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The holy grail of machine learning is to build 
systems that learn continuously, adapt seamlessly, 
and preserve past knowledge without retraining 
from scratch. While Continual Learning (CL) enables 
lifelong adaptation [1], and Federated Learning (FL) 
ensures privacy-preserving collaboration, 
combining the two in Continual Federated Learning 
(CFL) introduces a fundamental roadblock: global 
catastrophic forgetting. Models trained on streaming 
client data often fail to retain past expertise when 
learning new tasks, limiting the adaptability and 
efficiency of CFL systems as an open-world learner. 
We propose C-FLAG (Continual Federated Learning 
with Aggregated Gradients), a novel replay-based 
strategy that addresses global and client-level catastrophic forgetting while ensuring fast 
convergence. C-FLAG leverages two key innovations: Effective Gradient Updates – Each client 

performs a single gradient step on replay memory and multiple steps on current data, 
balancing stability and plasticity. Incremental Aggregated Gradients (IAG) [2,3] – a computation 
cost-effective scheme that also reduces variance. These two features together enable 
convergence at a rate of O(1/√T) in non-convex settings. We provide a theoretical analysis 
showing that C-FLAG minimizes forgetting through an adaptive optimization sub-problem, 
translating CFL into an iterative algorithm with adaptive learning rates. Empirically, across 
task-incremental benchmarks, C-FLAG consistently outperforms state-of-the-art baselines in 
both accuracy (Fig 1) and forgetting reduction. A motivating use case is edge streaming 
analytics (e.g., real-time surveillance, industrial IoT, and autonomous systems), where memory 
and communication constraints make retraining infeasible. C-FLAG enables these systems to 
learn continually from streaming private data while preserving prior knowledge. Key 
contributions of this work are as follows: 1) First replay-based CFL framework with formal 
convergence guarantees in the non-convex regime. 2) A new gradient composition strategy 
that jointly mitigates bias, drift, and forgetting. 3) Empirical evidence of superior performance 
under heterogeneous data, client variability, and replay buffer constraints. C-FLAG 

demonstrates that continual, 
privacy-preserving, and 
scalable federated learning is 
possible without sacrificing 
past knowledge, bringing us 
one step closer to lifelong AI 
at the edge. 

   
Fig 1: Average accuracy across tasks for 

Split-CIFAR10 (left) and Split-CIFAR100 (right) 
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