
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Mateo Espinosa Zarlenga 1 Gabriele Dominici 2 Pietro Barbiero 3 Zohreh Shams 1 4 Mateja Jamnik 1

Abstract
In this paper, we investigate how concept-based
models (CMs) respond to out-of-distribution
(OOD) inputs. CMs are interpretable neural
architectures that first predict a set of high-level
concepts (e.g., stripes, black) and then
predict a task label from those concepts. In partic-
ular, we study the impact of concept interventions
(i.e., operations where a human expert corrects
a CM’s mispredicted concepts at test time) on
CMs’ task predictions when inputs are OOD. Our
analysis reveals a weakness in current state-of-
the-art CMs, which we term leakage poisoning,
that prevents them from properly improving their
accuracy when intervened on for OOD inputs.
To address this, we introduce MixCEM, a new
CM that learns to dynamically exploit leaked
information missing from its concepts only when
this information is in-distribution. Our results
across tasks with and without complete sets of
concept annotations demonstrate that MixCEMs
outperform strong baselines by significantly
improving their accuracy for both in-distribution
and OOD samples in the presence and absence
of concept interventions.

1. Introduction
Recent years have seen a surge of interpretable models
whose performance is comparable to that of power-
ful black-box models such as Deep Neural Networks
(DNNs) (Alvarez-Melis & Jaakkola, 2018; Chen et al.,
2019; Yuksekgonul et al., 2023). Amongst these, concept-
based models (CMs) (Chen et al., 2020; Espinosa Zarlenga
et al., 2022), and in particular Concept Bottleneck Models
(CBMs) (Koh et al., 2020), have paved the way for
designing expressive yet interpretable models. CBMs and
their variants predict downstream task labels by exploiting

1University of Cambridge 2Università della Svizzera Italiana
3IBM Research 4Leap Laboratories Inc.. Correspondence to: Ma-
teo Espinosa Zarlenga <me466@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

high-level units of information known as “concepts” (e.g.,
“stripes”, “white”, and “black” when predicting
“zebra”). They achieve this through a two-step process:
first, they predict concepts from the inputs, forming a
bottleneck, and then they use these concept predictions to de-
termine the task label. This design enables CBMs to provide
human-like explanations for their predictions by grounding
them in interpretable concept representations. More im-
portantly, these models enable concept interventions (Koh
et al., 2020; Chauhan et al., 2022; Sheth et al., 2022; Shin
et al., 2023), where an expert interacting with the model at
test time can correct mispredicted concepts, leading to sig-
nificant improvements in accuracy once the CBM updates
its prediction considering such feedback (Figure 1, left).

Recent works have significantly advanced the performance
and usability of CMs within challenging in-distribution (ID)
test sets by overcoming the incompleteness gap – the fact
that training concept annotations may be insufficient for ac-
curately predicting the downstream task. By exploiting by-
pass mechanisms, such as dynamic concept embeddings (Es-
pinosa Zarlenga et al., 2022; Kim et al., 2023; Xu et al.,
2024) or residual connections (Mahinpei et al., 2021; Havasi
et al., 2022; Yuksekgonul et al., 2023), state-of-the-art CMs
enable information to “leak” directly from the features to the
task predictions, bypassing the concept bottleneck and sig-
nificantly increasing the model’s task accuracy even when
the set of training concept annotations is incomplete.

In this work, we argue that, although useful, blindly incorpo-
rating these bypasses can severely affect how CMs behave
for out-of-distribution (OOD) samples. Specifically, we
suggest that such bypasses can themselves become out-of-
distribution for OOD samples, resulting in the “poisoning”
of the model’s predictions and in concept interventions fail-
ing to achieve the intended accuracy improvements (Fig-
ure 1, right). Given how interventions can aid a CM in
adjusting to real-world OOD shifts (e.g., an expert can help
a CM process a noisy yet still-interpretable X-ray scan by in-
tervening on some concepts), such leakage poisoning casts
serious doubts on the real usability of existing CMs.

To address these limitations, we propose the Mixture of
Concept Embeddings Model (MixCEM), a concept-based
interpretable model with high generalisation and receptive-
ness to interventions across data distributions. MixCEMs

1

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Con
cep

t

Inte
rven

tion

Concept
Bottleneck Label PredictorConcept

Predictor
Input

Human Expert

(prediction after intervention)

Figure 1. (Left) A concept intervention on a CBM triggering a prediction update. (Right) Task accuracy as concepts are intervened on in
a concept-incomplete task. When intervening on ID samples (solid), bypass-enabling models (e.g., CEMs) overcome the “incompleteness
gap.” However, for OOD samples (dashed), the same models underperform due to “leakage poisoning.” MixCEM overcomes the
incompleteness gap and leakage poisoning, maintaining high accuracy in both setups.

achieve this by learning, for each concept, an embedding
formed by mixing a global, sample-agnostic embedding
and a contextual, residual embedding. By introducing a
confidence-based gating mechanism to control the residual
embedding’s contribution, MixCEMs learn to decide when
the residual information may be detrimental and, therefore,
should be dropped. This allows MixCEMs to exploit the
residual component when a bypass is needed (e.g., concept-
incomplete setups) while dropping it for OOD samples,
leading to impactful interventions across data distributions.

Summary of Contributions Our main contributions are:
(1) we provide the first study, to the best of our knowledge,
of how concept interventions fare when there are distribu-
tion shifts. Our experiments suggest that all bypass-based
approaches do not necessarily or significantly improve their
OOD task accuracy when intervened on; (2) we introduce
the notion of leakage poisoning, a previously unknown con-
sequence of information leakage (Mahinpei et al., 2021).
Then, we argue that this poisoning is an important design
consideration given the existence of a trade-off between
avoiding leakage poisoning and achieving high accuracies;
and (3) we propose MixCEM, a CM that avoids leakage
poisoning1. We show that MixCEMs maintain high task
and concept accuracies while significantly improving their
performance when intervened on, both for OOD and ID
samples and even in concept-incomplete training sets.

2. Background, Notation, and Related Work
Concept-based Explainable AI (C-XAI) Concept-based
XAI methods explain a black-box model’s predictions via
high-level units of information, or concepts, that experts
would use to explain the same task (Bau et al., 2017). Such
concepts, which can be provided as training labels (Chen
et al., 2020; Kazhdan et al., 2020; Rigotti et al., 2021;

1Our code and experiment configs can be found at
https://github.com/mateoespinosa/cem

Crabbé & van der Schaar, 2022; Sheth & Ebrahimi Ka-
hou, 2024) or can be discovered (Alvarez-Melis & Jaakkola,
2018; Ghorbani et al., 2019; Yeh et al., 2020; Magister et al.,
2022; Espinosa Zarlenga et al., 2023b; Yang et al., 2023;
Oikarinen et al., 2023), enable these methods to circumvent
the unreliability (Kindermans et al., 2017; Adebayo et al.,
2018) and lack of semantic alignment (Kim et al., 2018)
of traditional XAI feature importance approaches (Ribeiro
et al., 2016; Erhan et al., 2009; Lundberg & Lee, 2017).

Within C-XAI, Concept Bottleneck Models (CBMs) (Koh
et al., 2020) provide a powerful framework for designing
concept-based interpretable DNNs. A CBM

(
g, f, {si}ki=1

)
is a composition of two functions (g, f) supported by scor-
ing functions {si}ki=1, all usually parameterised as DNNs.
The concept encoder g : Rn → Ck maps an input x ∈ Rn

to a “bottleneck” ĉ = g(x) ∈ Rk×m of k concepts in con-
cept space C ⊆ Rm. Here, the i-th output of g, ĉi = g(x)i,
is designed such that the score p̂i := si(ĉi) is maximised
when the i-th concept is “active”, and minimised other-
wise. The label predictor f : Ck → RL maps the bot-
tleneck ĉ to a distribution over L task labels ŷ ∈ RL.
Together, these functions predict a label ŷ = f(g(x))
for a sample x that can be explained via the concept
scores s(ĉ) := [s1(ĉ1), · · · , sk(ĉk)]T . When m = 1 and
si(ĉi) = ĉi, we call this a Vanilla CBM (i.e., Koh et al.’s for-
mulation). Vanilla CBMs can be trained jointly (optimising
f and g together), sequentially (training g first and then f
using g’s outputs), or independently (training g and f using
ground-truth features and concepts as inputs).

CBM Extensions Recent works have addressed sev-
eral limitations of Vanilla CBMs: (1) Concept Embed-
ding Models (CEMs) (Espinosa Zarlenga et al., 2022) and
Intervention-aware CEMs (IntCEMs) (Espinosa Zarlenga
et al., 2023a) overcome the aforementioned incomplete-
ness gap (Yeh et al., 2020), (2) Probabilistic CBMs
(ProbCBMs) (Kim et al., 2023) and Energy-based CBMs
(ECBMs) (Xu et al., 2024) enable better uncertainty and

2

https://github.com/mateoespinosa/cem

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

conditional probability estimations, (3) Post-hoc CBMs
(P-CBMs) (Yuksekgonul et al., 2023) allow for effec-
tive fine-tuning of models into CBMs, and (4) Label-free
CBMs (Oikarinen et al., 2023; Yang et al., 2023) exploit
vision-language models to extract concept annotations.

Concept Interventions CBM-based models allow for con-
cept interventions, where a human-in-the-loop can correct
mispredicted concepts at test time, potentially triggering a
task prediction change. Formally, an intervention on concept
ci fixes the output of si(ĉi) to its maximum if the expert de-
termines ci is active or to its minimum otherwise. Previous
works have shown that CBM-based models can significantly
increase their task accuracy when the corrected concepts
are carefully selected via an intervention policy (Shin et al.,
2023; Chauhan et al., 2022), or even when they are ran-
domly selected (Koh et al., 2020; Espinosa Zarlenga et al.,
2022; Xu et al., 2024). Recent works have improved the
effect of interventions by incorporating intervention-aware
losses (Espinosa Zarlenga et al., 2023a), intervention mem-
ories (Steinmann et al., 2023), or cross-concept relation-
ships (Havasi et al., 2022; Vandenhirtz et al., 2024).

OOD Detection This paper studies concept interventions
when OOD shifts occur. Hence, our work is related to re-
search in OOD generalisation (Sagawa et al., 2019), open
set recognition (Scheirer et al., 2012), and anomaly (Zhou
& Paffenroth, 2017; Schlegl et al., 2017) and distribution
shift (Rabanser et al., 2019) detection. Within concept-
based XAI, concepts have been used to explain distribu-
tion shifts (Wijaya et al., 2021; Sevyeri et al., 2023; Choi
et al., 2023; Dreyer et al., 2024), while OOD detectors have
been used to detect unwanted leakage in concept representa-
tions (Marconato et al., 2022). Rather than explaining shifts
or detecting leakage, our work focuses on understanding
concept interventions when OOD shifts occur.

3. Conflicting Objectives in CBMs
CBMs have been traditionally designed with three core
objectives in mind: (1) task fidelity (the model should accu-
rately predict its task), (2) concept fidelity (the model’s
explanations should be accurate), and (3) intervenabil-
ity (Marcinkevičs et al., 2024) (task fidelity should improve
when a model is intervened on). These three properties cap-
ture the fact that model trustworthiness, under reasonable
definitions of the term (Shen, 2022), cannot rely solely on
concept and task fidelity without incorporating intervenabil-
ity. It is important, however, to place CBMs within the
context of real-world datasets, where labelling limitations
and distribution shifts are commonplace. Considering this,
we argue that CBMs ought to have two additional properties:

1. Completeness-Agnosticism (CA): Task fidelity
should be independent of the set of training concepts.

That is, if (i) (f (Ptr), g(Ptr), {s(Ptr)
i }ki=1) is a CBM

learnt from any training distribution Ptr, and (ii)
P∗(X,C∗, Y) is a concept-complete distribution (i.e.,
I(X;Y) ≤ I(C∗;Y), where I(·) is the mutual in-
formation), then f (P∗)(g(P∗)(x)) ≈ f (Ptr)(g(Ptr)(x)).
This condition implies that, regardless of the set
of concepts used to train the CBM, its downstream
task accuracy should remain relatively unchanged.
Therefore, a model achieves CA if it can perform
equally well (in terms of task fidelity) regardless of
the span of its training concept set.

2. Bounded Intervenability (BI): For any test distri-
bution Pte and any concept subset S ⊆ {1, · · · , k},
when concepts in S are intervened on with values
cS , a CBM’s task accuracy should be at least as high
as the accuracy of a Bayes Classifier in the real data
distribution Pd given cS :

E(x,c,y)∼Pte

[
I(x, S, cS)y

]
≥ E(x,c,y)∼Pd

[
P(y | cS)

]
where I(x, S, cS) is the CBM’s task prediction
after intervening on concepts S ⊆ {1, · · · , k}
using values cS . Notice that the magnitude of
E(x,c,y)∼Pte [f(g(x))y] is equivalent to the expected
accuracy of the CBM

(
g, f, {si}ki=1

)
on a test set

sampled from Pte. Intuitively, BI says that, when we
are given the ground-truth labels for concepts S, we
should strive to perform at least as well as a model that
only has access to the labels for concepts in S.

Completeness-agnosticism yields task-accurate CBMs even
when their training sets lack all task-relevant concepts, a
common scenario considering the difficulty of labelling
concepts in both supervised (Collins et al., 2023) and un-
supervised (Oikarinen et al., 2023) settings. In contrast,
bounded intervenability ensures that a CBM will properly
incorporate interventions, even for out-of-distribution in-
puts, providing a sensible and computable lower bound for
the post-intervention accuracy.

Leakage Poisoning State-of-the-art CBMs have embed-
ded incentives within their loss functions and architectures
for each core objective. More recently, new architectures
have incorporated notions similar to that of CA in their
design (e.g., leakage bypasses). The notion of bounded
intervenability, however, remains overlooked in the design
and evaluation of CBMs. In this section, we argue that this
disregard for BI has led to a serious limitation of current
CA-supporting models to remain unnoticed.

In Figure 1 (right), we observe that completeness-agnostic
methods like CEMs indeed overcome the “completeness
gap”, attaining high task accuracies compared to non-
completeness-aware approaches (e.g., Vanilla CBMs) on

3

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Unintervened All Intervened

ID Test Set OOD Test Set 0.
1

0.
2

0.
4

0.
5

0.
6

0.
8

0.
9

H(p̂i)

0

20

40

60

80

C
ou

n
ts

(%
)

Concept Predictions

ID

OOD

Figure 2. CEM concept bottlenecks and predicted concept en-
tropies for ID and noisy (OOD) test CUB samples. (Left and
centre) T-SNE projections of CEM’s bottlenecks before and after
all concepts are intervened on. (Right) Distribution of predicted
concept entropies for all concepts.

concept-incomplete tasks. However, we also observe that
these approaches struggle to properly incorporate interven-
tions for OOD inputs, even when the shift is subtle random
noise. Surprisingly, we see that when all concepts are inter-
vened on, CEM’s accuracy is significantly worse for OOD
samples than for ID samples, something not observed for
Vanilla CBMs. This suggests OOD shifts somehow affect a
CEM’s bottleneck even after intervening on all concepts.

To understand this, we emphasise that state-of-the-art CBMs
achieve CA by enabling information about y missing in the
concepts c to leak to the downstream task predictor f . In
practice, this is done using dynamic high-dimensional con-
cept embedding representations (e.g., CEMs, ProbCBMs,
and ECBMs) or residual side-channels that extend or update
the bottleneck after each concept’s representation has been
constructed (e.g., Hybrid CBMs (Mahinpei et al., 2021),
autoregressive CBMs (Havasi et al., 2022), and residual
P-CBMs). Although useful, the concept bottlenecks yielded
by such models form very distinct distributions for ID and
OOD samples (Figure 2, left). More importantly, these
distributions remain distinct even after intervening on all
concepts (Figure 2, centre). This is because, when we en-
able information not in c to leak into the bottleneck ĉ using
high-dimensional embeddings or residual pathways, this
information persists even after an intervention is performed.
Hence, when an input goes OOD, the leakage path may go
OOD itself, becoming detrimental, or “poisonous”, for the
model’s ability to intake interventions in general.

The Intervenability-Incompleteness Trade-off The ob-
served existence of leakage poisoning suggests there is
a trade-off between satisfying completeness-agnosticism
(which requires one to bypass information directly from x
to y even after an intervention is performed) and satisfy-
ing bounded intervenability (which requires interventions
to lead to ID bottlenecks even for OOD samples). Yet, our
study reveals two other critical observations that will form
the basis of our solution to leakage poisoning: first, the
intervention curves for Vanilla CBM converge to the same

points for both ID and OOD samples. This is because inter-
ventions on Vanilla CBMs result in global constant changes
to their bottlenecks (e.g., setting ĉi := 1 if ci is “active”).
Hence, the more one intervenes, the more the bottleneck
will become in-distribution. Second, concept predictions are
significantly more uncertain (i.e., have higher entropy) for
OOD samples (Figure 2, right). Thus, the uncertainty in p̂ is
a helpful indicator of a sample going OOD, a property also
exploited in OOD detection (Hendrycks & Gimpel, 2016).

4. Mixture of Concept Embeddings Model
In this section, we build upon our observations above to
propose the Mixture of Concept Embeddings Model (Mix-
CEM). MixCEM is a novel CM where interventions can
dynamically leak information when the sample is ID, hence
enabling completeness-agnosticism, while they are reduced
to global constant changes to the bottleneck when the input
is OOD, hence avoiding leakage poisoning (Figure 3).

Overview Given a training set D = {(x(j), c(j), y(j))}Nj=1

with k human-generated or label-free concept annotations,
MixCEM learns k pairs of m-dimensional global embed-
dings C̄ = {(c̄(+)

i , c̄
(−)
i)}ki=1 such that concept ci is rep-

resented by c̄
(+)
i when it is “active” and c̄

(−)
i otherwise.

These embeddings will be used for concept prediction and
for constructing an intervenable bottleneck ĉ from which
we predict task labels. However, to achieve completeness-
agnosticism, MixCEM will learn to adjust these embeddings
to allow task-relevant information missing in the concept
annotations c to leak when this information is beneficial.

Residual Embeddings Given x ∈ Rn, we introduce a
leakage mechanism in our concept embeddings by using a
latent code h ∈ Ra, generated from a backbone model ψ(x)
(e.g., a pre-trained ResNet (He et al., 2016)), to construct
a pair of residual concept embeddings

(
r
(+)
i (x), r

(−)
i (x)

)
for each concept ci. We learn these residuals using two
linear functions r(+/−)

i (x) := R
(+/−)
i · ψ(x) + b

(+/−)
i

with learnable weights R(+/−)
i and biases b(+/−)

i . These
residuals will be used to update our global embeddings.

Concept Likelihood From the global and residual embed-
dings, we estimate the likelihood p̂i = P(ci = 1 | x, C̄)
using a linear scoring function si(x) = σ

(
vs · [c̄(+)

i +

r
(+)
i (x), c̄

(−)
i +r

(−)
i (x)]T

)
with weights vs ∈ R2m shared

across concepts. This enables task and concept feedback to
influence how we learn our global and residual embeddings.

Contextual Concept Embeddings By mixing each con-
cept’s global and residual embeddings as we did for p̂i,
we can construct contextual embeddings c(+)

i , c
(−)
i ∈ Rm

that encode both a concept’s global and sample-specific
information. However, we want these contextual embed-

4

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Entropy-based Gating

Bottleneck

Label
Predictor

Backbone

MixingEmbedding Construction

Concept Likelihood
Global Embeddings

(learnable)

Legend
Learnable Model

Embedding Mixing

Figure 3. Given x, a MixCEM predicts concepts p̂ and task labels ŷ. It achieves this by (1) learning global concept embeddings
c̄(+), c̄(−) ⊆ Rk×m and residual embeddings r(+)(x), r(−)(x) ⊆ Rk×m for each training concept ci, (2) using these embeddings to
estimate p̂i = P(ci = 1 | x, C̄) and to construct contextual concept embeddings (c(+)

i , c
(−)
i), (3) mixing contextual embeddings to

produce a single embedding ĉi, and (4) predicting ŷ from the bottleneck ĉ = [ĉ1, · · · , ĉk]T .

dings to avoid being poisoned when x is OOD. We achieve
this in two ways. First, before mixing these embeddings,
we adjust the magnitude of the residual component so that
it loses its influence when the sample is likely OOD. We
do this by scaling the residuals inversely proportionally to
their concept prediction’s uncertainty, or entropy H(p̂i):
c
(+/−)
i := c̄

(+/−)
i +

(
1 − H(p̂i)

)
r
(+/−)
i (x). As the en-

tropy H of a Bernoulli r.v. is in [0, 1], and it increases if
uncertainty is higher, the scaling factor

(
1−H(p̂i)

)
controls

leakage as a function of concept uncertainty. Second, after
the MixCEM is trained, we use Platt scaling (Platt et al.,
1999) to calibrate its concept predictions p̂ to capture better
the model’s true uncertainty (see Appendix A for details).

Intuitively, one can think of c̄(+)
i and c̄

(−)
i as priors repre-

senting what we know about the implications of concept
ci being “active” or “inactive”, respectively. Under this
interpretation, the residuals r(+)

i (x) and r
(−)
i (x) can be

thought of as evidence that will enable us to perform poste-
rior updates to these priors after we observe task-relevant
information missing from the concept annotations.

Task Likelihood Given contextual embeddings
(c

(+)
i , c

(−)
i), we build a concept bottleneck ĉ from where

we estimate the task likelihood P(y | x) using a (linear)
label predictor model ŷ = f(ĉ). We construct this
bottleneck by first building a single concept representation
ĉi for each concept, which we then concatenate into a single
bottleneck vector ĉ := [ĉ1, · · · , ĉk]T . As in CEMs, we do
this by mixing contextual embeddings c(+)

i , c
(−)
i using the

predicted concept probability p̂i as a mixing coefficient:
ĉi := p̂ic

(+)
i + (1− p̂i)c

(−)
i . That way, ĉi is closer to c

(+)
i

if ci is predicted to be active and closer to c
(−)
i otherwise.

Intervening At test time, we can intervene on ci by forc-

ing p̂i to its ground-truth value when computing ĉi (e.g., if
concept ci is active, then the expert sets p̂i := 1). This re-
sults in ĉi becoming c

(+)
i if ci is active and c

(−)
i otherwise.

Training Objective Given a task-specific loss Ltask(y, ŷ)
(e.g., cross-entropy), we train MixCEM by minimising:

E(x,c,y)∼D

[
Ltask

(
y, f(g(x))

)
+λcBCE(c, p̂)+λpLtask

(
y, f(c̄)

)]
As in jointly trained Vanilla CBMs, the first term here is

the task accuracy, while the second term is the mean binary
cross-entropy between concept labels and predicted scores.
The hyperparameter λc ∈ R+

0 controls how much weight
we give to correctly predicting concept labels vs task labels.

The third term, which we call the prior error and scale it by
λp ∈ R+

0 , maximises the task accuracy when only the global
embeddings are used. Here, c̄ represents the bottleneck
formed by mixing the global concept embeddings using the
ground-truth concept labels as coefficients:

c̄ :=
[(
c1c̄

(+)
1 +(1−c1)c̄

(−)
1

)
, · · · ,

(
ckc̄

(+)
k +(1−ck)c̄

(−)
k

)]T
This term maximises the information about the downstream
task y encoded in the global concept embeddings. In Ap-
pendix B, we prove that MixCEM’s objective function natu-
rally arises as the MLE of a probabilistic graphical model.

Non-deterministic Fallbacks We incentivise MixCEMs
to be more receptive to interventions in two ways. First,
we randomly set (i.e., intervene on) p̂i to its ground truth
value ci with probability pint during training (we use pint =
0.25). We follow this procedure as it was shown to improve
intervenability in CEMs (Espinosa Zarlenga et al., 2022),
and discuss its importance in Section 6. Second, to enable
MixCEMs to handle dropping arbitrary residual concept
embeddings, we zero the residual r(+/−)

i with probability
pdrop ∈ [0, 1] during training. As in Dropout (Srivastava

5

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Table 1. Task accuracy and mean concept ROC-AUC reported as mean ± stds (%) across three seeds. Each task’s best result, and those not
significantly different from it (paired t-test, p = 0.05), are underlined. Note that, as outlined in Section 5.1, we do not expect MixCEM to
attain the best result for these metrics. However, we want it to remain competitive against other powerful baselines.

Method CUB CUB-Incomplete AwA2 AwA2-Incomplete CIFAR10 CelebA

DNN 71.18±0.67 / N/A 71.42±0.30 / N/A 89.20±0.26 / N/A 89.33±0.22 / N/A 80.79±0.22 / N/A 25.39±0.49 / N/A
Vanilla CBM 70.97±0.76 / 89.80±0.14 56.46±0.48 / 88.15±0.14 87.52±0.41 / 94.42±0.16 76.28±0.82 / 93.25±0.30 76.97±0.17 / 73.99±0.20 24.18±0.65 / 80.12±0.21

Hybrid CBM 73.65±0.23 / 94.53±0.04 72.13±0.57 / 88.97±0.20 88.18±0.65 / 94.42±0.19 89.39±0.18 / 95.81±0.01 79.12±0.27 / 73.78±0.08 35.43±0.23 / 87.66±0.18

ProbCBM 68.16±1.44 / 89.15±0.65 60.56±1.11 / 89.26±0.18 85.34±0.39 / 94.09±0.28 67.12±0.18 / 94.07±0.28 64.80±5.15 / 72.08±0.84 31.74±0.29 / 88.14±0.22

P-CBM 69.00±0.69 / 63.22±0.23 48.88±10.66 / 61.64±0.59 90.31±0.12 / 85.39±0.23 75.77±0.44 / 85.78±0.55 79.86±0.05 / 72.16±0.00 17.18±2.47 / 76.49±1.12

Residual P-CBM 71.84±0.57 / 63.35±0.17 70.69±0.21 / 61.70±0.64 90.60±0.14 / 85.39±0.23 89.56±0.17 / 85.77±0.56 79.90±0.10 / 72.16±0.00 15.43±1.91 / 76.49±1.12

CEM 76.67±0.11 / 89.60±0.11 74.42±0.46 / 89.35±0.19 91.07±0.24 / 94.84±0.43 90.12±0.07 / 96.04±0.07 80.05±0.35 / 73.67±0.40 34.89±0.46 / 87.79±0.21

IntCEM 73.33±0.70 / 84.34±0.53 72.61±0.21 / 88.02±0.43 89.52±0.92 / 84.28±1.01 88.65±0.38 / 95.10±0.09 78.48±0.68 / 66.79±0.30 36.93±1.07 / 88.08±0.16

MixCEM (ours) 76.54±0.14 / 88.00±0.44 74.54±0.19 / 87.24±0.43 89.94±0.12 / 93.35±0.04 88.68±0.05 / 95.19±0.02 78.64±0.41 / 72.52±0.69 35.58±0.72 / 87.51±0.12

et al., 2014), this can be seen as learning an ensemble of
models where each model includes only a subset of the
residuals. At inference, we adjust for this effect by sampling
M bottlenecks (we fix M = 50 in practice) and averaging
the prediction made from all M bottlenecks similarly to
how Monte Carlo Dropout operates (Gal & Ghahramani,
2016). This mechanism has the added benefit of mitigating
overfitting and further preventing poisonous leakage. For a
thorough ablation of MixCEM’s hyperparameters showing
its robustness across values, see Appendix J.

5. Experiments
Research Questions We explore the following questions:

(Q1) Do MixCEMs have a high concept and task fidelity?
(Q2) Do MixCEMs remain intervenable and correctly

bounded for ID and OOD samples?
(Q3) Are MixCEMs robust to OOD shifts?
(Q4) Do MixCEM’s bottlenecks go OOD for OOD inputs?

Datasets We study these questions on the following tasks:
(1) CUB (Wah et al., 2011), a bird classification task with
200 classes and 112 concepts selected by Koh et al. (2020),
(2) AwA2 (Xian et al., 2018), an animal classification task
with 50 classes and 85 concepts, (3) CelebA (Liu et al.,
2018), a face recognition task with 256 classes and 6 con-
cepts selected by Espinosa Zarlenga et al. (2022), and (4)
CIFAR-10 (Krizhevsky et al., 2009), a classification task
with 10 classes and with 143 concepts obtained in an un-
supervised manner by Oikarinen et al. (2023). Finally, we
construct concept-incomplete versions of CUB and AwA2
by randomly selecting 25% and 10% of their concepts, re-
spectively. All datasets are described in Appendix C.

Baselines We compare MixCEMs against Vanilla
CBMs (Koh et al., 2020), Hybrid CBMs (Mahinpei et al.,
2021), CEMs (Espinosa Zarlenga et al., 2022), IntCEMs (Es-
pinosa Zarlenga et al., 2023a), ProbCBMs (Kim et al., 2023),
and P-CBMs (including their residual version) (Yuksek-
gonul et al., 2023). Moreover, we include a vanilla DNN
as a representative black-box baseline. When possible, all

baselines are given the same capacity and budget for fine-
tuning and training. We select hyperparameters based on
the area under the validation task-accuracy vs intervention
curve and describe all hyperparameters and architectures
in Appendix D. Finally, for Vanilla CBMs, here we focus
on their sigmoidal and jointly trained versions. However,
we discuss results for different variants (e.g., sequential,
independent, and logit CBMs) in Appendix E.

We note that we do not explicitly include Label-free
CBMs (Oikarinen et al., 2023) in our evaluation, although
we do use their labelling procedure to obtain concept labels
in CIFAR10, as in datasets where we have concept annota-
tions (e.g., CUB), it is difficult to fairly compare Label-free
CBMs and concept-supervised methods without ground-
truth labels for label-free concepts. Moreover, we do not
include GlanceNets (Marconato et al., 2022) in our evalua-
tion, even though these models use a leakage/OOD detector,
because once leakage is detected by GlanceNet’s OOD de-
tector, the model does not provide a solution that allows
operations like interventions to work in that instance.

5.1. Task and Concept Fidelity (Q1)

We first study MixCEM’s task and concept fidelity through
its task accuracy and mean concept ROC-AUC. As we are
interested in designing models that satisfy both CA and
BI, we emphasise that we do not expect MixCEM to be
the best-performing baseline in terms of its ID task and
concept fidelity. Nonetheless, we use this study to verify that
MixCEM’s task and concept performances are competitive
against existing methods. Our results, summarised in Table 1
and discussed below, suggest that this is indeed the case.

MixCEM is completeness-agnostic and attains compet-
itive task accuracies (Table 1, red). In three out of
six tasks, MixCEM is in the set of best-performing base-
lines with respect to task accuracy. We note that, in tasks
where it underperforms, MixCEM’s drop against the best-
performing CM (i.e., CEM) is relatively small (at worst
close to 2% difference). More importantly, noticing that
MixCEM’s accuracy outperforms or closely matches that
of black-box DNNs on concept-complete and incomplete

6

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 25 50 75 100

70

80

90

100

ID
A

cc
u

ra
cy

(%
)

CUB

0 25 50 75 100

20

40

60

80

100
CUB-Incomplete

0 25 50 75 100
85

90

95

100

AwA2

0 25 50 75 100

70

80

90

100
AwA2-Incomplete

0 25 50 75 100

60

70

80

90

CIFAR10

0 25 50 75 100

20

40

60

CelebA

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

100

O
O

D
A

cc
u

ra
cy

(%
)

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

100

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

Vanilla CBM Hybrid CBM CEM IntCEM ProbCBM P-CBM Residual P-CBM MixCEM (ours) Bayes Classifier

Figure 4. Task accuracy as we intervene on concepts, selected at random, for ID (top) and OOD (bottom) test samples. OOD samples have
a form of salt & pepper noise injected into at most 10% of their channels (similar results on other forms of distribution shifts can be seen
in Appendix H). For the sake of efficiency, in the OOD plots we approximate a Bayes classifier that takes as an input only the intervened
concepts using a masked MLP (see Appendix D.4 for further details). Notice that across all tasks, both in ID and OOD instances, the area
under the intervention curve for MixCEM is higher than that of competing approaches. See Appendix L for a tabulation of these results,
including the estimated area under each intervention curve.

tasks, our results indicate that MixCEMs are completeness-
agnostic. The same does not hold for Vanilla CBMs, P-
CBMs, and ProbCBMs.

MixCEM has a slight drop in concept AUC, yet it re-
mains competitive with respect to state-of-the-art CMs
(Table 1, blue). MixCEM’s mean concept ROC-AUC
is slightly below the best-performing model in four of our
tasks. Nevertheless, MixCEM’s drop in mean concept ROC-
AUC is relatively small for most tasks (< 2%) and con-
sistently within the performance of similar SotA baselines,
such as CEMs or IntCEMs. The only task exception is in
CUB, where Hybrid CBMs attain significantly higher scores.
However, as discussed next, Hybrid CBMs are not generally
intervenable. Therefore, they are not suitable candidates for
human-in-the-loop scenarios, our setup of interest.

5.2. Intervenability (Q2)

We evaluate MixCEM’s intervenability and show it is
bounded for OOD samples. For this, we look at a model’s
task accuracy as we perform concept interventions. As in
previous works, we select intervened concepts uniformly at
random and intervene on groups of related concepts simul-
taneously when these groups are known (e.g., in CUB).

When intervened on for ID samples, MixCEM outper-
forms competing baselines (Figure 4, top). Our results
show that MixCEMs not only significantly improve their
task accuracy the more one intervenes (i.e., they are inter-
venable), but they perform better or on par with IntCEMs
(the best-performing baseline here). More crucially, they
achieve this without expensive training-time sampling, lead-
ing to faster training times than IntCEMs (see Appendix F).
Finally, we observe that MixCEM’s interventions signifi-

cantly improve its performance in concept-incomplete tasks,
suggesting that its embeddings properly leak information
even after interventions. This is in contrast with non-leaky
approaches (e.g., Vanilla CBMs and P-CBMs) and global-
embedding-based approaches (e.g., ProbCBMs), which sig-
nificantly underperform in concept-incomplete tasks.

MixCEM achieves bounded intervenability and better
OOD intervention accuracy (Figure 4, bottom). Fig-
ure 4 shows the results of intervening on test samples cor-
rupted with a form of “Salt & Pepper” noise. We study
this form of noise as it is common within real-world de-
ployment (Hendrycks & Dietterich, 2019; Mousavi et al.,
2017) (see examples of corrupted images in Appendix G).
However, we emphasise that, as shown in Appendix H,
MixCEM’s intervention improvements discussed below are
also seen for other forms of real-world distribution shifts.
This includes distribution shifts caused by downsampling,
blurring, random affine transformations, and domain shifts
(e.g., a model trained with MNIST (Deng, 2012) digits is
intervened on samples containing real-world colour digits).

When looking at interventions on OOD samples, we see
that MixCEM is the only completeness-agnostic baseline
whose interventions are usually bounded: all of MixCEM’s
OOD intervention curves, except in CIFAR10 and a short
instance in CelebA, are always near or above the accuracy
of the Bayes Classifier (BC, black dashed line). We be-
lieve MixCEM’s underperformance with respect to the BC
in CIFAR10 and CelebA results from concepts in both
datasets being difficult to properly learn for all methods
due to concept label noise (their concept annotations come
from CLIP-based classification or subjective human annota-
tions, both prone to mistakes). Nevertheless, across all tasks,
MixCEMs have significantly higher OOD intervention ac-

7

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 50 100

Intervened (%)

0

20

40

60

80

100

T
as

k
A

cc
u

ra
cy

(%
)

Noise = 5%

0 50 100

Intervened (%)

0

20

40

60

80

100
Noise = 10%

0 50 100

Intervened (%)

0

20

40

60

80

100
Noise = 25%

CEM IntCEM ProbCBM MixCEM (ours)

0 50 100

Intervened (%)

40

60

80

100

T
as

k
A

cc
u

ra
cy

(%
)

TravelingBirds

0 50 100

Intervened (%)

20

40

60

80

100
TravelingBirds-Incomplete

CEM IntCEM ProbCBM MixCEM (ours)

Figure 5. (Left) CUB-Incomplete intervention curves. Test samples are perturbed by adding “Salt & Pepper” noise with increasing
levels (% pixels corrupted). (Centre) TravelingBirds intervention curves. We show results on a spuriously correlated validation set
(dashed) and a test set without the spurious correlation (solid). (Right) T-SNE projections of bottlenecks before (top) and after (bottom)
all concepts are intervened on for ID and OOD samples in CUB-Incomplete.

curacies than competing completeness-agnostic baselines,
especially CEMs and IntCEMs (up to approx. 48% and
41% improvement in AwA2-Incomplete over CEM and
IntCEM, respectively). Finally, the fact that MixCEM even
surpasses the BC when all concepts are intervened on in
concept-incomplete tasks (e.g., AwA2-Incomplete and
CelebA) suggests that MixCEMs can exploit useful leak-
age for OOD samples while avoiding leakage poisoning.

5.3. Unintervened OOD Robustness (Q3)

Next, we study MixCEM’s performance across different dis-
tribution shifts. In particular, we evaluate MixCEMs as we
(1) vary the amount of test noise on CUB-Incomplete,
and (2) train it on the TravelingBirds dataset (Koh
et al., 2020), a variation of CUB where a training-time spuri-
ous correlation is introduced between the background and
the downstream task labels (see Appendix C for examples).
Below, we discuss how our results in Figure 5 suggest that
MixCEM exhibits better OOD robustness. For simplicity,
we focus on the best-performing baselines. However, we
show our observations extend to all baselines in Appendix I.

With and without interventions, MixCEM is more robust
to test-time noise (Figure 5, left). Our noise ablation
for CUB-Incomplete (Figure 5, left) shows that across
noise levels, MixCEM achieves better task accuracy as it is
intervened on than our baselines. More importantly, we see
that for low-to-medium noise regimes (e.g., 5% and 10%),
MixCEM achieves the best unintervened performance (left-
most points). For example, when noise=5%, MixCEM’s
unintervened task accuracy is 29.69% vs CEM’s 24.08%.
This trend is observed for incomplete and complete tasks
(see CUB results in Appendix I.1). These results suggest that
MixCEMs are robust models even without interventions.

MixCEM is more robust to spurious correlations in
concept-incomplete tasks (Figure 5, centre). In Figure 5
(centre), we look at how training-time spurious correlations
affect MixCEM’s performance in concept-complete and
incomplete versions of TravelingBirds. In the
incomplete task, we see that MixCEM’s unintervened and
intervened accuracies are better than our baselines’, both

for test sets with the spurious correlation (ID samples)
and without it (OOD samples). In particular, MixCEM’s
intervened performance is drastically better than that
of IntCEMs when the spurious correlations disappear
(adding more than 10% points in task accuracy when
all concepts are intervened on). Nevertheless, we also
notice that in concept-complete setups, although MixCEMs
outperform IntCEMs once more, they are outperformed
by ProbCBMs when no interventions are made on the test
set without the spurious correlation (OOD samples). In
Section 6, we provide some intuition as to why this may
be the case. Regardless, when compared against other
completeness-agnostic approaches (e.g., Residual P-CBMs,
CEMs, IntCEMs, Hybrid CBMs), our results suggest that
MixCEMs are more robust to different forms of OOD shifts.

5.4. Concept Bottleneck Analysis (Q4)

Finally, we qualitatively study how concept bottlenecks are
affected by concept interventions when samples go OOD.
For this, we look at the T-SNE (Van der Maaten & Hinton,
2008) projections of concept bottlenecks for different CMs.
Our experiments’ conclusions are described below.

MixCEM’s bottlenecks remain within distribution for
both ID and OOD samples (Figure 5, right). In Figure 5
(right), we see that in contrast to bottlenecks in CEMs and
Hybrid-CBMs, MixCEM’s unintervened bottlenecks (top
of figure) appear to remain within their ID bottleneck distri-
bution for OOD samples. More importantly, they appear to
closely match their original distribution when all concepts
are intervened. From our baselines, only IntCEM’s bottle-
necks seem to remain closer to their original distribution
after all interventions. This may explain why IntCEM’s
OOD interventions outperform CEM’s. However, we ob-
serve that MixCEM’s bottlenecks capture a significantly
greater proportion of the variance in their ID bottleneck dis-
tribution than IntCEM’s, potentially explaining why OOD
interventions are more effective in MixCEM. These results
suggest MixCEM learns concept representations that remain
within distribution and avoid leakage poisoning for both ID
and OOD samples.

8

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

6. Discussion and Conclusion
Prior Optimisation and Intervention Awareness Our
experiments hint at a relationship between OOD inter-
vention robustness and intervention awareness: IntCEM,
which has an intervention-aware loss, and MixCEM, which
has a robustness-aware loss minimising a prior’s error
Ltask

(
y, f(c̄)

)
, achieve the best intervention accuracies for

ID samples across all baselines. This suggests that robust-
ness awareness can have a positive effect on ID intervenabil-
ity. In the case of MixCEM, we believe its prior error min-
imisation leads to both better ID and OOD intervenability
because this term has an implicit incentive to maximise the
model’s performance both when all concepts are intervened
on (as c̄ is constructed by mixing embeddings based on the
ground-truth concept labels) and when no leakage is allowed.
Hence, this term has the extra effect of penalising MixCEM
for mispredicting y when all concepts are intervened on.
This has three surprising results: (1) MixCEM’s ID inter-
venability matches IntCEM’s, without needing a complex
IntCEM-like sampling-based loss; (2) even when we set the
concept weight loss to zero (i.e., λc = 0), MixCEMs remain
highly intervenable as long as λp > 0 (see Appendix J.1);
and (3) improvements from training-time interventions (i.e.,
when pint > 0) are much smaller for MixCEM than what
has been observed for CEMs (see Appendix J.5). All of
these suggest that prior error minimisation serves as a ro-
bust intervention-aware regulariser.

Bias Mitigation Our TravelingBirds results suggest
that models incorporating constant global embeddings (e.g.,
MixCEMs and ProbCBMs) better deal with spurious corre-
lations. We believe this is because global embeddings, by
definition, block the flow of concept-independent informa-
tion during inference. Thus, the model must learn to operate
with the same shared representations for samples with and
without the spurious correlation. This leads to models learn-
ing representations that better capture under-represented
groups (e.g., samples without a spurious correlation) and
may explain why ProbCBM, built on top of global em-
beddings, achieves a high OOD unintervened accuracy in
TravelingBirds. Future work could then explore how
global embeddings can be exploited for generalisation.

Limitations MixCEMs require more parameters (i.e.,
O(km) weights for C̄) and hyperparameters (e.g., λp and
pdrop) than CEMs. Although MixCEM is generally robust to
its hyperparameters (see Appendix J), its memory and fine-
tuning footprint open the door for future work to alleviate
these constraints. Moreover, we foresee at least two poten-
tial failure modes in MixCEMs: First, when a concept goes
OOD and the shift renders the concept incomprehensible for
an expert, MixCEMs may fail to completely block leakage
poisoning as one cannot intervene on such a concept. Hence,
future work can explore mechanisms for blocking all un-

wanted leakage without knowing a concept’s label. Second,
in incomplete tasks, intervened MixCEMs do not always
recover the full ID performance in OOD inputs. Therefore,
future work can explore how information about unprovided
concepts can be better preserved after an intervention. Fi-
nally, future work could explore (1) extending MixCEM’s
embedding decomposition to other embedding-based meth-
ods, such as ECBMs, and (2) devising better ways to inject
priors into its global embeddings.

Conclusion In this paper, we show that previous state-
of-the-art concept-based models are ill-equipped to concur-
rently handle both concept-incompleteness and test-time
interventions when inputs are OOD. To address this, we
introduce MixCEM, a new concept-based architecture that
uses an entropy-based gating mechanism to control when
and how concept-independent feature information is leaked.
Through an extensive evaluation across concept-complete
and concept-incomplete tasks, we show that MixCEMs out-
perform strong baselines by significantly improving accu-
racy for both ID and OOD samples in the presence and
absence of concept interventions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
MEZ acknowledges support from the Gates Cambridge
Trust via a Gates Cambridge Scholarship. GD acknowl-
edges support from the European Union’s Horizon Europe
project SmartCHANGE (No. 101080965), TRUST-ME
(No. 205121L 214991) and from the Swiss National Sci-
ence Foundation projects XAI-PAC (No. PZ00P2 216405).
PB acknowledges support from the Swiss National Science
Foundation project IMAGINE (No. 224226).

References
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt,

M., and Kim, B. Sanity checks for saliency maps. Ad-
vances in neural information processing systems, 31:
9505–9515, 2018.

Alvarez-Melis, D. and Jaakkola, T. S. Towards robust inter-
pretability with self-explaining neural networks. arXiv
preprint arXiv:1806.07538, 2018.

Azzeh, J., Zahran, B., and Alqadi, Z. Salt and pepper noise:
Effects and removal. JOIV: International Journal on
Informatics Visualization, 2(4):252–256, 2018.

9

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba,
A. Network dissection: Quantifying interpretability of
deep visual representations. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 6541–6549, 2017.

Chauhan, K., Tiwari, R., Freyberg, J., Shenoy, P., and Dvi-
jotham, K. Interactive concept bottleneck models. arXiv
preprint arXiv:2212.07430, 2022.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K.
This looks like that: deep learning for interpretable image
recognition. Advances in neural information processing
systems, 32, 2019.

Chen, Z., Bei, Y., and Rudin, C. Concept whitening for inter-
pretable image recognition. Nature Machine Intelligence,
2(12):772–782, 2020.

Choi, J., Raghuram, J., Feng, R., Chen, J., Jha, S., and
Prakash, A. Concept-based explanations for out-of-
distribution detectors. In International Conference on
Machine Learning, pp. 5817–5837. PMLR, 2023.

Collins, K. M., Barker, M., Espinosa Zarlenga, M., Raman,
N., Bhatt, U., Jamnik, M., Sucholutsky, I., Weller, A., and
Dvijotham, K. Human Uncertainty in Concept-Based AI
Systems. In Proceedings of the 2023 AAAI/ACM Confer-
ence on AI, Ethics, and Society, pp. 869–889, 2023.

Crabbé, J. and van der Schaar, M. Concept activation re-
gions: A generalized framework for concept-based ex-
planations. Advances in Neural Information Processing
Systems, 35:2590–2607, 2022.

Deng, L. The MNIST database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Dreyer, M., Achtibat, R., Samek, W., and Lapuschkin, S.
Understanding the (extra-) ordinary: Validating deep
model decisions with prototypical concept-based expla-
nations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3491–
3501, 2024.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Visual-
izing higher-layer features of a deep network. University
of Montreal, 1341(3):1, 2009.

Espinosa Zarlenga, M., Pietro, B., Gabriele, C., Giuseppe,
M., Giannini, F., Diligenti, M., Zohreh, S., Frederic, P.,
Melacci, S., Adrian, W., et al. Concept embedding mod-
els: Beyond the accuracy-explainability trade-off. In
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 21400–21413. Curran Associates, Inc., 2022.

Espinosa Zarlenga, M., Collins, K., Dvijotham, K., Weller,
A., Shams, Z., and Jamnik, M. Learning to Receive
Help: Intervention-Aware Concept Embedding Models.
Advances in Neural Information Processing Systems, 36,
2023a.

Espinosa Zarlenga, M., Shams, Z., Nelson, M. E., Kim, B.,
and Jamnik, M. TabCBM: Concept-based Interpretable
Neural Networks for Tabular Data. Transactions on Ma-
chine Learning Research, 2023b.

Falcon, W. A. Pytorch lightning. GitHub, 3, 2019.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059. PMLR, 2016.

Ghorbani, A., Wexler, J., Zou, J., and Kim, B. Towards
automatic concept-based explanations. arXiv preprint
arXiv:1902.03129, 2019.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Havasi, M., Parbhoo, S., and Doshi-Velez, F. Addressing
leakage in concept bottleneck models. In Advances in
Neural Information Processing Systems, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. doi:
10.1109/MCSE.2007.55.

Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P., and Weller,
A. Now you see me (cme): concept-based model extrac-
tion. arXiv preprint arXiv:2010.13233, 2020.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. Interpretability Beyond Feature Attri-
bution: Quantitative Testing With Concept Activation
Vectors (TCAV). In International conference on machine
learning, pp. 2668–2677. PMLR, 2018.

10

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Kim, E., Jung, D., Park, S., Kim, S., and Yoon, S. Proba-
bilistic concept bottleneck models. In International Con-
ference on Machine Learning, pp. 16521–16540. PMLR,
2023.

Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M.,
Schütt, K. T., Dähne, S., Erhan, D., and Kim, B. The
(un) reliability of saliency methods. arXiv preprint
arXiv:1711.00867, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson,
E., Kim, B., and Liang, P. Concept bottleneck models.
In International Conference on Machine Learning, pp.
5338–5348. PMLR, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Liu, Z., Luo, P., Wang, X., and Tang, X. Large-scale celeb-
faces attributes (celeba) dataset. Retrieved August, 15
(2018):11, 2018.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. Advances in neural informa-
tion processing systems, 30, 2017.

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. Rectifier
nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, pp. 3. Atlanta, Georgia, USA,
2013.

Magister, L. C., Barbiero, P., Kazhdan, D., Siciliano, F.,
Ciravegna, G., Silvestri, F., Jamnik, M., and Lio, P. En-
coding concepts in graph neural networks. arXiv preprint
arXiv:2207.13586, 2022.

Mahinpei, A., Clark, J., Lage, I., Doshi-Velez, F., and Pan,
W. Promises and pitfalls of black-box concept learning
models. arXiv preprint arXiv:2106.13314, 2021.

Marcinkevičs, R., Laguna, S., Vandenhirtz, M., and
Vogt, J. E. Beyond concept bottleneck models: How
to make black boxes intervenable? arXiv preprint
arXiv:2401.13544, 2024.

Marconato, E., Passerini, A., and Teso, S. Glancenets: In-
terpretable, leak-proof concept-based models. Advances
in Neural Information Processing Systems, 35:21212–
21227, 2022.

Mousavi, S. M., Naghsh, A., Manaf, A. A., and Abu-Bakar,
S. A robust medical image watermarking against salt and
pepper noise for brain mri images. Multimedia Tools and
Applications, 76:10313–10342, 2017.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y., et al. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp. 4. Granada, 2011.

Oikarinen, T., Das, S., Nguyen, L. M., and Weng, T.-W.
Label-free concept bottleneck models. In The Eleventh
International Conference on Learning Representations,
2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703,
2019.

Platt, J. et al. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood meth-
ods. Advances in large margin classifiers, 10(3):61–74,
1999.

Rabanser, S., Günnemann, S., and Lipton, Z. Failing loudly:
An empirical study of methods for detecting dataset shift.
Advances in Neural Information Processing Systems, 32,
2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Ribeiro, M. T., Singh, S., and Guestrin, C. ”Why should I
trust you?” Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1135–1144, 2016.

Rigotti, M., Miksovic, C., Giurgiu, I., Gschwind, T., and
Scotton, P. Attention-based interpretability with concept
transformers. In International conference on learning
representations, 2021.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. arXiv preprint arXiv:1911.08731, 2019.

Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., and
Boult, T. E. Toward open set recognition. IEEE transac-
tions on pattern analysis and machine intelligence, 35(7):
1757–1772, 2012.

Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth,
U., and Langs, G. Unsupervised anomaly detection with
generative adversarial networks to guide marker discov-
ery. In International conference on information process-
ing in medical imaging, pp. 146–157. Springer, 2017.

11

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Sevyeri, L. R., Sheth, I., Farahnak, F., Kahou, S. E., and
Enger, S. A. Transparent anomaly detection via concept-
based explanations. arXiv preprint arXiv:2310.10702,
2023.

Shen, M. W. Trust in AI: Interpretability is not necessary or
sufficient, while black-box interaction is necessary and
sufficient. arXiv preprint arXiv:2202.05302, 2022.

Sheth, I. and Ebrahimi Kahou, S. Auxiliary losses for learn-
ing generalizable concept-based models. Advances in
Neural Information Processing Systems, 36, 2024.

Sheth, I., Rahman, A. A., Sevyeri, L. R., Havaei, M., and
Kahou, S. E. Learning from uncertain concepts via test
time interventions. In Workshop on Trustworthy and
Socially Responsible Machine Learning, NeurIPS 2022,
2022.

Shin, S., Jo, Y., Ahn, S., and Lee, N. A closer look at
the intervention procedure of concept bottleneck models.
arXiv preprint arXiv:2302.14260, 2023.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Steinmann, D., Stammer, W., Friedrich, F., and Kersting,
K. Learning to intervene on concept bottlenecks. arXiv
preprint arXiv:2308.13453, 2023.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Vandenhirtz, M., Laguna, S., Marcinkevičs, R., and Vogt,
J. E. Stochastic concept bottleneck models. arXiv preprint
arXiv:2406.19272, 2024.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. Technical
Report CNS-TR-2011-001, California Institute of Tech-
nology, 2011.

Wijaya, M. A., Kazhdan, D., Dimanov, B., and Jamnik,
M. Failing conceptually: Concept-based explanations of
dataset shift. arXiv preprint arXiv:2104.08952, 2021.

Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. Zero-
shot learning—a comprehensive evaluation of the good,
the bad and the ugly. IEEE transactions on pattern anal-
ysis and machine intelligence, 41(9):2251–2265, 2018.

Xu, X., Qin, Y., Mi, L., Wang, H., and Li, X. Energy-based
concept bottleneck models: unifying prediction, con-
cept intervention, and conditional interpretations. arXiv
preprint arXiv:2401.14142, 2024.

Yang, Y., Panagopoulou, A., Zhou, S., Jin, D., Callison-
Burch, C., and Yatskar, M. Language in a bottle: Lan-
guage model guided concept bottlenecks for interpretable
image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 19187–19197, 2023.

Yeh, C.-K., Kim, B., Arik, S., Li, C.-L., Pfister, T., and
Ravikumar, P. On completeness-aware concept-based
explanations in deep neural networks. Advances in Neural
Information Processing Systems, 33:20554–20565, 2020.

Yuksekgonul, M., Wang, M., and Zou, J. Post-hoc con-
cept bottleneck models. In ICLR 2022 Workshop on
PAIR2Struct: Privacy, Accountability, Interpretability,
Robustness, Reasoning on Structured Data, 2023.

Zhou, C. and Paffenroth, R. C. Anomaly detection with
robust deep autoencoders. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 665–674, 2017.

12

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

A. MixCEM Concept Probability Calibration
Platt scaling (Platt et al., 1999) is a post-hoc calibration method used to transform the outputs of a probabilistic classifier
into well-calibrated probabilities (i.e., probabilities that better represent the model’s true uncertainty). In this work, we apply
a common adaptation of Platt Scaling by Guo et al. (2017) to calibrate a MixCEM’s concept probabilities so that they better
represent their uncertainty and, therefore, may serve as better indicators for when a concept might have gone OOD.

In practice, Platt scaling involves fitting a logistic regression model to the logits (pre-sigmoid activations) of MixCEM’s
concept scores p̂ on a validation dataset. Specifically, for each concept ci in our training set, given the logit zi := σ−1(p̂i)
of concept prediction p̂i, we calibrate its output by learning a linear transformation of zi:

P(ci = 1 | zi) = σ
(
aizi + bi

)
,

where ai, bi ∈ R are parameters specific to each concept. These parameters are learnt using maximum likelihood estimation
for Ecal epochs on the validation data after the MixCEM has been trained.

When we learn parameters a and b, we freeze all other parameters in MixCEM and minimise the Binary Cross Entropy
loss between scaled concept predictions and their ground-truth labels in the validation set. This means that the model’s
concept validation accuracy remains the same throughout this process, although the task accuracy can change slightly (as the
task predictions are a function of the concept predictions). By the end of this optimisation, MixCEM’s concept predictions
are a better fit to represent the true model uncertainty and can therefore be better at identifying when a sample’s concepts
have gone OOD. The results of including Platt Scaling as a post-processing step of MixCEMs are further discussed in
Appendix J.4.

B. Maximum likelihood of MixCEM
A generative process generally underlying CBMs assumes there exists a complete set of ground-truth concepts C∗ that are
the generating factors of variation of the samples X and the downstream tasks Y (see in Figure 6a). At test time, CBMs
observe X and need to infer a potentially incomplete subset of concepts C from which they infer a downstream label Y .
This can be represented via the following graphical models:

C∗

X

Y

(a) Data generative process

X C Y

(b) Graphical model of a traditional CBM

Figure 6. Graphical models underlying CBMs. Generative process (a) and model (b) for CBMs. C∗ is a complete concept set that perfectly
describes inputs X and task labels Y . In contrast, given some input features X , CBMs must infer a potentially incomplete concept set C
before making an inference about the downstream task label Y from C.

In our framing of MixCEM in Section 4, we argued that we can decompose our concept activations C into two components:
one that is sample-specific (i.e., the residual embeddings) and one that is concept-specific (i.e., the global embeddings).
Without loss of generality, we can formally express this consideration by letting the complete concept set C∗ be a function of
three factors: two independent factors R and C̄ and a third dependent factor C. Here, C represents a potentially incomplete
set of training concepts given to MixCEM, and C̄ represents a prior set of beliefs about concepts in C. As such, this prior
variable does not depend on a specific input observation. In contrast, the variable R represents all residual information in X
that is captured by the complete concept set C∗ but is missing from the training concepts C. Hence, R provides the appro-
priate context and a higher level of detail about the input observation when predicting Y from a set of incomplete concepts C.

Assuming we observe X , the above conditional dependencies lead to the following probabilistic graphical model describing
MixCEM:

13

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

X

C̄

C

R

C∗ Y

This graphical model can be factorised as follows:

P(Y,C | C̄,X) =
∑
R

∑
C∗

P(Y | C∗)P(C∗ | C, C̄,R)P(C | X, C̄)P(R | X) (1)

where:

• P(Y | C∗) is a categorical distribution over task labels given the predicted set of complete concepts C∗. In MixCEM,
we parameterise this model via the label predictor classifier f : C∗ → Y .

• P(C | X, C̄) is a Bernoulli distribution that models the presence or absence of each concept ci in our concept set
c ∼ C given X and C̄. In MixCEM, this distribution is parameterised by the concept scoring functions {si}ki=1, where
we interpret C̄ as learnable parameters of the classifier corresponding to MixCEM’s global embeddings.

• P(C∗ | C, C̄,R) is a deterministic bottleneck encoder γ : C ×R× C̄ → C∗ generating MixCEM’s bottleneck ĉ from
the concept values, the priors, and the residuals. As both the concepts and the residuals are functions of x, we abuse
notation and express this bottleneck as γ(x, C̄).

• P(R | X) is a deterministic function capturing MixCEM’s residuals {(r(+)
i (x), r

(−)
i (x)}ki=1. Abusing notation, we

encapsulate this learnable function as r : X → R.

We can use this factorisation to learn MixCEM’s parameters. Specifically, given a concept-annotated dataset of i.i.d.
triples D = {(x(j), c(j), y(j))}Nj=1, MixCEM’s parameters can be learnt via gradient descent by maximising the empirical
log-likelihood of the training data. For this, we consider the prior variables C̄ ∼ C̄ as parameters for the optimisation,
similar to the weights θg and θf , which represent the weights of the concept encoder and label predictor, respectively. This
yields the following objective function:

θ∗g , θ
∗
g , C̄

∗ = argmax
θg,θf ,c̄

E(x,c,y)∼D

[
P(Y = y, C = c | X = x; θg, θf , C̄)

]
(2)

Considering that both the residual and bottleneck encoder distributions are deterministic functions of their inputs, for any
sample (x, c, y) ∼ D we can use Equation 1 to rewrite the objective function in the expectation above as:

P(Y = y, C = c | X = x; θg, θf , C̄) = P
(
Y = y | C∗ = γ(x, C̄); θg, θf

)
P
(
C = c | X = x; θg, C̄

)
Here, we make a practical assumption. When learning our parameters θf , θg, and C̄, we want to disentangle the gradients
from the downstream task Y that update parameters θf and θg from those that update C̄. This is because we want our
prior embeddings C̄ to be, on their own, as informative as possible about the downstream task so that the residuals r(X)
only contribute to C∗ with information about Y that is not already encoded in C. As such, we write the likelihood of the
downstream task Y with respect to C∗ as:

P(Y | C∗) ≈ P
(
Y | C, r(X), C̄

)
P
(
Y | c̄

)
(3)

where

• P
(
Y | C, r(X), C̄

)
represents the task distribution when observing the residual embeddings, the predicted training

concepts, and the prior embeddings. In other words, this is the task likelihood we wrote down for MixCEM in Section 4.
This likelihood is given by MixCEM’s label predictor f(·) when it is provided with the bottleneck produced by encoder
g(x), which mixes both the residual and prior embeddings to generate a “complete” bottleneck ĉ.

14

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

• P
(
Y | c̄

)
represents the task distribution given the training concepts alone. This likelihood can be interpreted as the

label f(c̄) predicted when we only provide the label predictor f with the global prior embeddings of the training
concepts. Therefore, in practice, c̄ can be thought of as the bottleneck formed by mixing the global (prior) concept
embeddings using the ground-truth concept labels as coefficients:

c̄ =
[(
c1c̄

(+)
1 + (1− c1)c̄

(−)
1

)
, · · · ,

(
ckc̄

(+)
k + (1− ck)c̄

(−)
k

)]T
(4)

This simplification allows us to express MixCEM’s log-likelihood LL(x, c, y) = logP(Y = y, C = c | X = x; θg, θf , C̄)
of a data sample (x, c, y) as:

LL(x, c, y) = log
(
P(y | C∗ = g(x); θf , θg, C̄)P(y | C∗ = c̄; θf , θg)P(c | X = x; θg, C̄)

)
(5)

= logP
(
y | C∗ = g(x)

)
+ logP

(
y | C∗ = c̄

)
+ logP

(
c | X = x

)
(6)

Plugging in MixCEM’s likelihoods for the task and concept predictions derived in Section 4 and minimising the negative
log-likelihood, we get the final training objective we use to learn MixCEMs:

argmin
θg,θf ,C̄

E(x,c,y)∼D

[
− logP

(
y | g(x)

)
− logP

(
ŷ | c̄

)
− logP

(
c | x

)]
= (7)

argmin
θg,θf ,C̄

E(x,c,y)∼D

[
Lt

(
y, f(g(x))

)
+ λpLt

(
y, f(c̄)

)
+ λcBCE

(
c, p̂

)]
(8)

This is precisely the objective function we optimise when training MixCEM.

Information theoretic discussion In IID cases, if the concept prior C̄ is not informative enough to make predictions,
the model could exploit the contextual information in X to refine concept beliefs and generate more accurate concept
predictions. In this setting, X is useful to attain high task fidelity (ensuring completeness-agnosticism). However, in non-IID
settings, X encodes features from an unknown distribution, which may produce concept posteriors worse than the prior. For
this reason, we may need to exclude X from the computation of Y in such cases. If we exclude X from the computation, we
need C̄ to incorporate as much information as possible about Y ; otherwise, our predictions will not be better than random
chance, and interventions will be ineffective.

From an information theoretic perspective, MixCEM creates an interpretable information bottleneck where most the
information about Y is encoded in C̄ and only minimal residual information flows from X (i.e., I(Y ; C̄) ≫ I(Y ;X)) as
the loss term Ltask

(
y, f(c̄)

)
encourages the model to make predictions from global concepts alone.

C. Datasets
Below, we discuss the tasks and datasets used for our experiments in Section 5. A summary of the main characteristics of
each task can be found in Table 2.

Table 2. High-level properties of all tasks used in our experiments.
Dataset Training Samples (N) Validation Samples Testing Samples Input Shape (n) # Labels (L) # Concepts (k) # Concept Groups

CUB 4,796 1,198 5,794 (3, 299, 299) 200 112 28
CUB-Incomplete 4,796 1,198 5,794 (3, 299, 299) 200 22 7

AwA2 22,393 7,464 7,465 (3, 224, 224) 50 85 28
AwA2-Incomplete 22,393 7,464 7,465 (3, 224, 224) 50 9 6

CelebA 11,818 1,689 3,376 (3, 64, 64) 256 6 N/A
CIFAR10 40,000 10,000 10,000 (3, 32, 32) 10 143 N/A

TravelingBirds 4,796 1,198 5,794 (3, 299, 299) 200 112 28
TravelingBirds-Incomplete 4,796 1,198 5,794 (3, 299, 299) 200 22 7

CUB The CUB bird classification image task is constructed from the Caltech-UCSD Birds-200-2011 dataset (Wah et al.,
2011). Each sample in this task corresponds to a (3× 299× 299) RGB image of a bird (normalised in [0, 1]), annotated with
one of 200 bird species. Here, each image has 312 binary attribute annotations (e.g., “black nape”, “yellow wing
colour”, etc.). We construct a set of 112 binary concepts following the selection of attributes used by Koh et al. (2020).

15

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Moreover, we follow the same majority-voting standardisation of concepts across classes as in (Koh et al., 2020). This leads
to all samples from the same class having the same concept profiles. We do this so that this task’s concept annotations are
truly complete with respect to the downstream task (i.e., they can fully describe each downstream label) and to maintain this
dataset aligned with how it is usually used in the concept-based XAI literature. Finally, all 112 concepts can be grouped into
28 groups that encapsulate semantically related concepts (e.g., “black wing colour” and “red wing colour”).
When performing interventions, all concepts within the same group are intervened on at once, meaning we do interventions
on a group-level basis. As it is traditionally done for this dataset Koh et al. (2020); Espinosa Zarlenga et al. (2022); Kim et al.
(2023), we normalise all images, and during training, we randomly flip and crop images. For this task, and its incomplete
version, we use the same train-validation-test splits as in (Koh et al., 2020).

CUB-Incomplete The CUB-Incomplete task is generated from our CUB task by randomly selecting 25% of CUB’s
concept groups before training and using the labels of concepts within those groups as each sample’s concept labels. We do
the concept subsampling only once and use the same subselection across all seeds/rounds of experiments. This resulted in us
randomly selecting the following 7 groups of concepts {“bill shape”, “head pattern”, “breast colour”, “bill length”, “wing
shape”, “tail pattern”, “bill color”}. Together, all of these concept groups yield a total of 22 binary concept annotations. We
use this dataset as an example of a concept-incomplete task. We use the same splits and training augmentations as in CUB.

AwA2 The AwA2 task is constructed from the Animals with Attributes 2 (Xian et al., 2018) dataset. Each sample in
this task consists of a normalised (3, 224, 224) RGB image of an animal annotated with one out of 50 species classes
(e.g., “zebra”, “polar bear”, etc.). In addition to a species label, each sample is annotated with 85 binary attributes (e.g.,
“black”, “white”, “stripes”, “water”, etc.). We use these binary attributes as concept labels and split them across 28 groups of
semantically related concepts. Specifically, we group concepts across the following categories: { “colour”, “fur pattern”,
“size”, “limb shape”, “tail”, “teeth type”, “horns”, “claws”, “tusks”, “smelly”, “transport mechanism”, “speed”, “strength”,
“muscle”, “movement move”, “active”, “nocturnal”, “hibernate”, “agility”, “diet”, “feeding type”, “general location”,
“biome”, “fierceness”, “smart”, “social mode”, “nest spot”, “domestic”}. Similar to CUB, all samples with the same class in
this dataset share the same concept profiles. The train-validation-test data splits are produced by randomly splitting this
dataset 60%-20%-20%, and samples are randomly cropped and flipped during training as done in CUB.

AwA2-Incomplete The AwA2-Incomplete is constructed from the AwA2 task by selecting, at random,
10% of AwA2’s concepts to use as training annotations. This resulted in us selecting the following 9 concepts
{“black”,“gray”,“stripes”,“hairless”,“flippers”,“paws”,“plains”,“fierce”,“solitary”}. This dataset provides another example
of a more realistic concept-annotated dataset where the task labels are not complete descriptions of the downstream task.

CIFAR10 To explore our method in tasks without concept labels, we incorporate the CIFAR10 (Krizhevsky et al., 2009)
dataset as part of our evaluation. In this image detection task, each sample is a (3, 32, 32) normalised RGB image that can
be one out of 10 object types (e.g., “aeroplanes”, “cars”, “birds”, “cats”, etc.). As done by Marcinkevičs et al. (2024) and
Vandenhirtz et al. (2024), we annotate all samples in this dataset with 143 textual concepts whose semantics were obtained
in an unsupervised manner by Oikarinen et al. (2023). This allows us to construct numerical, unnormalised concept scores
using the CLIP (Radford et al., 2021) similarity score between each image and each concept’s textual description.

In contrast to how Marcinkevičs et al. (2024) and Vandenhirtz et al. (2024) binarise these concept scores, however, we
do not use a zero-shot CLIP classifier selecting between a concept description and its textual negation. This is because
generating binary concept labels in this manner leads to significantly imbalanced labels. Hence, such labels are extremely
difficult for models to accurately learn as measured by their mean concept AUCs (although one can easily train models that
achieve high concept accuracies, similar to those reported in (Marcinkevičs et al., 2024), given the high label imbalance).
Therefore, here, we instead binarise concepts by thresholding their scores based on their 50th percentiles, as estimated
from the entire dataset. This leads to concepts that are both balanced and still informative (e.g., we can see that our Bayes
Classifier achieves high accuracies when provided with all concept labels in Figure 4 (bottom)). Nevertheless, it is worth
pointing out that, by depending on an external unsupervised model such as CLIP to annotate these labels, this results in a
dataset that will undoubtedly have noisy concept labels that are not always accurately representing their intended semantics.

CelebA Our CelebA task is the same as used by Espinosa Zarlenga et al. (2022) based on the Large-scale CelebFaces
Attributes dataset (Liu et al., 2018). Here, every sample is a normalised RGB facial image annotated that has been
downsampled to have shape (3, 64, 64). As in (Espinosa Zarlenga et al., 2022), we select the top-8 most balanced attributes
from all of CelebA’s 40 attributes to construct a downstream label y as the decimal representation of the vector containing
all 8 attributes. We point out that although this process can yield up to 256 distinct task labels, in practice we could only
find 230 of them within the training samples and we noticed that these labels were highly imbalanced (which results in

16

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

a very difficult task to solve). To make this task concept-incomplete, we provide as concept annotations only the top-6
most balanced attributes, leaving two of the concepts needed to predict y out of our training annotations. Finally, as in
(Espinosa Zarlenga et al., 2022) and for consistency with previous works, our training set here is formed by randomly
subsampling the original CelebA’s training set to a 12th of its size.

TravelingBirds and TravelingBirds-Incomplete The TravelingBirds task, and its incomplete version,
are a variation of their respective CUB tasks. These tasks, based on the TravelingBirds dataset proposed by Koh et al. (2020),
introduce a new background to all bird images in CUB sampled from a category (e.g., “seashores”, “forests”, “coffee shops”,
etc.) that is correlated to the sample’s task label (see Figure 7). As in the original TravelingBirds dataset, these tasks’
test sets exhibit a distribution shift where the background of each bird is assigned to a different category, making these tasks
suitable test beds for generalisation and OOD evaluation.

Tr
ai

n
Te

st

Figure 7. Randomly selected training and test samples of TravelingBirds for the class “Yellow-headed Blackbird”. Notice that
training samples all have “aircraft-carrier” backgrounds while the testing samples have “sauna” backgrounds.

D. Training, Model Selection, and Hyperparameters
D.1. Training

During training, we use the standard categorical cross-entropy loss as Ltask. For baselines that optimise a binary cross
entropy loss between a predicted set of concepts and their corresponding ground truth labels, we use a weighted binary
cross entropy loss that weights the loss of each concept’s label proportionally to its representation in the training distribution
(except in CelebA due to instabilities where we use an unweighted version). That way, we encourage models to learn
useful concept predictors in tasks with high concept imbalance (e.g., CUB).

Unless specified otherwise, all baselines are trained using Stochastic Gradient Descent (SGD) with momentum 0.9. When
computing batch-level gradients, we use a batch size of 64 for all CUB-based tasks (given their large sample and concept
dimensions). Otherwise, we use a batch size of 512 for all other tasks. Similarly, when possible, we fix the initial learning
rate lr to values used by previous works and decay it during training by a factor of 10 if the training loss reaches a
plateau after 10 epochs. Specifically, we use lr = 0.01 for all tasks except for CelebA where we use lr = 0.05 as in
(Espinosa Zarlenga et al., 2022). Finally, based on the configuration by Koh et al. (2020), we use a weight decay 0.000004
for the CUB-based and AwA2-based tasks.

All models were trained for a total of E epochs, where E = 150 for all datasets except for CIFAR10, where it is E = 50.
We use early stopping by tracking the validation loss and stopping training if an improvement in validation loss has not been
seen after (patience)× (val freq) epochs, where patience = 5 and val freq, the frequency at which we evaluate our model
on the validation set, is val freq = 5.

D.2. Base Architecture

Across all models, we use a ResNet-18 (He et al., 2016) pretrained on ImageNet as the backbone architecture ψ for all tasks
except for CelebA where we use a larger model (a ResNet34) as the dataset is smaller. Specifically, we use the output of
the second-to-last layer in ResNet (the layer before the original logits) as a backbone for all models. We do not freeze the
initial pretrained weights. If the backbone is required to have a specific output dimension (e.g., as in Vanilla CBMs), then
we achieve this by adding a leaky ReLU (Maas et al., 2013) nonlinearity and a linear layer with the correct output shape to
the ResNet model mentioned above.

17

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

For the label predictor f(ĉ), we use a single linear layer for all baselines. The only exception for this is ProbCBMs, where,
as proposed by the original authors, we perform inference via a distance-based layer that learns class embeddings in RDy

and compares their distance to a learnt linear projection of the bottleneck ĉ onto that space.

D.3. Model Selection

Across all tasks and baselines, we performed a hyperparameter search with the aim of representing each baseline fairly.
For this, we made significant efforts to provide each baseline with a similar fine-tuning budget. Moreover, we aimed to
provide all baselines with the opportunity to have the same capacity as each other by including hyperparameterisations
that lead to similar parameter sizes. When possible and available, we attempted to use the same hyperparameters and
hyperparameter recommendations provided by the original works proposing each baseline. Yet, it is worth pointing out that
in some instances, our model selection chose hyperparameters that led to models with fewer parameters as they yielded
better validation metrics.

After considering a model-specific selection of hyperparameters for each baseline (summarised in each Table 3), we report
the results of only the baseline with the area under its validation task accuracy vs intervention curve (the only exception
being DNN, as it is unintervenable and therefore we perform model selection based on its validation task). We use this
area as a proxy for a metric that captures task fidelity, concept fidelity, and intervenability. Below, we provide details of all
baselines, together with the hyperparameters that our model selection yielded for each of them across our tasks.

Table 3. Sets of hyperparameters considered when performing our model selection. For each hyperparameter, we indicate which baseline(s)
that hyperparameter is relevant to. For clarity, we separate MixCEM’s specific hyperparameters at the bottom part of this table.

Hyperparameter Semantics Searched Values Baselines Fine-tuning These Hyperparameters

λc Concept loss weight {1, 5, 10} CBM, Hybrid CBM, CEM, IntCEM
k′ Extra unsupervised bottleneck dimensions {0, 50, 100, 200} Hybrid CBM, DNN
m Concept embedding space dimension {16, 32} CEM, ProbCBM
Dy Class embedding space dimension {64, 128} ProbCBM
γ Training intervention loss penalty {1.1, 1.5} IntCEM
λroll Intervention policy regulariser {0.1, 1, 5} IntCEM

λcomplex Complexity regulariser {0.000001, 0.001, 0.1} P-CBM, Residual P-CBM
λp Prior loss weight {0.1, 1} MixCEM
pdrop Residual dropout probability {0.1, 0.5, 0.9} MixCEM
Ecal Number of Platt scaling epochs {0, 30} MixCEM

D.4. Baseline Details and Selected Hyperparameters

Vanilla CBM All Vanilla CBM results in the main body of this work are produced from a jointly trained CBM (with
concept weight loss λc) whose bottleneck is sigmoidal (i.e., ĉ is in [0, 1]k). Our model selection here yielded λc = 1 for
all concept-incomplete tasks CUB-Incomplete, AwA2-Incomplete, and CelebA. In contrast, for all other (concept
complete) tasks, our model selection chose λc = 10.

Hybrid CBM Hybrid CBMs (Mahinpei et al., 2021) are variations of jointly trained sigmoidal CBMs where the concept
bottleneck ĉ = [ĉaligned, ĉunaligned]

T ∈ R(k+k′) is formed by the concatenation of a binary component ĉaligned ∈ [0, 1]k,
whose i-th entry is trained to be aligned with the i-th ground-truth concept, and a real-valued unconstrained component
ĉextra ∈ Rk′

, whose k′ entries are not aligned to any known concept. Our model selection for Hybrid CBMs yielded
k′ = 50 for all tasks except for CelebA, which yielded k′ = 200. Similarly, we selected λc = 10 for CelebA, AwA2, and
AwA2-Incomplete, λc = 1 for CUB-Incomplete and CIFAR10, and λc = 5 for CUB.

CEM When training CEMs, we intervene on a concept with probability pint = 0.25 (as suggested by the authors (Es-
pinosa Zarlenga et al., 2022)). In this setup, our model selection selected m = 16 for CEM’s embedding size for all tasks
except for CelebA, where we obtainedm = 32. Finally, we used the following concept loss weights: λc = 10 for CelebA,
λc = 5 for AwA-Incomplete, and λc = 1 for all other tasks.

IntCEM Given the number of hyperparameters in IntCEMs, we focused on fine-tuning only the concept loss weight λc,
the training-time task intervention penalty γ, and the intervention policy regulariser λroll. Therefore, we fixed the embedding
size m to that used by the equivalent CEM in the respective task, the number of training time interventions T to 6, the
initial probability of intervention as pint = 0.25, and the annealing rate for Tmax to 1.005. We chose these values based on

18

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

the suggestions by the original authors of this work. This resulted in the following hyperparameters being selected: (a)
λc = 1 for all tasks, (b) γ = 1.5 for CUB, CelebA, AwA2, and AwA-Incomplete and γ = 1.1 for all other tasks, and
(c) λroll = 0.1 for AwA2-Incomplete, λroll = 5 for CIFAR10, and λroll = 1 for all other tasks. Finally, for stability, we
use global gradient clipping (clipping value of 100) for CelebA.

ProbCBM We attempt to closely follow the same hyperparameters for ProbCBMs used in the original work by Kim et al.
(2023). As such, we (1) always use an Adam (Kingma & Ba, 2014) optimiser, (2) use a starting learning rate of 0.001
(except for CIFAR10 where we increase it to 0.01 as otherwise the model severely underperformed), (3) fix the number of
training and inference samples to 50, (4) intervene on concepts during training with probability pint = 0.5, (5) warm-up the
model for 5 epochs, and (6) scale the KL divergence regulariser λKL = 1× 10−5, as these were the hyperparameters used
on the authors’ original experiments. Similarly, we use weight decay 1 × 10−6, a learning rate 10 times smaller for the
non-pretrained weights, and clip gradient norms to 2 as the authors do in their official code base2.

As suggested by the authors, we trained ProbCBMs in a sequential manner. For this, we use early stopping for a maximum
of E epochs but, for fairness, we spend at most E/2 of those epochs training the concept encoder and the remaining epochs
training the task predictor. This left us with fine-tuning the dimensionality of both the concept embeddings (m) and the class
embeddings (Dy), two hyperparameters which we noticed had a critical role in ProbCBM’s performance. Here we use (a)
m = 32 for CUB and CelebA, and m = 16 otherwise, and (b) Dy = 128 for CUB and AwA2, and Dy = 64 otherwise.

As in (Kim et al., 2023), we perform interventions in ProbCBMs by replacing sampled concept embeddings with the learnt
means of their corresponding ground-truth labels.

Posthoc CBM We train both the standard and residual versions of P-CBMs. Here, we first train a DNN on the downstream
task y for E epochs by attaching two linear layers, with a leaky ReLU between them, to the output of the backbone ψ. The
first linear layer will have as many neurons as concepts in the dataset and the second layer will have as many neurons as
output labels in the specific task. This is done so that we provide this model with a similar capacity to the CBMs we train.
We train the black-box model with the same optimiser’s hyperparameters used for other baselines.

Once the black box task predictor has been trained, we extract a training set of embeddings by projecting the entire training
set to the space of the second-to-last layer of this model (i.e., the space of the first linear layer with k neurons that we added).
Then, we learn the Concept Activation Vector (CAVs) (Kim et al., 2018) for concept ci using the vector perpendicular to
the decision boundary of a linear SVM, with ℓ2 penalty C = 1, trained to predict concept ci from the activations of the
second-to-last layer of the black box DNN.

When fine-tuning P-CBMs’s sparse linear classifier, we fine-tune the complexity regulariser λcomplex and fixed the elastic
net’s ℓ1 ratio to be 0.1. Our model selection chose λcomplex = 1× 10−6 for CUB, AwA2, and CIFAR10, λcomplex = 0.001
for CUB-Incomplete and AwA2-Incomplete, and λcomplex = 1 for all other tasks.

When training the residual version of P-CBM, we provided the residual layer with k hidden neurons to enable this model to
have a closer capacity than that of competing baselines. Our fine-tuning for this model selected λcomplex = 1× 10−6 for
CUB, λcomplex = 0.001 for CIFAR10, and λcomplex = 0.1 for all other tasks.

Finally, given a lack of a direct mechanism for performing concept interventions on P-CBMs, when we intervene on their
concept predictions, we follow the same intervention process as in Vanilla CBMs, whose bottlenecks are unnormalised (e.g.,
logits). That is, as suggested by Koh et al. (2020), we indicate a concept ci is active by setting the neuron aligned to its score
to the 95th percentile value of that neuron in the empirical training distribution. Similarly, we indicate a concept is inactive
by setting that same neuron’s output to the 5th percentile of its empirical training distribution.

DNN As a representative of black-box models, in our evaluation, we included vanilla Deep Neural Networks (DNNs). To
ensure fairness in terms of capacity with respect to other baselines, we implemented DNNs using the same architecture as
Hybrid CBMs in each task but setting the concept weight to 0. This ensures this model only learns its downstream task
using the same architecture provided to equivalent Hybrid CBMs. Therefore, as in Hybrid CBMs, we fine-tuned the number
of extra dimensions k′ in the bottleneck that follows the backbone, selecting a value in k′ ∈ {0, 50, 100, 200}, and set the
activation function of the entire bottleneck to a vanilla leaky ReLU function. Our model selection chose k′ = 200 for CUB,
CUB-Incomplete, AwA2, and CelebA while it chose k′ = 100 for AwA2-Incomplete and CIFAR10.

MixCEM For MixCEMs, we fine-tune the weight of the prior loss λp, the dropout probability of a concept embedding’s

2See https://github.com/ejkim47/prob-cbm/blob/main/configs/config exp.yaml#L30.

19

https://github.com/ejkim47/prob-cbm/blob/main/configs/config_exp.yaml#L30

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

residual during training pdrop, and the number of epochs Ecal used for Platt calibration (Platt et al., 1999) on the validation
set. All other hyperparameters that are inherited from CEMs, such as the probability of training intervention pint, the concept
loss weight λc, and the embedding size m, are always set to the same values selected for CEMs on the respective task. As
for our other hyperparameters, our model selection yielded: (a) λp = 1 for all tasks except for CIFAR10, where we selected
λp = 0.1, (b) pdrop = 0.1 for CUB-Incomplete and the TravelingBirds-based tasks, pdrop = 0.5 for CUB, AwA2,
and CIFAR10, and pdrop = 0.9 for CelebA, and (c) Ecal = 30 for all tasks except for CelebA, where model selection
chose not to perform Platt Scaling (i.e., Ecal = 0). Finally, we always fix the number M of residual dropout samples we
generate at inference to M = 50.

In Appendix J, we show an ablation study for our model’s hyperparameters that suggests its ability to achieve both CA and
BI is preserved across several hyperparameterisations. Nevertheless, noticing that (λp, pdrop, Ecal) = (1, 0.5, 30) were by far
the most often selected hyperparameters, we recommend using these as the default values of MixCEM’s hyperparameters if
there are no resources for fine-tuning its hyperparameters.

D.5. Bayes Classifier

To determine whether or not all baselines achieve bounded intervenability, we wish to approximate the accuracy of a Bayes
Classifier that takes as input any set of ground-truth concept labels cS and predicts argmaxl∈{1,··· ,L} P(y = l | cS). As
learning a model for each possible concept subset S ⊆ {1, · · · , k} is intractable, we approach this problem by approximating
the Bayes Classifier via a Multilayer Perceptron (MLP) η(c) : [0, 1]k → [0, 1]L and training it to minimise Ltask(η(c), y).
For this model to support any arbitrary concept subset as an input during inference, however, we randomly mask its input
concept vectors c during training by setting any input concept to 0.5 with probability p = 0.25. That way, given the labels
cS of any subset of concepts S, we can estimate P(y | cS) by predicting η(c′(S)), where we let c′(S) ∈ [0, 1]k be a vector
such that c′(S)i = ci if i ∈ S and c′(S) = 0.5, otherwise. In practice, across all tasks, we train this masked model for
EBayes = 75 epochs using an MLP with hidden layers [28, 64, 32] and leaky ReLU nonlinearity in between them.

E. Results on Variations of Vanilla CBMs
As discussed in Section 2, Vanilla CBMs can be trained jointly, sequentially, and independently. Moreover, the jointly
trained version of Vanilla CBMs can use a bounded sigmoidal activation for its bottleneck, or it can use unbounded logit
scores. In the latter case, where the bottleneck contains the logits of the concept they predict, these scores can be intervened
on using the 5th and 95th percentile values of their respective training distributions as suggested by Koh et al. (2020). Here,
we investigate how various training regimes for Vanilla CBMs impact their ID and OOD intervention performances.

0 25 50 75 100

70

80

90

100

ID
A

cc
u

ra
cy

(%
)

CUB

0 25 50 75 100

40

60

80

CUB-Incomplete

0 25 50 75 100

87.5

90.0

92.5

95.0

97.5

100.0

AwA2

0 25 50 75 100

70

80

90

100
AwA2-Incomplete

0 25 50 75 100

70

75

80

85

90

CIFAR10

0 25 50 75 100

30

40

50

60

70

CelebA

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

100

O
O

D
A

cc
u

ra
cy

(%
)

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

100

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

Vanilla CBM Joint Logit CBM Sequential CBM Independent CBM MixCEM (ours) Bayes Classifier

Figure 8. Task accuracy of several Vanilla CBM variants as we intervene on concepts, selected at random, for ID (top) and OOD (bottom)
test samples. We use the same setup as the experiments described in Figure 4.

In Figure 8, we show the results of intervening on several variations of Vanilla CBMs across all tasks and compare these to
our MixCEM’s results. These results, which follow the same setup introduced for Figure 4 in Section 5, show that MixCEM
outperforms all CBM variations when intervened on for ID and OOD samples. In particular, we observe that MixCEMs
significantly outperform all variants of Vanilla CBMs in our concept-incomplete tasks as, in contrast to Vanilla CBMs,

20

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

MixCEMs are completeness-agnostic. The closest variant to MixCEM in terms of its unintervened performance is the
jointly trained logit CBMs, as their logits are leakage-enabling activations in the bottleneck. Yet, as seen in particular in
the concept-incomplete tasks such as CUB-Incomplete and AwA2-Incomplete, these models are unable to properly
react to interventions in these setups, instead decreasing their accuracy the more they are intervened on.

F. Scalability Studies
Below we describe a series of experiments to measure the computational impact of MixCEM both on its training time and
on its inference time.

F.1. Training Times

In Table 4, we show the efficiency of each method expressed as the number of wall-clock seconds taken per training epoch
across all tasks. We emphasise that these results are likely biased as they depend on implementation. Moreover, they are
prone to high variance due to our hardware infrastructure (we train models on shared machines whose latency may be
affected by concurrent processes). Nevertheless, our results suggest that MixCEM’s training times are significantly faster
than those seen in IntCEMs and ProbCBMs. This is due to IntCEMs incorporating an expensive sampling-based training
objective, which MixCEMs avoid completely. As expected, MixCEM’s times are slower than CEMs given their introduction
of new mechanisms on top of CEM. Nevertheless, we believe this performance hit is not significant and can be considered
to be amortised at inference time if one considers that MixCEMs are much better at receiving concept interventions than
CEMs both for ID and OOD samples. Finally, we see that as the number of concepts grows, the performance of ProbCBM
increases significantly even for a similar number of samples (e.g., AwA2 and CIFAR10). This is highly suggestive that these
models may not properly scale to large concept bases and suggests that MixCEMs, whose performance remains relatively
stable even when the number of concepts is high, can properly scale across concept set sizes.

Table 4. Efficiency study showing the training time per epoch (in seconds) for all embedding-based baselines.

Method CUB CUB-Incomplete AwA2 AwA2-Incomplete Cifar10 CelebA

ProbCBM 67.90±6.54 26.08±2.67 182.38±6.09 121.07±25.12 428.52±156.10 11.14±0.12

CEM 30.34±2.87 26.21±1.49 82.44±9.38 108.82±12.63 32.37±0.52 8.15±0.19

IntCEM 53.75±8.81 35.57±4.27 149.96±8.94 144.18±35.97 93.85±1.58 11.57±0.41

MixCEM 50.03±3.31 26.00±0.90 110.94±1.27 97.96±6.81 59.92±2.76 7.73±0.02

F.2. Inference Times

To complement our discussion on MixCEM’s training times with respect to competing baselines, in this section we explore
the effect of MixCEM’s components on its inference time. Table 5 shows the inference wall-clock times of all baselines in
CUB. Although we observe a slight increase in inference times of MixCEMs with respect to CEMs (∼4.2% slower), we
argue this difference is not problematic considering MixCEM is designed to be deployed together with an expert that can
intervene on it. In this setup, we believe that less than a millisecond of extra latency should not bear too heavy a toll, as
post-intervention accuracy is more important.

Table 5. Efficiency study showing the inference time per sample (in milliseconds) for all baselines in CUB.

Vanilla CBM Hybrid CBM ProbCBM P-CBM Residual P-CBM CEM IntCEM MixCEM

Time per Sample (ms) 1.386 1.394 5.687 1.426 1.433 1.437 1.431 1.497

G. Image Noising Details
Across all of our experiments where noise is used to generate OOD test samples (e.g., Figure 4 and Figure 5, left), we use
a form of “Salt & Pepper” noise. Given a noise strength factor λl ∈ [0, 1], this noise sets a randomly selected fraction of
λl/2 pixel channels, selected with replacement for efficiency, to 255, their maximum value. Then, it sets λl/2 randomly
selected pixel channels, selected with replacement for efficiency, to 0, their minimum value. This leads to the resulting

21

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

image having at most λl of its channels corrupted and to them becoming darker as the noise level increases. If the noise
level is not specified, then we use λl = 10% as the default level. We note that we use this version of Salt & Pepper noise as
it allows us to efficiently test its effects on models across large datasets using noise that is similar to that found in real-world
scenarios (Azzeh et al., 2018). A visualisation of CUB images with different levels can be seen in Figure 9.

Original λl = 5% λl = 10% λl = 25% λl = 50% λl = 75% λl = 90%

Figure 9. Examples of random images in CUB with our form of “Salt & Pepper” noise as we vary the noise’s strength level.

H. Interventions on Different Forms of Distribution Shifts
In this section, we explore different forms of distribution shifts beyond those studied in Section 5. Our results below strongly
suggest that the improvements in intervenability described in Section 5 for MixCEMs can be seen across multiple forms of
distribution shifts.

H.1. Exploring Different Forms of Visual Distribution Shifts

First, we explore visual distribution shifts caused by different forms of transformations besides the Salt & Pepper noise
we studied in Section 5.2. Specifically, in this section, we evaluate interventions on samples that were downsampled,
Gaussian-blurred, and subjected to a random affine transformation (rescalings and rotations). We chose these distribution
shifts as they represent widespread forms of OOD shifts found in real-world deployment.

Our results on CUB-Incomplete and our AwA2 tasks, shown in Figure 10, suggest that MixCEMs have better OOD
intervention task accuracies than our baselines across different distribution shifts. For instance, MixCEMs can have up
to ∼20% percentage points more in OOD task accuracy than CEMs and IntCEMs when all concepts are intervened on
in inputs downsampled to 25% of their size. These results suggest that MixCEMs are better at receiving interventions in
practical scenarios and real-world forms of distribution shifts.

H.2. Exploring Domain Shifts

Next, we explore distribution shifts in the form of domain shifts. For this, we train our models on an addition task where
11 MNIST digits (Deng, 2012) form each training sample, and the task is to predict whether all digits add to more than
25% of the maximum sum. We provide the identity of five digits as training concepts (i.e., it is an incomplete task), and
at test time, we swap MNIST digits for real-world sampled digits coming from the Street View House Numbers (SVHN)
dataset (Netzer et al., 2011). Our results, shown in Figure 11, suggest that MixCEMs achieve better ID and OOD intervention
task AUC-ROC than our baselines, particularly for high intervention rates. For example, when all concepts are intervened,
MixCEM attained ∼31, ∼7, and ∼3 more percentage points in OOD task AUC-ROC over CEM, IntCEM, and ProbCBM,
respectively. In contrast, we found it very difficult to get CEMs to perform well in this incomplete task.

I. Extended Robustness Experiments
We complement our results in Section 5.3 by showing extended versions of those experiments. We first discuss our extended
noise level ablation results on CUB-Incomplete and CUB and then our baselines’ results on TravelingBirds.

22

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 50 100
0

20

40

60

80

S
a
lt

&
P

e
p

p
e
r

(1
0
%

)
O

O
D

A
cc

u
ra

cy
(%

)

CUB-Incomplete

0 50 100
0

20

40

60

80

100

AwA2

0 50 100

20

40

60

80

AwA2-Incomplete

0 50 100

20

40

60

80

R
a
n

d
o
m

A
ffi

n
e

O
O

D
A

cc
u

ra
cy

(%
)

0 50 100

20

40

60

80

100

0 50 100

20

40

60

80

0 50 100

20

40

60

80

M
o
ti

o
n

B
lu

r
O

O
D

A
cc

u
ra

cy
(%

)

0 50 100
0

20

40

60

80

100

0 50 100

20

40

60

80

0 50 100

20

40

60

80

R
e
si

ze
(2

5
%

)
O

O
D

A
cc

u
ra

cy
(%

)

0 50 100
40

60

80

100

0 50 100

40

60

80

0 50 100

Intervened Concepts (%)

20

40

60

80

R
e
si

ze
(5

0
%

)
O

O
D

A
cc

u
ra

cy
(%

)

0 50 100

Intervened Concepts (%)

80

85

90

95

100

0 50 100

Intervened Concepts (%)

60

70

80

90

Vanilla CBM

Hybrid CBM

CEM

IntCEM

ProbCBM

P-CBM

Residual P-CBM

MixCEM (ours)

Figure 10. Task accuracy as we intervene on concepts, selected at random, for OOD test samples on CUB-Incomplete and our AwA2
variants. Out-of-distribution samples are generated by applying different forms of visual transformations to the test set (shift type shown
on the y-axis).

I.1. Extended Noise Ablation Results

Figure 12 shows all intervention curves in CUB and CUB-Incomplete as we vary the amount of “Salt & Pepper” noise
on the test samples. As in our analysis of Figure 5 (left) in Section 5.3 suggests, we see that across noise levels, MixCEM
outperforms all baselines in terms of its task accuracy as interventions are made. MixCEM’s placement within the other
baselines appears to be independent of the dataset’s concept completeness, although we observe a significantly greater
improvement in CUB-Incomplete than in CUB. Moreover, we also observe that, as discussed in Section 5.3, MixCEM’s
unintervened performance (left-most part of the plot) is above that of other methods for noise levels of up to 10% corruption.
After those levels, MixCEM’s unintervened accuracy seems to be on par with that of all other baselines, but it better receives
interventions than other approaches (leading to higher accuracies when intervened on across all noise levels).

I.2. Complete Spurious Study on TravelingBirds

In Figure 13, we summarise the intervention curves for all baselines in TravelingBirds and its incomplete version
TravelingBirds-Incomplete. Here, as we observed in Section 5.3, we see that MixCEM’s performance for
spuriously correlated ID samples is on par with that of IntCEMs and CEMs, the two best-performing baselines for ID
samples in both tasks. In contrast, for OOD samples, we see that ProbCBMs, Vanilla CBMs, and Hybrid CBMs have
better OOD unintervened performance than MixCEM only in TravelingBirds. This aligns with the results we reported
in Section 5.3 and constitutes evidence for the hypothesis we discuss in Section 6 that argues that using constant/global

23

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 50 100

Intervened Concepts (%)

60

70

80

90

T
as

k
R

O
C

-A
U

C
(%

)

ID (MNIST Digits)

0 50 100

Intervened Concepts (%)

50

60

70

80

OOD (SVHN Digits)

CEM

IntCEM

ProbCBM

MixCEM (ours)

Figure 11. Task accuracy as we intervene on concepts, selected at random, for models trained on the digit addition task. Models are trained
using MNIST digits. However, when we evaluate OOD interventions, we use test samples whose digits are drawn from the SVHN dataset.

0 25 50 75 100
0

20

40

60

80

100

(C
U
B

)
T

as
k

A
cc

(%
)

Noise Level = 1%

0 25 50 75 100
0

20

40

60

80

100

Noise Level = 5%

0 25 50 75 100
0

20

40

60

80

100

Noise Level = 10%

0 25 50 75 100
0

20

40

60

80

100

Noise Level = 25%

0 25 50 75 100
0

20

40

60

80

100

Noise Level = 50%

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

(C
U
B
-
I
n
c
o
m
p
l
e
t
e

)
T

as
k

A
cc

(%
)

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

0

20

40

60

80

Vanilla CBM Hybrid CBM CEM IntCEM ProbCBM P-CBM Residual P-CBM MixCEM (ours) Bayes Classifier

Figure 12. OOD task accuracy vs intervention curves for all baselines in the CUB (top) and CUB-Incomplete tasks. Test samples are
perturbed by adding “Salt & Pepper” noise with increasing levels (% pixels corrupted).

concepts in a bottleneck, such as those used for Vanilla CBMs and ProbCBMs, enables them to avoid exploiting spurious
correlations in the same way less constrained methods such as CEMs or IntCEMs may. These results also follow similar
conclusions previously discussed in this dataset by Koh et al. (2020). Nevertheless, we observe that (1) MixCEM’s accuracy
is higher than that of all baselines when the dataset is incomplete, our main setup of interest, and (2) MixCEMs intervention
accuracy is properly bounded (always above that of the Bayes Classifier), something that cannot be said of any other method
in these two tasks except for IntCEMs.

J. Hyperparameter Recommendations and Ablation Studies
In this section, we thoroughly examine the impact of MixCEM’s hyperparameters on its performance. For this, we focus
on the CUB-Incomplete dataset, given that it is a good representative for a concept-incomplete task, the main setup of
interest for this paper. Moreover, to enable a tractable exploration of a vast number of configurations for the ablations below,
we train MixCEM only with 25% of the training data. The only exceptions for this are in our studies of the effect of (1)
random train-time interventions (Appendix J.5), and (2) concept calibration (Appendix J.4), where we ran experiments
across all tasks as these studies could be efficiently performed. Finally, when studying a specific hyperparameter, we vary
its value over a set of pre-defined acceptable values at different scales while fixing all other hyperparameters to the values

24

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 20 40 60 80 100
0

20

40

60

80

100

ID
T

as
k

A
cc

u
ra

cy
(%

)

TravelingBirds

0 20 40 60 80 100
0

20

40

60

80

100
TravelingBirds-Incomplete

Vanilla CBM

Hybrid CBM

CEM

IntCEM

ProbCBM

P-CBM

Residual P-CBM

MixCEM (ours)

Bayes Classifier

0 20 40 60 80 100

Concepts Intervened (%)

0

20

40

60

80

100

O
O

D
T

as
k

A
cc

u
ra

cy
(%

)

0 20 40 60 80 100

Concepts Intervened (%)

0

20

40

60

Figure 13. TravelingBirds (left) and TravelingBirds-Incomplete (right) intervention curves. We show results on a spuri-
ously correlated ID validation set (top) and on an OOD test set without the spurious correlation (bottom).

selected by our model selection procedure for CUB-Incomplete (described in detail in Appendix D).

Our results in this section strongly suggest that MixCEMs are robust to different hyperparameterisations, attaining
both high intervenability and fidelities for both ID and OOD samples across all hyperparameterisations we attempted. As
such, MixCEMs do not require significant efforts to fine-tune, making them practical in real-world setups where proper
fine-tuning may be intractable. To facilitate MixCEM’s future use, we include a set of hyperparameter recommendations
in Appendix J.6.

J.1. Effect of Concept Weight Loss (λc)

First, we evaluate the effect of the concept loss weight λc on MixCEM’s performance. Although, in practice, we do not
fine-tune this hyperparameter for MixCEM (instead always using the concept loss weight selected for an equivalent CEM),
this hyperparameter has been previously shown to significantly affect how CBM-based models perform (Koh et al., 2020;
Espinosa Zarlenga et al., 2022). As such, understanding how it affects our model is an important practical consideration.

In Figure 14, we show the ID and OOD intervention curves for MixCEM in CUB-Incomplete across several values of
λc ∈ {0, 0.01, 0.1, 1, 2.5, 5}. We see that, throughout all values of λc, MixCEM significantly increases its accuracy when
one intervenes on its concepts both in ID and OOD test sets. Although these results appear to be somewhat stable, we see, as
one would expect, that the unintervened task loss suffers a drop when λc is high and the mean concept AUC drops when λc
is too low. This suggests that, in practice, using a midrange value for λc in between [1, 2.5] yields an interveanable model
with high concept and task fidelities.

A surprising result from this ablation is that MixCEM is still highly intervenable when λc = 0 (meaning no concept
loss is applied during training). We believe that this is a consequence of MixCEM’s prior predictive error Ltask

(
y, f(c̄)

)
maximising the task predictor accuracies assuming all concepts are intervened on. Hence, these results provide further
evidence that Ltask

(
y, f(c̄)

)
has an implicit intervention-aware effect.

J.2. Effect of Prior Error Weight (λp)

Next, we look at how prior error weight λp affects MixCEM’s performance. In Figure 15, we see that small values of λp
lead to both worst ID and OOD intervenability. This is expected, as the larger λp is, the better the model’s accuracy will be
when it has to make a prediction based only on the global embeddings. Nevertheless, we see that for larger values of λp
(e.g., λp ≥ 1), all metrics become relatively stable. As such, it is important that λp is set to a value near 1. By doing so,

25

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 20 40 60 80 100

Intervened Concepts (%)

75

80

85

90

95

T
as

k
A

cc
u

ra
cy

(%
)

ID

0 20 40 60 80 100

Intervened Concepts (%)

20

40

60

80

OOD

0.0 0.1 1.0 2.5 5.0

λc

50

60

70

80

90

100

T
as

k
A

cc
u

ra
cy

(%
)

ID

0.0 0.1 1.0 2.5 5.0

λc

60

70

80

90

100

M
ea

n
C

on
ce

p
t

A
U

C
(%

) ID

0.0 0.1 1.0 2.5 5.0

λc

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

ID

0.0 0.1 1.0 2.5 5.0

λc

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

OOD

MixCEM (λc = 0.0) MixCEM (λc = 0.1) MixCEM (λc = 1.0) MixCEM (λc = 2.5) MixCEM (λc = 5.0)

Figure 14. Ablation study for λc in a smaller version of CUB-Incomplete. On top of each subplot, we indicate whether we show
results for an ID test set or an OOD test set (generated using 10% salt & pepper noise). The right-most two plots show the task accuracy
when all concepts are intervened. We highlight the model corresponding to the hyperparameter selected for our evaluation in Section 5.

during training we are assigning equal weight to correctly predicting task labels using only the global embeddings (i.e.,
minimising Ltask

(
y, f(c̄)

)
) and to correctly predicting task labels with the contextual embeddings (i.e., Ltask

(
y, f(g(x))

)
).

0 20 40 60 80 100

Intervened Concepts (%)

75

80

85

90

95

T
as

k
A

cc
u

ra
cy

(%
)

ID

0 20 40 60 80 100

Intervened Concepts (%)

20

40

60

80

OOD

0.0 0.1 1.0 5.0 10.0

λp

50

60

70

80

90

100

T
as

k
A

cc
u

ra
cy

(%
)

ID

0.0 0.1 1.0 5.0 10.0

λp

60

70

80

90

100

M
ea

n
C

on
ce

p
t

A
U

C
(%

) ID

0.0 0.1 1.0 5.0 10.0

λp

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

ID

0.0 0.1 1.0 5.0 10.0

λp

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

OOD

MixCEM (λp = 0.0) MixCEM (λp = 0.1) MixCEM (λp = 1.0) MixCEM (λp = 5.0) MixCEM (λp = 10.0)

Figure 15. Ablation study for λp in a smaller version of CUB-Incomplete. On top of each subplot, we indicate whether we show
results for an ID test set or an OOD test set (generated using 10% salt & pepper noise). The right-most two plots show the task accuracy
when all concepts are intervened. We highlight the model corresponding to the hyperparameter selected for our evaluation in Section 5.

J.3. Effect of Training Fallback Probability (pdrop)

When looking at the effect of the dropout probability pdrop, Figure 16 suggest that, at least in CUB-Incomplete, this
hyperparameter does not have much of an effect. This is true except for pdrop = 1, where we see a drop in unintervened
task accuracy. This is because when pdrop = 1, the model essentially blocks any leaked information from x into the label
predictor f . However, for all other values, MixCEM’s performance remains relatively static with pdrop = 0.5, yielding the
best overall intervenability results, albeit not for too much of a difference.

0 20 40 60 80 100

Intervened Concepts (%)

70

80

90

T
as

k
A

cc
u

ra
cy

(%
)

ID

0 20 40 60 80 100

Intervened Concepts (%)

20

40

60

80

OOD

0.0 0.1 0.5 0.9 1.0

pdrop

50

60

70

80

90

100

T
as

k
A

cc
u

ra
cy

(%
)

ID

0.0 0.1 0.5 0.9 1.0

pdrop

60

70

80

90

100

M
ea

n
C

on
ce

p
t

A
U

C
(%

) ID

0.0 0.1 0.5 0.9 1.0

pdrop

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

ID

0.0 0.1 0.5 0.9 1.0

pdrop

60

70

80

90

100

A
ll

In
te

rv
en

ed
A

cc
(%

)

OOD

MixCEM (pdrop = 0.0) MixCEM (pdrop = 0.1) MixCEM (pdrop = 0.5) MixCEM (pdrop = 0.9) MixCEM (pdrop = 1.0)

Figure 16. Ablation study for pdrop in a smaller version of CUB-Incomplete. On top of each subplot, we indicate whether we show
results for an ID test set or an OOD test set (generated using 10% salt & pepper noise). The right-most two plots show the task accuracy
when all concepts are intervened. We highlight the model corresponding to the hyperparameter selected for our evaluation in Section 5.

Surprisingly, however, even when pdrop = 0, meaning we do not use any residual dropout during training or testing, MixCEM
archives very high task accuracies when it is intervened on for ID and OOD samples. This may suggest that this dropout
mechanism is not always needed. Nevertheless, as our results in Figure 17 comparing a MixCEM with dropout and a
MixCEM without dropout in CelebA show, there are clear benefits of adding this dropout mechanism, particularly for
difficult tasks such as CelebA.

26

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 20 40 60 80 100

Intervened Concepts (%)

40

50

60

70

T
as

k
A

cc
u

ra
cy

(%
)

ID

0 20 40 60 80 100

Intervened Concepts (%)

20

40

60

OOD

0.0 0.1 0.5 0.9

pdrop

0

10

20

30

T
as

k
A

cc
u

ra
cy

(%
)

ID

0.0 0.1 0.5 0.9

pdrop

0

20

40

60

80

M
ea

n
C

on
ce

p
t

A
U

C
(%

) ID

0.0 0.1 0.5 0.9

pdrop

0

20

40

60

A
ll

In
te

rv
en

ed
A

cc
(%

)

ID

0.0 0.1 0.5 0.9

pdrop

0

20

40

60

A
ll

In
te

rv
en

ed
A

cc
(%

)

OOD

MixCEM (pdrop = 0.0) MixCEM (pdrop = 0.1) MixCEM (pdrop = 0.5) MixCEM (pdrop = 0.9)

Figure 17. Ablation study for MixCEM’s residual dropout probability pdrop hyperparameter in CelebA. Notice that in this task, there is
a significant improvement OOD intervenability when pdrop is greater than 0. We mark in red and bold the model corresponding to the
hyperparameter that was selected for our evaluation in Section 5.

J.4. Effect of Calibration (Ecal)

In Figure 18, we can see the intervention curves of MixCEMs across all tasks with and without Platt scaling. We notice that
Platt scaling brings some key benefits for OOD samples, particularly for complex datasets such as CUB-Incomplete and
AwA2-Incomplete. This is because the more calibrated a MixCEM’s concept probabilities are, the more likely it is to
drop its residual embedding when that concept becomes OOD. The only instance where we saw a drop of performance
when using Platt Scaling was in CelebA. We believe this is due to the concepts in this task being too complex/subjective to
be properly predicted in the first place, leading to a model whose concept predictions were not overconfident even before
Platt scaling was done. Nevertheless, we notice that with and without Platt Scaling, MixCEMs can recover very high
accuracies when intervened for OOD setups. Hence, Platt scaling is helpful but not entirely necessary for MixCEM’s ability
to receive interventions for OOD samples properly. Because of this, when selecting hyperparameters for MixCEMs, we
include Ecal = 0 (i.e., no calibration at all) as hyperparameter option.

0 25 50 75 100

80

90

100

ID
A

cc
u

ra
cy

(%
)

CUB

0 25 50 75 100

75

80

85

90

95

CUB-Incomplete

0 25 50 75 100

90

92

94

96

98

100

AwA2

0 25 50 75 100

87.5

90.0

92.5

95.0

97.5

AwA2-Incomplete

0 25 50 75 100

80

85

90

CIFAR10

0 25 50 75 100

40

50

60

70

CelebA

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

100

O
O

D
A

cc
u

ra
cy

(%
)

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

100

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

40

60

80

0 25 50 75 100

Intervened Concepts (%)

20

40

60

MixCEM (No Calibration) MixCEM (Platt Calibrated)

Figure 18. Task accuracy of MixCEMs with and without Platt scaling as we intervene on concepts, selected at random, for ID (top) and
OOD (bottom) test samples. We use the same setup as the experiments described in Figure 4.

J.5. Effect of Training Intervention Probability (pint)

Finally, we study the effect of training-time interventions on MixCEM’s performance across ID and OOD tasks (so-called
RandInt (Espinosa Zarlenga et al., 2022)). Our results, shown in Figure 19 suggest that randomly intervening on concepts
during training with pint = 0.25 is generally beneficial for ID interventions. Nevertheless, we observe that the improvements
from including these train-time interventions on MixCEMs are significantly less impactful than what the original CEM
authors observed for CEMs (Figure 6 of (Espinosa Zarlenga et al., 2022)). This is once more evidence, as discussed in
Section 6, that MixCEM’s prior error minimisation has an implicit intervention-aware bias in it that leads to models that are
more receptive to test-time interventions.

J.6. General Recommendations

Our ablation results suggest that MixCEMs can perform well both for ID and OOD instances across a wide range of
hyperparameters. Thus, if fine-tuning is not an option, we would recommend setting λc = 1, pdrop = 0.5, λp = 1, m = 16,

27

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

0 25 50 75 100

80

85

90

95

100

ID
A

cc
u

ra
cy

(%
)

CUB

0 25 50 75 100

75

80

85

90

95

CUB-Incomplete

0 25 50 75 100

90

92

94

96

98

100

AwA2

0 25 50 75 100

90

92

94

96

98

AwA2-Incomplete

0 25 50 75 100

80

85

90

CIFAR10

0 25 50 75 100

40

50

60

70

CelebA

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

100

O
O

D
A

cc
u

ra
cy

(%
)

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

100

0 25 50 75 100

Intervened Concepts (%)

20

40

60

80

0 25 50 75 100

Intervened Concepts (%)

40

60

80

0 25 50 75 100

Intervened Concepts (%)

10

20

30

40

50

60

MixCEM (pint = 0) MixCEM (pint = 0.25)

Figure 19. Task accuracy of MixCEMs with and without randomly intervening at training time with probability pint (i.e., using RandInt).
We use the same setup as the experiments described in Figure 4.

pint = 0.25, and T = 50 for obtaining already high ID and OOD intervention receptiveness. If one of these hyperparameters
is to be fine-tuned, our ablations suggest setting λp = 1 and focusing on fine-tuning λc, as changes in this hyperparameter
affect MixCEM’s interpretability the most.

We note that in our experiments, we focus almost entirely on selecting λp and pdrop. All other hyperparameters (e.g., m, pint,
T) were either fixed to a constant value or were selected based on those used for an equivalent CEM.

K. Resources Used
Software For our experiments and evaluation, we adapted the original CEM codebase3 built by Espinosa Zarlenga
et al. (2022). This codebase provided the basis for our implementation of MixCEM and gave us the foundations for our
implementations of CEMs, IntCEMs, Vanilla CBMs and Hybrid CBMs. Moreover, we used the data loaders for CUB
and CelebA provided by this codebase, of which the former is based upon the original data loader by (Koh et al., 2020).
For Posthoc CBMs (P-CBMs), we based our implementation on that used by the authors and published with the paper4.
Similarly, for Probabilistic CBMs, we based our implementation on a very close adaptation of the implementation made
public by the authors in the codebase accompanying their paper5. Finally, for our CIFAR10 and AwA2 loaders, we got
inspiration from the public implementation of these loaders by Vandenhirtz et al. (2024) and Marcinkevičs et al. (2024),
respectively.

Our experiments were run on PyTorch 1.11.0 (Paszke et al., 2019) and facilitated by PyTorch Lightning 1.9.5 (Falcon, 2019).
For our plots, we used matplotlib 3.5.1 (Hunter, 2007) and the open-sourced distribution of draw.io.

All the software and datasets used to build our code and to run our experiments were made available to the public via
open-source licenses (e.g., MIT, BSD). To facilitate and encourage the reproduction of our results, we include all of our
code, including configuration files to reproduce each of our experiments, in our supplementary submission for this work. All
of our code, including configs and scripts to recreate results shown in this paper, can be found in CEM’s official public
repository found at https://github.com/mateoespinosa/cem.

Resources We executed all experiments on a shared GPU cluster with four Nvidia Titan Xp GPUs and 40 Intel(R) Xeon(R)
E5-2630 v4 CPUs (at 2.20GHz) with 125GB of RAM. All of our experiments, including early development experiments,
expensive ablation studies, and fine-tuning for all baselines, took approximately 500 compute hours.

L. Tabulation of Intervention Results and Computation of Area Under the Intervention Curves
In Table 6, we show a tabulation of Figure 4 using a representative subset of the points shown in that figure. We also include
an estimation of the area under each intervention curve (computed using a Riemann sum), which shows how MixCEM’s
intervenability is significantly better than that of competing methods, particularly for OOD setups.

3https://github.com/mateoespinosa/cem.
4https://github.com/mertyg/post-hoc-cbm.
5https://github.com/ejkim47/prob-cbm.

28

draw.io
https://github.com/mateoespinosa/cem
https://github.com/mateoespinosa/cem
https://github.com/mertyg/post-hoc-cbm
https://github.com/ejkim47/prob-cbm

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Table 6. Task accuracy (%) for ID (blue) and OOD (red) samples as we intervene on a larger fraction of randomly selected concept groups.
These results show the same data as Figure 4 but in a more accessible form. Each task’s best result, and those not significantly different
from it (paired t-test, p = 0.05), are in bold. We note that MixCEM’s unintervened accuracies (i.e., 0%) may differ very slightly from
those in Table 1 as its inference is non-deterministic (see Section 4). We show the estimated area under each intervention curve in the
“AUC” column.

Method 0% 20% 40% 60% 80% 100% AUC

C
U
B

Vanilla CBM 70.97±0.76 / 14.43±1.16 80.43±1.07 / 38.26±2.93 90.36±1.56 / 77.55±2.29 95.36±1.63 / 91.85±1.92 97.27±1.49 / 96.56±1.65 97.98±1.39 / 97.98±1.39 89.75±1.31 / 72.25±1.44

Hybrid CBM 73.65±0.23 / 8.96±2.63 80.68±0.33 / 18.75±4.96 88.03±0.25 / 43.20±6.50 93.40±0.25 / 69.12±4.59 96.86±0.37 / 87.64±1.33 98.07±0.20 / 93.29±0.21 89.08±0.22 / 54.06±3.74

ProbCBM 68.16±1.44 / 6.44±0.97 79.38±0.94 / 21.65±3.62 91.63±0.33 / 64.35±5.06 97.11±0.21 / 90.11±1.86 99.50±0.03 / 98.59±0.44 100.00±0.00 / 100.00±0.00 90.53±0.39 / 65.52±2.32

P-CBM 69.00±0.69 / 3.76±0.72 77.00±1.19 / 15.45±1.60 82.35±1.82 / 38.51±2.43 84.41±3.22 / 56.92±4.36 84.82±4.81 / 74.47±5.72 83.51±7.01 / 83.81±6.94 81.15±2.90 / 45.83±3.00

Residual P-CBM 71.84±0.57 / 4.26±0.86 76.32±0.63 / 9.75±2.06 80.59±0.70 / 18.73±4.34 83.44±0.96 / 28.55±6.60 86.31±1.07 / 40.56±8.58 88.13±1.26 / 50.30±9.66 81.40±0.75 / 25.01±5.16

Bayes Classifier 0.52±0.00 / 0.52±0.00 9.31±0.87 / 9.31±0.87 49.51±2.20 / 49.51±2.20 86.40±0.62 / 86.40±0.62 98.68±0.11 / 98.68±0.11 100.00±0.00 / 100.00±0.00 58.62±0.74 / 58.62±0.74

CEM 76.67±0.11 / 9.68±1.20 85.95±0.18 / 32.58±3.12 92.69±0.15 / 68.27±2.68 96.03±0.21 / 85.07±2.30 97.93±0.17 / 93.31±1.43 98.78±0.10 / 96.14±0.90 92.25±0.09 / 66.53±1.96

IntCEM 73.33±0.70 / 11.00±4.01 90.23±0.38 / 57.05±5.26 97.22±0.14 / 90.27±1.16 98.79±0.07 / 96.54±0.31 99.61±0.02 / 98.92±0.10 99.90±0.01 / 99.67±0.12 94.96±0.08 / 80.19±1.97

MixCEM (ours) 76.64±0.22 / 17.25±0.39 89.19±0.17 / 62.24±3.43 96.52±0.13 / 90.84±1.32 98.48±0.07 / 96.78±0.58 99.51±0.02 / 99.13±0.11 99.82±0.02 / 99.89±0.10 94.69±0.04 / 82.23±1.17

C
U
B
-
I
n
c
o
m
p
l
e
t
e

Vanilla CBM 56.46±0.48 / 5.42±0.60 61.85±0.57 / 14.58±1.14 65.42±0.51 / 23.43±1.40 72.59±0.68 / 49.52±1.36 76.35±0.85 / 64.41±0.89 79.58±1.31 / 79.58±1.31 69.17±0.68 / 39.42±1.03

Hybrid CBM 72.13±0.57 / 4.81±0.39 76.31±0.79 / 7.34±0.30 78.53±0.64 / 8.99±0.47 83.26±0.52 / 14.81±0.46 85.43±0.45 / 18.93±0.55 87.54±0.37 / 24.33±0.42 80.91±0.55 / 13.11±0.43

ProbCBM 60.56±1.11 / 4.26±0.96 67.50±0.59 / 13.06±1.47 71.80±0.61 / 23.37±1.64 80.55±0.54 / 55.05±1.10 84.45±0.33 / 72.47±0.45 87.80±0.09 / 87.80±0.09 76.01±0.40 / 42.46±1.05

P-CBM 48.88±10.66 / 2.76±0.35 37.68±8.40 / 5.65±0.37 34.49±8.29 / 8.18±1.12 30.03±8.61 / 15.63±3.98 29.39±9.46 / 21.26±6.66 29.29±11.29 / 29.15±10.90 33.58±8.98 / 13.55±3.52

Residual P-CBM 70.69±0.21 / 4.82±2.01 72.26±0.75 / 7.09±0.93 73.28±1.20 / 8.71±0.12 75.07±2.32 / 12.28±2.63 76.01±2.94 / 15.21±5.03 77.18±3.73 / 18.37±7.83 74.25±1.83 / 11.10±2.05

Bayes Classifier 0.52±0.00 / 0.52±0.00 7.82±0.44 / 7.82±0.44 18.65±1.61 / 18.65±1.61 55.53±1.95 / 55.53±1.95 73.92±1.18 / 73.92±1.18 87.56±0.33 / 87.56±0.33 40.21±1.01 / 40.21±1.01

CEM 74.42±0.46 / 6.84±1.69 79.96±0.68 / 12.92±2.62 82.89±0.83 / 17.52±2.96 87.92±0.75 / 29.71±3.52 89.99±0.51 / 36.81±3.78 92.08±0.47 / 44.61±4.44 85.09±0.65 / 24.87±3.18

IntCEM 72.61±0.21 / 7.98±0.32 81.35±0.18 / 20.12±1.15 85.02±0.28 / 29.82±1.65 91.58±0.30 / 54.21±3.51 94.02±0.28 / 66.47±3.35 96.08±0.34 / 78.03±3.15 87.69±0.25 / 43.34±2.23

MixCEM (ours) 74.56±0.12 / 11.61±1.37 83.51±0.30 / 27.73±2.36 87.02±0.15 / 40.74±2.76 92.80±0.17 / 68.61±2.71 94.91±0.14 / 80.51±1.99 96.64±0.19 / 90.42±1.20 89.16±0.16 / 54.48±2.13

A
w
A
2

Vanilla CBM 87.52±0.41 / 15.99±0.86 92.17±0.47 / 33.86±2.63 96.59±0.26 / 71.70±2.86 98.71±0.16 / 93.62±1.33 99.36±0.09 / 99.30±0.23 99.49±0.13 / 99.49±0.13 96.18±0.21 / 71.31±1.50

Hybrid CBM 88.18±0.65 / 17.30±0.66 91.26±0.39 / 25.89±2.05 94.38±0.29 / 45.18±4.41 96.70±0.21 / 69.67±5.25 98.83±0.03 / 92.65±2.61 99.53±0.06 / 99.26±0.11 95.08±0.23 / 58.52±2.88

ProbCBM 85.34±0.39 / 6.41±1.76 90.44±0.38 / 29.07±7.21 96.34±0.21 / 72.61±7.46 99.01±0.04 / 93.80±2.22 99.95±0.01 / 99.78±0.10 100.00±0.00 / 100.00±0.00 95.78±0.15 / 69.81±3.67

P-CBM 90.31±0.12 / 19.78±1.67 95.07±0.22 / 47.41±1.09 97.67±0.08 / 77.87±0.34 98.62±0.13 / 91.69±0.23 99.08±0.37 / 97.76±0.21 99.37±0.89 / 99.37±0.89 97.17±0.13 / 75.35±0.42

Residual P-CBM 90.60±0.14 / 19.49±1.84 94.73±0.23 / 42.24±2.06 97.43±0.07 / 71.72±1.12 98.55±0.09 / 88.35±0.83 99.21±0.29 / 96.69±0.64 99.73±0.22 / 99.39±0.21 97.14±0.06 / 72.06±1.09

Bayes Classifier 1.18±1.01 / 1.18±1.01 12.98±0.80 / 12.98±0.80 55.74±1.19 / 55.74±1.19 89.23±0.63 / 89.23±0.63 99.60±0.15 / 99.60±0.15 100.00±0.00 / 100.00±0.00 61.50±0.40 / 61.50±0.40

CEM 91.07±0.24 / 20.22±2.03 93.17±0.23 / 24.04±1.95 95.10±0.33 / 28.76±1.98 96.46±0.27 / 33.44±2.17 98.00±0.13 / 39.40±2.30 98.86±0.08 / 44.81±2.05 95.60±0.19 / 31.64±2.07

IntCEM 89.52±0.92 / 16.06±1.41 94.36±0.56 / 25.05±2.24 97.31±0.28 / 36.43±3.14 98.54±0.22 / 46.16±3.66 99.39±0.07 / 57.34±3.45 99.64±0.07 / 64.68±3.24 96.97±0.29 / 41.26±2.99

MixCEM (ours) 89.97±0.13 / 17.75±0.18 95.45±0.11 / 45.51±0.59 98.83±0.02 / 82.73±0.69 99.62±0.04 / 96.95±0.50 99.99±0.00 / 99.91±0.05 100.00±0.00 / 100.00±0.00 97.92±0.02 / 77.17±0.37

A
w
A
2
-
I
n
c
o
m
p
l
e
t
e Vanilla CBM 76.28±0.82 / 15.43±0.38 73.92±1.11 / 27.22±0.17 72.90±1.24 / 35.29±0.07 71.90±1.16 / 46.30±0.58 70.66±1.37 / 58.13±0.42 69.63±1.61 / 69.63±1.61 72.39±1.20 / 42.87±0.25

Hybrid CBM 89.39±0.18 / 18.11±1.19 90.26±0.23 / 20.60±1.28 90.78±0.17 / 22.06±1.26 91.34±0.18 / 24.02±1.43 91.88±0.15 / 26.19±1.66 92.41±0.07 / 28.64±1.52 91.09±0.17 / 23.48±1.37

ProbCBM 67.12±0.18 / 7.61±1.80 69.59±0.32 / 18.82±1.13 70.82±0.27 / 29.39±1.40 72.48±0.40 / 43.85±0.74 73.83±0.13 / 60.62±0.57 75.58±0.47 / 75.58±0.47 71.82±0.13 / 39.99±0.87

P-CBM 75.77±0.44 / 14.20±0.46 70.27±0.34 / 26.85±1.04 70.48±0.35 / 36.16±0.82 71.22±0.35 / 48.10±0.47 72.32±0.16 / 61.28±0.91 73.76±0.77 / 73.76±0.77 71.69±0.20 / 44.27±0.64

Residual P-CBM 89.56±0.17 / 18.37±0.98 92.69±0.15 / 33.31±1.87 93.99±0.18 / 42.48±2.36 95.09±0.06 / 52.96±3.00 96.06±0.14 / 64.50±2.53 96.95±0.27 / 76.00±1.94 94.32±0.13 / 49.07±2.13

Bayes Classifier 1.19±0.61 / 1.19±0.61 14.17±0.83 / 14.17±0.83 30.08±0.83 / 30.08±0.83 47.82±1.05 / 47.82±1.05 63.64±0.42 / 63.64±0.42 76.35±0.35 / 76.35±0.35 39.56±0.50 / 39.56±0.50

CEM 90.12±0.07 / 17.42±0.82 92.47±0.06 / 22.09±0.83 93.57±0.13 / 24.92±0.90 94.61±0.18 / 28.07±1.11 95.64±0.23 / 31.59±1.44 96.67±0.26 / 35.45±1.72 94.04±0.14 / 26.97±1.07

IntCEM 88.65±0.38 / 19.98±0.58 92.04±0.38 / 26.32±0.93 93.45±0.31 / 29.79±1.11 94.79±0.26 / 33.38±1.49 95.86±0.20 / 37.64±2.09 96.80±0.13 / 42.13±2.51 93.90±0.27 / 32.03±1.41

MixCEM (ours) 88.65±0.10 / 16.71±0.82 93.01±0.20 / 33.74±0.50 94.84±0.15 / 45.38±0.47 96.30±0.13 / 58.95±0.71 97.51±0.04 / 72.44±0.84 98.50±0.04 / 83.74±1.10 95.20±0.10 / 53.07±0.41

C
I
F
A
R
1
0

Vanilla CBM 76.97±0.17 / 35.35±2.07 81.58±0.40 / 51.25±0.72 86.55±0.23 / 71.98±0.50 88.88±0.12 / 81.61±0.18 89.86±0.10 / 87.86±0.18 89.31±0.12 / 89.31±0.12 86.11±0.11 / 71.31±0.36

Hybrid CBM 79.12±0.27 / 31.59±1.47 80.07±0.27 / 35.00±1.54 80.89±0.31 / 39.17±1.81 81.58±0.24 / 43.09±1.75 82.71±0.25 / 50.18±1.53 83.61±0.24 / 55.24±1.30 81.36±0.28 / 42.30±1.58

ProbCBM 64.80±5.15 / 27.40±2.71 70.70±4.77 / 37.02±1.26 78.38±3.81 / 54.75±2.96 83.85±2.59 / 69.50±3.47 89.91±0.45 / 86.58±0.57 90.87±0.11 / 90.87±0.11 80.27±2.81 / 61.68±1.01

P-CBM 79.86±0.05 / 33.21±0.27 83.49±0.13 / 49.73±0.51 84.68±0.13 / 66.57±0.53 83.21±0.40 / 71.77±0.60 78.22±0.69 / 74.24±0.63 74.40±0.78 / 74.40±0.78 81.46±0.32 / 63.64±0.47

Residual P-CBM 79.90±0.10 / 33.91±0.08 83.48±0.09 / 49.47±0.73 84.33±0.27 / 65.41±1.13 83.09±0.74 / 70.97±0.65 78.91±0.48 / 74.02±0.47 75.03±0.48 / 74.38±0.41 81.58±0.36 / 63.16±0.65

Bayes Classifier 10.00±0.00 / 10.00±0.00 63.88±0.54 / 63.88±0.54 81.93±0.27 / 81.93±0.27 86.33±0.29 / 86.33±0.29 89.98±0.23 / 89.98±0.23 91.32±0.15 / 91.32±0.15 76.54±0.27 / 76.54±0.27

CEM 80.05±0.35 / 32.93±0.14 83.36±0.34 / 42.21±0.20 86.46±0.23 / 54.57±0.48 88.17±0.33 / 62.69±0.59 89.99±0.13 / 71.52±0.57 90.58±0.16 / 75.26±0.30 86.73±0.23 / 57.30±0.36

IntCEM 78.48±0.68 / 32.41±3.83 85.09±0.05 / 48.52±3.64 89.09±0.19 / 65.40±2.65 90.57±0.24 / 73.12±2.40 92.02±0.05 / 80.21±1.78 92.50±0.14 / 82.91±1.39 88.69±0.04 / 65.43±2.35

MixCEM (ours) 79.36±0.69 / 32.79±1.04 83.49±0.60 / 48.75±1.43 87.37±0.58 / 67.55±1.22 89.34±0.44 / 77.48±0.83 91.37±0.41 / 85.78±0.40 92.51±0.39 / 88.85±0.31 87.66±0.52 / 68.46±0.88

C
e
l
e
b
A

Vanilla CBM 24.18±0.65 / 10.71±0.67 28.39±2.12 / 14.37±2.09 30.66±2.32 / 18.46±2.65 33.20±3.10 / 24.83±3.00 36.28±2.99 / 31.73±2.79 40.18±2.79 / 40.18±2.79 32.45±2.44 / 23.59±2.43

Hybrid CBM 35.43±0.23 / 10.73±1.00 35.79±0.21 / 10.79±1.02 35.89±0.23 / 10.79±1.02 36.02±0.21 / 10.80±1.02 36.20±0.25 / 10.85±1.04 36.35±0.26 / 10.91±1.04 35.97±0.22 / 10.82±1.03

ProbCBM 31.74±0.29 / 12.92±1.00 39.79±0.47 / 19.48±1.77 44.37±0.06 / 23.81±2.17 49.78±0.27 / 31.11±2.32 55.61±0.08 / 42.27±2.29 62.96±0.12 / 62.96±0.12 48.00±0.10 / 32.60±1.62

P-CBM 17.18±2.47 / 6.76±1.56 14.03±1.55 / 7.36±1.16 16.07±2.16 / 9.60±2.15 18.56±2.26 / 13.46±3.62 23.02±2.86 / 19.19±3.13 34.18±3.85 / 34.18±3.85 19.99±2.22 / 14.92±2.29

Residual P-CBM 15.43±1.91 / 3.37±0.82 16.17±1.76 / 5.71±1.53 18.21±1.71 / 7.17±2.13 20.23±1.71 / 9.15±2.44 23.25±1.69 / 11.71±2.28 27.86±1.83 / 14.04±2.20 20.18±1.70 / 8.65±1.84

Bayes Classifier 0.42±0.30 / 0.42±0.30 13.04±1.21 / 13.04±1.21 24.84±1.42 / 24.84±1.42 39.43±0.44 / 39.43±0.44 47.79±1.29 / 47.79±1.29 54.79±2.14 / 54.79±2.14 30.38±0.72 / 30.38±0.72

CEM 34.89±0.46 / 6.52±2.94 40.58±0.48 / 7.60±3.18 43.66±0.50 / 8.35±3.39 47.34±0.32 / 9.12±3.53 51.02±0.73 / 10.22±3.56 54.82±0.57 / 11.78±3.81 45.85±0.36 / 9.02±3.43

IntCEM 36.93±1.07 / 9.51±1.34 45.33±0.84 / 14.33±1.74 50.08±0.88 / 17.07±2.30 56.10±1.04 / 20.81±3.17 62.17±1.60 / 25.89±4.13 68.84±1.73 / 33.16±5.54 53.87±1.17 / 20.52±2.98

MixCEM (ours) 35.53±0.76 / 11.76±0.74 44.17±0.50 / 18.11±1.13 49.17±0.35 / 22.90±1.80 55.48±0.39 / 30.95±2.17 61.83±0.39 / 42.93±1.76 69.15±0.68 / 62.53±0.57 53.24±0.43 / 31.99±1.21

29

