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ABSTRACT

In this paper, we study the effect of mini-batch selection on contrastive loss and
propose new mini-batch selection methods to improve efficiency. Theoretically,
we show that both the full-batch and mini-batch settings share the same solution,
the simplex Equiangular Tight Frame (ETF), if all

(
N
B

)
mini-batches are seen dur-

ing training. However, when not all possible batches are seen, mini-batch training
can lead to suboptimal solutions. To address this issue, we propose efficient mini-
batch selection methods that compare favorably with existing methods. Our exper-
imental results demonstrate the effectiveness of our proposed methods in finding a
near-optimal solution with a reduced number of gradient steps and outperforming
existing mini-batch selection methods.

1 INTRODUCTION

Contrastive learning has recently gained significant attention as a pre-training method for self-
supervised learning, due to its ability to leverage the vast amount of freely available unlabeled
data (Jaiswal et al., 2020). Contrastive loss is designed to ensure that embeddings of two sam-
ples are similar if they are considered a “positive” pair, in cases such as coming from the same
class (Khosla et al., 2020), being an augmented version of one another (Chen et al., 2020), or being
two different modalities of the same data (Radford et al., 2021). Conversely, if two samples form a
“negative” pair, the contrastive loss encourages their embeddings to be dissimilar.

In practice, it is not feasible to consider all possible positive and negative pairs when implementing
a contrastive learning algorithm due to the quadratic memory requirement (O(N2)) when working
with N samples. To mitigate this issue, practitioners typically choose a set of mini-batches of size
B = O(1), and consider only pairs within each mini-batch. This approach results in an overall
memory requirement of O(|S|B2) = O(|S|) where |S| is the number of mini-batches. While this
mini-batch technique has been observed to be effective in practice, there remains a lack of theoretical
understanding as to whether this approach is optimal or if alternative methods may be more effective.

The primary research question that this paper aims to address is: What is the most effective and
principled approach to optimizing the contrastive loss when utilizing mini-batches? We restrict our
attention to a particular contrastive learning setting, where positive pairs consist of two different
views of the same data. While this setting was chosen due to its analytical tractability, it precisely
captures the multi-modal contrastive learning setup (CLIP (Radford et al., 2021)) and closely ap-
proximates the uni-modal case too (SimCLR (Chen et al., 2020)).

The primary contributions of this paper are twofold. First, we show that mini-batch and full-batch
training are equivalent under some mild conditions. Specifically, we show that they are equivalent if
and only if all

(
N
B

)
mini-batches are selected.

From a computational complexity perspective, the identified equivalence condition may be
seen as somewhat prohibitive, as it implies that all

(
N
B

)
= O(NB) mini-batches must

be considered. Our second contribution is to develop mini-batch selection algorithms that
choose O(N) mini-batches in an adaptive fashion while training. The key idea is very
simple borrowed ideas from recent literature in optimization theory (Kawaguchi & Lu,
2020), our proposed methods find mini-batches that contain the most informative pairs us-
ing simple greedy algorithms. We demonstrate via extensive experiments that our pro-
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posed greedy algorithms achieve superior performance compared to current mini-batch selec-
tion algorithms, and are able to find solutions that are very close to the full-batch solutions.
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Figure 1: Conceptual illustration on the effect of
batch selection on contrastive learning. Consider
optimizing N = 4 pairs of embedding vectors
which are shown as colored squares and circles,
respectively. The black rounded box represents
a mini-batch. We compare three batch-selection
methods: (i) full-batch, i.e., B = N = 4, (ii)
all
(
N
B

)
= 6 combinations, and (iii) some mini-

batches. Here, S is the set of mini-batches. Our
findings are: (i) when B = N , the solution forms
the simplex ETF, and (ii) when B < N , minimiz-
ing all combinations of mini-batches results in the
simplex ETF, while observing only a few mini-
batches may give us a different solution.

Summary of Main Theoretical Results.
The original definition of ETF (Sustik et al.,
2007) is for N vectors in a d-dimensional space
where d ≤ N − 1. (See Def. 2 in Appendix B.)
Papyan et al. (2020) consider the case when
d ≥ N − 1 to characterize the phenomenon of
neural collapse. In our work, we will use this
definition of simplex ETFs which is stated be-
low.
Definition 1 (Simplex Equiangular Tight
Frame). A set of N vectors {ui}Ni=1 in the d-
dimensional space forms a simplex Equiangu-
lar Tight Frame (ETF) if ∥ui∥ = 1 for every
i ∈ [N ] and u⊺

i uj = −1/(N − 1) for all i ̸= j.
Main findings. For d ≥ N−1, we prove that:
(i) In the full-batch setting (B = N ), the opti-
mal solution of contrastive learning (formally
defined in Sec. 2) is the simplex ETF, (ii) In
the mini-batch setting (B < N ), as long as we
see all

(
N
B

)
mini-batches, the optimal solution

is the same as the full-batch solution and (iii)
In the mini-batch setting (B < N ), if we see
fewer than

(
N
B

)
mini-batches, there exist cases

where the simplex ETF is no longer the optimal
solution. Fig. 1 shows the illustration of these
findings for a toy example.

2 PROBLEM SETTING

We consider the general contrastive learning setting, where the goal is to find 2N embedding vectors
given N positive pairs. Given {(xi,yi)}Ni=1, the goal is to find {(ui,vi)}Ni=1 in Rd. Note that this
formulation captures both the multi-modal and the uni-modal setting as follows. For the former,
one can view (xi,yi) as two different modalities of the same data while for the latter, yi is one
instantiation of a randomly augmented version of xi. We denote U = {ui}Ni=1 and V = {vi}Ni=1.
Now, consider the problem of optimizing the embedding vectors for N pairs, which is given by

min
U,V

Lcon(U ,V) s.t ∥ui∥ = 1, ∥vi∥ = 1 ∀i ∈ [N ], (1)

where ∥·∥ denotes the ℓ2 norm and the contrastive loss we consider is defined as

Lcon(U ,V) := 1

N

N∑
i=1

− log

(
eu

⊺
i vi∑N

j=1 e
u⊺

i vj

)
+

1

N

N∑
i=1

− log

(
ev

⊺
i ui∑N

j=1 e
v⊺
i uj

)
.

Next, we consider the case of mini-batch contrastive loss which is typically considered in practice.
There exist

(
N
B

)
different mini-batches, each having B samples. For k ∈ [

(
N
B

)
], let Bk be the k-th

mini-batch so that UBk
:= {ui}i∈Bk

and VBk
:= {vi}i∈Bk

. S ⊆
[(

N
B

)]
denotes any subset of these

mini-batches. Then the problem can be formulated as:

min
U,V

1

|S|
∑
i∈S
Lcon(UBi ,VBi) s.t ∥ui∥ = 1, ∥vi∥ = 1 ∀i ∈ [N ], (2)

where the contrastive loss for k-th mini-batch is

Lcon(UBk
,VBk

) =
1

B

∑
i∈Bk

− log

(
eu

⊺
i vi∑Bk

j=1 e
u⊺

i vj

)
+

1

B

∑
i∈Bk

− log

(
ev

⊺
i ui∑Bk

j=1 e
v⊺
i uj

)
.
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3 THEORETICAL RESULTS

First, we show that the optimal solution for the problem in Eq. (1) is the simplex ETF (which follows
almost directly from Lu & Steinerberger (2020))
Lemma 1 (Optimization with full-batch). The optimal solution of the contrastive problem in Eq. (1)
for full-batch satisfies ui = vi for all i ∈ [N ], and {u}Ni=1 form a simplex ETF if d ≥ N − 1.

Next, our main result explains why minimizing the batch-wise contrastive loss is meaningful. We
show that the optimal solutions of the full-batch (Eq. (1)) and mini-batch (Eq. (2)) contrastive loss
minimization problems are identical.
Theorem 1 (Optimization with all possible

(
N
B

)
mini-batches). Suppose d ≥ N−1 and B ≥ 2. The

optimal solution of the mini-batch contrastive problem in Eq. (2) for S =
[(

N
B

)]
satisfies ui = vi for

all i ∈ [N ], and {ui}Ni=1 form a simplex ETF. Therefore, the minimizer of this mini-batch problem
is the same as that of the full-batch problem in Eq. (1).

Now, we consider the cases when the solutions of mini-batch loss minimization and full-batch loss
minimization differ. First, we show that when B = 2, minimizing the mini-batch loss over any strict
subset of

(
N
B

)
batches, is not equivalent to minimizing the full-batch loss in Eq. (1).

Theorem 2 (Optimization with fewer than
(
N
B

)
mini-batches). For B = 2, the minimizer of Eq. (2)

for S ⊊
[(

N
2

)]
is not the minimizer of the full-batch loss in Eq. (1).

We consider the general case of B ≥ 2 under some mild assumptions on S in Appendix B where
we also present the detailed proofs and auxiliary results.

4 DETAILS OF BATCH SELECTION ALGORITHMS

Since Thm. 1 shows that the solution of minimizing Eq. (2) with S = [
(
N
B

)
] is the same as that of

minimizing Eq. (1), we can restrict our attention to the loss function over
(
N
B

)
mini-batches. We

now have the Stochastic Gradient Descent (SGD) setting of minimizing
∑

i∈S fi(x) where each
fi is given by Lcon. Sampling the mini-batches uniformly at random, would require at least

(
N
B

)
iterations to even ensure that we see each function. Since this is intractable, we must consider
alternate batch selection algorithms. We classify these algorithms on the basis of two factors: (a)
Partition versus Non-partition based on whether the mini-batches can have overlapping data points,
(b) Adaptive versus non-adaptive based on whether the mini-batches are selected adaptively or just
uniformly at random. Note that even in partition-based approaches, overlap does eventually occur
across iterations. However, the same data point is not sampled again until all other points have been
seen. Intuitively, this should make it more efficient which is reflected in their superior performance
in our experiments. Now, we list the different kinds of batch selection algorithms.

NON-ADAPTIVE, NON-PARTITION-BASED. Uniform-random batch selection is a representative
example of non-adaptive non-partition-based algorithms, in which a mini-batch is uniformly sam-
pled from

(
N
B

)
mini-batches independently for each iteration. In this paper, we do not consider this

algorithm as a baseline due to the requirement of at least
(
N
B

)
iterations to see all mini-batches.

NON-ADAPTIVE, PARTITION-BASED. We consider two baselines as non-adaptive partition-
based algorithms, which we denote as FIXED-BATCH and SHUFFLED-BATCH. For FIXED-BATCH,
the entire dataset of N samples is randomly permuted once and then assigned to N/B mini-batches
in order. These batches remain unchanged throughout training. This is meant to replicate a sce-
nario where data is split in a distributed environment where shuffling data across nodes is expensive.
Clearly, only a specific set of N/B mini-batches is seen during training and as per Prop. 3, this is
expected to lead to spurious solutions, atleast in when we directly optimize the embeddings. How-
ever, it is not clear whether this holds in the shared encoder setting. We note from the experiments
in Sec. E.3 that this is indeed the case as seen by the consistently inferior performance of FIXED-
BATCH. We also replicate this in simulations using a single-layer NN as a shared encoder (see
Appendix E.2 for more details). The SHUFFLED-BATCH approach is designed to overcome this is-
sue by ensuring that more of the

(
N
B

)
mini-batches are seen as training proceeds. To this end, the
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data is randomly permuted at the beginning of every epoch with a new random seed before splitting
it into mini-batches. Note that this is typically the batch selection method used in practice.

ADAPTIVE, NON-PARTITION-BASED. We consider ordered SGD (OSGD) proposed by
Kawaguchi & Lu (2020) as a baseline for an adaptive non-partition-based algorithm. The baseline
chooses top-1 mini-batch that maximizes the mini-batch loss per iteration.

ADAPTIVE, PARTITION-BASED. Here, we propose two partition-based, adaptive batch selec-
tion algorithms named BATCH CHOOSES SAMPLE (BcS) and SAMPLE CHOOSES BATCH (ScB).
The proposed methods approximately find mini-batches that contain the most informative pairs
using simple greedy algorithms. Inspired by ideas from recent literature in optimization the-
ory (Kawaguchi & Lu, 2020; Lu et al., 2021; Loshchilov & Hutter, 2015), our proposed algorithms
construct batches that have maximize the contrastive loss within each batch. One could view this as
an extension of OSGD with the additional partition-based constraint which ensures that the same
data point is not sampled again until all other points have been seen. We give an intuitive explanation
of the algorithms here while leaving the pseudocode to Appendix 4.

BcS. BcS fills up N/B bins (which finally become our mini-batches) in the following manner.
At each round r = 1, · · · , B, we go over each bin j = 1, · · · , N/B and choose the sample index i⋆

that maximizes the contrastive loss Lcon(UBj∪{i},VBj∪{i}) measured over bin j when i-th sample
is included in the bin. In the first round (i.e., r = 1), since the bins are empty, we choose sample i
from I uniformly at random. After running the algorithm for r rounds, we end up with N/B bins,
having B samples each. The set of sample indices stored in the j-th bin (mini-batch) is denoted by
Bj for j = 1, · · · , N/B. The pseudocode is provided in Algorithm 1. Note that the name of this
algorithm comes from the fact that each mini-batch j chooses the optimal sample index i⋆. Since
every remaining sample from I needs to be checked before being added to a new mini-batch, the
time complexity of BcS is O(N2B).

ScB. ScB constructs B mini-batches (each with N/B samples) as below. For each round r ∈ [N ],
we randomly choose a sample i and assign it to the mini-batch Bj⋆ that maximizes the contrastive
loss Lcon(UBj∪{i},VBj∪{i}). Note that for the first N/B samples, we uniform-randomly choose the
mini-batch index from J (the index set of empty mini-batches). The pseudo-code is provided in
Algorithm 2. Note that the name of this algorithm comes from the fact that each sample i chooses
the optimal mini-batch j⋆. Since the sample entering a new mini-batch is chosen at random each
time, the time complexity of ScB is O(N2) which makes it B times faster than BcS.

RAND variants In addition to BcS and ScB, we also consider a variant of our methods where we
control the difficulty of each mini-batch by mixing in a fixed fraction of random samples. To this
end, we first populate every mini-batch with r% randomly sampled data points and then fill up the
rest using the specified algorithm. Note that when r = 100%, this reduces to conventional random
sampling. We apply this to both BcS and ScB which we hereby refer to as BcS + Rand and ScB
+ Rand respectively.

5 EXPERIMENTS

Datasets. We conduct experiments on synthetic data as well as two benchmark datasets: MS-
COCO (Lin et al., 2014) and CC3M (Sharma et al., 2018). We present our experiments on synthetic
data in the main paper and leave the remaining results to Appendix E.

Baselines. We compare the results from seven batching schemes: (i) Full-batch; (ii)
(
N
B

)
mini-

batches; (iii) FIXED-BATCH; (iv) SHUFFLED-BATCH; (v) OSGD; (vi)BcS and (vii) ScB. Detailed
explanations can be found in Appendix 4.

Simulation on Synthetic Data. We consider the simpler setting of simulations where we generate
embeddings by sampling N vectors from a d-dimensional Gaussian distribution and then normalize
them so that ∥ui∥ = ∥vi∥ = 1 ∀i. Let U = {ui}Ni=1 and V = {vi}Ni=1. We then consider two
regimes: (i) d = 2N , which satisfies the assumption d ≥ N − 1 in our theoretical results, and
(ii) d = N/2, which is more likely to occur in practice. For all experiments, we directly optimize
embedding vectors (U ,V) using SGD with the learning rate η = 0.5 with a projection step at every
iteration to ensure that the embeddings remain unit norm. We set B = 2 for mini-batch schemes.
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Figure 2: Heatmap of pairwise inner products for N = 8, d = 16 (Top row) and N = 8, d = 4
(Bottom row), when we optimize the N, d-dimensional embedding vectors using contrastive loss.
The solution of minimizing all

(
N
B

)
batches (b) is the same as that of full-batch minimization (a).

Furthermore, the proposed algorithm (f) achieves the same solution in much fewer iterations.

Fig. 2 shows the heatmap plot of N×N gram matrix containing all the pairwise inner products u⊺
i vj

of the embeddings, for N = 8, d = 16 (first row) and N = 8, d = 4 (second row). Broadly, we
consider two settings: (a) full-batch contrastive learning, (b)-(f) mini-batch contrastive learning with
different batch selection methods. As shown in Lemma 1, this results in the simplex ETF solution
where u⊺

i vi is maximized for all i, and u⊺
i vj is minimized for i ̸= j. For different batch selection

methods we observe the following (especially in d = 2N setting): (a) When we use full-batch i.e.,
B = N , the trained embedding vectors converge to the simplex ETF solution with u⊺

i ui = 1 for
all i and u⊺

i uj = −1/(N − 1) for all i ̸= j; (b) When we use all
(
N
B

)
mini-batches for training,

the trained embedding vectors still reach the simplex ETF solution at the cost of extensive number
of gradient steps; (c) Consider the case of having N/B non-overlapping mini-batches, when trained
with this fixed mini-batch configuration, some pairs of trained embedding vectors have non-negative
inner products, which is undesirable since it leads to higher loss; (d) When we follow the mini-batch
configuration of (c) except that we shuffle the data at every epoch, the solution gets closer to simplex
ETF; (e) When we select top-1 mini-batch that maximizes the mini-batch loss per iteration, the
solution goes closer to (a); (f) Training with our method (in Algorithm 2) gives us the simplex ETF
solution, with small memory/computation costs compared to (a) and (b). Note that this observation
coincides with our theoretical results (Lem 1, Thm. 1, 2) and shows the superiority of our batch
selection methods. When d = N/2, it shows a similar trend even though d < N − 1. As seen
in the second row of Fig. 2, the solution of minimizing all

(
N
B

)
batches (b) is the same as that of

full-batch minimization (a). Furthermore, ScB (f) achieves the same solution in fewer iterations.
See Appendix E.1 for more detailed experiments. Note that this still does not answer the question
of generalization. Do the solutions identified by our batch-selection methods generalize to unseen
data? To verify this, we also run experiments on “real” data (see Appendix E.3).

6 CONCLUSION

In this paper, we analyze contrastive learning under different batch selection methods and design
effective and principled algorithms to optimize contrastive loss using mini-batches. We first provide
theoretical analysis that characterizes the optimal solution of contrastive learning based on the batch
selection method. We show that mini-batch optimization is equivalent to full-batch optimization
if and only if all

(
N
B

)
mini-batches are selected. However, since this approach is intractable, we

propose computationally-efficient batch selection methods which construct mini-batches based on
simple greedy algorithms. Our experimental results on both synthetic and real datasets show that
our batch selection methods outperform conventional methods. We note that our assumption that
N ≤ d + 1 is restrictive and leave extending our theoretical results to the N > d + 1 regime as an
interesting open problem.
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A ADDITIONAL DEFINITIONS

Definition 2 (Sustik et al. (2007)). A set of N vectors {ui}Ni=1 in the Rd form an equiangular tight
frame (ETF) if (i) they are all unit norm: ∥ui∥ = 1 for every i ∈ [N ], (ii) they are equiangular:
|u⊺

i vi| = α for some α ≥ 0 and (iii) they form a tight frame: UU⊺ = (N/d)Id where U is d×N
matrix whose columns are u1,u2, . . . ,uN , and Id is the d× d identity matrix.

B MAIN THEORETICAL RESULTS

Recall that the contrastive loss is defined as:

Lcon(U ,V) := 1

N

N∑
i=1

− log

(
eu

⊺
i vi∑N

j=1 e
u⊺

i vj

)
+

1

N

N∑
i=1

− log

(
ev

⊺
i ui∑N

j=1 e
v⊺
i uj

)
.

We denote the first term as one-sided contrastive loss

L(U ,V) = 1

N

N∑
i=1

− log

(
eu

⊺
i vi∑N

j=1 e
u⊺

i vj

)
. (3)

which is the standard InfoNCE loss where the positive example of an anchor ui is the corresponding
embedding vector from the other view vi.

Then, the contrastive loss is given by the sum of the two one-sided contrastive losses:

Lcon(U ,V) = L(U ,V) + L(V,U). (4)

Since Lcon is symmetric in its arguments, results pertaining to the optimum of L(U ,V) readily
extend to Lcon. This is a property that we will use to simplify our proofs below.

Lemma 1 (Optimization with full-batch). The optimal solution of the contrastive problem in Eq. (1)
for full-batch satisfies ui = vi for all i ∈ [N ], and {u}Ni=1 form a simplex ETF if d ≥ N − 1.

Proof. First, consider the simpler problem of minimizing the one-sided contrastive loss from Eq (3)
which reduces the problem to exactly the same setting as Lu & Steinerberger (2020):

L(U ,V) = 1

N

N∑
i=1

− log

(
eu

⊺
i vi∑N

j=1 e
u⊺

i vj

)

=
1

N

N∑
i=1

log

1 +

N∑
j=1,j ̸=i

e(vj−vi)
⊺ui

 .

Note that, we have for any fixed 1 ≤ i ≤ N

N∑
j=1,j ̸=i

e(vj−vi)
⊺ui = e−(v⊺

i ui)
N∑

j=1,j ̸=i

ev
⊺
j ui

= (N − 1)e−(v⊺
i ui)

(
1

N − 1

) N∑
j=1,j ̸=i

ev
⊺
j ui

(a)

≥ (N − 1)e−(v⊺
i ui) exp

 1

N − 1

N∑
j=1,j ̸=i

v⊺
j ui

 (5)

(b)
= (N − 1)e−(v⊺

i ui) exp

(
v⊺ui − v⊺

i ui

N − 1

)
= (N − 1) exp

(
v⊺ui −N(v⊺

i ui)

N − 1

)

7
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where (a) follows by applying Jensen’s inequality for et and (b) follows from v :=
∑N

i=1 vi. Since
log(·) is monotonic, we have that x > y ⇒ log(x) > log(y) and therefore,

L(U ,V) ≥
N∑
i=1

log

[
1 + (N − 1) exp

(
v⊺ui

N − 1
− N(v⊺

i ui)

N − 1

)]
(c)

≥ N log

[
1 + (N − 1) exp

(
1

N

N∑
i=1

(
v⊺ui

N − 1
− N(v⊺

i ui)

N − 1

))]
(6)

(d)
= N log

[
1 + (N − 1) exp

(
1

N

(
v⊺u

N − 1
− N

N − 1

N∑
i=1

(v⊺
i ui)

))]
where (c) follows by applying Jensen’s inequality to the convex function ϕ(t) = log(1 + aebt) for
a, b > 0, and (d) follow from u :=

∑N
i=1 ui.

Note that for equalities to hold in Eq. (5) and (6), we need constants ci, c such that

v⊺
j ui = ci ∀j ̸= i, (7)

v⊺ui

N − 1
− N(v⊺

i ui)

N − 1
= c ∀i ∈ [N ]. (8)

Since log(·) and exp(·) are both monotonic, minimizing the lower bound in Eq. (5) is equivalent to

min
v⊺u

N − 1
− N

N − 1

N∑
i=1

v⊺
i ui

⇔ max N

N∑
i=1

v⊺
i ui −

〈
N∑
i=1

vi,

N∑
i=1

ui

〉
. (9)

All that remains is to show that the solution that maximizes Eq 9 also satisfies the conditions in
Eq. (7) and (8). To see this, first note that the maximization problem can be written as

max v⊺
stack((NIN − 1N1⊺

N )⊗ Id)ustack

where vstack = (v1,v2, . . . ,vn) is a vector in RNd formed by stacking the vectors vi together. ustack
is similarly defined. Define [n] := {1, · · · , n} for a positive integer n > 0. IN denotes the N ×N
identity matrix, 1N denotes the all-one vector in Rn, and⊗ denotes the Kronecker product. It is easy
to see that ∥ustack∥ = ∥vstack∥ =

√
N since each ∥ui∥ = ∥vi∥ = 1. Since the eigenvalues of A⊗B

are the product of the eigenvalues of A and B, in order to analyze the spectrum of the middle term
in the above maximization problem, it suffices to just consider the eigenvalues of (NIN − 1N1⊺

N ).
As shown by the elegant analysis in Lu & Steinerberger (2020), (NIN − 1N1⊺

N )p = Np for any
p ∈ RN such that

∑N
i=1 pi = 0 and (NIN − 1N1⊺

N )q = 0 for any q ∈ RN such that q = k1N

for some k ∈ R. Therefore it follows that its eigenvalues are N with multiplicity (N − 1) and 0.
Since its largest eigenvalue is N and since ∥ustack∥ = ∥vstack∥ =

√
N , applying cauchy schwarz

inequality, we have that

max v⊺
stack(NIN − 1N1⊺

N )⊗ Id)u⊺
stack

= ∥vstack∥ · ∥(NIn − 1n1
⊺
n)⊗ Id)∥ · ∥ustack∥

=
√
N(N)

√
N

= N2.

Moreover, we see that setting ui = vi and setting {ui}Ni=1 to be the simplex ETF attains the
maximum above while also satisfying the conditions in Eq. (7) and (8) with ci = −1/(N − 1)
and c = −N/(N − 1). Therefore, the inequalities in Eq. (5) and (6) are actually equalities for
ui = vi when they are chosen to be the simplex ETF in Rd which is attainable since d ≥ N − 1.
Therefore, we have shown that if U∗ = {u∗

i }i = 1N is the simplex ETF and u∗
i = v∗

i ∀i ∈ [N ],
then U∗,V∗ = argminU,V L(U ,V) over the unit sphere in Rn. All that remains is to show that this
is also the minimizer for Lcon.

8
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First note that U∗,V∗ is also the minimizer for L(V,U) through symmetry. One can repeat the proof
exactly by simply exchanging ui and vi to see that this is indeed true. Now recalling Eq. (4), we
have

minLcon = min (L(U ,V) + L(U ,V))
≥ min (L(U ,V)) + min (L(U ,V)) (10)
= L(U∗,V∗) + L(V∗,U∗).

However, since the minimizer of both terms in Eq. (10) is the same, the inequality becomes an equal-
ity giving us minLcon = 2L(U∗,V∗). Therefore, we have shown that (U∗,V∗) is the minimizer of
Lcon completing the proof.

Remark 1. In the proof of the lemma, we only show that the simplex ETF attains the minimum of
problem in Eq. (1), but not that it is the only minimizer. The proof of Lu & Steinerberger (2020) can
be extended to show that this is indeed true as well. We omit it here for ease of exposition.

Proposition 1. For any B ≥ 2, there exist Ũ , Ṽ such that

1(
N
B

) (NB)∑
i=1

L(ŨBi , ṼBi) ̸= L(Ũ , Ṽ). (11)

Moreover, for fixed B, there exists no constant C such that

1(
N
B

) (NB)∑
i=1

L(UBi
,VBi

) = C · L(U ,V) ∀ U ,V. (12)

Proof. Consider Ũ , Ṽ defined such that ũi = ṽi = ei ∀i ∈ [N ]. First note that ũ⊺
i ṽi = 1 ∀i ∈ [N ]

and ũ⊺
i ṽj = 0 ∀i ̸= j. Then,

L(Ũ , Ṽ) = 1

N

N∑
i=1

− log

(
e1

e1 +
∑N−1

j=1 e0

)
= log(e+N − 1)− 1, (13)

1(
N
B

) (NB)∑
i=1

L(ŨBi , ṼBi) =
1(
N
B

) (NB)∑
i=1

1

B

∑
j∈Bi

− log

(
e1

e1 +
∑B−1

k=1 e0

)
= log(e+B − 1)− 1. (14)

We now consider the second part of the statement. For contradiction, assume that there exists some
C ∈ R such that Eq. (12) holds. Let Û , V̂ be defined such that ûi = v̂i = e1 ∀i ∈ [N ]. Note that
û⊺
i v̂j = 1 ∀i, j ∈ [N ]. Then,

L(Û , V̂) = 1

N

N∑
i=1

− log

(
e1

e1 +
∑N−1

j=1 e1

)
= log(N), (15)

1(
N
B

) (NB)∑
i=1

L(ÛBi
, V̂Bi

) =
1(
N
B

) (NB)∑
i=1

1

B

∑
j∈Bi

− log

(
e1

e1 +
∑B−1

k=1 e1

)
= log(B). (16)

From Eq. (13) and 14, we have that C = log(e+B−1)−1
log(e+N−1)−1 . Whereas from Eq. (15) and (16), we have

that C = log(B)
log(N) which is a contradiction. Therefore, there exists no C ∈ R such that Eq. (12) holds.

This completes the proof.

9
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3 2 1 0 1 2 3
 = arctan(u1, 2/u1, 1)  [radian]

1.5

1.6

1.7

1.8

1.9

lo
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Figure 3: A comparison of mini-batch loss (LHS of Eq. (11)) and full-batch loss (RHS of Eq. (11)).

We illustrate the above proposition by visualizing the two loss functions in Fig. 3 when N =
10, B = 2, d = 2. Since these are still 40-dimensional functions, we visualize it along a sin-
gle embedding vector u1 by freezing all other embeddings at the optimal solution and varying
u1 = [u1,1, u1,2] as [cos(θ), sin(θ)] for θ ∈ [−π, π]. One can confirm that two losses are not
identical (even up to scaling), which corroborates the result of Prop. 1.

Theorem 1 (Optimization with all possible
(
N
B

)
mini-batches). Suppose d ≥ N−1 and B ≥ 2. The

optimal solution of the mini-batch contrastive problem in Eq. (2) for S =
[(

N
B

)]
satisfies ui = vi for

all i ∈ [N ], and {ui}Ni=1 form a simplex ETF. Therefore, the minimizer of this mini-batch problem
is the same as that of the full-batch problem in Eq. (1).

Proof. For simplicity, first consider just one of the two terms in the two-sided loss. Therefore, the
optimization problem becomes

min
U,V

1(
N
B

) (NB)∑
i=1

{L(UBi ,VBi)}

s.t. ∥ui∥ = 1, ∥vi∥ = 1 ∀i ∈ [N ].

Similar to the proof of Lem. 1, we have that

(NB)∑
i=1

L(UBi
,VBi

) =

(NB)∑
i=1

∑
j∈Bi

log

1 +
∑
k∈Bi
k ̸=j

euj
⊺(vk−vj)


(a)

≥
(NB)∑
i=1

∑
j∈Bi

log

(
1 + (B − 1) exp

(∑
k∈Bi,k ̸=j u

⊺
j (vk − vj)

B − 1

))

=

(NB)∑
i=1

∑
j∈Bi

log

(
1 + (B − 1) exp

(∑
k∈Bi

(
u⊺
j vk −Bu⊺

j vj

)
B − 1

))

(b)

≥
(
N

B

)
·B log

1 + (B − 1) exp

∑(NB)
i=1

∑
j∈Bi

∑
k∈Bi

u⊺
j vk −

∑(NB)
i=1

∑
j∈Bi

Bu⊺
j vj(

N
B

)
·B · (B − 1)


where (a) and (b) follows by applying Jensen’s inequality to et and log(1 + aebt) for a, b > 0,
respectively. Note that for equalities to hold in Jensen’s inequalities, we need constants cj , c such
that

u⊺
j vk = cj ∀k ̸= j, (17)

u⊺vi

N − 1
− N(u⊺

i vi)

N − 1
= c ∀i ∈ [N ]. (18)

10
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Now, we carefully consider the two terms in the numerator:

A1 :=

(NB)∑
i=1

∑
j∈Bi

∑
k∈Bi

u⊺
j vk,

A2 :=

(NB)∑
i=1

∑
j∈Bi

Bu⊺
j vj .

To simplify A1, first note that for any fixed l,m ∈ [N ] such that l ̸= m, there are
(
N−2
B−2

)
batches

that contain l and m. And for l = m, there are
(
N−1
B−1

)
batches that contain that pair. Since these

terms all occur in A1, we have that

A1 =

(
N − 2

B − 2

) N∑
l=1

N∑
m=1

u⊺
l vm +

[(
N − 1

B − 1

)
−
(
N − 2

B − 2

)] N∑
l=1

u⊺
l vl

=

(
N − 2

B − 2

) N∑
l=1

N∑
m=1

u⊺
l vm +

(
N − 2

B − 2

)(
N −B

B − 1

) N∑
l=1

u⊺
l vl

where the final equality follows from the simple result that[(
N − 1

B − 1

)
−
(
N − 2

B − 2

)]
=

(N − 1)(N − 2)!

(N −B)!(B − 1)(B − 2)!
−
(
N − 2

B − 2

)
=

(
N − 1

B − 1
− 1

)(
N − 2

B − 2

)
.

Similarly, we have that

A2 =

(
N − 1

B − 1

)
B

N∑
l=1

u⊺
l vl.

Plugging these back into the above inequality, we have that(
N
B

)∑
i=1

L(UBi ,VBi ) ≥
(
N

B

)
B log

1 + (B − 1) exp


(
N−2
B−2

)∑N
l=1

∑N
m=1 u

⊺
l
vm +

(
N−2
B−2

) (
N−B
B−1

)∑N
l=1 u

⊺
l
vl −

(
N−1
B−1

)
B

∑N
l=1 u

⊺
l
vl(

N
B

)
B(B − 1)

 .

Note that(
N − 2

B − 2

)(
N −B

B − 1

)
−
(
N − 1

B − 1

)
B =

(
N − 2

B − 2

)(
N −B

B − 1

)
−
(
N − 2

B − 2

)(
N − 1

B − 1

)
B

=

(
N − 2

B − 2

)(
N −B

B − 1
− NB −B

B − 1

)
= −

(
N − 2

B − 2

)
N,

and (
N−2
B−2

)(
N
B

)
B(B − 1)

=
1

N(N − 1)
.

Putting these together, we have that

(NB)∑
i=1

L(UBi
,VBi

) ≥
(
N

B

)
B log

(
1 + (B − 1) exp

(∑N
l=1

∑N
m=1 u

⊺
l vm −N

∑N
l=1 u

⊺
l vl

N(N − 1)

))

=

(
N

B

)
B log

(
1 + (B − 1) exp

(
u⊺v −N

∑N
i=1 u

⊺
i vi

N(N − 1)

))
.

Observe that the term inside the exponential is identical to Eq. (6) and therefore, we can reuse the

same spectral analysis argument to show that the simplex ETF also minimizes
∑(NB)

i=1 L(UBi
,VBi

).

Once again, since the proof is symmetric the simplex ETF also minimizes
∑(NB)

i=1 L(VBi ,UBi).

11
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Theorem 2 (Optimization with fewer than
(
N
B

)
mini-batches). For B = 2, the minimizer of Eq. (2)

for S ⊊
[(

N
2

)]
is not the minimizer of the full-batch loss in Eq. (1).

Proof. Consider a set of batches S ⊂
[(

N
2

)]
with the batch size B = 2. Without loss of generality,

assume that (1, 2) /∈
⋃

i∈S{Bi}. For contradiction assume that the simplex ETF - (U∗,V∗) is
indeed the optimal solution of the loss over these S batches. Then, by definition, we have that for
any (U ,V) ̸= (U∗,V∗)

1

|S|
∑
i∈S
L(U∗

Bi
,V∗

Bi
) ≤ 1

|S|
∑
i∈S
L(UBi

,VBi
)

⇒
∑
i∈S
L(U∗

Bi
,V∗

Bi
) ≤

∑
i∈S
L(UBi ,VBi) (19)

where (U∗,V∗) is defined such that u∗
i = v∗

i for all i ∈ [N ] and u∗
i
⊺v∗

j = −1/(N − 1) for all
i ̸= j. Also recall that ∥ui∥ = ∥vi∥ = 1 for all i ∈ [N ]. Therefore, we also have

∑
i∈S
L(U∗

Bi
,V∗

Bi
) =

∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp
(
u∗
j
⊺(v∗

k − v∗
j )
)

=
∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp

(
− 1

N − 1
− 1

)
=
∑
i∈J

∑
j∈Bi

log

(
1 + exp

(
− 1

N − 1
− 1

))
(20)

where the last equality is due to the fact that |Bi| = 2.

Now, let us consider (Ũ , Ṽ) defined such that ũi = ṽi for all i ∈ [N ], and ũ⊺
i ṽj = −1/(N − 2) for

all i ̸= j, (i, j) /∈ {(1, 2), (2, 1)}. Intuitively, this is equivalent to placing ũ2, . . . , ũN on a simplex
ETF of N−1 points and setting ũ1 = ũ2. This is clearly possible because d > N−1⇒ d > N−2
which is the condition required to place N − 1 points on a simplex ETF in Rd. Now,

∑
i∈S
L(ŨBi , ṼBi) =

∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp
(
ũ⊺
j (ṽk − ṽj)

)
=
∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp

(
− 1

N − 2
− 1

)
=
∑
i∈S

∑
j∈Bi

log

(
1 + exp

(
− 1

N − 2
− 1

))
(21)

where the last equality follows since (1, 2) /∈
⋃

i∈S{Bi}. It is easy to see from Eq. (20) and 21
that

∑
i∈S L(ŨBi

, ṼBi
) <

∑
i∈S L(U∗

Bi
,V∗

Bi
) which contradicts Eq. (19). Therefore, the optimal

solution of the contrastive loss over any S ⊂
[(

N
2

)]
batches is not the simplex ETF completing the

proof.

Proposition 2. Suppose B ≥ 2, and let S ⊆
[(

N
B

)]
be a set of mini-batch indices. If there exist two

data points that never belong together in any mini-batch, i.e., ∃i, j ∈ [N ] s.t. {i, j} ̸⊂ Bk for any
k ∈ S , then the optimal solution of this problem is not the minimizer of the full-batch problem in
Eq. (1).

Proof. The proof follows in a fairly similar manner to that of Thm. 2. Consider a set of batches of
size B ≥ 2, S ⊂ [

(
N
B

)
]. Without loss of generality, assume that {1, 2} ̸⊂ Bk for any k ∈ S. For

12
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contradiction, assume that the simplex ETF - (U∗,V∗) is the optimal solution of the loss over these
S batches. Then, by definition, we have that for any (U ,V) ̸= (U∗,V∗)

Once again, for contradiction assume that the simplex ETF - (U∗,V∗) is indeed the optimal solution
of the loss over these S batches. Then, by definition for any (U ,V) ̸= (U∗,V∗)

1

|S|
∑
i∈S
L(U∗

Bi
,V∗

Bi
) ≤ 1

|S|
∑
i∈S
L(UBi

,VBi
)

⇒
∑
i∈S
L(U∗

Bi
,V∗

Bi
) ≤

∑
i∈S
L(UBi

,VBi
) (22)

where (U∗,V∗) is defined such that u∗
i = v∗

i for all i ∈ [N ] and u∗
i
⊺v∗

j = −1/(N − 1) for all
i ̸= j. Also recall that ∥ui∥ = ∥vi∥ = 1 for all i ∈ [N ]. Therefore, we also have

∑
i∈S
L(U∗

Bi
,V∗

Bi
) =

∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp
(
u∗
j
⊺(v∗

k − v∗
j )
)

=
∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp

(
− 1

N − 1
− 1

)
=
∑
i∈J

∑
j∈Bi

log

(
1 + (B − 1) exp

(
− 1

N − 1
− 1

))
(23)

Now, let us consider (Ũ , Ṽ) defined such that ũi = ṽi for all i ∈ [N ], ũ2 = ṽ2 and ũ⊺
i ṽj =

−1/(N − 2) for all i ̸= j, (i, j) /∈ {(1, 2), (2, 1)}. Once again, note that this is equivalent to placing
ũ2, . . . , ũN on a simplex ETF of N − 1 points and setting ũ1 = ũ2. Now,

∑
i∈S
L(ŨBi

, ṼBi
) =

∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp
(
ũ⊺
j (ṽk − ṽj)

)
=
∑
i∈S

∑
j∈Bi

log

1 +
∑

k∈Bi,k ̸=j

exp

(
− 1

N − 2
− 1

)
=
∑
i∈S

∑
j∈Bi

log

(
1 + (B − 1) exp

(
− 1

N − 2
− 1

))
(24)

where for the final equality note that following. The only pair for which ũ⊺
j ṽk ̸= −1/(N − 2) is

(j, k) = (1, 2). Since there is no i ∈ S such that {1, 2} ∈ Bi, this term never appears in our loss.
From Eq. (23) and Eq. (24), we have that

∑
i∈S L(ŨBi

, ṼBi
) <

∑
i∈S L(U∗

Bi
,V∗

Bi
) which contradicts

Eq. (22). Therefore, the optimal solution of the contrastive loss over any such S ⊂ [
(
N
B

)
] batches is

not the simplex ETF completing the proof.

Proposition 3. Suppose B ≥ 2, and let S ⊆
[(

N
B

)]
be a set of mini-batch inidices satisfying

Bi

⋂
Bj = ∅,∀i, j ∈ S and

⋃
i∈S Bi = [N ], i.e., {Bi}i∈S forms non-overlapping mini-batches

that cover all data samples. Then, the minimizer of the mini-batch loss optimization problem in
Eq. (2) is different from the minimizer of the full-batch loss optimization problem in Eq. (1).

Proof. Applying Lem. 1 specifically to a single batch Bi gives us that the optimal solution for just
the loss over this batch is the simplex ETF over B points. In the case of non-overlapping batches,
the objective function can be separated across batches and therefore the optimal solution for the sum

13
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of the losses is equal to the solution of minimizing each term independently. More precisely, we
have

min
U,V

N/B∑
i=1

Lcon(UBi ,VBi) =

N/B∑
i=1

min
UBi ,VBi

Lcon(UBi ,VBi)

where UBi
= {uj : j ∈ Bi} and VBi

= {vj : j ∈ Bi}, respectively, and the equality follows from
the fact that Bi’s are disjoint.

C ALGORITHM DESCRIPTIONS

Algorithm 1 BcS Algorithm
Input: the number of positive pairs N , batch size B, embedding vectors U = {u}Ni=1, V =
{v}Ni=1

Output: selected batches {Bj}N/B
j=1

I ← [N ] # Indices of samples
J ← [N/B] # Indices of batches
for r = 1 to B do

for j = 1 to N/B do
if r = 1 then
i⋆ ← Unif(I)
Bj ← {i⋆} # Batch initialization

else
i⋆←argmaxi∈I Lcon(UBj∪{i},VBj∪{i})
Bj ← Bj ∪ {i⋆}

end if
I ← I \ {i⋆}

end for
end for
Return {Bj}N/B

j=1

D EXPERIMENT DETAILS

In this section, we provide additional details of the configurations for the experiments shown in
section 5. To make a fair comparison with the original CLIP model, we implement our algorithms
based on the official CLIP repository1. All experiments are performed on local NVIDIA DGX
A100 Tensor Core GPUs with 40GB of memory each. Our anonymized codebase can be found at
https://anonymous.4open.science/r/mini-batch-cl-0EC4/.

D.1 DATASETS

We conduct our evaluation on multiple benchmark datasets including MS-COCO (Lin et al., 2014)
and CC3M (Sharma et al., 2018) comprised of image-caption pairs for multi-modal retrieval tasks.
The fine-tuning performance of different batch selection strategies reported in Table 2, are measured
on these datasets reshaped in 224x224 pixel resolution to enable the RN50 backbone to process the
input.

MS-COCO. Microsoft Common Objects in COntext (MS-COCO) (Lin et al., 2014) is a high qual-
ity image dataset containing together with captions and labels. There are 5 captions and different
number of labels i.e., objects, corresponding to each image. The dataset we tested on is the 2017
version downloaded from the official web page2, which consists of 118,757 training images and

1https://github.com/mlfoundations/open clip
2https://cocodataset.org
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Algorithm 2 ScB Algorithm
Input: the number of positive pairs N , batch size B, embedding vectors U = {u}Ni=1, V =
{v}Ni=1

Output: selected batches {Bj}N/B
j=1

I ← [N ] # Indices of samples
J ← [N/B] # Indices of batches
for r = 1 to N do
i← Unif(I)
if r ≤ N/B then

j∗ ← Unif(J )
Bj∗ ← {i} # Batch initialization

else
j⋆ ← argmaxj∈J Lcon(UBj∪{i},VBj∪{i})
Bj⋆ ← Bj⋆ ∪ {i}

end if
J ← J \ {j⋆}
I ← I \ {i}
if J = ∅ then
J ← [N/B]

end if
end for
Return {Bj}N/B

j=1

5,000 images for validation. We sample the dataset to retain one caption per image pairs and limit
the caption diversity of images in the dataset from consideration.

CC3M. Conceptual Captions 3M (Sharma et al., 2018) contains 3,318,333 image and description
pairs for the training set. In constrast with MS-COCO, each image has one ground truth caption
harvested from the web. Since Google currently provides the dataset as image URL and caption
pairs3, we developed a downloader ourselves to prepare the dataset. The successfully downloaded
data size is 2,856,515 for train set and 13,137 for validation set respectively. Since we measure
performance via fine-tuning, we randomly sample a 4.21% subset of the training set instead of using
the entire data to ease the computational burden. The choice of the fraction 4.21% is to match the
training set size of MS-COCO.

Since both datasets do not provide an annotated test split, we randomly split each training set in
order to retain a separate validation set for hyper-parameter optimization. The original validation
sets are instead used as test sets to report the performance on the unused data. In details, we make the
5,000 samples of MS-COCO and the 13,137 samples of CC3M unseen during the hyper-parameter
selection process until the phase of evaluation. Therefore, it is important to note that validation set
denotes a part of training set and test set denotes the original validation set throughout this paper.
After we search through every combinations of hyper-parameters to find the most optimal values on
this validation set, we evaluate our models on test sets.

D.2 MODEL ARCHITECTURE

We use the modified ResNet-50 which is the smallest among 5 ResNet-based CLIP models provided
by Radford et al. (2021) in all of our experiments. There are two main reasons for the selection:
First, a small model is able to show relatively faster results with less training efforts, and secondly,
the ultimate goal of this work is to demonstrate the effectiveness of our framework on a smaller scale
compared to the original CLIP rather than to achieve state-of-the-art performance. This pre-trained
CLIP model, denoted as RN50 is used as is for training without any modification in the architecture.

3https://github.com/google-research-datasets/conceptual-captions
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D.3 HYPERPARAMETERS

In all experiments with different batch selection strategies, hyperparameter search is performed on
a validation split of each dataset stated in D.1 to ensure optimal performance. Table D.3 shows the
range of values specified for each hyperparameter.

Table 1: Hyperparameter search for all batch selection methods.
Hyperparameter Search space

Batch size [100, 200, 400]
Warmup step [3600, 1800, 900]

Learning factor [0.00005, 0.0001, 0.0005]
Weight decay 0.1

Optimizer AdamW
Momentum 0.9

Random sampling 30%, 50%, 70%

We use AdamW optimizer with weight decay of 0.1, while the remaining parameters except learning
rate are the same as the default4: β1 = 0.9, β2 = 0.999 and ϵ = 10−8. Inspired by Vaswani et al.
(2017), we search among various learning rate factors using grid search on this formula.

lrate = lr factor×min{step num−0.5, step num× warmup step−1.5} (25)

The warmup step varies according to the batch size, for example, when the batch size is 200, the
corresponding warmup step is 1800 as described in Table D.3. The initial temperature parameter τ
from the RN50 model is approximately 4.6 and it changes as the training proceeds. The algorithms
mostly converge within 10 epochs with any parameter combinations we make with the lists.

We add r that denotes a random sampling ratio as a hyper-parameter to carefully observe the effect
of our batch selection algorithms by adjusting the level of difficulty of each batch. The initially
given r% remains the same in every epoch until convergence. The ratio is tuned for each batch
size and algorithm in the same manner as with other parameters and the best results are reported in
Section E.3.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 SIMULATION RESULTS

Below, we present the heatmap of pairwise inner products for different combinations of d and N .
Fig. 4 shows the values of all pairwise inner products u⊺

i vj for different batching schemes via heat
maps for d = 2N . (a) demonstrates that the result of minimizing the full-batch loss in Eq. (1)
converges to the simplex ETF. Note that all diagonal elements are equal to 1 and all off-diagonal
elements are equal to −1/(N − 1). (b) shows that the result of minimizing the contrastive loss
w.r.t. all

(
N
B

)
mini-batches converges to the same solution of minimizing the full-batch loss which

agrees with Thm 1. We observe that the result of our proposed batch selection algorithms ((f), (g))
converges to the ETF solution while the results with FIXED BATCH and SHUFFLED BATCH do not
((c), (d)). OSGD performs better than the baselines but still appears to have converged to a solution
different from the simplex ETF (e).

Fig. 5 represents the experimental results for d = N/2 which is the more practical setting. Happily,
we still get similar results even though our assumption d ≥ N − 1 is violated: 1) the solution
minimizing the contrastive loss over all

(
N
B

)
mini-batches converges to the solution of minimizing

the full-batch loss, and 2) the solution of the proposed algorithm converges to that of minimizing
the full-batch loss while the result with fixed batch and shuffled batch do not. However,
there are two things to point out compared to the previous d = 2N regime. First, convergence is

4https://pytorch.org/docs/stable/generated/torch.optim.AdamW
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much slower, particularly for larger N . For example, the minimization over all
(
N
B

)
mini-batches

did not converge until 50,000 epochs, well after the other batch selection schemes. Next, we note
that we are unable to recover the exact solution as that of full-batch minimization although they are
mere permutations of each other. For example, the results from BcS and ScB for the last two rows
(N = 16, 20), are different permutations of the solution to the full-batch minimization problem. It
is important to note that these solutions are still equivalent in our case since the order of embeddings
is artificial.

E.2 SIMULATION RESULTS WITH SHARED ENCODER

To simulate with more practical settings, we train a tiny model considering it as shared encoder. For
the model, we use a single fully connected layer without activation. We only test N = {4, 8, 12}
and omit N = {16, 20} for the simplicity. We first sample data from a 4-dimensional Gaussian
distribution. And then pass it to our model and normalize them like in Appendix E.1 during training.
We use SGD with the learning rate η = 0.1 and train until 10, 000 epochs. The output dimension
d of our model are d = 2N and d = N/2. As in Fig. 6 and 7, we can see the similar trend to the
experiments in the previous section. Interestingly, the heatmap of SHUFFLED-BATCH is more closer
to that of full-batch (hence ours as well) than the previous section, which is somewhat aligned with
our practical experiments in Sec. E.3.

E.3 EXPERIMENTS ON MULTI-MODAL REAL DATASETS

We test on two image captioning datasets: MS-COCO, and CC3M. For the image and text encoders,
we use the pre-trained ResNet50 (RN50) and Transformer described in (Radford et al., 2021), re-
spectively. We load the pre-trained weights from CLIP, and then train them on the target dataset.
The embedding dimension d of both encoders is 1024. We compare six batching schemes: (i)
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Figure 4: Heatmap of N ×N matrix representing pairwise inner products for the d ≥ N −1 setting.
We have optimization with (a) full-batch, (b)

(
N
B

)
mini-batches, (c) FIXED-BATCH, (d) SHUFFLED-

BATCH, (e) OSGD, (f) BcS, and ScB. The first row represents the case for N = 4, d = 8, the second
row for N = 8, d = 16, the third row for N = 12, d = 24, the fourth row for N = 16, d = 32 and
the last row for N = 20, d = 40.
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Figure 5: Heatmap of N ×N matrix representing pairwise inner products for the d < N −1 setting.
We have optimization with (a) full-batch, (b)

(
N
B

)
mini-batches, (c) FIXED-BATCH, (d) SHUFFLED-

BATCH, (e) OSGD, (f) BcS, and ScB. The first row represents the case for N = 4, d = 2, the
second row for N = 8, d = 4, the third row for N = 12, d = 6, the fourth row for N = 16, d = 8
and the last row for N = 20, d = 10.
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Figure 6: Heatmap of N ×N matrix representing pairwise inner products for the d ≥ N −1 setting.
We have optimization with (a) full-batch, (b)

(
N
B

)
mini-batches, (c) FIXED-BATCH, (d) SHUFFLED-

BATCH, (e) OSGD, (f) BcS, and ScB. The first row represents the case for N = 4, d = 8, the
second row for N = 8, d = 16, and the last row for N = 12, d = 24.

FIXED-BATCH; (ii) SHUFFLED-BATCH; (iii) BcS; (iv) BcS + Rand; (v) ScB; and (vi) ScB +
Rand. Due to the computational complexity issue, we could not run OSGD. We train models
for 10 epochs and report top-1 recall (R@1) performances on the test dataset. We use the batch
size B ∈ {100, 200, 400}, and AdamW optimizer with the standard learning rate scheduler defined
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(g) ScB

Figure 7: Heatmap of N ×N matrix representing pairwise inner products for the d < N −1 setting.
We have optimization with (a) full-batch, (b)

(
N
B

)
mini-batches, (c) FIXED-BATCH, (d) SHUFFLED-

BATCH, (e) OSGD, (f) BcS, and ScB. The first row represents the case for N = 4, d = 2, the
second row for N = 8, d = 4, and the last row for N = 12, d = 6.

in (Vaswani et al., 2017), and we choose a scaling factor for the learning rate via grid search. Details
of hyper-parameters is in Appendix D.

Results Table 2 shows the performances of various batch selection methods, for MS-COCO and
CC3M. One can confirm that (i) SHUFFLED-BATCH has a better performance than FIXED-BATCH,
and (ii) some of our batch selection methods perform better than SHUFFLED-BATCH for all batch
sizes. The gap between our method and baselines is more visible in the small batch size regime.
It is shown that compared with SHUFFLED-BATCH method, our proposed methods (ScB and ScB
+ Rand) attain higher R@1 score (approximately 1%) across all batch sizes. We also note that
BcS + Rand performs similarly to SHUFFLED-BATCH. Note that despite the fact that our proposed
batch selection methods do not guarantee generalization, they still outperform the baselines in terms
of test accuracy. We note that occasionally, BcS’s performance is worse than FIXED-BATCH. We
expect that this can be resolved by more careful tuning of hyperparameters.

Fig. 8 shows results obtained from training with B = 100 on the MS-COCO dataset in order to
observe whether the training curves of our proposed methods align with what we expect from the
proposed algorithms defined in Sec. 4. As mentioned earlier, our greedy methods are designed to
find mini-batches containing the most informative pairs, therefore we expect that it is able to learn
more robust representations and achieve fast convergence than SHUFFLED-BATCH. Here, we report
the full-batch loss and image-to-text, text-to-image retrieval (R@1) on the train set.

Fig 8(a) shows the full-batch train loss of overall methods, which is to calculate contrastive loss
considering all the data points in the train set, not in the mini-batch. Therefore, it assures concrete
trend of training rather than mini-batch train loss. The full-batch loss of BcS is especially lower
than other methods, which means it fits on the train set well. However, as we stated in Sec. E.3, the
generalization ability becomes lower than the others. Fig. 8(b) and 8(c) demonstrates how well each
model can fit on the train set at each epoch. They also describe that BcS models fit faster than other
methods on the train set.
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(a) Full-batch loss
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(b) Image-to-text R@1
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(c) Text-to-image R@1

Figure 8: (a) Full-batch train loss demonstrates that the exact training trends considering all the
training data points. The training curve of BcS decreases more compared to other methods. The
image-to-text R@1 on train set shows that how well each method cover the train set distribution. In
(b), BcS shows higher R@1 score compared to other method at the same epoch. Other proposed
method (BcS+ Rand, ScB and ScB + Rand) have a faster convergence speed on the train set
compared with SHUFFLED-BATCH.

Table 2: Retrieval performances (R@1) on MS-COCO and CC3M datasets. The boldface indicates
the best result.

Image-to-text Text-to-image
Dataset MS-COCO CC3M MS-COCO CC3M
Algorithm \ Batch size 100 200 400 100 200 400 100 200 400 100 200 400

FIXED-BATCH 39.10 40.54 40.72 37.53 38.07 39.04 35.96 36.30 37.72 34.64 35.76 36.29
SHUFFLED-BATCH 40.86 41.66 41.54 39.05 39.26 39.89 37.28 38.72 38.74 36.22 36.79 37.09
BcS (Ours) 34.50 36.38 37.58 33.92 34.16 36.43 31.10 31.84 34.44 31.44 31.18 33.06
BcS + Rand (Ours) 41.68 42.04 42.34 38.56 38.92 39.70 38.36 39.16 39.46 36.72 36.68 38.00
ScB (Ours) 40.46 42.44 42.24 39.89 39.86 40.33 38.26 39.06 39.76 36.75 37.76 38.20
ScB + Rand (Ours) 42.18 42.22 42.74 40.19 39.79 39.78 38.90 39.54 39.42 37.75 37.50 37.68
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