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Abstract

The fundamental challenge of long video understanding, e.g., question answering,
lies in the extensive number of frames, making it infeasible to densely understand
the local details while comprehensively digest the global contexts, especially within
a limited context length. To address this problem, our insight is to process short
video segments individually and combine these segment-level analyses into a final
response. This intuition is noted in the well-established MapReduce principle in
big data processing and is naturally compatible with inference scaling at the system
level. Motivated by this, we propose MR. Video', a long video understanding
framework adopting the MapReduce principle. We define the standard operations
of MapReduce in a long video understanding context: the Map steps conduct
independent and sequence-parallel dense perception on short video segments,
covering local details, while the Reduce steps comprehensively aggregate the
segment-level results into an answer with global contexts. Thanks to the low cost
and convenience of building video agents, we instantiate such Map and Reduce
operations as an effective video agent capable of attending to local details and global
contexts. Based on such abilities, we further introduce two critical yet previously
under-explored long video understanding designs: (a) consistent character/object
names in the captions, benefiting the reasoning of actions and stories across long
horizons; (b) question intention analysis, which changes the key-frame retrieval in
previous video agents to localizing the relevant information via jointly reasoning
the whole video contexts and questions. Our MR. Video achieves a >7% accuracy
improvement on the challenging LVBench over state-of-the-art video agents and
vision-language models (VLMs) and demonstrates a clear advantage on multiple
long video benchmarks, highlighting the potential of the MapReduce principle.
The code is at https://github.com/zigipang/MR-Video.

1 Introduction

Considering a challenging example for long video understanding (Fig. 1, left): suppose we are
watching a fast-paced sports video and wanting to count the number of specific events, e.g., goals
by a player, a model should carefully go through every action to inspect the criteria of “a goal by
No. 11,” and then comprehensively aggregate across the whole video duration, especially when the
number of events is as large as 200. Such an example reveals the fundamental challenge in long video
understanding: how to digest global contexts while perceiving local details.

Unfortunately, existing sequence-to-sequence vision-language models (VLMs) [16, 17, 24,26, 27, 28,
61] that rely on using large language models (LLMs) to process video tokens are limited in context
lengths. So they are forced to sample frames sparsely or compress tokens (Fig. 1(a)), losing the dense
local details, e.g., missing the events in the example video or failing to recognize the correct person.
Although video agents [8, 42, 45, 53] emerge to bypass the VLMs’ context length limitations via
strategically selecting a small set of video clips to perceive, they sacrifice the other aspects of long
video understanding: (1) they generally rely on multi-round exploration of video segment selection

! pronounced as “mister video”

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/ziqipang/MR-Video
https://www.youtube.com/watch?v=i1p5PAgNvR0

(a) Seq-to-Seq VLMs (b) Video Agents

LLLEL L] LLLLL) LLLECT] T

Ll LLLEL T
N T =T | et A iivn

<img> <img>... Fill Context Lengths... <img> <img> L 20— +
: siere |k Analysis — bEme | Analysis
Multi-modal LLM Selection ¥ Selection ¥
(c) MapReduce (Ours) (d) Scalable &  Context-Len  Global
Seq-Parallel ~ Unlimiting Info
LI LTI CL) e LOT LTI T TI L]
VLMs v X v
This video features how many No. 11 M. Map Map Independent Map Map
Salah’s goals for Liverpool? — e e—— — Video Agent X v X
A. 10 B. 25 . .
C. 200v D. 50 Reduce into Unified Answer MapReduce v v v

Figure 1: MapReduce Principle. Long video understanding requires both global comprehension
and detailed perception without making assumptions about the videos, as shown in the example of
counting a large number of events. For such needs, (a) VLMs and (b) video agents are sub-optimal
in terms of context lengths, sequential parallelization, and using global context information. (c) We
introduce the MapReduce principle and define the Map operation as dense and independent short
segment perception, and the Reduce operation as global aggregation, (d) effectively achieving both
inference scalability and improved performance.

(Fig. 1(b)), which harms sequence-parallel video perception, consequently, inference scalability for
extremely long videos; (2) the explicit key segment retrieval contradicts global comprehension and
might result in insufficient information. Take the example video in Fig. 1, for instance, the existence
of 200 events breaks the basic assumption of key segment selection; and even if the model realizes
the target of 200 key segments, the iterative search would cost a significant amount of time.

Our key insight to bridge detailed perception and global comprehension lies in scalably decomposing
long video understanding into shorter context lengths: the model densely perceives the individual
short video clips in parallel, then aggregates the condensed perception results across the whole video
(Fig. 1(c)). This framework is noted in how large volumes of data are handled efficiently via the
MapReduce principle in distributed systems [7]: we now define the Map step as parallel perception
of short clips, and then the Reduce step as global aggregation for the whole video. Such native
compatibility with the MapReduce principle also makes our framework friendly for inference scaling
at deployment (Fig. 1(d)).

Given the low cost and convenience of building video agents, we instantiate the MapReduce principle
via a video agent [8, 42, 45, 53] called MR. Video. This also aligns with the trend of utilizing
the foundation models in zero-shot to address challenging visual reasoning problems [1 1, 36]. To
unleash the capability of MapReduce, our design of MR. Video introduces two critical yet previously
under-explored aspects of long video understanding: (A) The captioning stage generates texts as
an efficient video analysis medium, where MR. Video specially employs a Reduce step to provide
consistent character/object names across the long videos, which benefits reasoning across long stories.
(B) The analysis stage conducts question-related comprehension of the video. MR. Video uniquely
advocates using qguestion intention analysis to replace the key-segment retrieval in conventional video
agents, which does not make any assumptions about the video and provides more comprehensive
contexts for complicated multi-hop reasoning.

With both the MapReduce principle and long video agent designs, MR. Video achieves strong
performance. Notably, on LVBench [39], one of the most challenging benchmarks featuring hour-
long videos and diverse questions, our MR. Video achieves a more than 7% accuracy improvement
over other VLMs and video agents, along with advantages on several other video benchmarks.

To summarize, our contributions are:

1. We introduce the MapReduce principle from the distributed system domain to long video under-
standing, offering a conceptual framework that mitigates the context length, sequence-parallel
scaling, and global context limitations of previous VLMs and video agents.

2. We design “MR. Video,” a video agent featuring multiple MapReduce stages that generate
character-consistent captions and conduct question-intention analysis, both essential for long
video reasoning.

3. We highlight the strong performance of MR. Video across multiple long video benchmarks, notably
represented by the challenging LVBench. These results suggest the potential of MapReduce as a
general principle for long video understanding.

2



2 Related Work

VLMs for Video Understanding. Existing VLMs [3, 4, 20, 21, 22, 23, 24, 29, 30, 32, 33, 34, 35,
38, 40, 43, 44, 46, 48, 49, 50, 51, 61, 64] commonly follow LLaVA [28] by projecting image tokens
to LLMs. As an image typically takes over 100 tokens in a standard LLaVA model, context lengths
become the major challenge for these models in long video understanding: how to digest the whole
video without missing details? LongVILA [50]’s solution is increasing the context length, but it
inherently needs more resources and is still limited by context lengths. Another prevalent solution is
decreasing the average tokens per frame via merging or pruning. Such compression can follow certain
priors, e.g., similarity of features [4, 22, 32, 34, 35, 40, 46, 48, 49], or Q-former-like [13, 14, 18, 19]
learnable module [23]. Notably, the recent VideoChat-Flash [22] can support up to 10k frames
with sufficient hardware. However, aggressive compression might lead to unreliable perception of
visual details. Such inherent context length limitations of VLMs necessitate more flexible agentic
paradigms as explained below.

Video Understanding Agents. Video agents provide a meta-level LLM controller on the top of
VLMs, which splits a long video into sub-tasks of short videos [8, 42, 45, 53, 60]. Therefore, they
are not constrained by context lengths. By imitating how humans watch videos, video agents can be
treated as increasing the test-time compute of VLMs via multi-round exploration [53], key-frame
retrieval [8], and tool-use [42]. However, video agents still demonstrate disadvantages compared with
VLMs, as mentioned in Sec. 1: (1) the sequential multi-round exploration hinders scalability, and (2)
reliance on key-frame retrieval constrains the understanding of sufficient contexts. From such aspects,
MR. Video bridges these gaps with the sequence-parallel Map steps and globally aggregating Reduce
steps, respectively (as in Fig. 1(c)).

LLM Agents. Our MR. Video, in the context of long video understanding, also contributes to a
broader field of research addressing complex problems with the advanced reasoning ability of LLM
agents, such as software engineering [15, 52] and knowledge retrieval and reasoning [54, 55, 62]. In
addition, our work aligns with the ongoing efforts to explore the zero-shot capabilities of foundation
models in various visual reasoning tasks by designing the prompts without training the models,
as exemplified by Visual Programming [11], ViperGPT [36], and Socratic Models [57]. With the
significant accuracy improvement achieved by our MR. Video, we demonstrate that LLM agents
provide an effective way to explore new frameworks at academia-friendly costs.

3 Method

3.1 Overview

Although the MapReduce principle is widely applicable for handling large volumes of data with
scalability, designing the concrete Map and Reduce operations for the specific task of long video un-
derstanding is non-trivial. With the convenience and low costs of LLM agents, we create the prompts
and workflows of VLMs to address the challenge of digesting global contexts while perceiving local
details in long videos. This leads to an effective video agent: MR. Video.

MR. Video’s overview” is in Fig. 2. It contains two MapReduce stages. (A) The “Captioning” stage
(Sec . 3.2) generates dense captions, which provide a concise comprehension of the video contents
and serve as an efficient medium for answering multiple questions on the same video. (B) The
“Analysis” stage (Sec. 3.3 and Sec. 3.4) conducts question-specific perception of the video. It first
emphasizes understanding the intention of the question (Sec. 3.3), i.e., “what the question is actually
asking,” and then purposefully inspects the visual details or longer temporal spans (Sec. 3.4). The
Map steps are independent and sequence-parallel in both stages for different video segments, and the
Reduce steps condense the segment-level results into unified video-level understanding.

Key Operations. We propose two operations that specially tailor the MapReduce for long video
understanding and demonstrate beneficial behaviors unobserved by previous video agents. (1)
Consistent characters/objects in captions. Instead of purely relying on captioning models, we
construct workflows to improve the consistency of character names across a long video, which is
beneficial to reasoning across long temporal spans. (2) Question intention analysis. We advocate
combining the video contexts and questions to understand the goal of the question, such as “when, why,
what,” instead of relying on the key-segment retrieval adopted by previous video agents. By using
thorough video contexts, our question intention analysis provides more comprehensive information.
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Figure 2: Overview. MR. Video reformulates the MapReduce principle into three specialized stages,
each designed to address a unique challenge in long video understanding. We show two types of
questions focusing on visual details (left) and reasoning (right). (a) Captioning (Sec. 3.2) generates
detailed captions and uniquely enhances the consistency of characters/objects names with the Reduce
step, which is repeatedly useful for downstream analysis. (b) Question Intention Analysis (Sec. 3.3)
departs from the conventional key segment retrieval adopted by previous video agents. Instead,
it digests the whole question and video content to provide a comprehensive context for detailed
perception. (¢) Goal-Aware Analysis (Sec. 3.4) delves deep into detailed perception and reasoning
over short and long temporal spans. (For clarity, MR. Video’s intermediate texts are simplified.)

3.2 Captioning

Captions provide an efficient medium for video understanding that covers long-range contexts. Our
captioning is shown in Fig. 2(a): (1) The Map step (Sec. 3.2.1) generates dense captions at the
scene level independently, and (2) the Reduce step (Sec. 3.2.2) provides coherent names for repeated
characters and objects for consistency. For a 1 — 2 hr video, our captioning generates 500 — 2k
captions for the whole video, similar to an article.

Compared with previous video agents [8, 42, 45] that rely on an off-the-shelf captioning model,
we design detailed techniques to improve the captioning quality. Most notably, we optimize the
framework so that every character has a unique tag like “person-b” instead of general descriptions.
As in Fig. 2, this enables downstream analysis to connect a character across different segments.

3.2.1 Map: Dense Scene Captioning

The Map step follows a sequence-parallel manner and generates dense captions, as in Fig. 2(a). It
involves: (1) Detailed Description. We empirically discover that existing VLMs might struggle
with processing video clips with signif- P —————
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their identifiable properties, and specify the frame indexes most saliently showing these charac-
ters/objects (as in Fig. 3(a)).

3.2.2 Reduce: Consistent Names

Identifying consistent characters is essential for understanding long videos. Otherwise, the analysis
cannot capture the notion of “protagonist” as in the example of Fig. 2. However, a common challenge
of existing VLMs is that they tend to provide a general description for a character, e.g., a person,
instead of referring to it using a consistent name across the long video. Therefore, our Reduce step
overcomes this challenge by merging the key characters extracted from the Map step, as in Fig. 3(b).

Specifically, our Reduce step decouples this task into two sub-steps: character association and
caption modification. (1) MR. Video instructs the VLM to associate the repeated characters/objects
by observing the salient frames of extracted characters/objects, as in Fig. 3(b). (2) Then MR. Video
assigns a new set of names for every character following the format of “<entity>_<index>" to avoid
repeated names or losing semantic meanings. Finally, MR. Video accordingly updates the names in
the original captions to the newly generated ones. Although using external tracking tools [8] might
also be a valid solution, we use VLMs because of simplicity and the fact that videos’ frequently
changing scenes could break the assumption of trackers.

3.3 Analysis I: Question Intention Analysis

MR. Video emphasizes the importance of intention analysis because of the inherent ambiguity of
questions in long-context understanding: the questions might only contain partial information, and
the model has to recover crucial clues like “when,” “how long,” and “where” in the video to perceive.
For example, Fig. 4 demonstrates multiple scenes potentially relevant to the questions, while only
one should be correctly selected via reasoning. This stage utilizes the captions from the captioning
stage (Sec. 3.2) and optionally includes video frames.

Compared with key-frame retrieval in previous video agents [8, 42] and scoring mechanisms in
VLMs [12], MR. Video marks the importance of reasoning with global context to determine the
relevant video segments, instead of purely relying on local video contents within short clips.

3.3.1 Map: Segment Intention Analysis

(a) Video Segments () Map: Segment Intention

Without losing generality, we divide the
video into non-overlapping short segments,
each containing several atomic scenes split
from the captioning stage. For an hour-
long video with 1k scenes, we have approx-
imately 30 segments. Then, the VLM pro-
cesses the segments’ aggregated captions
and the middle frames of each scene to
infer whether any scene provides helpful
information for the question.

Within each segment, we instruct MR.
Video to focus on “what is the question
asking about” and generate a paragraph of
analysis as in Fig. 2(b). Concretely, its re-
sponse contains: (1) Reasoning: a para-
graph analyzing the key subject/criteria
mentioned by the questions and how the
contents presented in the captions could
align with the question in any perspective,
e.g., Fig. 4(c). (2) Candidate Scenes: the
LLM then lists the potential scenes that
could contribute to answering the question.
Please note that this is distinct from directly
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[Reasoning:] ... we need to identify scenes that the
protagonist looking through a window ... snow-
related views or sword-practice matches appear
strongest with sword fighting in the snow ...
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What does the protagonist see through the
window after she is taken to the utility room?

A. Monks sitting cre sged in snow

D. Samurais eating

Figure 4: Question Intention Analysis. Long video
questions require the model to recover the hidden in-
formation of the question, e.g., who is “protagonist,’
what a “utility room” looks like. This motivates MR.
Video’s explicit understanding of the question’s inten-
tions by reasoning both the video contents and questions,
instead of relying on conventional key-segment selec-
tion/retrieval.

retrieving key frames since it provides more contexts and allows frames that are helpful in indirect
ways. (3) Key Subjects: The local caption segment becomes insufficient if the question mentions
characters or criteria requiring global video information. So MR. Video specifies its unsure criteria
and their identifiable properties here for the global Reduce step to analyze.



3.3.2 Reduce: Global Intention Analysis

MR. Video’s Reduce step marks the key distinction with previous methods, where we reason the
analyses at the video level. In principle, the Reduce step generates similar contents as the Map step
but covers the contexts of the whole video. So it can localize the best scenes and subjects for the
questions as in Fig. 2(b). The outputs contain the following contents. (1) Reasoning: a paragraph
analyzing the key subject/criteria mentioned by the questions and how the contents presented in the
captions could align with the question in any perspective, e.g., Fig. 4(c); (2) Candidate Scenes: the
LLM then lists the potential scenes that could contribute to answering the question. Please note that
this is distinct from directly retrieving key frames since it provides more contexts. Fig. 4(d) shows an
example output of the Reduce step, which correctly discovers the relevant video scenes by figuring
out the protagonist and the window.

3.3.3 Key Segment Selection/Retrieval v.s. Our Intention Analysis

Explicitly reasoning the intention of questions, i.e., completing the contexts, is a significant difference
between our MapReduce principle and previous video agents [8, 42, 53]. We advocate for intention
analysis, combining the whole video context instead of the key segment selection, which is a critical
insight of MR. Video.

Our design uses the models’ reasoning abilities to inspect short video clips in detail (Map) and then
comprehend the video as a whole (Reduce). Although the key-segment selection of previous video
agents [42, 53] and VLMs [12] implicitly reflects the “intention analysis” objective by choosing a few
frames with the most similar features to the question, it is an over-simplified model for long contexts
and reasoning: in the example of Fig. 4, it is challenging to extract features reflecting “protagonist,”
“utility room,” or “windows” before understanding the video contexts. In addition, a sequential key
frame selection framework assumes the small number of key events, which is not adaptive enough for
complex or challenging queries, e.g., the motivating “counting” example in Fig. 1.

3.4 Analysis II: Goal-Aware Analysis

Based on the analyzed question intentions, MR. Video’s final MapReduce stage purposefully gathers
the information related to the questions and converts them into a final answer, namely, “goal-aware
analysis,” as in Fig. 2(c). An essential functionality of this stage is that MR. Video should explicitly
plan the type of information it needs: attending to captions and sparse frames over longer time
horizons for reasoning, e.g., Q2 in Fig. 2; or focusing on densely sampled frames benefits visual
recognition, e.g., Q1 in Fig. 2. With both capabilities, our MR. Video can flexibly handle a wide
range of questions by aggregating the analysis.

3.4.1 Map: Goal-Aware Scene-centric Analysis

Starting from the candidate scenes generated (2) Candidate Scene List (b) LLM Response
by question intention analysis (Sec. 3.3), MR. CIRE BRI

L]
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Video proposes purposeful queries for VLMs to
perceive intra-segment densely sampled frames
for visual details or inter-segment sparsely sam-
pled frames for global reasoning.
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for VLMs, we are inspired by the flexibility of

“Visual Programming” [11] and ViperGPT [36]: ) S BN o = D G
let LLM propose its queries for the VLMS and  quesion: How many peapie are carrying th sedan chair ofthewoman? a4 5.8 c.6v D2

understand the candidate scenes in customized Figure 5: Customized Queries for Perception.
ways. As shown in Fig. 5, MR. Video proposes yith this question requiring detailed visual percep-
the VLM query to cover multiple aspects of the  (jon MR. Video proposes goal-aware queries for
question, gathering comprehensive information.  the VI Ms, confirming the criteria.

Perceiving Local and Global Information.

We employ the Map step as different strategies of sampling frames for VLMs to inspect. (1)
Local: We densely sample frames within each short segment for objectives requiring detailed visual
information, such as the example in Fig. 5. (2) Global: We sparsely sample frames across different
segments, e.g., the middle frames of the relevant segments identified by the intention analysis, and
let VLM perceive them for information spanning longer temporal ranges. To better leverage the
reasoning capabilities of LLMs, this step can also include the captions of the selected segments to
simplify the perception.




3.4.2 Reduce: Answer Generation

The last Reduce step attends to the global context information and generates a final response. With the
previous Map steps gradually summarizing the information, this Reduce step is no longer limited by
context lengths and can fully unleash reasoning capabilities. As a notable characteristic of this Reduce
step, it merges the scene analysis results together in a unified way, especially when different scenes
provide contradictory perception results or require further calculation of scene-level information,
such as counting queries.

3.5 Scalability Analysis

Beyond empirical accuracy, our MapReduce principle offers significant advantages from a systems
and computational perspective. Here, we analyze the computational costs of MR-Video in comparison
to sequence-to-sequence VLMs and other video agents.

Premise: The Need for Comprehensive Context. A meaningful comparison of computational
cost must be grounded in the shared goal of comprehensive video understanding. As demonstrated
in Fig. 1 and Fig. 2, tasks in long video reasoning often require a dense perception of the video’s
content to cover all the potential details. Therefore, our analysis is based on the assumption that all
the methods are consuming the same amount of frames instead of deliberately reducing the amount
of information (e.g., VLMs using sparse frames or agents selecting a few retrieved clips). Without
the loss of generality, we compare the cost of our MapReduce with a conventional VLM or video
agent when perceiving Niames frames.

Comparison with Sequence-to-Sequence VLMs. (1) Token Count. A standard VLM must
process the visual tokens from all Ng,mes frames, resulting in a total token count of Ty =
Ntames X (tokens per frame). For our MR-Video, only the initial, parallelizable captioning step
processes the raw frames, consuming approximately 2 x Ty v tokens (for two passes of segmentation
and caption generation). Subsequent MapReduce stages operate primarily on text or sparsely sampled
frames, incurring a much smaller average cost, Ti.x. Therefore, our approach expands the test-
time computation in a targeted manner to build a comprehensive textual summary, which is more
efficient for downstream reasoning. (2) Computational Cost. The advantage of MapReduce mostly
lies in the computational cost. Even assuming that VLM can effectively understanding the Ngymes
within its context lengths, a standard transformer-based VLM has a computational complexity that
is quadratic with respect to the input length, i.e., O(NZ,...)- In comparison, our MapReduce
framework partitions the video into M parallel segments. The computation is then reduced to
M x O ((Niames/M)?) = O(NEynes/M ). Given that the number of segments M for a long video is
significantly greater than the number of 3 sequential stages in our framework, the total computational
cost of MR-Video is substantially lower than that of a monolithic VLM attempting to process the
same number of frames.

Comparison with Video Agents. Similar to the analysis of VLMs, we maintain the assumption
that both methods start with a dense perception of Ngames to generate high-quality captions or
initial analyses. (1) Token Count. Under the dense context premise, both our method and video
agents [8, 42, 45, 53] rely on an intensive initial captioning or analysis phase. Therefore, our total
token counts are comparable to achieve the same quality of initial understanding. (2) Critical Path
and Parallelization. The primary system-level advantage of our MapReduce principle is its ability
to shorten the “critical path” of inference, enabling superior scalability. Consider the counting task in
Fig. reffig:teaser, where over 50 key events of a soccer video must be identified. (a) A video agent
relying on iterative, sequential key-frame retrieval would have a critical path of over 50 steps, with its
length varying unpredictably based on video complexity and reasoning depth. (b) In contrast, MR-
Video executes its plan using parallel “Map” steps, resulting in a short and controllable critical path of
just 3 MapReduce stages. This inherent parallelism means that the video processing throughput can
scale linearly with the number of available GPUs or VLM inference endpoints, a crucial advantage
for practical deployment.

4 Experiments

4.1 Datasets

Evaluation Dataset Selection. To validate the MapReduce principle within our limited budget, we
focus on the challenging long video benchmark: LVBench [39]. Compared with others [9, 31, 35, 63],
LVBench features more extremely long video durations and challenging questions, as directly reflected
by the lower accuracies of state-of-the-art models. With a limited budget, we expand the breadth of



Model | ER EU KIR TG RE SUM | Overall
Proprietary VLMs

Gemini-1.5-Pro [37] 32.1 309 393 318 27.0 328 33.1
GPT4o [1] 489 495 481 409 503 50.0 48.9
Gemini-2.0-Flash [37] 474 485 568 393 444 414 48.6

Open-sourced VLMs

InternVL2-40B [6] 374 397 434 314 425 414 39.6
TimeMarker [5] 428 39.1 349 387 382 488 41.3
Qwen2-VL-72B [38] 38.0 41.1 383 414 465 46.6 41.3
VideoLaMA3-2B [58] 415 397 440 327 458 259 41.6
mPLUG-OwI3 [56] 46.0 41.6 424 41.1 475 404 43.5
InternVL2.5-78B [6] 43.8 420 421 36.8 51.0 379 43.6
VideoLLaMA3-7B [59] | 45.8 424 478 359 458 36.2 453

Qwen2.5-VL-72B [2] - - - - - - 477
ReTake [40] 49.8 462 529 450 458 276 47.8
VideoChat-Flash [22] 51.1 46.0 49.0 389 485 345 48.2
GLM-4V-Plus [10] 462 478 541 427 465 379 48.7
AdaReTaKe [41] 53.0 50.7 622 455 547 379 533
Video Agents

VideoAgent [42] 28.0 303 28.0 293 280 364 29.3
VideoTree [45] 303 25.1 265 277 319 255 28.8
VCA [53] 437 40.7 378 38.0 462 273 41.3
MR. Video (Ours) | 598 574 714 588 577 500 | 608

Table 1: LVBench Comparison. Our MR. Video significantly outperforms previous methods by a
large >7% margin, suggesting the effectiveness of the MapReduce principle. The VLM accuracies
are from the official leaderboard as of 5/10/2025, and the video agent accuracies are from VCA [53].
The columns from “ER” to “SUM” represents different question types in LVBench, such as “entity
recognition” and “summarization,” details are in the supplementary materials.

evaluation using the subsets of other representative video understanding benchmarks, especially the
long video parts of LongVideoBench [47], Video-MME [9], and EgoShema [31].

Dataset Settings. LVbench [39] curates 1,549 questions on 103 videos ranging from 30 min to
2 hrs, covering 6 video categories. We utilize the LVBench data as follows. (a) As of May 15th
2025, 4 out of 103 videos are unavailable from YouTube for downloading. So, our comparison in
Sec. 4.3 utilizes all the remaining 1,492 questions. (b) For the ablation study (Sec. 4.4), we form a
subset to save the budget by selecting the first video of each video category in LVBench. This subset
has 6 videos and 98 questions in total. For additional evaluation, we use (1) the longest subset of
LongVideoBench’s validation set, (2) the long video subset of VideoMME without subtitles, and (3)
the validation set of EgoSchema. The evaluation metrics are all accuracy for the benchmarks. More
details on the datasets are in the Sec. D.4.

4.2 Implementation Details

MR. Video Details. Our MR. Video demonstrates a simple framework validating the MapReduce
principle, only requiring one LLM for text understanding and one VLM for image understanding. To
save our expenses, we utilize Gemini-2.0-Flash [37] as our VLM, and we only use GPT4o0 to process
texts. On average, generating the dense captions for an hour-long video requires approximately $0.8
of Gemini-2.0-Flash, and answering each question from LVbench costs $0.4 GPT4o0 on average. We
provide further details, especially the prompts, in Sec. D.

Controlled Context Lengths. We highlight a vital implementation detail so that our video agent is
meaningful for overcoming the context length challenges: we explicitly control the VLM to perceive
less than 40 frames per query, significantly less than the typical 256 or even more frames for long
video VLMs [22]. This ensures MR. Video does not violate the motivation of building video agents.

Baseline Evaluation. Because of the high cost of evaluating models, we mainly refer to the numbers
on the leaderboards or provided by the authors in our comparison (Table | and Table 2). The only
exceptions are: (1) For VideoAgent [42] and VideoTree [45] on LongVideoBench (Table 2), we
use their open-source code, the GPT40 model, and our captions for a fair comparison; (2) For our
base VLM Gemini-2.0-Flash, we follow the standard VLM setting by uniformly sampling 256 video
frames per video. More details are in Sec. D.5.1.


https://lvbench.github.io/#leaderboard

4.3 Main Comparison

4.3.1 LVBench Comparison

By tailoring long video understanding insights into the MapReduce principle, our MR. Video
demonstrates a significant advantage on the challenging LVBench as in Table 1. Using the cheap
Gemini-2.0-Flash and a smaller context length, our MR. Video improves the base VLMs and all the
previous video agents primarily using a better GPT40. Therefore, such a comparison suggests the
effectiveness of our MR. Video for long video understanding.

4.3.2 Breadth Comparison

As shown in Table 2 (LVBench performance is listed for reference), our MR. Video demonstrates

significant advantages on the long
video benchmarks than the previ-
ous video agents, despite using a
cheaper VLM Gemini-Flash. MR.
Video also consistently outperforms
the base VLM with a smaller con-
text length, while the previous video
agents commonly underperform their
VLM, GPT40. Therefore, this indi-
cates the effectiveness of MR. Video
and the significance of the underlying
MapReduce principle for long video
understanding.

To guide the future analysis of
video agents, we also notice the dis-
tinct question styles of LVBench,
LongVideoBench, and VideoMME,
leading to different scales of advan-
tage between our video agent and the

Benchmarks LVBench LongVideoBench EgoSchema Video-MME
! ; Overall Val (Long) Val Long (w/o Sub)
Average Duration 4101s 1434s 180s 2386s
VLMs
GPT4o [1] 48.9 58.6 70.4 65.3
Gemini-2.0-Flash [37] 48.6 45.7 71.2 63.0
Video Agents
VideoAgent [42] 293 47.6 63.2 46.4
VideoTree [45] 28.8 39.2 67.0 53.1
VCA [53] 41.3 - 73.6 56.3
MR. Video (Ours) | 608 61.6 73.8 63.4

Table 2: Breadth Comparison. MR. Video performs better
than other video agents. More importantly, we consistently
outperform the base VLM, Gemini-2.0-Flash, with a smaller
context length, while other video agents commonly under-
perform their VLM, GPT4o. (LongVideoBench accuracy of
GPT4o is from their paper, EgoSchema accuracies are from
VCA [53], and Video-MME accuracies are from the official
leaderboard and VCA’s paper [53].)

base VLM. Please refer to our discussion in the Sec. D .4.

4.4 Ablation Study and Analysis

We utilize the LVBench subset (explained in Sec. 4.1) to analyze our Map and Redyce operators.

Consistent Character Names in Captions.

Following the order of the MapReduce steps, we

first analyze the benefits of the Redyce step in captioning (Sec. 3.2): providing consistent charac-
ters/objects names. As shown in Fig. 2, such consistent names enable the analysis to capture coherent
behaviors of characters. Without consistent names, we observe a significant performance drop (“w/o

Consistent Characters” in Fig. 0).

Question Intention Analysis.
understanding the video contexts
instead of the key-segment se-
lection used by previous video
agents. To analyze their differ-
ences, we utilize the target video
clips annotated by LVBench to
assess whether intention analy-
sis can better localize the key
segment: (1) whether the candi-
date scenes selected by our ques-
tion intention analysis overlap
with the annotated target clips;
(2) whether the intention analysis
is better than retrieving the key
scene matching the embeddings
of video clips and questions.

w/o Consistent Characters

w/o Goal-Aware Analysis

As clarified in Sec. 3.3.3, we advocate comprehensively

(a) Ablation Study (b) Key Frame Recall

70.4

MR. Video 63.3

58.2 40.0 34.4

52.0

0.0

400 450 500 550 600 65.0 MR. Video MM-Embed

Figure 6: Analysis. (a) We investigate the benefits of MR. Video
components. (b) The comparison between our question intention
analysis and the key frame retrieval suggests the necessity of com-
bining more video contexts for localizing the critical information.


https://video-mme.github.io/home_page.html#leaderboard

S == - :
Question Question

How many No. 11 Salah’s goals for Liverpool are in the video? A. 10 B.25 C.200¥ D. 50 Where does Vloggers took Mikhail the first night? A.Pubv B.Hotel C.Park D. Pool
Intention Analysis (Map) Intention Analysis (Map)
... 1:17 goal by <player_a> ... .. 3:16 shooting by <player_a>... ... celebration by <player_a>... ' ... <person_a> (one of the ... the group being back at the ... the team members are talking
vloggers) ... met <person_b>, Drunk Cherry bar. Since abaris  to <person_b>, ... mentions going
Intention Analysis (Reduce) also known as Mikhail ... atypeof pub ... back to his hotel
... are scenes where the ball is shoty by <player_a>, goes into the net followed by a celebration . .
from <player_a>... By counting these scenes ... the total number of goals is 78... Intention Analysis (Reduce)
. [1. Reasoning]: ... Segments after 12:40 support visiting a pub, as they describe scenes in drinking
(Gl e At (Lt es) establishments. Segments (1476.5, 1497.0) point to a hotel, suggesting that Mikhail stayed at the
The total number of goals mentioned in the analysis is 78, which does not match any of the given hotel later that night. While this indicates where he might have stayed, it is not definitive about
options. ... [Answer]: C. 200. (This is a speculative guess based on the analysis ... where he was *initially invited*. .. [3. Key Characters]: ... (Mikhail, <person_b>)...

Figure 7: Case Analysis. (Left) Recalling the motivating example (Fig. 1), MR. Video checks every
scene in detail (Map) and aggregates the whole video (Reduce). Although it misses some goals due
to strict criteria (shooting, goal, and celebration), MR. Video shows the desired behavior of counting
exhaustively. (Right) This example demonstrates how a consistent character name (Mikhail) benefits
the reasoning process of MR. Video (first night).

First, MR. Video correctly localizes the relevant scenes for 70.4% of the questions, where a video
typically contains 500-2k scenes. Second, we employ MM-Embed [25], a state-of-the-art multi-modal
retrieval model, to conduct the key-frame retrieval. Under a fair comparison setup (details in the
Sec. D.5.2), retrieval achieves an accuracy of 34.4%, which is significantly worse than our question
intention analysis (Fig. 6(b)). This suggests the necessity of question intention analysis, which
combines global context for localizing the key video segments.

Goal-aware Analysis. Goal-aware analysis (Sec. 3.4) provides the video agents with opportunities
to delve deep into video content after coarse analysis. Without this final MapReduce stage, the
performance drops significantly in “w/o Goal-Aware Analysis” (Fig. 6(a)).

4.5 Case Analysis

Finally, we closely observe the behavior of MR. Video and find it demonstrating a successful long
video understanding process. (1) We recall our motivating problem of the challenging counting
question: as in Fig. 7 (left), MR. Video indeed shows the behavior of exhaustively perceiving each
video clip, checking the criterion, and summing up the numbers. Although its number is smaller than
the ground truth due to strict checking criteria, MR. Video shows a valid path towards addressing a
large number of events in long videos. (2) In this travel video, MR. Video demonstrates the multi-hop
reasoning benefit from consistent names and explicit analysis of the event orders from global contexts,
which are crucial premises for addressing complicated video reasoning.

5 Conclusion

To address the challenge of understanding both local details and global contexts in long video
understanding, we introduce the MapReduce principle and formally define its operations in MR.
Video. Compared with previous VLMs and video agents, MR. Video shows the advantage in smaller
context length, better sequence-parallelism and inference scalability, and comprehensive global
context understanding. Targeting the under-explored challenges of long videos, we further propose
consistent character names in captions and question intention analysis to replace the conventional
key frame retrieval. Finally, MR. Video achieves significant advantage on multiple long video
benchmarks, showing the potential and effectiveness of MapReduce.

Limitations and Future Work. (1) We utilize the LLLM agents paradigm because of its low cost,
but the MapReduce principle is also conceptually compatible with VLMs, where local attention
compresses short video segments and global attention at the final layers aggregates the global contexts.
Therefore, a potential future work is to formulate and verify MapReduce for VLMs. (2) Another
limitation of LLM agents is that LLMs are not aligned with the video understanding, especially when
the texts used for visual reasoning could lose nuanced visual information (analysis in supplementary
materials), so another future work is to conduct post-training for the LLMs of the video agents.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect our contribution of introducing
the MapReduce principle for long video understanding and building an effective video agent
MR. Video with significant improvement.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations at the end of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper addresses the practical problem of long video understanding and
does not have theoretical results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details in both of the main paper and supple-
mentary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have provided the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the details of our datasets, evaluation, models, and prompts
in the main paper and supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the high cost of evaluation (more than 1k dollars per run), we follow
the standard practice of video agents in running the evaluation once.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have clearly analyzed the costs of our models and APIs in the implementa-
tion details.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This project does not violate the ethics code.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work has no negative societal impact by proposing a long video under-
standing framework. However, the usage of large language models for agents might carry the
original bias of the Gemini or GPT models. We clarify such impacts in the supplementary
materials.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not have such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite and credit the datasets and models used in this paper.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We have not introduced new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our research does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our research does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We have clarified using Gemini and GPT as the essential backbone of our
model.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Delving into Long Video Benchmarks

In Sec. 4.3.2, we mentioned the fact that the long video datasets have nuanced differences in their
preferred long video understanding capabilities, so the improvement and pattern of MR. Video
displays different margins of advantage on these datasets. For instance, the improvement of MR.
Video over the base VLM on LVBench [39] and LongVideoBench [47] is more significant than
Video-MME [9], and such observations reveal the common challenges of video agents. In this section,
we present several representative examples showing such distinctions of datasets and discuss the
advantages and challenges of video agents. Please note that all of these benchmarks have curated a
diverse set of questions. We demonstrate examples only to provide an intuition of the complexity of
question styles instead of claiming that these benchmarks can be solved with a few techniques.

We show the examples in Fig. A, including the representative questions from LVBench [39],
LongVideoBench [47], and Video-MME [9].

(a) LVBench

What does the protagonist wipe her face with when she is knocked to the ground during a solo fight?
A. With snow on the ground v/
B. With her sleeves

C. With her hands
D. With a handkerchief in her pocket

(b) LongVideoBench

In a space setting, there is a yellow sun design in the center with the word ‘Emission” below. In which of the following scenarios has this sun appeared?

A In the starry sky from a side view, there is a glaring white light in the center, surrounded by a halo of white light.

B. Inared cloud-like background, there is a cluster of bright light spots emitting strong light in the center.

C. Inablack night sky, there is a purple circular object emitting purple light, with the words ‘Protoplanetary Nebula’ inscribed on it. v/

D. In aspace background, there is a yellow design on the left side with radiating lines around it, and on the right side there is a circular design with
light blocked by something, with a yellow line attached to the sun

E. In ablue background, the center is sparkling with densely packed light dots.

(c) Video-MME

At the end of the video, why does James Corden sing a song with tears in his eyes
A. He was reluctant to leave this job. v/

B. He expressed his satisfaction with the hard work of his colleagues.

C. He felt touched by the work he had done over the years.

D. He wept with joy at the achievements of the performance.

Figure A: Examples of Different Long Video Benchmarks. The benchmarks demonstrate different
nuanced styles and desired capabilities from the long video understanding models. (a) LVBench [39]
requires the model to precisely localize the key information by understanding the story, capturing
the characters, e.g., protagonist, and comprehending the question. (b) LongVideoBench [47] also
emphasizes the importance of finding the key information, but the query is more explicit by directly
naming the property to search for. (c) Video-MME [9] shows the questions closer to the style of
interpretive queries, requiring the models to have a rough speculation and summarization of the video.

LVBench. For LVBench, the model has to localize the scene of “solo fight” correctly and understand
the meaning of “knock down” and “wipe face” to answer the question. Notably, the model has to
integrate the contexts of the video and speculate the “protagonist” first to execute this task.

LongVideoBench. Although both require precise localization, LongVideoBench is different from
LVBench. LongVideoBench provides explicit and accurate visual cues for the model to localize
the object, but the model has to propagate such information across the temporal axis to answer the
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question. Compared with LVBench, LongVideoBench emphasizes models’ visual detail perception
and temporal association abilities.

Video-MME. Unlike the above two benchmarks, many questions in Video-MME are not about
a specific event. Instead, they are more interpretative, similar to the impression of a human after
watching the videos.

Comparatively, LVBench and LongVideoBench emphasize the challenges of localizing one or multi-
ple key video clips and exact matching of contents, while Video-MME contains more interpretative
questions similar to how humans gain an intuitive impression of a video segment. Even LVBench
and LongVideoBench are slightly different: LongVideoBench provides more explicit vision-centric
cues, and LVBench specifies more from a story or event aspect.

The improvement of our video agent over the base VLM, especially the improvement on LVBench
and LongVideoBench, requiring the precise localization of information, demonstrates the advantage
of video agents in localizing critical visual information by reasoning about the overall video context.
Comparatively, video agents relying on text-based reasoning might lose visual details, making them
less effective for interpretive questions like Video-MME. Even so, our MR. Video still outperforms
the base VLM with a smaller context length, while all the other video agents fall behind their base
VLMs. Therefore, the above analysis indicates the necessity of the MapReduce principle in handling
a wide range of video tasks compared with other video agents.

B Scalability Analysis

In this section, we provide a detailed analysis of the token consumption of our MR-Video frame-
work, accompanying Sec. 3.5. We compare our method with a representative open-source baseline,
VideoAgent [42], on the LongVideoBench benchmark, following the setup in the main paper. This
analysis reveals how the MapReduce principle intentionally utilizes more tokens to achieve a more
comprehensive and reliable understanding of long videos, and how this design leads to superior
inference-time scalability.

As shown in Table A, starting from identical video captions, our MR-Video consumes approximately
14x more tokens than VideoAgent to achieve a significantly higher accuracy. This substantial
difference in token usage is not an incidental byproduct but a deliberate design choice central to
our framework’s philosophy. While VideoAgent restricts its agent to a maximum of 4 rounds of
interaction with the video, our approach requires the agent to densely perceive the entire video
content.

Method Avg Input Tokens Per QA Avg Output Tokens Per QA Accuracy (%)
VideoAgent [42] 7,695 383 47.6
MR-Video (Ours) 109,522 4,908 61.6

Table A: Token consumption and accuracy comparison on LongVideoBench. Our MR-Video inten-
tionally consumes more tokens to densely perceive the entire video, leading to significantly higher
accuracy.

Such a contrast directly reflects the advantage of our design in densely perceiving the video, which is
necessary (as explained in Sec. 3.5). More importantly, simply increasing the token budget does not
trivially lead to better performance. In fact, VideoAgent’s own ablation study (Fig. 3, left in their
paper) suggests that increasing the number of perception rounds can cause performance to saturate or
even decrease. This observation motivated our exploration of a new scaling paradigm. Instead of
pursuing greater depth (more rounds of searching for key frames), our MapReduce principle improves
the breadth of understanding by optimizing for information coverage.

At first glance, it may seem contradictory that a method requiring more tokens can offer better
inference-time scalability. The key to understanding this is to analyze the critical path of computation
when serving the model. Consider the event-counting scenario from Fig. 1, where over 50 goals must
be identified. (1) VideoAgent relies on an iterative, sequential process of key-frame retrieval. Its
critical path would consist of more than 50 sequential steps to identify all the key events, which grows
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Question Analysis

Why are the mother and child unable to enter the city? ... Bribery is supported where a person is

A.  They do not bribe the guard v/ paying the guard with coins ... Guards check
B.  They are foreigners pass and they are upset ... lacking a valid

C.  They have illegal weapons pass could be the reason. ... (D) is the most
D. Their pass is invalid likely answer

2614

Question Analysis
What happens when a women in red kimono kneels? ... The key scene is 26:43 - 26:54, where a
A.  Achild rides on her back women in red kimono is kneeling with a man
B. A man kneels beside her beside her ... A child hitting with noodles
C. A man takes out his sword are not displayed in the video ... So (B) is
D. A child hits her with noodles v/ accurate

Figure B: Failure Case Analysis. MR. Video’s failure largely comes from (1) the VLMs fail to
understand the narratives and scene transitions (example 1); and (2) VLMs fail to capture visual
details (example 2). (Noodles and the blurry face are pointed with arrows.)

with video complexity or reasoning hops. (2) MR-Video, however, relies on highly parallelizable
"Map" steps. This results in a controllable critical path of just 3 MapReduce stages.

Consequently, our MapReduce principle is highly amenable to parallel computation. The system’s
throughput (i.e., the duration of video processed per unit of time) can scale linearly with the number of
available GPUs or VLM inference endpoints. This design makes MR-Video exceptionally well-suited
for practical, large-scale deployment where latency and throughput are critical.

C Failure Case Analysis

As all the video agents utilize VLMs to interpret the video contents, the performance of the video
agents is constrained by the underlying VLMs and LLMs, especially when the information relevant
to the question is already localized successfully by the video agent. (1) The underlying VLM fails to
capture the nuanced storyline in the example 1 of Fig. B: even though the model notices the bribery
behaviors, it fails to conclude the correct answer due to not understanding the narrative of the videos.
(2) Moreover, our video agent cannot recover the visual details overlooked by the VLM, such as the
noodle and the woman’s face in example 2 of Fig. B.

D Prompts and Implementation Details

D.1 Captioning Prompts

We describe the detailed steps and prompts for our dense captioning of the video (Sec. 3.2). All the
datasets share the same captioning prompts.

Map: Dense Scene Captioning. As in Sec. 3.2, we let each short video segment produce its dense
captioning, involving the following three map steps — all the video segments are independent within
each step to support parallel inference:

1. We split each 10s video segment into individual scenes and check if the first scene of a
segment can be merged with the last frame of the previous segment. Scene splitting prompts
are in Table B, and the “Scene Merging” prompts are in Table C.

2. We identify the salient characters and use them to generate the dense captions in each video
segment. The prompts are in Table D.

3. With the selected characters, we generate the dense captions of each scene with the prompts
in Table E.
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## Context

You will be given a few continuous screenshots of the video corresponding to approximately 10 seconds
of video duration, and provide detailed, faithful, and accurate analysis of this video segment. The
objective of this analysis is to group the video into short segments based on the contents for the sake
of captioning and user question answering.

## Instructions

To perform the analysis of decomposing a video into shorter parts, let’s do it step by step.

1. Based on the provided frames of this video segment, please describe the contents of the video
segment briefly and accurately. You should cover each action and event in the clip. The description
should be detailed, faithful, and accurate. It should come with a header: "[1. Description]ﬂﬂ

2. Based on your description, please answer the following question: "Is this video segment a single
scene or a combination of multiple scenes?" The definition of a scene is a single, self-contained, and
continuous event that could be easily summarized into one sentence by a human. Your answer should come
with a header: "[2. Single:]"

3. If the answer to the previous question is
scenes from the given frame. Your answer should come with a header: "[3. Frames]:
of a list of integers.

"no", please provide the index of frame(s) separating the

" and in the format

## Example

Your response should be in the following format:
[1. Description]: This video shows ...

[2. Single: yes/no]: No.

[3. Frames]: [5, 9]

Please pay special attention to:

- The precise localization of the frames is very important for downstream tasks.

- The summarization at the scene level should be consistent with the frames you provided. For instance,
the number of scenes should be one more than the number of frames in the list. If you provide O frames
since the images display a consistent scene, you will give 1 summary; If you provide 1 frame, there
should be 2 summaries; if you provide 2 frames, there should be 3 summaries, etc.

Now you will be presented the video frames, please perform the analysis carefully.

Table B: “Scene Splitting” prompts at the Captioning stage (Sec. D.1).

You are going to help with determining if a short video segment is a consistent scene. You will be
given a few continuous screenshots of the video clip, and provide detailed, faithful, and accurate
analysis of this video segment.

Your objective is simple: if *the video clip starting from the second frame* is a consistent scene
with *the first frame*. Answer with "yes" or "no".

Now you will be presented the video frames, please perform the analysis carefully.

Table C: “Scene Merging” prompts at the Captioning stage (Sec. D.1).

Reduce: Consistent Characters and Objects. As in Sec. 3.2, our additional “Reduce” step
enhances consistency by merging the repeated characters into unified names. It involves the following
steps:

1. We iteratively check if the characters from two video segments overlap with the prompts in
Table F.

2. After assigning new names to all the characters/objects, we modify the old names in the
original dense captions with the prompts of Table G.

D.2 Analysis I Prompts

We describe the prompts for question intention analysis (Sec. 3.3).

Map: Segment Intention Analysis. We let a standard LLLM check the scene-level information and
understand the user intentions. Each chunk of captions contains 32 scenes. Its prompts are in Table H.

Reduce: Global Intention Analysis. This step utilizes an LLM to process the segment-level
analyses from the previous step and unify them into a condensed video-level analysis. The prompts
are in Table I. The most critical part is explicitly instructing the LLM to conduct video-level reasoning
and find the most proper scenes.

D.3 Analysis II Prompts

This section provides the details and prompts for MR. Video’s goal-aware analysis (Sec. 3.4).
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# 1. Motivation

You are paritipating in a video captioning task, but you can only watch a few frames of the video and
lack a broader context. Therefore, you will use using a character-centric and object-centric visual
memory that stores the key characters and objects in the video. Your objective is to identify the
potential key characters and objects from the video, that could be influential, and organize them into
a visual memory for downstream tasks.

# 2. Input and Output

You will be given the following inputs:

## 2.1 Input

You will have sveral sparsely sampled frames of the current video clip.

## 2.2 Output

Your output will have the following format:

[1. Appeared Characters]: You will return a list of the names of the characters and objects that
appeared in the current scene, from the visual memory. Strictly follows the format: [NAME1l, NAME2,
.ol

[2. Character Details]: You will return the details of the characters that appeared in the current
scene. Each item should contain the name of the character, a representative frame of the character,
and a description about how to identify the character in the frame. Format is:

[Visual Memory 1:] [[NAME: name], [DESCRIPTION: description], [FRAME: index of the selected frame to
display this character]] [Visual Memory Ends]

[Visual Memory 2:] [[NAME: name], [DESCRIPTION: description], [FRAME: index of the selected frame to
display this character]] [Visual Memory Ends]

Guidelines:

1. NAME should be a a general name, such as person_a, person_b, person_c, object_a, etc. Try to be
rigorous and faithful to the video without making assumptions.

2. DESCRIPTION should be a short description of the character’s and object’s appearance and properties,
especially how to uniquely identify the character or object from the representative frame.

3. FRAME should be the index of the frame that best represents the character or object in the scene,
favorably the most salient frame showing the front face of the character. It should start from O.

## 2.3 Example Output:

[1. Appeared Characters]: ["person_a", "person_b", "dog_a"]

[2. Character Details]:

[Visual Memory 1:]1 [[NAME: person_b]l, [DESCRIPTION: a man with short hair and glasses in the frame],
[FRAME: 10]] [Visual Memory Ends]

[Visual Memory 2:] [[NAME: person_c], [DESCRIPTION: a woman with long hair and a blue dress in the
frame], [FRAME: 20]] [Visual Memory Ends]

[Visual Memory 3:] [[NAME: dog_al, [DESCRIPTION: a dog with standing beside the man with short hair],
[FRAME: 10]] [Visual Memory Ends]

# 3. Guidelines

This is not an easy task, please make sure to use your advanced reasoning ability and check every item
and step carefully. The following guidelines are very important for you to finish this task:

1. Please imagine yourself as a human watching the video, trying to perceive the salient things from
the video and understanding the deeper plots of the video.

2. When you are selecting the characters for the visual memory, please be picky:

(a) Only select the characters and objects that you believe are salient and could significantly
influence the plot. It could be a person in the movie, an animal in the documentary or cartoon, etc.
Make your best judgements.

(b) Only include a character if it is displayed saliently with great emphasis. Be conservative if you
cannot identify the character clearly. Better to be safe than sorry.

3. Format is very important. Please keep the strings in identical formattings to ensure smooth
post-processing.

4. Please make sure the [1. Appeared Characters] and [2. Character Details] are consistent.

# 4. Your Job
Now your job begins.

Table D: “Character Selection” prompts at the Captioning stage (Sec. D.1).
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# 1. Instructions

You will be given a few continuous screenshots of a video clip, some potential key characters and
objects of the video in your memory, and the caption of the previous scene. Your objective is to
generate a caption for current displayed scene. Your analysis will be faithful and accurate to the
video.

Input:

1. Visual Memory: the names, representative video frames, and the identifiable properties of the
characters and objects in the visual memory.

2. Previous Caption: the caption of the previous scene.

3. Video Frames: the few continuous screenshots of the current video clip.

# 2. Guidelines

When generating the caption, please follow the guidelines below and solve this problem step by step:
1. First, describe the main content of the current scene briefly.

2. Second, use the visual memory to identify if any characters or objects from the visual memory
appear in the current scene. If so, please list their name out.

3. Third, describe the scene in detail, including the characters, their actions, the objects, the
properties of the characters and objects, the environment, and other types of contents, etc.

Some more detailed tips:

1. When generating the captions, please take the previous scene as contexts and pretend that you

are watching a video continuously. The goal is that a human should read your captions and feel like
watching a continuous video.

2. When generating the captions, please be faithful to the video and make logical connections between
the scenes.

3. When you encounter characters, please utilize the information and name from the visual memory if
what you see matches the visual memory. For instance, if the visual memory contains a character named
"person_a", you should use <person_a> to refer to the character in your captions.

Important Rules:

1. The quality of this step is very very very important.

2. I want you to be very detailed and faithful to the video. At least, you should go over the
following aspects:

2.1 What are the characters, what are their appearances, what are there clothes, what are their actioms,
what are their emotions?

2.2 What are the objects, what are their properties, what are their relationships with the characters?
2.3 What are the environments, what are the background, what are the weather, what are the time of the
day?

2.4 Are there any text on the screen? What are they?

2.5 If there is anything salient or anything weird, please describe it.

# 3. Format
Your response should be in the following format:

[1. Brief Description]: ... # captions, a string

[2. Appeared Characters]: ... # the format of [NAME1, NAME2, ...], a list of character or object
names

[3. Detailed Description]: ... # the detailed description of the scene, a string

# 4. Your Job
Now your job begins.

Table E: “Dense Captioning” prompts at the Captioning stage (Sec. D.1).

Map: Goal-aware Scene-centric Analysis. Based on the information required to answer the
question, MR. Video first proposes customized queries for each question as in Table J and applies
these queries to the VLMs.

Reduce: Answer Generation. The final step is to combine the results of goal-aware scene-centric
analysis with the global intention analysis to generate a final response. The prompts are in Table K.

D.4 Datasets

LVBench Videos. We clarify the unavailable videos from LVBench, as mentioned in Sec. 4.1.
LVBench requires users to download from YouTube with provided links to protect the copyright. As
of March 1st, 2025, 4 videos are no longer available on YouTube, so we cannot evaluate them. Their
IDs are: 28ClIeC8cZks, idZkam9zqAs, QgWRyDV90zs, gXnhqF0Tqql. After filtering them out, we
have 1,492 out of 1,543 questions. Therefore, MR. Video can still outperform the other methods by
more than 5% even under the extreme assumption of counting the unavailable questions as “wrong”
answers.

LVBench Ablation Subset. We select the first video of each category from LVBench (cartoon, live,
self-media, documentary, TV, and sports) and form a subset for the ablation study, as mentioned in
Sec. 4.1. Th six selected videos are: Cm73ma6lbcs, TIQBTesZUJQ, t-RtDI2RWQs, hROKtPgktOS,
rSE2YPcv89U, and CgvlqGxzRIE. They consist of 98 questions in total.
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https://www.youtube.com/watch?v=28CIeC8cZks
https://www.youtube.com/watch?v=idZkam9zqAs
https://www.youtube.com/watch?v=QgWRyDV9Ozs
https://www.youtube.com/watch?v=gXnhqF0TqqI
https://www.youtube.com/watch?v=Cm73ma6Ibcs
https://www.youtube.com/watch?v=TiQBTesZUJQ
https://www.youtube.com/watch?v=t-RtDI2RWQs
https://www.youtube.com/watch?v=hROKtPqktO8
https://www.youtube.com/watch?v=rSE2YPcv89U
https://www.youtube.com/watch?v=CgvJqGxzRfE

# 1. Instructions

You will be given two sets of frames captured from a video, describing several characters or objects
from the video. Your objective is to find if any character or object appears in both sets. If so,
please help me locate the character or object and find the better frame representing the characters and
objects.

Input:

1. Set 1: the names, representative video frames, and the identifiable properties of the characters
and objects.

2. Set 2: the names, representative video frames, and the identifiable properties of the characters
and objects.

# 2. Guidelines and Tips

This is not an easy task, please make sure to use your advanced reasoning ability and check every item
and step carefully. The following guidelines are very important for you to finish this task:

1. Please work on this problem via two steps: (a) check if any items from the first set is repeated
with the second set; (b) if so, find the better frame representing the character or object.

2. Please rely on both the video frame information and the identifiable properties to carefully
understand the characters and objects.

3. When you are selecting the better frame for an object, please consider the following factors: (a)
the frame should be the most salient frame showing the front face of the character; (b) the frame
should be the most representative frame showing the character or object.

4. Sometimes the characters or objects are captured from different angles or distances, please make
your best judgement to check if they are the same character or object.

# 3. Output Format

Please strictly follow the format below to ensure smooth post-processing:

[Repeated Characters and Objects]: (Character_namel_in_Set_1, Character_namel_in_Set_2,
Better_character_namel), (Character_name2_in_Set_1, Character_name2_in_Set_2, Better_character_name2)

The answer lists all the repeated characters and objects in the two sets of frames, each tuple contains
three items describing the repeated character or object:

1. Character_name_in_Set_1: the name of the character or object in the first set of frames.

2. Character_name_in_Set_2: the name of the character or object in the second set of frames.

3. Better_character_name: the name of the better character or object that represents the

repeated character or object, must be consistent with the name in Character_name_in_Set_1 or
Character_name_in_Set_2.

An example output should be:

[Repeated Characters and Objects]: (person_a, person_b, person_a), (dog_a, dog_b, dog_b)

# 4. Your Job
Now you will receive two sets of frames and their character descriptions. Please start your responses
with the information provided.

Table F: “Character Merging” prompts at the Captioning stage (Sec. D.1).

# 1. Instructions

You will be given a description of a video clip, which potentially contains some characters. After
some analysis, I have decided to change the name of the characters or objects, and your job is to help
me modify the descriptions to the new names.

Input:

1. 01d Description: the old description of the video clip, containing the fields of Brief Description,
Appeared Characters, and Detailed Description.

2. Modified List: a list of characters to be modified in the format of OLD_NAME -> NEW Name.

Output:

Your output should be the modified description of the video clip strictly following the original format
and contents, only with names changed.

# 2. Guidelines

1 Only change the names, do not change the format or any contents.

2. Please remember to update all the Brief Description, Appeared Characters, and Detailed Description.
3. Keep the names consistent.

4. The format of the characters in Brief and Detailed Description is <NAME>, please follow the same
format.

# 3. Your Job
Now your job begins.

Table G: “Caption Modification” prompts at the Captioning stage (Sec. D.1).
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# 1. Motivation

You will conduct the first step of long video understanding: **perceiving short video segments** and
**analyze their relevance to the user’s question**. By using short-segment analysis, you can avoid the
limitation of the model’s context length for long videos.

You will have access to the following information for the current video segment:

1. A question.

2. The frames sampled from the video, each corresponding to a scene in the captions.

3. The captions of the video generated by a video captioning model, decomposed into short scenes
representing different video actions. Notably, we have marked the potentially key characters or
objects using the format of <NAME>. However, it is not entirely reliable (e.g., missing characters
or inconsistent tracking across frames), please use it with reasoning.

# 2. QOutput Formats

Please strictly following the output format below, which is important for post-processing.

[1. Reasoningl: ... (Your reasoning process. Please be precise, concise, and clear. Mentioning
evidence is any.)
[2. Relevant Segments]: [(t_start, t_end), ...]... (List the time range of the video segments that

are relevant to the question. Please strictly follow the time information from the captions. if you
think a continuous period is necessary for the question, merge them into a single segment. Return an
empty list if none of the segments are relevant.)

[3. Confidence Levell: ... (Your confidence level.)
[4. Key Characters]: [(character symnonym in question, identifiable properties or NAME in captions),
..1... (The key characters that are mentioned in the question and how to identify them. Keep the

list empty if the question is not related to any characters.)

# 3. Instructions and Guidelines

## Information Reliability

To principle is to **combine the information from the captions, video frames, and the question
(including the options, if any)** to analyze the user’s intention. The reliability of the information
is:

1. The question: raised by the user, the most important and reliable.

2. Video frames: reliable, but only covers a small portion of the video.

3. Captions: less reliable, but covering more details, especially the "NAME" representing
character/object names. You should combine the information from the question and video frames when
using the captions.

## Analysis Tips

1. Think carefully about how a short video segment could contribute to long video understanding by
paying attention to the question and video segment contents. Some examples are:

- For question on visual details, you should check if the video segment **contains the scene that the
user wantskx,

- For question on information over a period of time, such as the order or the number of actions, you
should reason **whether this segment can contribute part of the analysis*x*.

- For question on the reason or implication of the story/actions in the video, you should check if the
video segment **contains the key information** that can help you understand the story/actions.

2. Finding the key video segment is critical. If the user mentions a clear criteria, such as specific
character of object, try to use it **precisely** and **rigorously** in your analysis.

3. If the question asks for certain characters in the plot/story, you should potentially localize its
NAME in the captions, or clearly specify its appearance properties.

4. Pay attention to the information reliability mentioned above.

5. Imagine yourself watching a video using the sampled frames and the captioms.

6. When discussing your analysis, please provide the reasoning process and your confidence level
between 1 (almost guessing, no clear evidence of being relevant to the question) to 5 (almost certain,
clear evidence of being relevant to the question).

7. If the question should be answered with contexts, for "Relevant Segments", you should include

one more scene before and after the most possible scene to increase robustness. For example, if the
most possible segment is (10, 20), and its previous and next scenes are (5, 10) and (20, 25), then you
should make it (5, 25) so that the contents between two scenes won’t be missed.

## Your Input

1. The question: a question coming with optioms.

2. The frames: a list of frames sampled from the video.

3. The captions: a list of captions decomposed into short scenes representing different video actioms.
Each caption is the format of "(t_start, t_end): caption". Time is represented in seconds.

# 4. Your Job Starts

Table H: “Segment Intention Analysis” prompts at the Question Intention Analysis stage (Sec. D.2).
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# 1. Motivation

You will conduct **user intention analysis** as a step of long video understanding: what is the
question asking about. The questions from the users might be vague or not self-contained. You will
complete the question by finding the relevant video segments, characters/objects, or how the short
video segments contribute to the long video understanding.

You will have access to the following information:

1. A question.

2. Your analysis of short video segments: **is the video segment relevant to the question?**

Your analysis is the most important information in this step. You will go through the analysis of each
segment containing the following parts:

1. Reasoning: ... (your explanation)

2. Relevant Segments: [(t_start, t_end), ...]... (The periods that are potentially relevant from

your analysis. Time is represented in seconds.)

3. Confidence Level: ... (Your confidence level.)

4. Key Characters: [(character symnonym in question, identifiable properties or NAME in captionms),
..]... (The key characters that are mentioned in the question and how to identify them. Could be

unreliable.)

# 2. Instructions and Guidelines

## Objectives

Your goal is to merge the information from separate short video segments into a complete understanding
at the video level. Your most critical output for the downstream parts are the "relevant segments"
and "key characters". Notably, you will carefully use your reasoning skills to handle the following
issues:

1. Segment-level analysis might guess some relevant segments or characters for the question. You
should select the most relevant segments and characters based on a video-level understanding, and
ignore the less relevant ones.

2. Segment-level analysis might contain contradicting information since they come from separate
analyses. You should carefully merge the information from different segments, and provide reliable
information for the downstream analyses steps.

3. You should clarify how the results from segment-level can contribute to the long video
understanding. For example, do we want to "sum", "merge", or "select" the information from individual
segments.

## Output Formats

[1. Reasoningl: ... (Your reasoning process. Please be precise, concise, and clear. Mentioning
evidence is any.)
[2. Relevant Segments]: [(t_start, t_end), ...]... (List the time range of the video segments that

are relevant to the question. Please strictly follow the time information from the analysis provided

to you. Merge the scenes if you think a continuous period is necessary for the question.)

[3. Key Characters]: [(character symnonym in question, identifiable properties or NAME in captions),
..]... (The key characters that are mentioned in the question and how to identify them. Keep the

list empty if the question is not related to any characters.)

[4. Local or Globall: ... (Whether the question requires combining contexts from different segments

to answer. If "yes", then this is a global question. If "no", then this is a local questiomn.)

It is very important to follow the format for the relevant segments section. Every segment should be a

format of (t_start, t_end), especially the brackets should be "()" and matched.

## Principles and Tips

1. Think carefully about how a short video segment could contribute to long video understanding by
paying attention to the question and video segment contents. Some examples are:

- For question on visual details, you should check if the video segment **contains the scene that the
user wants**.

- For question on information over a period of time, such as the order or the number of actions, you
should reason **whether this segment can contribute part of the analysis*x*.

- For question on the reason or implication of the story/actions in the video, you should check if the
video segment **contains the key information** that can help you understand the story/actions.

2. Finding the key video segment is critical. If the user mentions a clear criteria, such as specific
character of object, try to use it **precisely** and **rigorously** in your analysis.

3. If the question asks for certain characters in the plot/story, you should potentially localize its
<NAME> in the captions, or clearly specify its appearance properties.

4. Imagine yourself watching a video using the sampled analysis. Figuring out the flow of the plots
is critical.

5. If the question is not really about the **whole video**, do not specify more than 10 relevant
segments.

6. You should propose **at least 1 relevant segment**. If you don’t think any segment is relevant,
return a most likely segment and say "I have low confidence on the relevance of the segments".

# 3. Your Job Starts

Table I: “Global Intention Analysis” prompts at the Question Intention Analysis stage (Sec. D.2).
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# 1. Motivation

In this step of long video understanding, you are making preparations for calling vision-language
models to analyze sampled video frames. Specifically, you will be given the user’s question and a
video-level analysis from yourself. Based on such information, you will **propose a question to prompt
the vision-language models** to analyze the video frames.

You will access the following information:

1. A question.

2. A video-level analysis from yourself. It contains the following information:

1. Reasoning: ... (Your explanation about which parts of the video are relevant to the question.)
2. Relevant Segments: [(t_start, t_end), ...]... (The periods that are potentially relevant from
your analysis. Time is represented in seconds.)

3. Key Characters: [(character symnonym in question, identifiable properties or NAME in captions),

..]... (The key characters that are mentioned in the question and how to identify them. Keep the
list empty if the question is not related to any characters.)
4. Local or Global: ... (Whether the question requires combining contexts from different segments to

answer. If "yes", then this is a global question. If "no", then this is a local question.)

# 2. Instructions and Guidelines

## Objectives

When thinking about the questions to ask, please pay attention to how the next step will sample the
video frames for your questions. In practice, we will use two ways:

1. Local: Sample N video frames for each relevant segment, e.g., 32 frames. In this way, the
vision-language models can use your question to check the details of each segment.

2. Global: Sample 1 video frame for each segment, sequentially. In this way, the vision-language
models can use your question to check the flow of the plots or conduct reasoning over a longer period
of time.

Therefore, you should propose two questions:

1. A local question: what kind of detailed information or evidence should the vision-language models
find in each segment?

2. A global question: what kind of reasoning should the vision-language models conduct on a longer
time span?

## Output Formats

Please strictly follow the output formats below to propose your questions, so that the downstream parts
can easily extract the information:

[1. Reasoning]l: ... (Your reasoning process. Please be precise, concise, and clear. Explicitly
thinking about what kind of information is missing or important for the question.)

[2. Local Question]: ... (Your question for the local analysis.)

[3. Global Question]: ... (Your question for the global analysis.)

## Principles and Tips

1. Think carefully about how a short video segment could contribute to long video understanding by
paying attention to the question and video segment contents. Some examples are:

- For question on visual details, you should check if the video segment **contains the scene that the
user wants*x*.

- For question on information over a period of time, such as the order or the number of actioms, you
should reason **whether this segment can contribute part of the analysis*x.

- For question on the reason or implication of the story/actions in the video, you should check if the
video segment **contains the key information** that can help you understand the story/actions.

2. Keep your question concise, clear, and within a few sentences. Do not enumerate or explicitly
depending on any time information.

3. Remember to use the options from the original questions, expressed with (A), (B), (C), (D), to
think about the best way to distinguish the correct one. It is also important to include the original
options as the context for the vision-language models.

4. Use your knowledge of prompting large language models or vision-language models to improve your
question.

5. Your output questions should only contain a question and options. Do not include any analyses,
speculations, or reasoning into the question. For example, the question should directly start as
"Describe ... (A) ..., B) ..., (C) ..., MO ..., (E) ...", "What is ... (4) ..., (B) ..., (©) ...,
(D) ..., (B) ..." or similar formats.

# 3. Your Job Starts

Table J: “Customized Queries for Perception” prompts at the Goal-aware Analysis stage (Sec. D.3).
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# 1. Motivation

You are at the last step of long video understanding. You will have the user’s question and a series
of your analysis to finally answer the user’s question.

Before conducting actual analysis, it is important to understand the steps of the previoous analysis
that will be presented to you:

1. Video-level User Intention Analysis: You first analyze which parts of the video and what kind of
characters are relevant to the user’s question. You also think about how each video segment could
contribute to the long video understanding.

2. Goal Proposal: To call vision-language models to analyze the video segments, you have proposed
two questions for the VLMs to use. The first question is called "local question", used for detailed
analysis for each segment, and the second question is called "global question", used for joint analysis
and reasoning across multiple segments.

3. Goal-aware Analysis: You will receive the results of the vision-language models’ perception for
each video segment using the local question and across multiple segments using the global question.
By understanding the previous steps, you will have a good understanding of the meaning of the
information provided to you, especially which parts are reliable and informative for answering the
user’s question.

# 2. Instructions and Guidelines

1. Think carefully about how a short video segment could contribute to long video understanding by
paying attention to the question and video segment contents. Some examples are:

- For question on visual details, you should check if the video segment **contains the scene that the
user wantskx.

- For question on information over a period of time, such as the order or the number of actions, you
should reason **whether this segment can contribute part of the analysis*x.

- For question on the reason or implication of the story/actions in the video, you should check if the
video segment **contains the key information** that can help you understand the story/actions.

2. Carefully consider whether the analysis at local segments or across multiple segments is more
important for answering the user’s question.

3. With the information provided to you, imagine youself as a human watching the video. Figuring out
the flow of the plots is critical.

4. It is possible that some information is vague or contradicting each other. You should utilize
advanced reasoning skills to resolve the contradictions. Some very useful principles are:

- If the user has mentioned a specific criteria, try to use it **precisely** and **rigorously** in your
analysis.

- Try to utilize the confidence levels provided in the answers.

- Always thinking about your strategy: how the analysis at local segments or across multiple

segments could contribute to the long video understanding. For example, do you combine the pieces

of information together, summing some numbers, or picking the best segment to answer the question?

- Humans have a limited memory. Always prioritize the most salient information.

5. Pay attention to the time information. They might provide additional correspondence information
across different segments and analyses.

# 3. Output Format

Please provide your answer in the following format:

[1. Reasoning]: ... (Your advanced reasoning based on the information above.)

[2. Answer]: A capital letter from A to E (If you cannot find a correct answer, please make a guess
from A to E based on the information you have. To ensure correct post-processing, please strictly use
this format. Do not add any characters or spaces.)

# 4. Your Job Starts

Table K: “Answer Generation” prompts at the Goal-aware Analysis stage (Sec. D.3).

Breadth Benchmarks. As mentioned in Sec. 4.1, we utilize several long video benchmarks in
addition to LVBench [39] to provide comprehensive evaluation. However, we evaluate on their
subsets due to limited computation resources. (1) LongVideoBench [47]. We evaluate the official
long video validation subset of LongVideoBench, containing videos with a duration of (900, 3600)
seconds. There are 188 videos and 564 questions in total. In the comparison, the accuracies of
the VLMs come from Table 5 of the LongVideoBench paper. (2) EgoSchema [31]. We evaluate
on the validation set of EgoSchema, which contains 500 videos and questions. The performance
mainly comes from Table 2 of VCA [53]. (3) Video-MME [9]. Our evaluation follows the long video
subset of Video-MME, under the setting of not using subtitles. This set contains 300 videos and 900
questions in total. The performance of models comes from the * as of March 1st 2025.

*https://video-mme.github.io/home_page.html#leaderboard
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You are a helpful assistant with the ability of watching videos and answering the questions raised

by human users. You will process a few continuous screenshots of the video, and answer the questions
raised by human users. If you encounter any issues that you cannot answer the question, please pick
the most possible answer from the options.

When you answer, please follow the format of: [1. Reasoning]l: ... (Why you choose this answer) [2.
Answer]: ... (The answer you choose, from A, B, C, D)

Important: If you cannot answer the question, please pick the most possible answer from A, B, C, D, E.
Do not leave it blank or select other options.

Table L: The prompts used for evaluating Gemini-2.0-Flash (Sec. D.5.1).

D.5 Analytical Experiment Details
D.5.1 Baseline Evaluation

As mentioned in Sec. 3.2, we evaluate Gemini-2.0-Flash on the long video benchmarks. For the
30min to hour ones, including LVBench, LongVideoBench, and Video-MME, we follow the standard
setting of uniformly sampling 256 frames from each video. For EgoSchema, whose videos are 3min,
we uniformly sample 128 frames for evaluation. With LVBench frequently asking about events
of specific timestamps, we further provide each frame’s seconds as interleaved images and texts.
Since LongVideoBench’s questions are commonly related to the subtitles, we provide the subtitles of
sampled frames as the contexts to the VLM. The prompts used for evaluation are in Table L.

D.5.2 Ablation Study on Finding Relevant Segments

This section describes more details about the analytical experiments conducted in Sec. 4.4, where we
compare the question intention analysis of MR. Video with a multi-modal retriever, MM-Embed [25].

Types of Questions. Since LVBench’s annotations for “summarization” and “reasoning” questions
might specify long ranges, our evaluation mainly focuses on the question types with precise intervals:
key information retrieval, event understanding, entity recognition, and temporal grounding. On our
subset for analysis, this results in 64 questions.

MM-Embed’s Retrieval. Following the practice of VideoAgent [42], every video frame is encoded
by concatenating its image content with a timestamp since some questions are related to specific
seconds. In addition, every question is encoded along with its multiple choices, as some questions do
not contain specific contexts. Since MR. Video might propose multiple candidate scenes, we let the
retriever select the same number of top-k candidates for a fair comparison. Finally, every question
searches its relevant frames via the maximum inner product between the question and video frame
embeddings.

E Broader Societal Impact

As a general principle for long video understanding and its corresponding agentic framework, our
MR. Video does not introduce societal bias in this process. However, the MR. Video framework
utilizes the VLMs and LLMs, represented by Gemini-2.0-Flash and GPT4o, so the results might
indicate the societal biases of these models.
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