dense and accurate supervision signals, and a representation alignment strategy for
additional self-supervisory signals. Our discussion is centered around two core questions:

Q1: Is it feasible to design a data pipeline that relies solely on 3DGS for zero-shot image matching,
without requiring additional pre-training or fine-tuning?

Answer: We show that by improving the depth rendering quality and controlling the sampling of
novel viewpoints, 3DGS can be leveraged to generate high-fidelity image pairs and dense annota-
tions for challenging samples. This lays the foundation of our zero-shot training framework, which
we detail in Sec. 3.1.

Q2: Given that the framework already provides high-quality image pairs and annotations, can we
further exploit the explicit attributes of gaussian primitives to guide 2D semi-dense matching models
to learn viewpoint-invariant 3D representations?

Answer: We investigate how to incorporate 2D-3D representation alignment to exploit Gaussian
attributes for viewpoint-invariant aware semi-dense image matching. Two paradigms are explored
to enhance model representations from different perspectives, as described in Sec. 3.2.

3.1 UNLOCKING FREE-VIEWPOINT DATA GENERATION

To obtain reliable image matching annotations from 3DGS, two conditions are essential: (1) accu-
rate geometry for depth-based correspondence generation, and (2) photorealistic novel views to min-
imize distribution gaps with real images. We meet these conditions through a high-quality pipeline
comprising: (i) refined surface modeling with depth regularization for precise depth maps, and (ii)
a perturbation-based view augmentation with pre-rendering checks to ensure fidelity. The following
sections detail each component.

Preliminaries of Gaussian Splatting: 3DGS (Kerbl et al., 2023) explicitly reconstructs a 3D scene
with millions of 3D Gaussian primitives {Gi}, which are defined by a Gaussian function:

Gi(x|µi,Σi) = e−
1
2 (x−µi)

⊤Σ−1
i (x−µi), (1)

where µi ∈ R3 and Σi ∈ R3×3 are the center position and 3D covariance matrix, respectively. The
covariance matrix Σi can be decomposed into a scaling matrix Si ∈ R3×3 and a rotation matrix
Ri ∈ R3×3 such that Σi = RiSiS

⊤
i R⊤

i . To render a pixel value C ∈ R3 or a pixel depth D ∈ R,
the primitives are first splatted to 2D, and rendering is performed as follows:

C =
∑
i

ciαi

i−1∏
j=1

(1− αj), D =
∑
i

ziαi

i−1∏
j=1

(1− αj) , (2)

where αi ∈ R is calculated from a learned per-point opacity, ci ∈ R3 is the view-dependent color
calculated from 3-degree Spherical Harmonics (SH), i.e. sh ∈ R48, and zi ∈ R is the depth value
in camera frame.

Improving Depth Rendering for High-Precision Dense Labels. α-blending can be a common
approach to obtain depth maps as shown in Eq. 2, namely computing an opacity-weighted average
of the depths of all Gaussian primitives along each ray. α-blending produces smooth depth maps
but systematically biases geometry (shown in Fig. 1 (b-1)): the position of the surface is offset by
opacity, and depth mixing artifacts occur near boundaries.

A simple but effective alternative is to identify the first dominant primitive along the ray whose
opacity exceeds a threshold τ (to suppress floaters) and directly capture its depth value for the pixel:

D = zk, k = min {i | αi ≥ τ} . (3)

While this method avoids blending bias and yields more geometrically faithful depths, it introduces
new defects: neighboring pixels snapping to the same primitive causes blocky surfaces (Fig. 1 (b-2)).
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This motivates us to seek more refined surface reconstruction. A dominant primitive can be approx-
imated by flattening each Gaussian ellipsoid into a plane along the camera’s z-axis. Alternatively,
compressing along the shortest axis yields a Gaussian plane that better preserves the ellipsoid shape.
Specifically, following Chen et al. (2024a), we take the axis with the smallest scaling factor as the
normal ni of the Gaussian plane, and apply α-blending to render both the normal map N and dis-
tance map D:

N =
∑
i∈N

RT
c niαi

i−1∏
j=1

(1− αj), D =
∑
i∈N

diαi

i−1∏
j=1

(1− αj), (4)

where Rc is the camera-to-world rotation, µi the Gaussian center, and Tc the camera center. The
plane-to-camera distance is di = (RT

c (µi − Tc))
T (RT

c ni). The depth map is then obtained by
ray-plane intersection:

D(p) =
D

N(p)K−1p̃
, (5)

with pixel p = [u, v]T , homogeneous coordinate p̃, and intrinsic K.

This fine-grained modeling yields smooth and accurate depth in well-covered regions (Fig. 1 (b-3)),
but geometry degrades with sparse views. To address this, following Chung et al. (2024); Li et al.
(2024), we scale monocular depth priors (Yang et al., 2024) with COLMAP (Schonberger & Frahm,
2016) and apply an ℓ1 loss to regularize rendered depth, enhancing rare-view quality and reducing
floaters (Fig. 1 (b-4)).

Novel-View Sampling and Pre-Rendering Check. To generate novel views for image matching,
we first define a set of camera projection matrices {Pi}, where Pi = Ki[Ri|ti] with intrinsic Ki,
rotation Ri, and translation ti. Using Eq. 2 and Eq. 5, we render both the color image {Ii} and
depth map {Di}. Direct random sampling in a 3DGS scene often produces artifacts, incomplete
regions, or unnatural perspectives, degrading data fidelity.

To alleviate this, we adopt a perturbation-based viewpoint generator that applies controlled jitters
to training cameras. Specifically, ∆R and ∆t are sampled from a uniform distribution and added
to extrinsics [R|t], while a random scaling factor scale is applied to intrinsics K to adjust fx, fy ,
simulating zoom-in/zoom-out variations.

To further guarantee quality, we perform Pre-rendering Checks. For each candidate viewpoint
v, we first render its image Iv and depth Dv on-the-fly to compute statistical indicators Φ(v) =
{Nv, ᾱv, ρ

valid
v , ρnear

v }, where Nv is the number of contributing Gaussians, ᾱv the average opacity,
ρvalid
v the fraction of pixels exceeding opacity threshold τα, and ρnear

v the fraction below depth thresh-
old τD. For each metric i ∈ Φ, we calculate its empirical mean µi and standard deviation σi across
candidates, and reject viewpoint v if |i(v) − µi| > 2σi. Only those passing all metrics are retained
for final rendering and data generation.

3.2 REPRESENTATION ALIGNMENT

Our 3DGS-based data generation framework provides not only image pairs with dense correspon-
dences but also the explicit 3D attributes (e.g., position, geometry, appearance) of Gaussian prim-
itives. This allows us to reframe the core challenge of image matching: instead of matching am-
biguous 2D pixel intensities, we are actually looking for projections of the same Gaussian primi-
tive/cluster from different viewpoints.

To leverage this 3D information, we build upon ELoFTR (Wang et al., 2024) and LoFTR (Sun et al.,
2021), strong transformer-based matchers whose semi-dense paradigm naturally aligns with the
discrete nature of Gaussian projections. We observe that Gaussians correspond to image elements at
multiple scales: individual primitives map to fine-grained pixels, while clusters (k-nearest neighbors
or voxels) of primitives form local patches. This observation motivates our two complementary
alignment strategies: (1) Coarse-level Representation Alignment: We align 2D patch features with
aggregated 3D features derived from Gaussian clusters. (2) Fine-level Attribute Alignment: We
enforce 3D geometric and appearance consistency directly on pixel-level matches.

Preliminaries. We concatenate the Gaussian center µi ∈ R3, opacity αi ∈ R1, normalized scale
factors s̃ ∈ R3 (detailed in Appendix B.2), quaternion-based rotation qi ∈ R4, and spherical har-
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Figure 3: Coarse-level representation alignment. Given a coarse-to-fine matcher, local crops
at 2D positions indicated by ground-truth coarse matches are encoded as patch embeddings. Si-
multaneously, 3D positions of the matches are used to query multi-scale voxel features from Point
Transformer, which are encoded as voxel embeddings. Two embeddings are aligned via contrastive
loss. The trained patch embedding head is then frozen and used to assist correlation computation.

monic coefficients shi ∈ R48 into an explicit Gaussian feature fgs
i ∈ R59. For each image, we iden-

tify the Gaussian primitive that contributes the most to the pixel opacity in the rendering pipeline.
At each pixel location, we record the index of its dominant Gaussian to construct a Gaussian map
(denoted as MapGS), which enables subsequent queries of pixel-Gaussian relationships.

For common supervision of both fine-level and coarse-level matching stage, we follow Sarlin et al.
(2020); Sun et al. (2021) to supervise the correlation score matrix S by minimizing the negative
log-likelihood loss over ground-truth matches {M}gt, which are warped via pose and depth:

L = − 1

N

∑
(̃i,j̃)∈{M}gt

logS (̃i, j̃). (6)

Coarse-level representation alignment. In the coarse matching stage, we aim to align the represen-
tations of 2D patches with the multi-scale 3D voxel/cluster representations aggregated from 3DGS,
enabling the coarse matching to possess 3D awareness at the feature level. The following content is
visualized in Fig. 3.

(1) Patch Embedding: To preserve the powerful 2D matching representations and minimize the in-
fluence of auxiliary alignment tasks on the main task, we augment the coarse feature maps with ad-
ditional channels for 3D representation learning, denoted as F 3d

A and F 3d
B . Meanwhile, the attention-

transformed coarse feature maps are frozen and projected to a lower dimension to obtain F 2d
A and

F 2d
B . We then fuse F 2d and F 3d to obtain F final. During training, we sample Nps ground-truth

coarse matching points {pc
A,p

c
B}, and crop a 3 × 3 region of the feature map around each point.

Finally, a shared decoding head produces the patch embedding for each matching point. For the
i-th matching pair, its patch embeddings in views IA and IB denoted as qA

i ,q
B
i ∈ R128. During

inference, the qi is concatenated into corresponding position in F final, and the correlation matrix
is computed to perform mutual nearest neighbor (MNN) matching.

(2) Voxel Embedding: During training, the ground-truth coarse points pc
A are projected to 3D points

pc
3d. The union of Gaussians in the two matching views, fgs

A ∪ fgs
B , can be regarded as a featured

point cloud. We employ PointTransformerV3 (Wu et al., 2024) to extract multi-scale voxel features
{F voxel

s | s ∈ {1, 1/2, 1/4, 1/8}} from this point cloud. For each pc
3d, we collect and concatenate its

features across different voxel scales according to its coordinates, and then a shared decoding head
produces a unique voxel embedding for each matching pair in 3D space, denoted as vi ∈ R128.

(3) Embedding Alignment: We employ InfoNCE loss to perform 2d-3d representation alignment.
Specifically, all embeddings are first L2-normalized. We treat the voxel embedding vi as the anchor,
and the corresponding patch embeddings {qA

i ,q
B
j }, as positive samples. All other voxel and patch

embeddings corresponding to irrelevant targets within the same scene are treated as negative sam-
ples. Thus, anchor and positive samples are pulled closer while negative samples are pushed away
in a self-supervised manner. We adopt the InfoNCE format as follows,

ℓvoxel(i) = −log
exp(sim(vi,q

A
i )/τ) + exp(sim(vi,q

B
i )/τ)∑

z∈Z exp(sim(vi, z)/τ)
, (7)

ℓpatchA,B(i) = −log
exp(sim(qA,B

i ,vi)/τ) + exp(sim(qA,B
i ,qB,A

i )/τ)∑
z∈Z exp(sim(qA,B

i , z)/τ)
, (8)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Lvoxel =
1

N

N∑
i=1

ℓvoxel(i), Lpatch =
1

N

N∑
i=1

ℓpatchA(i) + ℓpatchB(i)

2
, (9)

where sim(·) calculates dot product similarity, temperature τ > 0 controls the sharpness of the
similarity distribution. Z includes both positives and in-batch negatives. The final loss is obtained
by averaging ℓvoxel(i) and ℓpatch(i) over all anchors and linearly combining them with weights λv

and λq , i.e., LInfoNCE = λvLvoxel + λqLpatch.

Fine-level Direct Attribute Alignment. Analogous to feed-forward 3DGS methods (Charatan
et al., 2024; Chen et al., 2024b), we aim to enable the model to predict per-correspondence-aligned
Gaussian attributes and constrain 3D geometric and appearance consistency directly on pixel-level
matching. This is achieved through two complementary supervision signals. First, we introduce
another negative log-likelihood loss as Eq. 6, namely Gaussian position loss, only for marked pixel
pairs projected from the same Gaussian center. This encourages the network to anchor matches to
the cores of the 3D primitives. Second, we enable the model to predict the underlying Gaussian
attributes for each match through an attribute head. For a given fine-level match, we crop a local
3× 3 patch from the feature map and decode the predicted Gaussian attributes {f̂gs

i , f̂gs
j }. We then

supervise these predictions against the ground-truth attributes {fgs
i , fgs

j }, queried via the MapGS .
This process applies an attribute loss consisting of ℓ1 regression and consistency terms, where the
quaternion rotation qi is represented by a 6D vector (Zhou et al., 2019) as intermediate form.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate our method. Sec. 4.1 evaluates the
quality of ground-truth correspondences generated by our pipeline. Sec. 4.2 examines the zero-shot
generalization of models trained on MatchGS across ScanNet (Dai et al., 2017a), MegaDepth (Li &
Snavely, 2018), and ZEB (Shen et al., 2024). Sec. 4.3 presents ablations of key design choices, and
Sec. 4.4 demonstrates performance on downstream tasks.

Implementation Details. We reconstruct 245 3DGS scenes from multi-view datasets includ-
ing Mip-NeRF 360 (Barron et al., 2022), DeepBlending (Hedman et al., 2018), Tanks and Tem-
ples (Knapitsch et al., 2017), BungeeNeRF (Xiangli et al., 2022), DTU (Jensen et al., 2014), and
DL3DV (Ling et al., 2024). Our pipeline then renders about 168K frames, maintaining a 1:1 ra-
tio between train and augmented views (i.e., 1× extra sampling), forming the MatchGS245 training
set. We also apply image augmentations to reduce the gap between rendered image and real im-
age, including color jitter, random gamma adjustment, motion blur, and ISO noise. Details of data
pipeline are provided in Appendix B. We use LoFTR (Sun et al., 2021) and its efficient variant
ELoFTR (Wang et al., 2024) as baselines. Unless otherwise specified, both models are trained from
scratch on the MatchGS245 dataset, with our proposed representation alignment strategy applied
as an additional self-supervision signal, resulting in the MATCHGSELOFTR and MATCHGSLOFTR
models. Further experimental details are provided in Appendix A.1.

4.1 DATA PIPELINE EVALUATION

We evaluate the accuracy of our generated correspondences using epipolar and relative reprojec-
tion error (see Appendix B.3 for metric details). We assume all methods obtain accurate poses. As
shown in Tab. 1, 3DGS-based depth maps reduce epipolar error by 10 to 40× compared to tradi-
tional methods, while their reprojection error lies between SfM- and depth-camera-based results.
The Plane & Regularize variant performs best on both metrics, confirming that Plane Gaussians

Method Depth Source Epi. ↓ Std Rel. ↓ Std

α-blending Depth

3DGS

8.37× 10−6 7.44× 10−5 0.0293 0.0099
Dominant Depth 8.60× 10−6 8.19× 10−5 0.0203 0.0088
Plane Depth 2.13× 10−6 7.43× 10−6 0.0373 0.0109
Plane & Regularize 2.35× 10−6 8.83× 10−6 0.0132 0.0082

MegaDepth SfM 1.00× 10−4 2.45× 10−4 0.0498 0.0180
ScanNet Depth Camera 1.01× 10−4 8.25× 10−4 0.0116 0.0083

Table 1: Evaluations of epipolar error (Epi.) and relative reprojection error (Rel.).
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provide precise epipolar constraints. Moreover, adding depth regularization further improves depth
consistency, approaching the quality of depth-camera methods.

Table 2: Zero-shot or in-domain performance on ScanNet and MegaDepth (↑). Methods trained
with in-domain data are highlighted in orange ( : partial in-domain; : full in-domain). While
our MATCHGS ensures totally zero-shot (in white).

ScanNet-1500 Mean MegaDepth-1500 Mean
Method AUC → @5° @10° @20° @5° @10° @20°

SUPERGLUE (IN) 16.2 33.8 51.8 33.9 31.9 46.4 57.6 45.3
SUPERGLUE (OUT) 15.5 32.9 49.9 32.8 42.2 61.2 76.0 59.8
LOFTR (IN) 22.1 40.8 57.6 40.2 4.0 9.3 18.4 10.6
LOFTR (OUT) 18.0 34.6 50.5 34.4 52.8 69.2 81.2 67.7
ELOFTR (OUT) 19.2 37.0 53.6 36.6 56.4 72.2 83.5 70.7
GIMLOFTR 19.5 37.3 55.1 37.3 51.3 68.5 81.1 67.0
MATCHGSLOFTR 21.8 41.5 58.1 40.5 45.5 62.5 75.9 61.3
MATCHGSELOFTR 22.8 42.3 59.9 41.7 47.5 63.9 76.2 62.5

DKM (IN) 29.4 50.7 68.3 49.5 59.2 74.1 84.7 72.7
DKM (OUT) 26.4 46.6 63.7 45.6 60.4 74.9 85.1 73.5

Table 3: Zero-shot performance on ZEB. The four horizontal groups correspond to handcrafted,
sparse, semi-dense, and dense methods. In the semi-dense group, the best results are bolded and the
second-best underlined.

Method Mean Mean Real Simulate

Rank ↓ AUC@5°↑ GL3 BLE ETI ETO KIT WEA SEA NIG MUL SCE ICL GTA

ROOTSIFT 7.6 31.8 43.5 33.6 49.9 48.7 35.2 21.4 44.1 14.7 33.4 7.6 14.8 43.9

SUPERGLUE (IN) 10.3 21.6 19.2 16.0 38.2 37.7 22.0 20.8 40.8 13.7 21.4 0.8 9.6 18.8
SUPERGLUE (OUT) 7.3 31.2 29.7 24.2 52.3 59.3 28.0 28.2 48.0 20.9 33.4 4.5 16.6 29.3

LOFTR (IN) 10.6 10.7 5.6 5.1 11.8 7.5 17.2 6.4 9.7 3.5 22.4 1.3 14.9 23.4
LOFTR (OUT) 6.2 33.1 29.3 22.5 51.1 60.1 36.1 29.7 48.6 19.4 37.0 13.1 20.5 30.3
ELOFTR (OUT) 7.0 32.8 27.7 22.8 50.7 62.7 35.9 28.1 46.1 16.7 38.1 12.2 22.7 30.0
GIMLOFTR 4.7 39.1 50.6 43.9 62.6 61.6 35.9 26.8 47.5 17.6 41.4 10.2 25.6 45.0
MATCHGSLOFTR 5.1 36.8 35.8 29.6 61.4 63.9 35.2 27.9 48.6 21.5 38.7 13.2 24.2 41.8
MATCHGSELOFTR 3.8 38.1 34.0 29.7 63.3 66.3 36.4 29.8 49.7 21.9 39.4 13.0 30.3 43.6

DKM (IN) 1.8 46.2 44.4 37.0 65.7 73.3 40.2 32.8 51.0 23.1 54.7 33.0 43.6 55.7
DKM (OUT) 1.5 45.8 45.7 37.0 66.8 75.8 41.7 33.5 51.4 22.9 56.3 27.3 37.8 52.9

4.2 ZERO-SHOT GENERALIZATION

Results on MegaDepth and ScanNet benchmarks (Tab. 2). Here some comparison methods use
partial in-domain training (highlighted). On ScanNet, MATCHGSELOFTR and MATCHGSLOFTR im-
prove average AUC by 13.9% and 17.7% over outdoor baselines. Notably, MATCHGSLOFTR, trained
without in-domain data, outperforms GIMLOFTR (Shen et al., 2024), which use ScanNet as a train-
ing subset. Qualitative Results are shown in Fig. 4. On MegaDepth, although GIMLOFTR, ELoFTR
(out), and LoFTR (out) leverage in-domain data, our zero-shot method remains highly competitive.
We further provide failed cases and analysis on MegaDepth in Appendix A.3, where severe illumi-
nation changes or extreme zoom-in causes matching failures, revealing potential future directions.

Results on ZEB benchmark (Tab. 3). Here all comparison methods follow the zero-shot proto-
col. MATCHGSELOFTR and MATCHGSLOFTR achieve significant average AUC gains of 16.2% and
11.2%, respectively, showing strong competitiveness against GIMLOFTR. Viewed from another an-
gle, GIM is trained on a combination of reconstruction-based standard datasets and pseudo-labels
from large-scale internet videos. While our method can serve as a new type of standard dataset with
more precise geometry, richer viewpoints, and additional 3D information, thus complementing GIM
and exploring a different direction for zero-shot training paradigms.

4.3 ABLATION STUDIES

We conduct ablation studies on the ScanNet test set using MATCHGSELOFTR to evaluate the design
choices in our data generation pipeline and representation alignment. As shown in Tab. 4, increasing
either the sampling ratio or the number of scenes leads to clear improvements in AUC. However,
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Figure 4: Qualitative Results. We compare with current state-of-the-art semi-dense matchers. Our
method shows superior robustness under large viewpoint changes in both indoor and outdoor scenes.

Table 4: Ablation Studies on data generation.

Condition AUC @5° @10° @20°

Extra Sampling (70 Scenes)
0× Extra Sampling 19.0 37.2 54.2
1× Extra Sampling 21.2 40.1 57.5
2× Extra Sampling 22.4 41.7 59.2

Scenes Number (1× Extra)
70 Scenes 21.2 40.1 57.5
245 Scenes 22.8 42.3 59.9

Table 5: Ablation Studies on alignment strategy.

Method AUC @5° @10° @20°

Baseline 21.2 40.1 57.5

Coarse-level Representation Align.
Intra-scene negatives 21.8 41.0 58.5
Cross-scene negatives 21.5 40.5 57.8

Fine-level Attribute Align.
Gaussian Position Loss 20.8 39.6 56.8
Gaussian Position & Attribute Loss 20.5 39.4 56.8

while doubling the sampling ratio (2×) provides only marginal gains over 1×, it also doubles the
storage cost. To balance performance and storage efficiency, we adopt 1× additional sampling as
our final setting.

Tab. 5 compares the two representation alignment strategies. We find that coarse-level patch-to-
voxel (or cluster) alignment consistently improves performance, yielding up to +0.6, +0.9, and +1.0
gains in AUC@5°, @10°, and @20°, respectively. This reveals that coarse-level representation can
be stable and perceptually meaningful. Meanwhile, restricting negative samples in the InfoNCE loss
to those within the same scene outperforms sampling across the entire batch (AUC@10° increases
by 0.5), since it avoids penalizing embeddings of geometrically similar structures that appear in
different scenes. In contrast, fine-level alignment with Gaussian position and attribute losses unex-
pectedly leads to performance degradation, with AUC@10° dropping by 0.7. This is likely because
the attributes of individual Gaussian primitives are noisy and exhibit large variance across scenes.
Such variance makes it difficult for the network to learn a stable pixel-to-primitive mapping.

4.4 DOWNSTREAM TASKS

We select MATCHGSELOFTR for further evaluation on downstream tasks, including homography
estimation on the HPatches dataset (Balntas et al., 2017) and indoor/outdoor visual localization on
the InLoc (Taira et al., 2018) and Aachen v1.1 (Sattler et al., 2018) datasets. Without any fine-tuning,
our model exhibits generalization in downstream tasks and shows better or similar performance than
specialized models. Please refer to Appendix A.2 for our experiment results.

5 CONCLUSION

We propose MatchGS, a complete framework consisting of a data generation pipeline and a repre-
sentation alignment strategy. It enhances the geometric quality of 3DGS to obtain diverse samples
for zero-shot image matching and equips 2D matchers with viewpoint-invariant 3D perception. The
significant zero-shot generalization shown in our experiments validates MatchGS as a promising and
scalable alternative to traditional data paradigms, paving the way for more robust image matchers.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research focuses on computer vision algorithms
and does not involve human subjects, sensitive personal data, or potentially harmful applications. We
believe that our dataset release and code contributions will benefit the community in a responsible
and transparent manner.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. Additional description of
our dataset preparation process, as well as details of model training and hyperparameter configu-
rations, is provided in Appendix A.1 and B. All data preprocessing and model training code has
been submitted into an anonymous GitHub repository (available at: https://github.com/
anonymous186498/anonymous_code). After the anonymity period, we will release our
dataset, data generation toolbox, and training code, together with step-by-step tutorials to facilitate
reproduction and further research.
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Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 5354–5363, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale multi-
view stereopsis evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 406–413, 2014.

Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin
Ma. Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5322–
5332, 2024.

Linyi Jin, Richard Tucker, Zhengqi Li, David Fouhey, Noah Snavely, and Aleksander Holyn-
ski. Stereo4d: Learning how things move in 3d from internet stereo videos. arXiv preprint
arXiv:2412.09621, 2024.

Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas, Pascal Fua, Kwang Moo Yi, and Ed-
uard Trulls. Image matching across wide baselines: From paper to practice. International Journal
of Computer Vision, 129(2):517–547, 2021.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, and Lin Gu. Dngaussian: Optimiz-
ing sparse-view 3d gaussian radiance fields with global-local depth normalization. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 20775–20785, 2024.

Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
photos. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2041–2050, 2018.

Yingping Liang, Yutao Hu, Wenqi Shao, and Ying Fu. Learning dense feature matching via lifting
single 2d image to 3d space. arXiv preprint arXiv:2507.00392, 2025.

Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
Zixun Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22160–22169, 2024.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

Runyu Mao, Chen Bai, Yatong An, Fengqing Zhu, and Cheng Lu. 3dg-stfm: 3d geometric guided
student-teacher feature matching. In European Conference on Computer Vision, pp. 125–142.
Springer, 2022.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to
sift or surf. In 2011 International conference on computer vision, pp. 2564–2571. Ieee, 2011.

Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to fine:
Robust hierarchical localization at large scale. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 12716–12725, 2019.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 4938–4947, 2020.

Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Hammarstrand, Erik Stenborg, Daniel
Safari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmarking 6dof outdoor visual
localization in changing conditions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8601–8610, 2018.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113, 2016.

Xuelun Shen, Zhipeng Cai, Wei Yin, Matthias Müller, Zijun Li, Kaixuan Wang, Xiaozhi Chen, and
Cheng Wang. Gim: Learning generalizable image matcher from internet videos. arXiv preprint
arXiv:2402.11095, 2024.

Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free local
feature matching with transformers. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8922–8931, 2021.

Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea Cimpoi, Marc Pollefeys, Josef Sivic,
Tomas Pajdla, and Akihiko Torii. InLoc: Indoor visual localization with dense matching and
view synthesis. In CVPR, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yifan Wang, Xingyi He, Sida Peng, Dongli Tan, and Xiaowei Zhou. Efficient loftr: Semi-dense
local feature matching with sparse-like speed. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 21666–21675, 2024.

Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong
He, and Hengshuang Zhao. Point transformer v3: Simpler faster stronger. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4840–4851, 2024.

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai,
and Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene
rendering. In European conference on computer vision, pp. 106–122. Springer, 2022.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. Advances in Neural Information Processing Systems, 37:21875–21911,
2024.

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. arXiv preprint arXiv:2410.06940, 2024.

Yuanwen Yue, Anurag Das, Francis Engelmann, Siyu Tang, and Jan Eric Lenssen. Improving 2d
feature representations by 3d-aware fine-tuning. In European Conference on Computer Vision,
pp. 57–74. Springer, 2024.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation
representations in neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5745–5753, 2019.

A MORE EXPERIMENT DETAILS AND RESULTS

A.1 MORE EXPERIMENT DETAILS

For ELoFTR (Wang et al., 2024) and LoFTR (Sun et al., 2021), their official outdoor models were
trained on MegaDepth (Li & Snavely, 2018) (196 scenes) for 30 epochs, where 100 image pairs were
randomly sampled from each sub-scene in every epoch (36,800 steps per epoch), amounting to about
1.1 million total training steps. To ensure a fair comparison, we align our training configuration on
MatchGS245 (245 scenes) with their outdoor model settings in terms of batch size, total training
steps, and learning rate milestones. Specifically, we also sample 100 pairs from each sub-scene,
resulting in 37,196 training steps per epoch. After training for 30 epochs, the model undergoes a
total of 1,115,880 iterations. All other hyperparameters follow the original implementations, using
gradient accumulation where necessary.

For the model input, we replace the original grayscale images with RGB images to align with the
three-channel spherical harmonic coefficients of the Gaussian attributes. The model is trained with
an input resolution of 832×832. Training on MatchGS is conducted using 4 NVIDIA RTX 3090 Ti
GPUs, which takes approximately 3 days for ELoFTR and over 5 days for LoFTR.

A.2 ADDITIONAL EXPERIMENT RESULTS

Homography Estimation: Following Dusmanu et al. (Dusmanu et al., 2019), we evaluate homog-
raphy estimation on the HPatches dataset (Balntas et al., 2017) and report the area under the cumu-
lative curve (AUC) of the corner error at thresholds of 3, 5, and 10 pixels. For fair comparison, we
adopt the results reported in the original papers of competing methods. Compared to baseline ap-
proaches, MATCHGSELOFTR achieves absolute improvements across all three metrics. Surprisingly,
MATCHGSELOFTR has also surpassed the dense matching method DKM (Edstedt et al., 2023).
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Table 6: Homography estimation.

Method AUC (%) → @3px @5px @10px

SUPERGLUE (OUT) 53.9 68.3 81.7

LOFTR (OUT) 65.9 75.6 84.6
GIMLOFTR 70.6 79.8 88.0
ELOFTR (OUT) 66.5 76.4 85.5
MATCHGSELOFTR 71.4 80.7 88.8
DKM (OUT) 71.3 80.6 88.5

Table 7: Indoor visual localization. Unit: % of
correctly localized queries (↑)

Method
DUC1 DUC2

(0.25m,10°) / (0.5m,10°) / (1.0m,10°)
SUPERGLUE (IN) 49.0 / 68.7 / 80.8 53.4 / 77.1 / 82.4
LOFTR (IN) 47.5 / 72.2 / 84.8 54.2 / 74.8 / 85.5
ELOFTR (IN) 52.0 / 74.7 / 86.9 58.0 / 80.9 / 89.3
MATCHGSELOFTR 49.5 / 73.7 / 85.8 61.8 / 82.4 / 86.3
DKM (IN) 51.5 / 75.3 / 86.9 63.4 / 82.4 / 87.8

Table 8: Outdoor visual localization. Unit: %
of correctly localized queries (↑).

Method
Day Night

(0.25m,2°) / (0.5m,5°) / (1.0m,10°)
SUPERGLUE (OUT) 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100.0
LOFTR (OUT) 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0
ELOFTR (OUT) 89.6 / 96.2 / 99.0 77.0 / 91.1 / 99.5
MATCHGSELOFTR 88.6 / 95.7 / 98.9 76.4 / 91.6 / 99.4
DKM (OUT) 84.8 / 92.7 / 97.1 70.2 / 90.1 / 97.4

Visual Localization: We further evaluate on two commonly used benchmarks, InLoc (Taira et al.,
2018) and Aachen Day-Night v1.1 (Sattler et al., 2018), using the open-source HLoc frame-
work (Sarlin et al., 2019) following prior work (Sun et al., 2021; Chen et al., 2022). For both
datasets, we report the percentage of correctly localized queries under different pose error thresh-
olds defined by angular and translational criteria, using results from the original papers of competing
methods. On the indoor InLoc benchmark, MATCHGSELOFTR attains similar or even better accu-
racy compared to ELoFTR (in) and LoFTR (in), which were trained on indoor data. On the outdoor
Aachen v1.1 benchmark, MATCHGSELOFTR achieves accuracy comparable to ELoFTR (out) and
LoFTR (out), which were specifically trained for outdoor scenes. These results demonstrate the
strong generalization ability and practical applicability of our method across diverse environments,
without requiring scene-specific training.

A.3 ANALYSIS OF FAILED CASES ON MEGADEPTH

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐶𝑎𝑠𝑒𝑠 𝐹𝑎𝑖𝑙𝑒𝑑 𝐶𝑎𝑠𝑒𝑠
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Figure 5: Successful and failed cases on MegaDepth dataset. Using MATCHGSELOFTR for zero-
shot testing.

As shown in Fig. 5, although our model can already handle some severe lighting changes and zoom-
in scenarios in a zero-shot setting, it still fails under extreme lighting contrast (top right) and very
large-scale zoom (bottom right). The failures under extreme lighting changes are likely due to the
inability of our proposed data generation pipeline to simulate diverse real-world physical lighting,
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which imposes limitations on the model in such conditions. Failures under very large-scale zoom
arise from our restriction on the scaling factor of the focal length during data generation (exces-
sive scaling can cause sampling artifacts). In this case, the zoom scale exceeds 6 times, while our
maximum setting was 4 times, limiting the model’s transfer performance.

B DETAILS OF DATA PIPELINE AND DATASET

B.1 DATA PROCESSING

Given a set of images from a multi-view dataset (all treated as training views), we first train a 3DGS
scene using our geometry-improved framework. Next, for each training view, we generate several
augmented viewpoints using a viewpoint generator. These augmented views are then processed
with pre-rendering checks, removing a small number of low-quality views. Afterwards, the 3DGS
renderer is used to produce the final images, depth maps, and Gaussian maps. Finally, we traverse
all image pairs in the scene to compute their overlap and collect the image pair information used for
training. For 245 scenes, the whole process takes about 2.5 days on 4 NVIDIA RTX 3090 Ti GPUs,
with 80% of the time spent on 3DGS training.

B.2 SCALE FACTOR NORMALIZATION FOR GAUSSIANS

Figure 6: The distributions of the logarithm of mean scale factors across different 3DGS scenes.
And the distributions after standardization.

In designing our representation alignment strategy we observe that scene scale varies dramatically
between indoor and outdoor environments, and some reconstructed scenes do not possess a metric
scale. This results in different magnitudes of scale factors for primitives in different scenes. While it
introduces an ambiguity for learning a consistent 3D representation across scenes, which motivates
a normalization of Gaussian scale factors across scenes. Let Gaussian primitives {Gi} in a scene
have axis-aligned scale factors si,x, si,y, si,z . We define the per-primitive mean scale factor

smean
i =

si,x + si,y + si,z
3

, (10)

and work with the logarithm of scale factors. Denote ℓi,k = log si,k, ℓ
mean
i = log smean

i , where
k ∈ {x, y, z}. According to our statistics shown in Fig., the distribution of ℓmean

i within a scene can
be well approximated by a Gaussian

ℓmean
i ∼ N (µ, σ2).

Thus, the Gaussian mean µ captures the overall scale factor magnitude of the scene. To remove the
ambiguity introduced by different scene scales we standardize the per-axis log-scale factors by the
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scene mean µ. The standardized log-scale factors are computed as

ℓ̂i,k =
ℓi,k − µ

σ
, k ∈ {x, y, z}. (11)

In practice we estimate

µ =
1

N

N∑
i=1

ℓmean
i and σ =

√√√√ 1

N

N∑
i=1

(
ℓmean
i − µ

)2
,

where N is the number of primitives in the scene. This normalization removes scene-level scale bias
and reduces ambiguity when learning a shared 3D representation across scenes with widely differing
and sometimes non-metric scales.

B.3 EVALUATION METRICS FOR GROUND TRUTH

We first define the forms of epipolar error and relative reprojection error that we use in Sec 4.1. Let
grid-sampled points (here we set grid size to 10 pixel) of two images be homogeneous x̃ = [u, v, 1]⊤

and x̃′ = [u′, v′, 1]⊤, and let F be the fundamental matrix between the two views.

Epipolar error. The geometric epipolar error of a correspondence (x,x′) is the perpendicular
distance from x′ to the epipolar line l′ = F x̃:

eepi(x,x
′) =

∣∣x̃′⊤F x̃
∣∣√

(F x̃)21 + (F x̃)22
.

We use the symmetric version averages the distance in both directions:

esymepi = 1
2

(
|x̃′⊤F x̃|

∥(F x̃)1:2∥2
+

|x̃⊤F⊤x̃′|
∥(F⊤x̃′)1:2∥2

)
.

Relative Reprojection Error. For points in the first image, we back-project each point to 3D,
transform it to the second camera frame, and compute its projected depth d̂′. Let d′ be the ground-
truth depth at the corresponding pixel. The relative reprojection error is

erel =
1

N

N∑
i=1

|d̂′i − d′i|
d′i

.

We next describe how we obtain the data in Tab. 1. For the four 3DGS-based methods, we randomly
select 30 scenes for reconstruction and processed them through our data generation pipeline to obtain
the dataset. For each scene, we randomly sample 100 image pairs (including training views and
augmented views) such that the proportions of pairs with overlap ranges 0.1–0.3, 0.3–0.5, and 0.5–
0.7 are 1:1:1. For MegaDepth (Li & Snavely, 2018) and ScanNet (Dai et al., 2017a), we follow the
same procedure: 30 randomly selected scenes and 100 image pairs per scene, maintaining the same
overlap distribution as above. Finally, for all sampled image pairs across datasets, we compute the
epipolar error and relative reprojection error, reporting the mean and variance.

C LIMITATION AND FUTURE WORK

A limitation of our current work is the lack of lighting diversity in our data generation pipeline. As
discussed in Appendix A.3, models trained with MatchGS are susceptible to failure under extreme
illumination changes. However, we believe this can be addressed by incorporating recent 3DGS
relighting techniques (Gao et al., 2024) into our pipeline, pointing to a valuable future direction in
simulating harsh real-world conditions. Furthermore, our current training protocol samples image
pairs of varying difficulty (e.g., different overlap levels) with uniform probability. Since our pipeline
allows for active control over matching difficulty, another promising direction is to implement a cur-
riculum learning (Bengio et al., 2009) strategy, progressing from easier to more challenging samples
as training advances. Overall, we believe continued exploration of our 3DGS-based training frame-
work holds significant potential for creating more robust and universal zero-shot image matchers.
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USE OF LARGE LANGUAGE MODELS

In preparing this paper, Large Language Models (LLMs) are used solely as auxiliary tools to assist
with language polishing. The authors take full responsibility for all content written under their
names, including any text that may have been refined with the aid of LLMs.
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