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Abstract

Parallel MRI techniques in the k-space, like GRAPPA are widely used in accelerated MRI.
Recently neural-network approaches have shown improved performance over linear methods
like GRAPPA. But present day neural networks are largely tailored to process real data,
hence the complex-valued k-space data is processed as two-dimensional real data in these.
In this work, we study the performance of an end-to-end complex-valued architecture for
interpolating missing values in the k-space for parallel MRI which we call the Complex
rRAKI. We propose a novel activation function, the PlaneReLU, which is a generalized
version of the ReLU on the complex plane. The performance of the Complex rRAKI is
evaluated on two publicly-available k-space MRI datasets, the fastMRI multicoil brain and
knee datasets. Comparison of obtained results with those on the baseline rRAKI are also
presented. The proposed Complex rRAKI achieves improved performance over the baseline
with respect to standard metrics SSIM and NRMSE with 50% fewer parameters.
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1. Introduction

Parallel MRI uses multiple acquisition coils to acquire partial k-space data and then exploit
the position information of the coils to obtain high quality reconstructions from the data.
The GRAPPA (Griswold et al., 2002) method estimates missing values in the k-space by
assuming them to be linearly-dependent on neighboring acquired values. Recently, scan-
specific neural network approaches (Zhang et al., 2019; Arefeen et al., 2021) have been
developed to learn a potentially non-linear relationship instead. However real-valued neural
networks may not be able to exploit information in inherently complex-valued datasets. As
MRI sensor data is complex-valued, few works have adapted complex-valued neural networks
to MRI reconstruction (Cole et al., 2020; Chatterjee et al., 2021; Vasudeva et al., 2020). But
most of these works denoise poor quality zero-filled reconstructions. When the zero-filled
reconstructions have a lot of artefacts, there may be loss of important details which cannot
be reconstructed back. Thus, it is important to work with k-space directly. Also to the
best of our knowledge, none of the previous works explores a scan-specific complex-valued
neural network, thus relying on huge datasets for training. In this work, we implement
an end-to-end complex-valued neural network for the scan-specific Residual RAKI (Zhang
et al., 2019) approach. The major contributions in this work are -

1. We implement an end-to-end complex-valued neural network trained using complex-
valued optimization, called the Complex rRAKI for a scan-specific approach for par-
allel MRI called the Residual RAKI (rRAKI)
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2. We propose a novel activation function, the PlaneReLU, which is a generalized version
of the ReLU activation function on the complex plane

2. Methods

Let I ∈ CH×W×C̄ be an input k-space of shape (H,W, C̄) where H and W refer to the height
and width and C̄ is the number of coils, also known as number of channels. Let ACj denote
the autocalibration region in channel j, j = 1, 2, ..C̄. Let yj denote the vector containing
target elements at locations (kx, ky) ∈ ACj and ysource denote the vector containing the
corresponding neighboring elements in the autocalibration regions across all channels. Then
Complex rRAKI is trained over the autocalibration region by minimizing the cost function

L(γj , θj) = min
γj ,θj

∥yj −Gj(ysource; γj)− Fj(ysource; θj)∥2 + λ∥yj −Gj(ysource; γj)∥2 (1)

where Gj : Cn → Cm is a linear complex convolution operator parameterized by γj and
Fj : Cn → Cm is a complex-valued CNN parameterized by θj , and having two blocks of
complex convolution and PlaneReLU (Section 2.1) activation function followed by a com-
plex convolution operation. L(γj , θj) : C → R is real-valued as it computes the L2 norm
between the complex output and target. After learning Gj and Fj for each channel j, the
interpolation for the vector of missing values s in the channel j is performed as

s(kx, ky, j) = Gj(N (kx, ky)) + Fj(N (kx, ky)) (2)

where N (kx, ky) denotes the neighborhood for the corresponding missing point (kx, ky)
across all channels.

2.1. Proposed Complex-valued Activation Function : the PlaneReLU

We propose a version of ReLU defined over the complex plane called the PlaneReLU. For
an input z = x+ iy ∈ C i.e., x, y ∈ R, the PlaneReLU is defined as follows

PlaneReLU(x+ iy) =

{
x+ iy, if ax+ by + c ≥ 0
a+b+c

α (x+ iy), otherwise
(3)

where a, b, c ∈ R are learnable parameters and α is a hyperparameter that we set to 3.
The PlaneReLU activation function divides the complex plane into two halves about the
line ax+ by+ c = 0. It fires the input as is in one half of the plane and fires a scaled version
of the input in the other half. The parameters a, b and c are learnt to define a suitable
line according to the training dataset. The PlaneReLU considers both magnitude and
phase information while firing without any bias towards either, unlike other ReLU-inspired
complex-valued activation functions like the zReLU and modReLU (Trabelsi et al., 2018).
It also does not distort the input phase, unlike the CReLU (Trabelsi et al., 2018).

3. Results, Discussion and Conclusions

The performance of rRAKI and Complex rRAKI architectures on the fastMRI multicoil
brain and knee datasets (Zbontar et al., 2018) are presented in Table 1 and Figure 1. By
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Table 1: Average PSNR, NRMSE and SSIMmetrics for k-space data from fastMRI multicoil
brain and knee datasets at an acceleration factor of 5 with cartesian undersampling

fastmri multicoil Brain dataset

Metric PSNR NRMSE SSIM

rRAKI 31.51 ± 1.3 0.20 ± 0.041 0.84 ± 0.036

Complex rRAKI 31.83 ± 0.79 0.23 ± 0.08 0.87 ± 0.027

fastmri multicoil Knee dataset

rRAKI 28.7 ± 0.73 0.45 ± 0.09 0.60 ± 0.07

Complex rRAKI 29 ± 0.49 0.35 ± 0.047 0.67 ± 0.05

Figure 1: Sample reconstructions and difference images of rRAKI and Complex rRAKI
on (a) fastMRI Knee dataset and (b) fastMRI Brain dataset. The pixel-level
comparison of the 300th index in the output is also shown.

achieving improved or comparable performance with the SOTA methodology w.r.t. SSIM,
PSNR and NRMSE metrics, with 50% fewer parameters (the complex convolution layer
has 50% fewer parameters than the corresponding real layer (Jain et al., 2022)), Complex
rRAKI, along with its novel PlaneReLU activation function, shows promising potential
for exploring complex-valued neural networks in the k-space domain as well as other such
complex-valued domains. The improved performance of Complex rRAKI is attributed to
the structure of its network which respects the complex-valued algebraic structure of the
input, thus constraining the degrees of freedom in the neural network and assisting improved
learning.
Source code: https://github.com/jain-p9/Complex-rRAKI
Acknowledgement: The authors gratefully acknowledge the financial support of this
project through the Mphasis F1 foundation.
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