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The holy grail of machine learning is to build
systems that learn continuously, adapt seamlessly,
and preserve past knowledge without retraining
from scratch. While Continual Learning (CL) enables
lifelong adaptation [1], and Federated Learning (FL)
ensures privacy-preserving collaboration,
combining the two in Continual Federated Learning
(CFL) introduces a fundamental roadblock: global
catastrophic forgetting. Models trained on streaming
client data often fail to retain past expertise when
learning new tasks, limiting the adaptability and
efficiency of CFL systems as an open-world learner.
We propose C-FLAG (Continual Federated Learning
with Aggregated Gradients), a novel replay-based

. N
Xp=2Xo ¢
Client N
Global low loss region for task P Client local update

Global low loss region for task C = Gradient on the memory

Local low loss region for client —  Proposed aggregated update

strategy that addresses global and client-level catastrophic forgetting while ensuring fast
convergence. C-FLAG leverages two key innovations: Effective Gradient Updates - Each client
performs a single gradient step on replay memory and multiple steps on current data,
balancing stability and plasticity. Incremental Aggregated Gradients (IAG) [2,3] - a computation
cost-effective scheme that also reduces variance. These two features together enable
convergence at a rate of O(1/NT) in non-convex settings. We provide a theoretical analysis
showing that C-FLAG minimizes forgetting through an adaptive optimization sub-problem,
translating CFL into an iterative algorithm with adaptive learning rates. Empirically, across
task-incremental benchmarks, C-FLAG consistently outperforms state-of-the-art baselines in
both accuracy (Fig 1) and forgetting reduction. A motivating use case is edge streaming
analytics (e.g., real-time surveillance, industrial IoT, and autonomous systems), where memory
and communication constraints make retraining infeasible. C-FLAG enables these systems to
learn continually from streaming private data while preserving prior knowledge. Key
contributions of this work are as follows: 1) First replay-based CFL framework with formal
convergence guarantees in the non-convex regime. 2) A new gradient composition strategy
that jointly mitigates bias, drift, and forgetting. 3) Empirical evidence of superior performance
under heterogeneous data, client variability, and replay buffer constraints. C-FLAG
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demonstrates that continual,
privacy-preserving, and
scalable federated learning is
possible without sacrificing
past knowledge, bringing us
one step closer to lifelong Al
at the edge.

Fig 1: Average accuracy across tasks for
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