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HSIMUL3R: RECONSTRUCTING SIMULATION-READY
HUMAN-SCENE-INTERACTION FROM SPARSE VIEWS
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Figure 1: Examples of results and data presented in HSImul3R. Our approach enables simulation-
ready 3D reconstruction of human–scene interactions from uncalibrated sparse-view inputs. In
addition, we collect HSIBench, a dataset comprising 16-view synchronized captures of diverse
human–scene interactions, covering a wide range of scene objects, human subjects, and motions.

ABSTRACT

We present the first framework for simulation-ready 3D reconstruction of hu-
man–scene interactions (HSI) from sparse-view images. Prior approaches to 3D
reconstruction are typically fragmented, focusing either on scene geometry or hu-
man motion, and rarely model their interactions. There are also recent attempts that
reconstruct both jointly. However, they remain constrained by limited datasets or
neglect the physical plausibility of interactions, and therefore fail to remain stable
when deployed in simulators, which is a critical requirement for embodied AI. To
address these challenges, we propose HSImul3R1 with three key contributions.
Specifically, firstly, we introduce contact-aware interaction modeling to enforce
realistic human-scene coupling within the unified 3D world coordinate system by
aligning generative 3D priors with reconstructed geometry. Secondly, we propose
a scene-targeted reinforcement learning which learns to stabilize interactions in
simulation through dual supervision on motion fidelity and object proximity. To
further improve the stability of this HSI simulation, we design direct simulation
reward optimization (DSRO), a reward-driven fine-tuning scheme that improves
scene reconstructions by assessing stability under both gravity and interactions.
To support training and evaluation, we further collect HSIBench, a new dataset
featuring diverse objects, human motions, and interaction scenarios. Extensive
experiments demonstrate that HSImul3R achieves the first stable, simulation-ready
HSI reconstructions and substantially outperforms existing methods.

1Pronunciation: / "sImjul@(r) /
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1 INTRODUCTION

Embodied artificial intelligence has recently emerged as a prominent research direction, driven
by the vision of integrating intelligent systems into human daily life through physically grounded
agents. Unlike disembodied AI models that operate solely in virtual domains with topologies like
clothing, embodied AI focuses on learning the transferable motions that enable agents to perceive,
reason, and act in real-world environments. A central challenge in this field lies in modeling the
interaction between humanoid robots and complex scenes, which requires understanding not only
human motions, static spatial layouts, but also the stability of the interaction between human and
scene components. In this context, reconstructing human-scene interactions (HSI) from images or
videos has become an essential research direction, as it provides rich supervisory signals for learning
how humans navigate, manipulate, and adapt to the surrounding scenes.

While significant advancements have been made in recent years, current reconstruction methods
rarely model the coupling between humans and the environment. They can be broadly fragmented
into three main directions: (1) 3D scene reconstruction (Li et al., 2023b; Yan et al., 2024b; Ruan
et al., 2025; Liu et al., 2025a; Huang et al., 2025b), where despite the progress in effecient 3D
representations such as NeRF (Mildenhall et al., 2020) and 3D Gaussian splatting (Kerbl et al., 2023),
most methods primarily emphasize modeling the surrounding scenes rather than human-centered
interactions. Although extensions like HOSNeRF (Liu et al., 2023) incorporate human-centric
interaction into reconstructed scenes, they restrict interactions to hand regions and often produce
results that lack accuracy and realism. (2) Human motion estimation (Cai et al., 2023; Tian et al.,
2023; Pavlakos et al., 2024; Li et al., 2025a), where methods have advanced toward robustness under
occlusion and in human–object interactions (HOI) or human-human interactions (HHI) scenarios, yet
they reconstruct solely the human motions and typically neglect the explicit coupling between humans
and the surrounding environment. (3) Interaction modeling (Yang et al., 2022; Jiang et al., 2024a;
Chen et al., 2024b; Fan et al., 2024; Pan et al., 2025), which relies heavily on SMPL-based (Loper
et al., 2015) HSI or HOI datasets, e.g., BEHAVE (Bhatnagar et al., 2022), CHAIRS (Jiang et al.,
2023), HOMOTO (Lu et al., 2025). These datasets, however, are small in scale and diversity, resulting
in poor generalization beyond their training domains, which constrains the generalizability of learned
models to out-of-domain scenarios. Collectively, these fragmented directions demonstrate strong
individual capabilities but fall short of explicitly reconstructing human–scene interactions.

More recently, advances in transformer-based architectures have enabled new possibilities and
more effective frameworks. DUSt3R (Wang et al., 2024), for instance, introduces a pointmap
representation with a joint optimization scheme that simultaneously predicts pointmaps, camera
poses, and depth maps to reconstruct 3D scenes from uncalibrated multi-view images. Building upon
this, HSfM (Müller et al., 2025) has sought to bridge the above gap by jointly reconstructing scene
pointmaps, camera poses, and human motions in a unified global coordinate system. It incorporates
human motion estimation into DUSt3R by proposing a unified pipeline that reconstructs scene point
clouds, camera poses, and human motions under a consistent global coordinate system. While this
marks progress toward combining human and scene information, HSfM still does not explicitly
enforce interaction constraints and is not simulation-ready for embodied AI applications: (1) The
quality of DUSt3R-based reconstructions remains limited, and without explicit physical constraints,
HSfM often produces unstable 3D shapes lacking realistic geometry and structure. Such outputs
struggle to remain stable and balanced under gravity, as in the simulator. (2) Because the optimization
process is driven solely by 2D projections, HSfM lacks mechanisms to enforce physically plausible
human–scene interactions. As a result, penetration artifacts and unrealistic collisions frequently arise
when transferring reconstructions into a simulator.

In this paper, we introduce a new Human-Scene-Interaction simulation-ready 3D Reconstruction
from sparse-view images, dubbed HSImul3R. Our method is built upon HSfM and comprises three
novel components to address the aforementioned challenges.

(1) Contact-Aware Interaction Modeling: To overcome the topological inconsistencies of HSfM, we
explicitly inject 3D structural priors derived from image-to-3D generative models. Specifically, we
leverage the pre-trained MIDI model (Huang et al., 2025a) to reconstruct plausible 3D scenes from
input images, and integrate these reconstructions with HSfM outputs to refine structural accuracy.
Beyond scene geometry, we further introduce a contact-aware interaction module that enforces
physically consistent human–scene coupling by pulling humans closer to surfaces where contact is
expected, and pushing them apart when penetrations occur.
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(2) Scene-Targeted Reinforcement Learning: To improve stability once the reconstructed HSI
is placed into a physics-based simulator (Makoviychuk et al., 2021), we design a reinforcement
learning policy that blends two supervisory signals: one for human keypoint tracking and another for
minimizing distances between humans and relevant objects. This dual-objective formulation enables
the model to dynamically refine interaction strategies in simulation, while ensuring that the resulting
states remain faithful to the original human motion.

(3) Direct Simulation Reward Optimization (DSRO): While reinforcement learning stabilizes hu-
man–scene interactions, the underlying MIDI-based scene reconstructions are not always topolog-
ically accurate, which can still lead to simulation failures. Inspired by DSO (Li et al., 2025b), we
reformulate this challenge as a reward-driven optimization problem and propose DSRO to fine-tune
the pre-trained MIDI model. Unlike DSO, which evaluates stability solely under gravity, our approach
leverages the proposed contact-aware interaction modeling and scene-targeted reinforcement learning
to assess stability with respect to both gravity and human–scene interactions. This allows the system
to better capture realistic dynamics and avoid failures caused by implausible contacts or penetrations.
To support this training, we further collect HSIBench, a new dataset comprising 19 objects, more
than 50 motion sequences, and recordings from two male and one female participants, totaling 300
unique subjects.

We conduct extensive experiments to evaluate HSImul3R against state-of-the-art baselines in terms
of simulation stability, post-simulation human motion quality, and improvements in image-to-3D
generation through DSRO fine-tuning. Experimental results demonstrate that HSImul3R is the first
approach to achieve stable, simulation-ready reconstructions of human–scene interactions, offering
robust performance across diverse scenarios and significantly outperforming existing techniques. An
overview of our method is provided in Fig. 1.

2 RELATED WORKS

3D Scene Reconstruction. Early approaches are dominated by geometry-based methods, such
as structure-from-motion (Schönberger & Frahm, 2016) and multi-view stereo (Seitz et al., 2006),
which estimate camera poses and dense geometry from multiple views. With the rise of deep
learning, data-driven approaches emerge, including monocular depth prediction (Yang et al., 2024a;b)
and learning-based multi-view stereo (Huang et al., 2018), enabling reconstruction from sparse or
unstructured imagery. Other works adopt explicit 3D representations such as voxels (Song et al.,
2017; Liu et al., 2025b), point clouds (Dai et al., 2017; Xie et al., 2020), and meshes (Nie et al., 2020),
often optimized through differentiable rendering. More recently, implicit neural representations,
such as signed distance functions (Park et al., 2019), occupancy fields (Bian et al., 2025), neural
radiance fields (Li et al., 2023b; Xie et al., 2024a), and explicit but differentiable formulations like
3D Gaussian Splatting (Kerbl et al., 2023; Xie et al., 2025a), become central to high-quality scene
modeling. Beyond static reconstruction, dynamic scene modeling (Yan et al., 2024b; Xie et al.,
2025b) expands these methods to time-varying environments. In parallel, recent works such as
Dust3R (Wang et al., 2024) and VGGT (Wang et al., 2025) introduce pre-trained transformers that
enable end-to-end 3D reconstruction directly from uncalibrated and unlocalized images, eliminating
the need for expensive post-optimization.

Physically-sounded Modeling. Recent works have sought to embed physical soundness into mod-
eling, which can be broadly categorized into three paradigms. Physics-constrained and physics-
integrated generation methods unify simulation and content creation by leveraging simulation-derived
losses or physical priors. For example, PhyRecon (Ni et al., 2024) ensures stable scene reconstruction,
Atlas3D (Chen et al., 2024a) and BrickGPT (Pun et al., 2025) produce self-supporting structures, and
DSO (Li et al., 2025b) or PhysDeepSDF (Mezghanni et al., 2022) align generators with simulation
feedback. PhysGaussian (Xie et al., 2024b) evolves Gaussian splats via continuum mechanics, while
PhyCAGE (Yan et al., 2024a), VR-GS (Jiang et al., 2024b), and GASP (Borycki et al., 2024) optimize
assets through MPM; PAC/iPAC-NeRF (Li et al., 2023a; Kaneko, 2024) jointly learn geometry and
physical parameters to bridge reconstruction and simulation. This approach also extends to interactive
contexts: PhyScene (Yang et al., 2024c) generates simulation-ready environments, PhysPart (Luo
et al., 2024a) models functional parts for robotics and fabrication, and DreMa (Barcellona et al.,
2025) produces manipulable, physics-grounded world models.
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Fine-tuning of 3D Generative Model via Simulation Feedback

Scene-targeted RL for 3D SimulationContact-aware Interaction Modeling for 3D Reconstruction
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Figure 2: Overview of HSImul3R. Given sparse-view inputs I, we achieve simulation-ready recon-
struction of human–scene interactions through three key components: (1) a contact-aware interaction
model that leverages 3D generative priors to optimize interactions in world coordinates, (2) a scene-
targeted reinforcement learning strategy that enhances stability when integrating reconstructions
into physics-based simulators, and (3) a direct simulation reward optimization that fine-tunes the
pre-trained 3D generative model using feedback from failed simulations (Type 1: objects not stabi-
lizing under gravity; Type 2: objects failing to stabilize during human interaction; Type 3: objects
stabilizing but without meaningful interaction; Type 4: objects with stable interaction).

Human Simulation Imitating. Recent advances in physics-based humanoid simulation fall into
three directions. Robust motion imitation builds on RL frameworks such as DeepMimic (Peng
et al., 2018) and AMP (Peng et al., 2021), extended by PHC (Luo et al., 2023) for long-horizon
resilience and DiffMimic (Ren et al., 2023a) with differentiable physics. More recent methods
leverage human demonstrations for adaptive whole-body imitation, including locomotion and ma-
nipulation, as in HumanPlus (Fu et al., 2024) and TWIST (Ze et al., 2025). Generalizable control is
advanced by PULSE (Luo et al., 2024c), which provides compact latent spaces for versatile skills,
HOVER (He et al., 2024), which unifies multiple control modes, and diffusion-based frameworks
such as CLoSD (Tevet et al., 2025) and InsActor (Ren et al., 2023b), which integrate generative
planning with physics-based execution for multi-task behaviors. Interactive skills cover dynamic
human-object interactions and complex benchmarks: PhysHOI (Wang et al., 2023) and Omni-
Grasp (Luo et al., 2024b) enable dexterous manipulation, SMPLOlympics (Luo et al., 2024d) and
HumanoidOlympics (Luo et al., 2024e) provide sports environments, Half-Physics (Siyao et al., 2025)
bridges kinematic avatars with physics, ImDy (Liu et al., 2025c) exploits imitation-driven simulation,
and ASAP (He et al., 2025) improves fidelity by aligning dynamics with demonstration trajectories.

3 METHODOLOGY

Given J sparse view images, HSImul3R is designed to reconstruct 3D simulation-ready human-
scene-interactions. We set J = 4 for experiments reported in this paper. As illustrated in Fig. 2, the
reconstruction procedure comprises two parts: 3D scene reconstruction via DUSt3R (Wang et al.,
2024) and multi-view human motion estimation via 4D-Humans (Goel et al., 2023)followed by
physics-based human–scene interaction simulation in Isaac Gym (Makoviychuk et al., 2021). In
the subsequent sections, we first present the preliminaries underlying our method in Sec. 3.1, and
then detail the three key components of HSImul3R: (1) contact-aware interaction modeling during
reconstruction with 3D generative priors (Sec. 3.2), (2) scene-targeted reinforcement learning for
stable interaction simulation (Sec. 3.3), and (3) direct simulation reward optimization to fine-tune the
generative model using simulation feedback (Sec. 3.4).
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3.1 PRELIMINARIES

DUSt3R (Wang et al., 2024). Recently, DUSt3R introduced a framework for 3D reconstruction
that regresses point maps and employs a global alignment strategy to jointly predict depth maps and
camera poses. Specifically, given a set of input images I = I0, I1, ..., IJ , DUSt3R applies a ViT-based
network that takes a pair of image frames In, Im (n,m ∈ [0, J ]) to estimate the corresponding point
maps P e

n, P
e
m ∈ RH×W×3 with respect to the coordinate system of frame n, along with confidence

maps Ce
n, C

e
m ∈ RH×W . Here, e = (m,n) denotes the selected image pair. Aggregating point maps

and confidence maps across selected pairs, DUSt3R builds a connectivity graph G(V, E), where V
corresponds to the N images and E to the chosen image pairs e.

After collecting all pairwise point maps, DUSt3R performs a global alignment optimization to recover
the depth maps D = D0, D1, ..., DJ and camera poses π0, π1, ..., πJ :

arg min
D,π,σ

∑
e∈E

∑
n∈e

Ce
n||Dn − σe · Fe(πn, P

e
n)||22, (1)

where σ = σe, e ∈ E denotes the edge-wise scale factors, and Fe(πn, P
e
n) projects the predicted

point map P e
n to view n under camera pose πn to produce the corresponding depth. This objective

enforces geometric alignment across frame pairs, ensuring cross-view consistency in the estimated
depth maps after optimization.

Human Structure from Motion (HSfM) (Müller et al., 2025). Although DUSt3R achieves high-
quality 3D reconstruction from uncalibrated images, it remains limited in handling human-centric
elements such as pose recovery. To overcome this, HSfM (Müller et al., 2025) integrates DUSt3R
with the traditional Structure-from-Motion (SfM) framework to jointly reconstruct scenes and human
meshes. Specifically, given an image set I = I0, I1, ..., IJ , HSfM first applies the pre-trained
DUSt3R model, large-language segmentation model (Ravi et al., 2024), a multi-view human motion
estimator (Goel et al., 2023), and a human keypoint detector (Xu et al., 2022) to obtain, respectively,
3D scene reconstructions Rscene (i.e., rotation R, translation t, intrinsics K, depth map D, and
pointmap P ), human masks Mh, human poses (i.e., orientation ϕ, translation γ, pose parameters
θ, and shape β), and 2D human keypoints J2D. These outputs are then jointly optimized through
(1) bundle adjustment via human keypoint J2D and (2) global scene optimization, aligning humans,
scenes, cameras, and scales into a unified coordinate system.

3.2 CONTACT-AWARE INTERACTION MODELING FOR 3D RECONSTRUCTION

Our approach for 3D HSI reconstruction is built upon HSfM (Müller et al., 2025). However, despite
its advances, HSfM suffers from two critical issues: (1) it inherits DUSt3R’s tendency to generate
unrealistic scene structures (see Fig. 10 in Appx. B), and (2) it constrains human–scene interactions
to 2D projections, both of which lead to instability in simulation. This limitation is expected, as
HSfM imposes no explicit 3D constraints and sparse-view reconstruction is inherently ambiguous,
particularly when human subjects occlude parts of the scene. To overcome these challenges, we
introduce contact-aware interaction modeling that leverages pre-trained 3D generative priors.

Image-to-3D Generative Model. As shown in Fig. 2, we first enhance the reconstruction by
incorporating a pre-trained image-to-3D generative model (Huang et al., 2025a) as an additional
geometric prior to refine the outputs of HSfM. Concretely, for each object present in the scene, we
automatically identify the input image In, n ∈ [0, J ] where the object is most prominently visible.
Using SAM (Kirillov et al., 2023), we extract its segmentation mask Mi, and then employ the pre-
trained MIDI model to generate a high-fidelity 3D representation. This synthesized object geometry
replaces the corresponding reconstructed points in the original scene, thereby correcting structural
inaccuracies and yielding a more realistic reconstruction:

Rscene := {MIDI(In[Mi]), i ∈ [0, O]}, (2)

where Rscene denotes the refined 3D scene and O is the total number of objects.

Contact-aware Interaction Modeling. While the image-to-3D generative model provides refined
scene reconstructions with more realistic topology, it does not account for interactions with the
recovered human mesh. This limitation is expected, as the model lacks explicit 3D constraints to
prevent interpenetration between humans and objects. Moreover, aligning human and scene geometry
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through 2D projections alone is inherently unreliable, given challenges such as occlusions, sparse
viewpoints, and incomplete 3D information. Importantly, penetration artifacts become particularly
problematic in simulation: even minor inconsistencies in 3D space can manifest as severe collisions
between body parts and objects, ultimately leading to unstable or failed simulations. To address this
issue, we optimize the position of the recovered human and generated objects . Specifically, if the
object and human are not in contact, we optimize their positions via:

ℓnon-contact =
1

|Hp|
·

∑
1≤j≤No

||µh
i − µo

j ||2 +
1

No
·

No∑
j=1

min
i∈Hp

||µo
j − µh

i ||2, (3)

where HP denotes the human body part closest to the object, and No is the number of vertices on the
object, and µo

j and µh
i represent the 3D positions of object and human vertices, respectively. When

the object is in contact with the human, we instead apply:

ℓcontact =
1

|Hp|
·
∑
i∈Hp

max(0,−δ(µh
i )), (4)

where δ(·) denotes the signed distance function, measuring the penetration depth of the human vertex
µh
i relative to the object surface.

3.3 SCENE-TARGETED REINFORCEMENT LEARNING FOR 3D SIMULATION

After reconstructing human–scene interactions in 3D space, the next step is to simulate them and
ensure stable dynamics between humans and objects. To this end, we leverage the pre-trained
PHC (Luo et al., 2023) model to retarget reconstructed human poses onto a humanoid robot within
Isaac Gym (Makoviychuk et al., 2021). However, directly simulating the raw reconstructions often
fails to yield stable interactions (see Fig. 4). In many cases, the humanoid inadvertently displaces
nearby objects, leaving them separated from the body and resting independently on the ground. This
instability arises because conventional 3D reconstructions do not account for interaction forces or
verify whether human poses and object placements are physically realizable in a stable configuration.
To address this, we extend PHC by adding a scene-targeted supervision signal alongside its original
human keypoint tracking. While PHC was designed for dynamic motions, we adapt it to static poses
by replicating each pose across the temporal dimension to fit the network.

Specifically, we introduce an additional objective that enforces spatial proximity between the hu-
manoid and the relevant scene objects, thereby encouraging physically plausible and stable contact
during simulation. The loss averages the Euclidean distance between human contact keypoints khj
and their corresponding nearest object surface points µo

i .

ℓscene =
1

Ncontact ·Nsurf
·
Ncontact∑
j=1

Nsurf∑
i=1

∥µo
i − khj ∥22, (5)

where Ncontact is the number of contacts between the human and scene objects, and Nsurf denotes the
number of sampled object surface points within the local contact region.

3.4 FINE-TUNING OF 3D GENERATIVE MODEL VIA SIMULATION FEEDBACK

Nonetheless, even with our scene-targeted reinforcement learning, the percentage of stable simulations
remains unsatisfactory (see Tab. 1). As presented in Fig. 3, we observe that this problem largely
stems from the inconsistent quality of the MIDI-based 3D generative prior, for two main reasons:
(1) generated objects often contain structural defects, especially in slender geometries. For example,
tables or chairs may be missing legs, making them unstable in the simulator even without interaction;
and (2) severe occlusion by the human in the input images, which frequently happens, often results
in generated objects exhibiting artifacts, such as surface distortions or unwanted bumps. Together,
these limitations make it difficult for the humanoid to establish stable and physically plausible contact
during simulation.

A straightforward strategy to alleviate this problem would be to finetune the pre-trained MIDI model.
However, doing so raises the challenge of defining suitable supervision signals to directly address

6
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Table 1: Quantitative comparison regarding simulation stability of human-scene-interaction
and the quality of human motions.

Method Stability-HSI (%) ↑ Scene Penetration - 3D (%) ↓ Human Motion Quality
Easy Medium Hard W-MPJPE ↓ PA-MPJPE ↓

HSfM 10.52 4.50 2.66 69.51 5.02 2.79
V1 13.96 8.81 4.17 77.12 6.18 3.20
V2 39.56 22.71 7.05 - 4.91 2.71
V3 42.57 23.84 10.18 - 4.60 2.42
V4 29.56 16.62 5.17 - 4.57 2.39
Ours 53.68 30.56 13.92 22.9 4.09 2.17

these structural and occlusion-related issues. Recent advances such as Diffusion-DPO (Wallace
et al., 2024) offer one potential direction by leveraging pairwise human preference feedback as
optimization signals, thereby aligning generative models with human judgments. Yet, the requirement
for large-scale preference data makes this approach difficult to scale in practice. To overcome this
bottleneck, DSO (Li et al., 2025b) proposes a direct reward optimization framework that eliminates
reliance on 3D ground-truth data while still providing effective supervision for generative refinement.

Direct Simulation Reward Optimization. Building on these insights, we introduce Direct Sim-
ulation Reward Optimization (DSRO), a novel approach that leverages physics-based simulation
feedback as a supervision signal for refining 3D object generation. Unlike preference-based methods
that rely on human annotations or 3D ground truth, DSRO directly exploits the outcome of the
simulation to assess the physical plausibility of generated objects and their interactions with humans.

Formally, we follow DSO and define the DSRO objective as:

ℓDSRO = −TEI∼I,x0∼XI ,t∼µ(0,T ),xt∼q(xt|x0)[w(t) · (1− 2 · l(x0))||ϵ− ϵθ(xt, t)||22]], (6)

where I denotes an image sampled from the training dataset I , X corresponds to its MIDI-generated
3D representation, and l(·) encodes the stability feedback obtained from simulation. Crucially, in
contrast to DSO (Li et al., 2025b), which measures stability solely based on whether an object remains
upright under gravity, our formulation defines ostable as follows:

l(x0) =

{
1, if stable
0, otherwise,

(7)

where stability is determined according to three criteria: (1) the object must remain upright and
physically stable under gravity within the simulator, (2) it must achieve a stable final state for the
reconstructed scene, and (3) the interaction must involve actual contact rather than the object resting
independently on the ground.

HSIBench. To enable effective fine-tuning of the pre-trained MIDI generative model, we construct a
dedicated benchmark dataset, HSIBench, tailored for human–scene interaction (HSI). The dataset is
built by systematically capturing interaction scenarios involving two volunteers (one male and one
female) engaging with a diverse set of objects, including eight chairs, three tables, and three sofas.
In total, we record 300 distinct HSI cases, with each case captured from 16 different viewpoints
to provide rich multi-view supervision. Representative examples are illustrated in Fig. 6 to Fig. 9
in Appx. A). For every captured case, we run our full reconstruction and simulation pipeline, as
described in Sec. 3.2 and Sec. 3.3, 12 times under different random seeds. This procedure ensures
variability in the simulation outcomes and allows us to systematically collect the training signals
needed for fine-tuning.

4 EXPERIMENTS

We evaluate HSImul3R across three dimensions: reconstruction fidelity, simulation stability, and the
impact of fine-tuning with the proposed DSRO. We also benchmark against existing methods and
perform ablation studies to assess the contribution of each component.

Implementation Details. Our approach is developed on top of HSfM (Müller et al., 2025) and
PHC (Luo et al., 2023). For training, we adopt AdamW (Loshchilov & Hutter, 2017) as the optimizer
and fine-tune the pre-trained MIDI model using LoRA (Hu et al., 2022). Specifically, we set the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Quantitative comparison regarding image-to-3D generation quality.

Method Stability-HSI (%) ↑ Stability-Gravity (%) ↑ Chamfer Distance ↓ F-Score ↑Easy Medium Hard

MIDI 29.56 16.62 5.17 79.19 0.198 81.95
DSO* 38.75 25.91 7.88 87.23 0.191 86.26
Ours 53.68 30.56 13.92 91.50 0.173 88.25

LoRA rank to 64, use a batch size of 32, and a learning rate of 0.00001. The model is trained for a
total of 6000 steps on four NVIDIA A100 GPUs.

Baseline Methods. Since our method presents the first approach for simulation-ready reconstruction
of human–scene interactions from uncalibrated sparse-view inputs, we primarily compare its perfor-
mance against HSfM (Müller et al., 2025), which is the first and only technique to reconstruct 3D HSI
under sparse-view settings. Additionally, considering that there is no other dedicated method existing
for this task, we further compare with various alternatives: (V1) a simple baseline that integrates
HSfM with MIDI (Huang et al., 2025a) and feeds the resulting reconstruction into the simulator; (V2)
using the reconstruction from Sec. 3.2 directly in the simulator without applying the scene-targeted
distance minimization of Eq. 5; (V3) Replacing our object-surface distance computation with a
center-point distance following CLoSD (Tevet et al., 2025); (V4) Obtain the simulated reconstruction
directly via Sec. 3.2 and Sec. 3.3 without fine-tuning the generative model using simulation feedback
via the proposed DSRO.

We also compare with the MIDI (Huang et al., 2025a) and DSO (Li et al., 2025b) in terms of the
geometric quality of the generated scene objects, as well as stability under both gravity-only and HSI
scenarios. For fairness, we fine-tune DSO on the pre-trained MIDI model rather than its originally
used Trellis (Xiang et al., 2025) model.

Inputs DSO* MIDI Ours

Figure 3: Qualitative comparison regarding image-to-
3D object reconstruction.

Evaluation Metrics. We first evaluate
the penetration ratio in the reconstructed
3D HSI scenes. Next, we assess the sta-
bility of simulated human–scene inter-
actions using the metric Stability-HSI,
which considers three factors: (1) object
stability under gravity, (2) whether the
HSI scene reaches a stable state in the
simulator, and (3) whether the final state
preserves meaningful human–scene in-
teractions. Finally, we evaluate the qual-
ity of simulated human motion by ex-
tracting it from the final state and com-
paring it to the ground truth. Following
HSfM, we report W-MPJPE for accuracy
in the world coordinate system and PA-MPJPE for local pose precision.

For reconstructed 3D scene objects, we measure geometric quality using Chamfer Distance and
F-Score, while physical plausibility is evaluated through “Stability-HSI” and “Stability-Gravity”.

Evaluation Datasets. We perform both quantitative and qualitative evaluations on our collected
HSIBench dataset. To assess HSI simulation stability across different scenarios, we divide HSIBench
into three levels of difficulty, i.e., easy, medium, and hard, based on interaction complexity.

4.1 RESULTS AND ANALYSIS

Quantitative Evaluations. We first present quantitative comparisons of HSI reconstruction and
simulation quality in Tab. 1. As shown, our method significantly outperforms the only existing
baseline, HSfM, as well as the ablated variants, across all evaluated metrics. This demonstrates
both the overall effectiveness of our approach and the contribution of the proposed components.
Note that V1, V2, and V3 do not report scene penetration percentages, as their 3D reconstruction
is identical to that of V1. We then report quantitative results on image-to-3D generation quality in
Tab. 2. Importantly, our method (incorporating DSRO) achieves improved physical plausibility and
interaction stability, along with superior geometric accuracy.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

HSfM Ours OursHSfMInputs

w/o Eq. (5) Ours OursInputs Inputs w/o Eq. (5)

… …

Figure 4: Qualitative comparisons with HSfM . Due to challenges such as (1) penetration issues
and (2) inaccurate scene-object structures with geometric distortions, HSfM often struggles to achieve
stable interactions in the simulator, frequently leading to unintended object displacement.

w/o Eq. (5) Ours OursInputs Inputs w/o Eq. (5)

w/o Eq. 5 Ours Oursw/o Eq. 5

… …

Figure 5: Ablation studies on Eq. 5. Without the proposed scene-targeted RL, the simulation often
results in unintended object displacement and fails to maintain stable interactions.

Qualitative Evaluations (1) In Fig. 4, we present the qualitative comparisons with HSfM. Specifically,
we apply Poisson reconstruction to the point maps generated by HSfM and place the reconstructed
objects into the simulator for evaluation. As shown, HSfM often fails to produce stable human–object
interactions: the human frequently kicks objects away and ends up standing alone. In contrast,
our method consistently achieves stable interaction states within the simulation. (2) Fig. 3 further
compares our approach with DSO and MIDI in terms of image-to-3D reconstruction quality. Both
baselines struggle to recover accurate structures and often introduce geometric distortions, which in
turn lead to instability during simulation. By contrast, our DSRO fine-tuned model mitigates these
issues, yielding more structurally faithful and stable reconstructions.

Analysis of Scene-targeted 3D Simulation. Fig. 5 presents the ablation study on the scene-targeted
3D simulation loss defined in Eq. 5. Results indicate that removing the distance-minimization term
destabilizes the humanoid, leading to exaggerated motions and often kicking objects away.

5 CONCLUSIONS

In this work, we introduced HSImul3R, the first framework for reconstructing simulation-ready
human–scene interactions from uncalibrated sparse views. Our approach incorporates a contact-
aware interaction model to mitigate human–scene penetration issues in 3D reconstruction, a scene-
targeted reinforcement learning strategy to promote stable interactions within the simulator, and
a direct simulation reward optimization scheme that leverages simulation feedback to fine-tune
the image-to-3D generative model, thereby improving simulation success rates. To support both
training and evaluation, we also collected the HSIBench dataset. Extensive experiments demonstrate
that HSImul3R achieves high-fidelity results, delivering both stable simulations and high-quality
image-to-3D reconstructions, and significantly outperforms existing state-of-the-art methods.
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APPENDIX

ETHICS STATEMENT

This work uses only publicly available datasets and data collected under controlled conditions, without
involving personal or sensitive information. Our framework is intended for advancing embodied AI
and simulation research. We caution against potential misuse for surveillance or deceptive content
generation, and release all resources strictly for academic purposes.

REPRODUCIBILITY STATEMENT

We place strong emphasis on reproducibility, providing detailed descriptions to facilitate replication
and validation. Details of the methodology and experimental setup are presented in Sec. 3 and
Sec. 4, respectively. Upon acceptance, we commit to making the code, pretrained model weights, and
comprehensive documentation publicly available to facilitate reproducibility and future research.

USAGE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models were employed solely as writing
aids. They assisted in checking grammar, improving sentence structure, and suggesting stylistic
alternatives. All methodological details, experimental results, and conclusions were developed
exclusively by the authors. The outputs generated by the models were critically reviewed, and only
author-verified edits were incorporated into the final version.

A VISUALIZATIONS OF HSIVBENCH

Figs. 6–9 illustrate example visualizations from our collected HSIVBench dataset. HSIVBench
consists of 300 human–scene interaction video pairs, each captured from 16 synchronized views. In
total, the dataset includes 19 distinct objects (e.g., eight chairs, four tables, five sofas, one pushcart,
and one staircase) that are commonly encountered in daily life, three participants (two male and one
female), and more than 50 human motions.

Figure 6: Examples of HSIVBence from 16 views.
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Figure 7: Examples of different human-scene-interactions captured in HSIVBench.

Figure 8: Examples of different objects captured in HSIVBench.

Figure 9: Examples of female data in HSIVBench.
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B FURTHER ANALYSIS

Analysis of the Number of Input Views. In Tab. 3, we analyze the effect of the number of input
views. The results indicate that increasing the number of views leads to slight improvements in
human motion quality. Interestingly, however, we notice that the number of views has little impact on
penetration handling or the overall stability of the simulation.

Table 3: Quantitative comparison regarding simulation stability of human-scene-interaction
and the quality of human motions.

Method Stability-HSI (%) ↑ Scene Penetration - 3D (%) ↓ Human Motion Quality ↓
Easy Medium Hard W-MPJPE ↓ PA-MPJPE ↓

16-view 55.16 29.51 13.59 21.81 4.01 1.99
10-view 52.93 32.17 13.03 21.00 4.06 2.05
4-view 53.68 30.56 13.92 22.90 4.09 2.17

Issues with HSfM Reconstruction. Fig. 10 illustrates the common issues of HSfM, inherited from
DUSt3R. We could observe that it often fails to reconstruct object structures accurately, producing
results with numerous holes that hinder the modeling of human–scene interactions.

Inputs HSfM

Figure 10: Issues with HSfM reconstruction.
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C LIMITATIONS AND SOCIETAL IMPACTS

Limitations While HSImul3R represents the first attempt at simulation-ready reconstruction of
human–scene interactions, we do acknowledge that HSImul3R has certain limitations: (1) the
successful ratio is not very high, particularly in scenarios involving complex interactions or multiple
objects (more than three); (2) In many failure cases, the humanoid and objects tend to end up standing
independently rather than engaging in meaningful interactions (see Fig. 11); (3) Our fine-tuned
image-to-3D model inevitably inherits biases from both the MIDI original training dataset and our
collected HSIVBench, which may constrain its generalizability to out-of-domain cases.

Inputs Ours

Figure 11: Example of failure cases.

Societal Impacts Advances in simulation-ready reconstruction, along with future research in
embodied AI, hold great promise for supporting human daily life. However, they also raise concerns
regarding safety and reliability. Robots or AI systems that rely on imperfect reconstructions may
behave unpredictably in real environments, potentially leading to unsafe interactions or even physical
harm to users. These risks highlight the importance of ensuring robustness, stability, and rigorous
safety evaluation before deployment in human-centered applications.
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