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Abstract—Software is everywhere, from mission critical sys-
tems such as industrial power stations, pacemakers and even
household appliances. This growing dependence on technology
and the increasing complexity of software has serious security
implications as it means we are potentially surrounded by soft-
ware that contains exploitable vulnerabilities. These challenges
have made binary analysis an important area of research in
computer science and has emphasized the need for building
automated analysis systems that can operate at scale, speed
and efficiency; all while performing with the skill of a human
expert. Though great progress has been made in this area of
research, there remains limitations and open challenges to be
addressed. Recognizing this need, DARPA sponsored the Cyber
Grand Challenge (CGC), a competition to showcase the current
state of the art in systems that perform; automated vulnerability
detection, exploit generation and software patching. This paper
is a survey of the vulnerability detection and exploit generation
techniques, underlying technologies and related works of two of
the winning systems Mayhem and Mechanical Phish.
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I. INTRODUCTION

Technology touches every aspect of our lives, from the
mundane to mission critical systems that facilitate our very
way of life. These facts present clear economic, safety and
security concerns. These concerns are driving the need for
automated, scalable and reliable means of discovering, veri-
fying and patching exploitable defects. In an effort to drive
research in this area, DARPA sponsored the Cyber Grand
Challenge (CGC), a competition to showcase the current state
of the art in Cyber Reasoning Systems. These systems combine
various tools, techniques and expert knowledge to create fully
autonomous systems that perform automated vulnerability de-
tection, exploit generation and software patching in binary
software without human intervention. In this competition com-
peting systems play an “attack-defend” style of Capture The
Flag (CTF). CTF is “a head-to-head, networked competition”
where participants are to detect, patch and exploit software
defects [1].

A. Impact of DARPA’s Cyber Grand Challenge

In other areas of computer science research that involve
the development of intelligent systems, such as machine learn-
ing and artificial intelligence there is a wealth of common

datasets and corpora with corresponding benchmarks by which
researchers can evaluate the efficacy of their approaches in a
platform and technology agnostic way. An example of such
a dataset is the “MNIST database of handwritten digits”.
This dataset has a rich history of benchmarks and provides
a standard dataset for training neural networks and other
machine learning algorithms [2], [3]. However, in the field
of security research, specifically the areas of binary analysis
such datasets and benchmarks do not exist. This often means
that techniques are evaluated on different datasets (software)
and different platforms, thus making it difficult to compare the
effectiveness of different techniques [4].

DARPA’s Cyber Grand Challenge addresses this need for
a common platform and datasets by which to evaluate Cyber
Reasoning Systems. CGC organizers designed binaries called
challenges that differ in complexity, file size and functionality.
These binaries are designed to present the same challenges of
real-world software to the systems analyzing them. This collec-
tion of binaries coupled with a Linux distribution designed for
the competition called DECREE OS, offers a standard platform
and dataset for all competitors to evaluate their systems. The
qualifying round results, binaries, environment, needed li-
braries and documentation have all been made freely available
online. This provides benchmarks and a common platform for
researchers to test the effectiveness of new analysis techniques
and systems [5].

Systems are judged based on security, availability and
evaluation. Patched binaries (challenge replacement binaries)
functionality is tested by running tests created by the CGC
organizers. These tests are in the form of proof of vulnerability
(POV). If no POVs are blocked their security score is 0.
Patched binaries are also rated on their overhead on system
resources such as memory, CPU usage and the file size. Table
I shows a summary of the scoring criteria for competing
systems. Note, systems that submit a working POV along with
their patched binary have their security score doubled. Further
note, the scoring algorithm suggests a stronger emphasis on
binary patching versus the number of exploitable defects found
by the competing systems [6].

B. Limitation of the Study

Although this work intends to survey the automated vulner-
ability detection and exploit generation techniques of current
state of the art Cyber Reasoning Systems, there are gaps in
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TABLE I. SUMMARY OF CGC SCORING RULES [6]

Criteria Rule
Security each competitor can defend the code on its server,

keeping flags safe. It can patch each challenge
binary using generic defenses or a custom patch
for each vulnerability it finds.

Availability every program on a server should function nor-
mally after being patched as it would be easy to
defend software if you could just disable all its
functionality. The reference checks that defended
software is responding correctly and hasn’t been
disabled or slowed.

Evaluation every player can program a vulnerability scanner.
Searching for vulnerabilities in opponents soft-
ware and proving weaknesses to the referee. A
successful proof counts as a captured the flag.

this research. These gaps exist because many of the competing
systems in DARPA’s Cyber Grand Challenge were purpose
built or at the very least were augmented versions of their
original design and implementations in order to meet the
criteria for the competition; thus making it very difficult to
find literature to write an exhaustive survey. To address these
limitations, future work includes collaborating with researchers
who designed and implemented these state of the art systems
in order to produce a more comprehensive survey.

C. Roadmap

The remainder of this paper is organized as follows. Section
II provides an overview of binary analysis techniques and
design considerations for systems employing these techniques.
In Section III, commonly exploited vulnerabilities are briefly
discussed. Sections IV and V, are detailed discussions of
the architecture, techniques and technologies used to imple-
ment Mayhem and Mechanical Phish respectively. Section VI
compares and contrasts Mayhem’s and Mechanical Phish’s
approach to mitigating path explosion, a common problem that
is encountered when using dynamic symbolic execution for
path exploration. The last sections contains proposed future
research and conclusions.

II. BACKGROUND

Despite our best efforts software defects will always exist
and given the growing dependence on technology to manage
our daily lives, ensuring the safety, security and reliability of
software and hardware has become the primary focus of a
number of security researchers. Specifically, an emphasis as
been placed on binary software analysis, for the simple fact that
in many instances only the binaries are available for analysis.
This is particularly true when examining embedded firmware,
custom operating systems and malware.

Binary analysis can be difficult because we are missing
abstractions provided by programming languages such as data
types and data structures. These abstractions make it easier to
reason about how data and inputs drive the paths of execution.
Despite these challenges there are inherent advantages to
performing binary analysis. Binaries contain platform specific
details which are only available at execution time. Information
such as “memory layout, register usage and execution order”
[7] is important for detecting many common types of vul-
nerabilities such as memory corruption and buffer overflows.
For these reasons and more, binary analysis a specific type of
program analysis is the focus of security researchers in recent

years and the volume of software to be examined has lead to a
strong interest in building automated binary analysis systems
that can examine binary software at scale.

Static, dynamic and concolic analysis (also known as
dynamic symbolic analysis) are three common approaches to
binary analysis. Each approach has its strengths and limitations
and each comes with their own set of design considerations that
must be addressed in order to meet the challenge of analyzing
real-world software. The following sections examine each of
these approaches; their limitations, strengths and the design
considerations that must be addressed in order to implement
systems that perform automated vulnerability detection and
exploit generation effectively.

A. Design Considerations

One design consideration that must be addressed when
implementing automated vulnerability detection and exploit
generation systems, is ensuring the ability of the system to
replay or reproduce the program state (i.e. user input or data)
that triggered a vulnerability. The other consideration is the
system must understand semantically what part of a given input
caused the observed behavior. These design considerations
directly impact the scalability and validity of the results these
systems yield (i.e. vulnerabilities discovered). For example,
analysis techniques such as symbolic execution aims to have
high reproducibility and high semantic understanding but will
suffer from issues with scalability while approaches that favor
“re-playability” usually suffer from low code coverage [4].

B. Static Binary Analysis

Static binary analysis is the analysis of a binary without
running it. The process of static binary analysis typically starts
with loading and processing the binary to be analyzed. The
processing step includes parsing the binary, generating an
intermediate language representation of the binary’s assembly
instructions and building a control flow graph (CFG). Control
flow graphs represent paths that can be taken when a program
executes. For example, Fig. 1 illustrates a simple CFG where
program flow is controlled by conditional statements. The
nodes of these graphs represent basic blocks of machine
instructions and the edges represent possible points of control
flow changes between these nodes. Control flow graphs are a
key component for automated vulnerability detection systems
that employ static binary analysis as it gives the system a
means of exploring all execution paths in an application.

1) Limitations of Static Binary Analysis: Though this tech-
nique offers a system the ability to examine all possible pro-
gram paths, it comes at the cost of scalability and performance.
Static binary analysis can be slow, and it has limitations when
dealing with indirect jump statements. Indirect jump statements
are harder than direct jump statements to resolve when building
a CFG because the application is passing control to a target
whose value for example, could be arbitrarily calculated or
dependent on the context of application. To deal with these
limitations static binary analysis tools make approximations
about the control flow of an application and hence run the
risk of not resolving indirect jump statements at all. Under ap-
proximations can lead to false positives for systems that detect
vulnerabilities or worse it could miss detecting vulnerabilities
due to incomplete control flow graphs.
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Fig. 1. Example of simple control flow graph (adapted) [8].

One static analysis technique that mitigates some of these
limitations is value-set analysis (VSA). The key to this algo-
rithm is its over approximation of values in memory, a property
that makes it useful in making assumptions about targets of
indirect jump statements or read and writes in memory. These
properties enable VSA to be used to augment CFGs with
information about indirect jump statements [7].

C. Dynamic Binary Analysis

Unlike static binary analysis, dynamic binary analysis
techniques examines a program’s behavior while it is running
in a given environment. Dynamic binary analysis allows you to
explore individual paths which makes it very precise but at the
expense of less code coverage. Code coverage is an important
characteristic of vulnerability detection systems, as the more
code you can examine the more likely you are to find existing
vulnerabilities.

1) Concrete and Symbolic Execution: There are two flavors
of dynamic binary analysis, concrete and symbolic execution.
Concrete execution refers to the representation and execution
of “concrete” or real values against a program, where as
symbolic execution refers to the representation and execution
of symbolic representations of a given value (i.e. a range of
values). In dynamic analysis systems, binaries and source code
are augmented with instrumentation [9], this instrumentation
provides metadata to enable the system to make better choices
about things like choosing paths in an application to explore.

2) Fuzzing: The main objective of a system that detects
vulnerabilities is to find inputs that make it perform an unsafe
operation (i.e. crash an application). Fuzzing is an example of
concrete execution and it is an important technique used in
systems where augmented input is used to attempt to crash
an application for example. Though fuzzing is an important
technique in vulnerability detection it suffers from limitations.
Fuzzing tools usually require manually created test cases to
seed the fuzzer. It then mutates its future inputs based on
these test cases. Standard fuzzing techniques usually fail to

randomly generated values for branches of logic that requires
very specific user input or context dependent data.

D. Dynamic Symbolic Execution

A more powerful dynamic analysis technique that is im-
plemented in many automated vulnerability detection systems,
is dynamic symbolic execution. In classical symbolic execu-
tion, variables and application input (i.e. files, command line
options, etc.) are modeled using symbolic values instead of
using concrete values. During execution, both memory and
register state are tracked and are also modeled symbolically.
Symbolic execution is typically used to dynamically generate
test cases which are used to drive path exploration, unlike tra-
ditional fuzzing techniques where test cases must be manually
generated to seed the system. Systems like Mayhem [10] and
S2E [11] were some of the first to apply this technique to
binary code.

In dynamic symbolic execution input and variables are
represented as symbolic values instead of concrete values.
These values are used to generated path constraints. Path
constraints are logical formulas that represent “program state
and transformations between program state” [12]. Typically
these formulas represent previously unexplored paths of exe-
cution in a program and are used as input to a satisfiability
modulo theory solver (SMT solver). The SMT solver uses
these formulas to derive new application inputs (test cases)
that drive the exploration of new paths in the application [12],
[13]. Because most programming constructs can be modeled
by theories supported by SMT solvers, they are often used in
tools that verify and test programs.

1) Limitations of Dynamic Symbolic Execution: Dynamic
symbolic execution is so powerful because it can trigger
specific application states using learned path constraints, mak-
ing it an ideal technique for discovering vulnerabilities in
binary code [4]. This characteristic makes it a commonly
used technique in well known binary analysis tools such
as CUTE [14], Klee [15] and FuzzBALL [16]. However,
dynamic symbolic execution suffers from a problem known
as path explosion, whereby new paths are created at every
new branch. This can lead to an exponential number of paths
to be explored and which makes dynamic symbolic analysis
computationally expensive, hence limiting the scalability of
analysis systems that use this technique as its only mechanism
of path exploration.

A modern approach to combat these limitations is to
combine both concrete and symbolic execution, a technique
known concolic execution [17]. Another approach combines
the use of dynamic symbolic execution and fuzzing to create
a “guided” fuzzer [18] or assisted fuzzer. This technique
uses dynamic symbolic execution to drive path exploration by
giving it the task of augmenting input and feeding it back to
the fuzzer. The aim of this technique is to minimize the use
of an expensive operation such a dynamic symbolic execution,
and use cheaper operations such as fuzzing to get better code
coverage when exploring applications for vulnerabilities. This
technique is used by Driller [18], where by it selectively uses
dynamic symbolic execution to perform path exploration in
order to detect vulnerabilities. Driller is key component in the
Mechanical Phish Cyber Reasoning System [1], [18].
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TABLE II. TOP 3 REPORTED VULNERABILITIES BY TYPE (2016) [19]

Type Count
Denial of Service 1847
Execute Code 1355
Overflow 1221

TABLE III. TOP 3 REPORTED VULNERABILITIES BY TYPE (2015) [19]

Type Count
Denial of Service 1784
Execute Code 1808
Overflow 1072

III. COMMONLY EXPLOITED VULNERABILITIES

Programming languages, such as C/C++ gives developers
low level control of memory allocation, which allows for finer
grain control over application performance and efficiency. This
level of control can lead to security critical vulnerabilities that
can be exploited by attackers. Although there are efforts to
make software more secure and robust with the implementation
of techniques such as buffer overflow detection and randomiza-
tion of address space, vulnerabilities such as buffer overflows
are still in the top three vulnerabilities reported in 2015 and
2016 [18], [19]. Tables II and III shows the number of reported
vulnerabilities for the top three types of vulnerabilities of 2015
and 2016.

Some of the most commonly found exploitable vulnera-
bilities are buffer overflows, format string attacks and general
memory corruption vulnerabilities. These are defects that often
put an application in an unsafe state, where an attacker can
gain access to sensitive data or hijack the control flow of
an application, in order to execute code of their choice. It is
for these reasons why most automated vulnerability detection
systems seek to detect these types of vulnerabilities.

A. Buffer Overflows

Buffer overflows occurs when an application writes more
data to a fixed size buffer than it is allocated to handle. Typi-
cally these kind of vulnerabilities can lead to data corruption,
crashing applications, the unintended access of sensitive data
stored in memory or allowing an attacker to replace code in
the call stack with their own or a library call of their choice.

B. Format String Attacks

Format string attacks are used by attackers to execute
code or read data from the stack. This exploit occurs when a
formatted string given as an input is executed as a command.
These kind of attacks often use the ANSI C printf, fprintf and
other string format functions as attack vectors.

C. General Memory Corruption

Buffer overflows are an example of a type of memory
corruption vulnerability. Generally memory corruption occurs
when data in a previously allocated memory location is modi-
fied accidentally or intentionally. The use of this corrupted data
can lead to application crashes. Other examples of memory
corruption are array index out of bounds errors, using an
address before memory is allocated or attempting to use a
pointer that has been freed already.

IV. MAYHEM

Mayhem is an automated system for discovering ex-
ploitable vulnerabilities in binary code. It also ensures that
each vulnerability is exploitable and verifiable by generating
a “shell spawning exploit” for each vulnerability it finds. By
design Mayhem seeks to addresses the challenges of real-world
binary analysis by ensuring that it can not only find exploitable
bugs but do so efficiently. It does so by employing a technique
called hybrid symbolic execution. Mayhem introduces the
use of hybrid symbolic execution. Hybrid symbolic execution
combines the use of both offline and online symbolic execution
[10].

Hybrid symbolic execution leverages the strengths of on-
line and offline symbolic execution while minimizing the
effects of their limitations. While offline symbolic execution,
also know as concolic execution allows a system to examine
one execution path at time while enabling it to select new paths
to explore via an iterative process, it has one major limitation.
The major limitation of offline symbolic execution is that in
order to find new paths, the executor must run a single path of
execution twice, once concretely and once symbolically. This
re-execution of previously explored paths makes this technique
inefficient as it adds additional execution overhead to a system.
On the other hand online symbolic execution seeks to execute
all paths in a single run and it does so by forking execution at
each branch. Although this approach ensures that the system
would never explore a path more than once, the constant
forking could lead to memory pressure as all application state
is stored in memory.

The following sections discusses Mayhem’s design, some
key implementation notes, contributions made by the re-
searchers as well as related work. Note, all information was
taken from the literature.

A. System Overview

The more of an application a vulnerability discovery tool
can explore the more likely it is to find exploitable bugs. This
presents a major challenge for preforming binary analysis on
real-world applications, this can be especially true for common
off-the-shelf applications as they can be complex applications
with a very large state space to explore. This challenge is one
the key motivations behind Mayhem’s design.

Mayhem’s designers see exploring binary software as a
potentially long running process, this is a especially true for
running analysis on complex binaries. This means that the
system must be able to run for long periods of time while
taking care not to exhaust system resources in particular mem-
ory. System efficiency is also a motivation behind Mayhem’s
design. It addresses this by ensuring that no work is ever
repeated and that no work is thrown away, all results from
a previous analysis should be reusable on other runs [10].
Lastly, the key principal behind Mayhem’s ability to detect
vulnerabilities and generate corresponding exploits is that the
system must be able to identify where in symbolic memory a
load or store address depends on user input [10].

B. Architecture

Mayhem’s architecture is comprised of two major compo-
nents, a “Concrete Executor Client (CEC)” and a “Symbolic
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Executor Server (SES)” [10]. The SES is the brains of the
operation as it determines the next path the CEC should ex-
plore and the CEC is the worker, it performs path exploration.
The CEC runs natively on the target system and the SES runs
independently on the platform’s system.

1) Concrete Executor Client (CEC): The CEC takes sym-
bolic input sources, the binary to be analysed and checkout
point data (optional) as input. Because symbolic execution
is slower than native (concrete) execution Mayhem seeks
to perform as much native execution as possible. The CEC
performs the task of loading and natively executing the binary
to be analysed. As the binary is executed the CEC adds instru-
mentation to the code, this instrumentation adds information
about execution state such as memory and register values. The
CEC also contains a taint tracker which performs taint based
analysis [20]. If the taint tracker in the CEC detects a condition
or jump statement it halts execution and passes this information
to the SES [10]. Note, the CEC will run until all execution
paths have been explored or a threshold is reached.

2) Symbolic Executor Server (SES): The SES takes the
concrete, “tainted instructions” from the CEC. These instruc-
tions can be a tainted branch or tainted jump instructions.
These instructions are converted from x86 assembly to an
intermediate language called BAP IL, by BAP. BAP is a binary
analysis tool that converts x86 assembly into an intermediate
language [21]. The SES takes these interpreted instructions
and executes them symbolically. These instructions are used to
build two types of formulas, path formulas which represents
the constraints on “each line of code” and exploitable formulas,
which are used to determine if an attacker can execute a
payload or gain control of a pointer [10]. These formals are
executed by an SMT solver [13], which determines if the
formula is satisfiable.

To manage system resources Mayhem makes use of config-
urable resource caps and system generated checkpoints. If a re-
source cap is not reached and the SES receives a tainted branch
instruction, the SES queries the SMT solver to determine if
should fork execution. If it forks, a path selector prioritizes the
new forks and the SES alerts the CEC about the state change.
However, if a system resource cap has been reached then a
checkpoint manager generates a new checkpoint for the active
executor instead of forking new executors. Note, checkpionts
store symbolic execution state of the executor that has been
suspended as well as corresponding path constraints. Check-
point restoration basically uses the stored symbolic execution
state to restore the concrete execution state up to the point
where the corresponding executor was suspended. Checkpoint
restoration essentially puts system back into “online” mode.
Throughout the execution process the SES switches between
existing forked executors and checkpoints [10].

C. Minimizing Search Space and Path Selection

One major challenge of cyber reasoning systems is the
vast size of the execution path search space. To address this,
Mayhem also uses as technique called preconditioned symbolic
execution [22], which allows the user to provide “partial
specification of the input” (i.e. input length, prefix, etc.) [10]
in order to minimize the search space. If no specifications are
supplied, all paths will be explored.

Mayhem uses heuristics to determine which path to explore
next. It favors paths that are more likely to have an exploitable
bug. Paths where symbolic memory accesses occur or sym-
bolic instruction pointers are identified, have higher priority
than paths that are simply exploring new paths [10]. These
priority ranking rules directly corresponds to the the types of
vulnerabilities that Mayhem (as of the time the initial literature
was published) can identify.

D. Handling Symbolic Memory

Being able to identify where in symbolic memory a load
or store address is that depends on user input is a necessity
when generating exploits. In order to identify these addresses
in symbolic memory, a binary analysis system must be able
to model and reason about symbolic memory [10]. Modeling
symbolic memory is difficult because the index used in the
memory look up is an expression instead of a number, this
makes dealing with symbolic indices difficult because the in-
dex could point to any spot in memory. To tackle this problem
Mayhem implements “index-based memory modeling”. In this
approach memory is modeled as a map, and 32 bit indices are
mapped to expressions and only symbolic reads are modeled
symbolically.

Mayhem uses immutable “memory objects,” to model sym-
bolic reads. These objects are created every time a symbolic
read is executed, and contain all possible values that the given
symbolic index can access. In order to create these objects
Mayhem must find all possible values for a symbolic index.
In order to make this process more scalable it finds a range of
possible index values instead of trying to find an exact index
value [10]. It uses an SMT solver to resolve this range of
values. Querying the SMT solver for a range of symbolic index
values is an expensive operation, so as an optimization step
Mayhem first uses value-set analysis [7] to come up with an
approximate interval of possible index values, which is then
given to a SMT solve to refine or “tighten” the lower and upper
bounds [10].

E. Generating Exploits

Mayhem (as of the time the initial literature was published)
can identify and generate exploits for any “instruction-pointer
overwrite” and format string attacks. It generates an exploitable
formula whenever its exploitable properties are violated. These
properties are a symbolic tainted instruction pointer, which
corresponds to a buffer overflow and a symbolic format string
which corresponds with a format string attack [10].

F. Related Work

Mayhem’s approach to exploitable bug discover and exploit
generation is largely based on prior work by the researchers
on AEG [22], [10]. Unlike Mayhem, AEG used source code
analysis to find exploitable bugs while using binary runtime
information to generate corresponding exploits. AEG was the
first system to provide an end to end solution that not only
detects exploitable bugs but generates a verifiable exploit to
confirm that it is a security risk. Its approach to automatically
generating exploits addressed the issue that source code alone
can not tell you if a bug is exploitable. Source code though
it provides useful abstractions does not provide the same low
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level details that are a necessity in determining if a bug can
be exploited. AEG also introduced the use of preconditioned
symbolic execution to minimize search space as well path
prioritize heuristics [22].

V. MECHANICAL PHISH

Mechanical Phish is an open source Cyber Reasoning
System written for the DARPA Cyber Grand Challenge [1].
It leverages open source tools and is comprised of several
components that directly contribute to its approach to vulner-
ability discovery and exploit generation. Mechanical Phish’s
goal is to discovery vulnerabilities deeper in binary code
efficiently. It does so by employing the use of a “guided”
fuzzer which combines the efficiency of fuzzing and concolic
execution with the power of dynamic symbolic execution.
The following sections discuss Driller’s and angr’s design,
some key implementation notes, contributions made by the
researchers as well as related work. Note, all information was
taken from the literature.

A. System Overview

Two important components that implement Mechanical
Phish’s vulnerability discovery functionality are angr [4] and
Driller [18]. Driller is a “guided whitebox fuzzer” tool that
leverages the speed of fuzzing and the input reasoning ca-
pabilities of concolic execution in order to effectively and
efficiently discover deeper bugs. angr is an open source binary
analysis framework that Driller uses to implement its concolic
execution engine.

B. Driller

Driller’s primary objective is to find bugs in the deeper
logic of any application. This objective is the motivation
for its approach of leveraging the strengths of fuzzing and
concolic execution while mitigating their weaknesses. Systems
that implement fuzzing or concolic execution alone, are often
limited in the depth and the amount of code they cover
because of the inherent limitations of fuzzing and concolic
execution [18]. Traditional fuzzing techniques are fast but fail
to find bugs where specific input is required, while concolic
execution is a great tool to generate this kind of input it
often suffers from the path explosion problem. By combining
these techniques Driller can improve the scalability of concolic
execution while also improving the effectiveness of fuzzing.
Unlike some systems that only support discovery of specific
types of vulnerabilities, Driller can detect any vulnerability
that can lead to an application crash.

The core motivation behind Driller’s design is that it views
the types of bugs that fuzzing and conconlic execution can find
in terms of how an application processes input. It splits the
input processed by an application into two categories, general
and specific. General input can represent a wide range of
valid values while specific input only can only have a small
number of valid values. This intuitively splits the application
into “compartments”, where the specific input checks separates
one compartment from another. Because fuzzing is an effective
technique for generating values for general inputs it can be
used to explore application paths within a compartment, while

concolic execution would be best used to resolve inputs to
drive code execution between application compartments [18].

Driller is comprised of two major components, the fuzzer
and concolic execution engine. The bulk of the path explo-
ration work is offloaded onto the fuzzer as in most cases it
can explore a large number of execution paths on its own.
This leaves the concolic execution engine to solve for the more
complex inputs required by specific checks in an application.

1) The fuzzer: The fuzzer component leverages a very
popular fuzzer called American Fuzzy Lop (AFL) [23]. AFL
is a state of the art fuzzer that generates input through the use
of a genetic algorithm. It uses instrumentation to make more
informed choices. Though instrumentation can be introduced
at compile time, Driller uses a “QEMU-backend” [24] to
avoid the need for having source code. The bulk of the path
exploration work is offloaded onto the fuzzer. In most cases
it can explore large number of execution paths, and is much
faster than concolic execution.

2) Concolic Execution Engine: The concolic execution en-
gine uses angr [4], an open source binary analysis framework.
This engine, translates binary code into Valgrind’s VEX [25]
intermediate representation (IR). This IR is used to evaluate the
effects of application input on symbolic state. All values in the
symbolic state except constants are modeled as symbolic vari-
ables and as the program is executed “symbolic constraints”
are added to the symbolic variables. These constraints defines
the limit of possible values for a symbolic variable. Throughout
execution both concrete and symbolic values are tracked, these
values can be used by the constraint solver (SMT solver)
to find values that satisfy the constraints on all symbolic
variables in the state [18]. Like Mayhem, Driller uses the
index-based memory model to model symbolic memory where
writes addresses are stored concretely and read addresses are
modeled symbolically [10].

When Driller starts it invokes the fuzzer component. The
fuzzer will explore the application until it can no longer
generate inputs that drive execution down new paths. When
the fuzzer reaches this state Driller says the fuzzer is “stuck”.
More concretely the fuzzer is deemed stuck if after having
gone through a certain number of input mutations it fails to
progress to new paths. When the fuzzer is stuck, Driller takes
only the inputs the fuzzer marks as “interesting” and invokes
the concolic execution engine on them. Inputs are considering
interesting if the input triggers a state transition [18].

C. angr

angr [4] is an open source, platform agnostic binary
analysis framework, that implements a number of state of
the art offensive binary analysis techniques. This framework
was implemented to provide researchers a unified platform by
which they can evaluate and compare the effectiveness of these
techniques as well as components to implement and evaluate
new techniques.

1) Motivation: Many binary analysis techniques are devel-
oped as research prototypes and are typically not available to
the public. This often means that future researchers have to
start from scratch in order to implement and evaluate these
techniques themselves [4]. angr was created to mitigate this
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issue, by creating an open source, binary analysis framework
that implements the state of the art offensive binary analysis
techniques. The framework also offers a modular design that
allows researchers to easily combine different approaches in
a effort to leverage their strengths while minimizing their
weaknesses.

angr is implemented as collection of Python libraries. The
libraries provide functionality for performing various binary
analysis techniques:

• Loading a binary

• Disassembly and intermediate-representation lifting

• Program instrumentation

• Symbolic execution

• Control-flow analysis

• Data-dependency analysis

• Value-set analysis (VSA)

D. angr Submodules

angr’s primary design goals are to offer cross-architecture
support, cross-platform support, support for different analy-
sis techniques, and usability. With these goals in mind the
researchers that created angr wanted to create a system that
would allow users to recreate any common binary analysis
technique in about a week. In order to accomplish these goals,
the analysis engine was carefully designed to be a modular set
of software components with strict separations between them.
This design allows for the mixing and converting between
types of analysis on-the-fly [4].

The sections below provide a brief summary of some key
submodules implemented in angr.

1) CLE: CLE is angr’s binary loading module. It can
support loading binaries from POSIX-compliant systems such
as Linx, FreeBSD, Windows as well as DECREE OS which
was created by DARPA for the Cyber Grand Challenge.

2) Intermediate Representation: In order to support analyz-
ing binaries in a architecture agnostic way it is necessary to
convert binary code into an intermediate representation (IR).
The module that supports IR in angr leverages libVEX and
uses a python library called PyVex to expose libVEX’s VEX
IR in python. PyVex, was originally written for Firmalice [26].
VEX allows angr to support analysis of both “32-bit and 64-
bit versions of ARM, MIPS, PPC, and x86 (with the 64-bit
version of the latter being amd64) processors” [4].

3) SimVex: Functionality for representing and modifying
program state is implemented in the SimVex module. State
(SimState) in angr is represented by collection of “state”
plugins. These state plugins provide the building blocks for
implementing different types of binary analysis. These plugins
expose functionality for; tracking values of registers, imple-
menting symbolic memory modeling, implementing abstract
memory modeling, logging, debugging, providing an interface
for interacting with SMT solvers, and exposing architecture
specific information that is useful for analysis.

4) Claripy: Claripy is the module responsible for provide
abstractions that represent values stored in SimState. Claripy
internally represents these values as expressions that can be
translated to the data domains of various supported Claripy
back-ends. Claripy supports back-ends for concrete domains,
symbolic domains and value-set abstraction domains for value-
set analysis.

5) Program Analysis: angr implements complete analysis
techniques such as dynamic symbolic execution and control-
flow graph recovery. It exposes an entry point that allows users
to easily access all things related to the analysis, such as the
binary being analyzed and exposes functionality of various
submodules.

6) Other Key System Components: This section is a brief
discussion of other key software components of angr. Note, all
documentation below was obtained from the Mechanical Phish
github repository [27].

• Rex: Rex is an automated exploitation engine that
was originally implemented for the Cyber Grand
Challenge. As of the time of writing this paper the
engine can perform crash triaging, crash exploration,
and exploitation for certain kinds of crashes. Rex is
freely available on github [28].

• Meister: Meister is the task scheduler for Mechanical
Phish.

• Scriba: Scriba decides what exploits and replaceable
binaries (CGC patched binaries) to submit.

• The Ambassador: The Ambassador talks to the CGC
API to retrieve challenge binaries, submit proof of
vulnerabilities, etc.

E. Minimizing Search Space and Path Selection

To avoid the problem of path explosion in the concolic ex-
ecution engine, Driller implements “pre-constrained tracing”.
Pre-constrained tracing ensures that the only path that is being
analyzed is the path that represents the application’s processing
of a given input [18].

VI. COMPARE AND CONTRAST

This survey explored the current state of the art offensive
capabilities implemented in Cyber Reasoning Systems. It used
two of the winning systems, Mayhem and Mechanical Phish of
DARPA’s Cyber Grand Challenge as a vehicle to explore these
techniques in action. The original motivation for this survey
was to investigate the similarities and differences of these two
systems in order to identify what sets them apart and which
approaches worked best, for solving the various problems that
must be addressed in order to build an automated system
that can successfully detect exploitable bugs and generating
exploits for these bugs. This section provides a brief discussion
of some key differences between Mayhem and Mechanical
Phish.

A. Path Explosion

Mayhem and Mechanical Phish both leverage dynamic
symbolic execution in order to drive path exploration but their

978-1-5386-1350-4/18/$31.00 c©2018 IEEE 7 | P a g e



Computing Conference 2018
10-12 July 2018 | London, UK

approaches to mitigating the problem of path explosion are
different. Dynamic symbolic execution is a popular technique
for discovering vulnerabilities in binary code, and it works well
finding both both complex and simple inputs to drive path
exploration. However, dynamic symbolic execution suffers
from a well known problem of path explosion, where by
new paths are created at every new conditional branch. This
can lead to an exponential number of paths to be explored
and hence makes dynamic symbolic analysis computationally
expensive and can limit the scalability of analysis systems that
use this technique as its only mechanism of path exploration.
Hence, any system looking to employ this technique must
address the problem of path explosion.

1) Hybrid Symbolic Execution: Mayhem uses dynamic
symbolic execution as its primary mechanism of implement-
ing path exploration. In order to combat the path explosion
problem, it implements hybrid symbolic execution. Hybrid
symbolic execution allows the system to switch between online
and offline symbolic execution. Its ability to context switch
between offline and online executors allows it to use to the
most appropriate mechanism whenever a configurable resource
cap is reached. This allows Mayhem to technically have its
cake and eat it too, as it can leverage a powerful method of
path exploration without succumbing to its limitations.

2) Augmenting a Fuzzer with Symbolic Execution: Me-
chanical Phish uses Driller to help with path exploration.
Driller’s approach to avoiding the pitfall of symbolic execution
by using its fuzzer to perform the bulk of path exploration
and only leveraging symbolic execution when the fuzzer “gets
stuck” or in other words fails to generate an input that can drive
path exploration forward. The key to this approach is its use of
pre-constrained tracing which ensures that the only path that
is being analyzed is the path that represents the application’s
processing a given input [18].

VII. PROPOSED FUTURE RESEARCH

This section will briefly discuss some proposed areas of
future research:

A. Binary Pre-processing to Minimize Search Space for Large
& Complex Applications

In many ways binary analysis can be viewed as an un-
informed search problem, that when coupled with tools like
instrumentation it evolves into an informed search problem.
The search space for large, complex applications can be vast
and systems that are seeking to effectively perform analysis on
such applications at scale, must find even more effective ways
(than the current state of the art) to minimize the search space.
Minimizing the search space leads to be better code coverage
which enables analysis tools to find defects deeper in code.

With the above issue in mind, I propose exploring creating
a system that can perform binary pre-processing, with the
purpose of identifying application “hot spots”. Hot spots are
areas in an application where exploitable bugs are likely to
exist. These hot spots would split an application into regions.
Information regarding these hot spot regions, path constraints
and other metadata, would act as a map or guide to that area
in the code. This information would be given along with the
corresponding binary to a vulnerability detection system, and

this system would use this metadata and path constraints to
make its way directly to the hot spot region. Once the system
reaches this region, it would perform binary analysis as normal.
This pre-processing step could make vulnerability detection an
even more informed search problem, and by splitting software
into regions it would give less code to reason about at one
time during the vulnerability detection phase.

B. Generating Exploits from Common Vulnerabilities and Ex-
posures Reports (CVEs)

A human security analyst or attacker has the ability to
read a Common Vulnerabilities and Exposures report (CVE)
and build exploits for the reported vulnerability. They are
leveraging not only the knowledge supplied in the CVE,
they are also leveraging their historic knowledge and past
experience to generate an exploit for the reported vulnerability.
I propose exploring the feasibility of creating a knowledge
based system that leverages the analysis capabilities of the
state of the art vulnerability discovery and exploit generation
tools to learn the common characteristics of exploits and
vulnerabilities. This system would take these learned insights
and attempt to generate a generic exploit for a given common
vulnerability report. This would create a system that doesn’t
require the source code or binary code to generate test cases
(exploits) for a given vulnerability it would only need the
binary or source code to verify the test cases it generates.

C. Deep Reinforcement Learning for Vulnerability Discovery

Cyber Reasoning Systems are expert systems that encap-
sulate the actions and knowledge of a human analyst in an
automated system that can detect exploitable bugs, generate
verifiable exploits, and patch software. Binary code shares
similar characteristics as a board or world in a video game,
as they both are subject to state changes based on user
defined input and interactions. Research in the field of deep
reinforcement learning has proven that an intelligent software
agent is capable of learning and excelling at complex tasks
[29]. I propose exploring the feasibility of combining the use
of a binary analysis system with deep reinforcement learning
to create an AI agent that can learn to discover vulnerabilities
in binary code.

VIII. CONCLUSION

Cyber Reasoning Systems are expert systems that encap-
sulate the actions and knowledge of a human analyst in an
automated system that can detect exploitable bugs, generate
verifiable exploits, and patch software. These systems are
complex and require expert knowledge of the problem to build
them. Though there are still many open problems that need to
be addressed in order for Cyber Reasoning Systems to be able
to reason about real-world complex applications, the current
state of the art systems prove that it is very possible to build
automated systems that can perform automated vulnerability
detection, exploit generation and software patching in binary
software without human intervention.
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