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ABSTRACT

Trend filtering simplifies complex time series data by emphasizing proximity to
the original data while applying smoothness to filter out noise. However, the in-
herent smoothness resulting from the ‘approximateness’ of trend filtering filters
out the tail distribution of time series data, characterized as extreme values, thus
failing to reflect abrupt changes in the trend. To address this, we draw inspiration
from optimal stock trading strategy, which has to detect the lowest and highest
points. As such, we reformulate the trend filtering problem by detecting essential
points that should be reflected in the trend rather than approximations. In this
paper, we introduce Trend Point Detection, a novel approach to identifying essen-
tial points to extract trends, which formulates the problem as a Markov Decision
Process (MDP). We term these essential points as Dynamic Trend Points (DTPs)
and extract trends by connecting them. To identify DTPs, we utilize Reinforce-
ment Learning (RL) within a discrete action space, referred to as the Dynamic
Trend Filtering network (DTF-net). DTF-net integrates flexible noise filtering,
preserving critical original sub-sequences while removing noise as required for
other sub-sequences. We demonstrate that DTF-net excels at capturing abrupt
changes compared to other trend filtering algorithms, utilizing synthetic data and
the Nasdaq intraday dataset. Furthermore, we demonstrate performance improve-
ments in the forecasting task when we utilize DTF-net’s trend as an additional
feature, as abrupt changes are captured rather than smoothed out.

1 INTRODUCTION

Trend filtering emphasizes being close to the original time series data while filtering out noise
through smoothness (Leser, 1961; Hodrick & Prescott, 1997; Kim et al., 2009). As such, trend filter-
ing simplifies complex patterns within noisy and non-stationary time series data through smoothness,
making it effective for tasks such as forecasting and anomaly detection (Rolski et al., 2009). In this
context, smoothness eliminates noise and reveals the underlying structure of the time series pattern
(Lin et al., 2017; Wen et al., 2019).

Traditional trend filtering employs a sum-of-squares loss function to achieve proximity to the orig-
inal data while also utilizing second-order differences as a regularization term to attain smoothness
(Hodrick & Prescott, 1997; Kim et al., 2009). However, we found that the constant nature of smooth-
ness leads to filtering out not only noise but also abrupt changes that should be reflected in the trend.
An ‘abrupt change’ denotes a point in a time series where the trend experiences a sharp transition.
Given that the direction and persistence of the trend are determined by abrupt changes, it is vital to
incorporate them into the trend.

The problem of constant smoothness stems from the property of ‘approximateness’ that trend fil-
tering relies on, which has the effect of eliminating the tail distribution of the data. Ding et al.
(2019) present evidence that sum-of-square loss approximates to Gaussian distribution, which has
a light-tail shape and eliminates heavy-tail as outliers. Nevertheless, abrupt changes frequently re-
side within the tail distribution of time series data, making it challenging to distinguish them from
the noise targeted for removal through smoothness (Kulik & Soulier, 2020). Therefore, constant
smoothness applied in traditional trend filtering fails to distinguish abrupt changes and noise, result-
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Figure 1: DTF-net extracts dynamic trends from time series data. Each episode is composed of a
randomly sampled sub-sequence with a dynamic length from the entire time series data, and DTPs
are determined based on action predictions. The final output consists of the detected DTP sequence,
and the final trend is extracted through interpolation. The extraction of the trend varies depending
on how the agent predicts the action.

ing in uniform filtering that leads to the loss of valuable information in trend. The heavier and longer
the tail distribution, the problem of constant smoothness becomes aggravated (Wen et al., 2019).

Motivated by the nature of abrupt changes, categorized as extreme values, we introduce a novel
algorithm designed to directly identify essential points for trend extraction, departing from approxi-
mations. This is inspired by the optimal stock trading strategy aimed at maximizing profit. Attaining
the optimal strategy involves buying at the lowest point and selling at the highest point to achieve
the maximum return, and these points align with the concept of abrupt changes and extreme values.
In this context, Reinforcement Learning (RL) can capture abrupt changes, which are optimal trading
points in a single stock trading task, by an agent. Derived from these motivations, we reformulate
the Reinforcement Learning (RL) stock trading algorithm as a solution to the trend filtering problem.

In this paper, we introduce a novel approach to trend filtering that employs identifying essential
points that should be reflected in the trend and subsequently interpolating them. These essential
points are termed Dynamic Trend Points (DTPs), and the process of capturing them is referred to
as Trend Point Detection. We formalize the Trend Point Detection problem as a Markov Decision
Process (MDP) (Dynkin & Dynkin, 1965; Kaelbling et al., 1996; Sutton & Barto, 2018) and denote
the algorithm that addresses it using RL (Schulman et al., 2017) as a Dynamic Trend Filtering
network (DTF-net). In contrast to traditional trend filtering methods with approximateness, which
have constant smoothness leading to filtering out abrupt changes, RL can directly detect these points
through an agent. These essential points are dynamically detected by RL, unconstrained by fixed
window sizes or frequencies within the time series data domain. This dynamic approach enables
DTF-net to capture abrupt changes in the trend while adjusting the level of noise filtering for each
sub-sequence within the time series (Sadhanala et al., 2017).

To achieve its purpose, DTF-net predicts discrete actions within a customized environment. We
employ the Mean Squared Error (MSE) loss function from Time Series Forecasting (TSF) as a
reward to capture temporal dependencies both before and after the action points. The degree of
smoothness is controlled by the forecasting window size, which is a hyperparameter. Throughout
DTF-net’s training process, a bidirectional effect is achieved through iterative random sampling of
segments from the entire time series data. Additionally, the overfitting issue can be mitigated by
the random sampling method applied to the reward. To the best of our knowledge, this is the first
approach that employs RL for trend filtering to simultaneously capture both abrupt changes and
smoothness.

Our contributions are as follows:

• We found the issue of constant smoothness in traditional trend filtering, which is caused by
the inherent property of ‘approximateness’, filters out both noise and abrupt changes. To
address this problem, we directly detect points referred to as DTP that should be reflected
in the trend.
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• We formulate the problem of Trend Point Detection as MDP. Subsequently, we propose
DTF-net, which employs RL, allowing it to filter trends while considering both smoothness
and abrupt changes.

• We employ forecasting MSE cost function as a reward of DTF-net, allowing for the con-
sideration of temporal dependencies when capturing DTPs. The sampling method is also
applied to mitigate the overfitting issue.

• We demonstrate that DTF-net excels at capturing abrupt changes compared to other trend
filtering methods and also enhances performance in forecasting tasks.

2 RELATED WORK

2.1 TREND FILTERING

Traditional trend-filtering algorithms attempted with various methods to capture abrupt changes.
H-P (Hodrick & Prescott, 1997) and ℓ1 (Kim et al., 2009) stand out as widely used methods that
optimize the sum of squared functions. However, they often suffer from delayed detection of abrupt
changes due to the use of second-order difference operators. To tackle this issue, the TV-denoising
algorithm (Chan et al., 2001) was introduced, relying on first-order differences. Nevertheless, this
strategy introduces delays in detecting slow-varying trends. Additionally, due to the sum-of-squares
loss, all the aforementioned trend filtering methods face challenges in handling heavy-tailed outliers
(Wen et al., 2019).

Contrary to sum-of-squares loss methods, there are alternative approaches to trend filtering. First,
frequency-dependent methods such as Wavelet (Rhif et al., 2019; Craigmile & Percival, 2002) are
designed for non-stationary signals but are susceptible to overfitting. The Empirical Mode Decom-
position (EMD) algorithm (Wu et al., 2007) employs a decomposition mechanism but can suffer
from a mode-mixing effect. The common drawback shared by all aforementioned trend filtering al-
gorithms is constant smoothness, resulting in undesired noise filtering even during abrupt changes.

2.2 EXTREME VALUE THEORY

Abrupt changes in a time series usually belong to the tail of the data distribution. The thicker and
longer the tail, the greater the loss of information caused by the inherent constant smoothness of
traditional trend filtering methods (Qian et al., 2020). In practice, the long heavy tail distribution di-
verges from the Gaussian distribution, which best represents a light-tailed bell shape. However, real-
world time series data commonly exhibit long-heavy tail distributions as follows (von Bortkiewicz,
1921; Ding et al., 2019),

limT→∞P{max(y1, ..., yT ) ≤ y} = limT→∞FT (y) = 0, (1)

where T random variables y1, ..., yT are i.i.d. sampled from distribution FY . Furthermore, general-
ized extreme events can be modeled using the Extreme Value Theory.

Theorem 1 (Extreme Value Theory (Fisher & Tippett, 1928; Ding et al., 2019)) If the distribu-
tion in Equation 1 is not degenerate to 0 under the linear transformation on Y, the transformation of
class with the non-degenerated distribution G(y) should be the following distribution:

G(y) =

{
exp(−(1− 1

γ y)
γ), γ ̸= 0, 1− 1

γ y ≥ 0

exp(−e−y), γ = 0
(2)

Extreme Value Theory (EVT) revealed that extreme values exhibit a limited degree of freedom
(Lorenz, 1963). This implies that the patterns of occurrence are recursive and can be memorized
(Altmann & Kantz, 2005; Bunde et al., 2003). As a result, abrupt changes can be learned by a model
with significant capacity and temporal invariance.

However, abrupt changes are either unlabeled or extremely imbalanced. Previous research (Fei-
Fei et al., 2006; Vinyals et al., 2016; Wang et al., 2019) demonstrated the susceptibility of Deep
Neural Networks (DNNs) to the data imbalance issue. Additionally, Ding et al. (2019) provided
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evidence that minimizing Mean Squared Error loss presupposes a Gaussian distribution with vari-
ance τ , expressed as p(yt|xt, θ) = N (ot, τ

2), grounded in Bregman’s theory, where given dataset
D = {x ∈ X, y ∈ Y } and model output {o ∈ O} (Rosenblatt, 1956; Banerjee et al., 2005; Buch-
Larsen et al., 2005; Singh & Gordon, 2008) (Appendix A). To solve this problem, they proposed
Extreme Value Loss (EVL) to approximate extreme values in forecasting tasks, but it still fell short
because of the inherent problem of ‘approximateness’.

Therefore, our approach to the trend filtering problem is distinct from traditional methods that rely
on approximating abrupt changes. Instead, we utilize RL, which enables the direct detection of
abrupt changes. In other words, our primary objective shifts towards the challenge of training the
agent to identify extreme values directly.

2.3 MARKOV DECISION PROCESS AND REINFORCEMENT LEARNING

Stock trading and portfolio optimization are among the most representative problems that can be
modeled using time series data within an MDP (Liu et al., 2022a; Wu et al., 2020; Yang et al., 2020;
Martinez et al., 2018). The decision-making process in stock trading, where actions depend solely
on the immediate preceding state and are not influenced by the past, adheres to the Markov property.
Consequently, it can be transformed into a problem of detecting trading points. Ideally, in stock
trading, one should buy at the lowest turning point and sell at the highest turning point to maximize
profit, and these turning points are equivalent to extreme value and abrupt changes. As motivated
by this property, we define the problem of identifying essential points that should be reflected in the
trend as an MDP, drawing parallels with this ideal trading strategy.

The Markov Process (MP) (Dynkin & Dynkin, 1965) serves as a model for representing the potential
sequence of events in the future. This model is rooted in the Markov property, an assumption that
exclusively influences the immediate event subsequent to the presently occurring one. MDP is built
upon the first-order Markov assumption and comprises components denoted as ⟨S,A, P,R, γ⟩. In
this context, S denotes the set of environment states, while A represents the set of actions undertaken
by the agent at state s. The transition probability, P = p(s′|s) = Pr(St+1 = s′|St = s), signifies
the probability of transitioning from the current state s to the next state s′. The reward, R = r(s) =
E[Rt+1|St = s], originates from state s when taking action a ∈ A. Finally, the discount factor
γ ∈ (0, 1] governs the trade-off between current and future rewards (Kaelbling et al., 1996; Sutton
& Barto, 2018).

In MDP, actions are chosen through a policy network denoted as π(a|s) = Pr(At = a|St = s) for
each state. Meanwhile, the state-value function vπ(s) estimates the expected return value for a state
s under policy π. Approaches like A2C (Sutton & Barto, 2018) and PPO (Schulman et al., 2015;
2017) directly train agents using the Actor-Critic method. In this paradigm, the policy network π is
determined by Actor-Critic based on the estimated value function. In contrast, DQN (Mnih et al.,
2013; 2015) defines the action-value function as qπ(s, a) and aims to identify the optimal of v∗ and
q∗ through the Bellman equation (Jaderberg et al., 2016; Silver et al., 2014) (Appendix E).

3 DYNAMIC TREND FILTERING NETWORK

3.1 TREND POINT DETECTION AND MARKOV DECISION PROCESS

3.1.1 ENVIRONMENT DEFINITION

DTF-net is a novel approach that employs RL to extract flexible trends from time series data. This
approach effectively overcomes the limitations of existing trend-filtering algorithms, particularly
with regard to capturing abrupt changes.

Time series data is defined as T = {(X1, y1), (X2, y2), . . . , (XN , yN )}, where X ∈ RD represents
the input, y ∈ Rd represents the output, and the dataset comprises a total of N ∈ Z+ samples. Here,
D and d denote the respective dimensions of input and output.

We formalize Trend Point Detection as MDP.

• State S = [Xt, At]: the positional encoded vector set of time series data X with horizon t
and detected action points A ∈ {0, 1}.
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• Action A: a discrete action set with a = 1 for detecting DTP and a = 0 for smoothing.

• Reward R(S,A, S′): the change of the forecasting cost function value when action A is
taken at state S and results in the transition to the next state S′.

• Policy π(A|S): the probability distribution of A at state S.

3.1.2 STATE AND ACTION FOR DTF-NET

Previous RL studies in time series typically followed a sequential approach. In contrast, DTF-net
introduces dynamic segmentation with variable lengths within a single episode through random
sampling based on discrete uniform distribution, given by

s ∼ unif{0, N},

l ∼ unif{h+ p,H},
where s denotes the starting points of the sub-sequence, l denotes sub-sequence length, h denotes
horizon, H denotes maximum horizon, and p denotes forecasting horizon. This procedure dictates
the sub-sequence’s length and starting point, leading to a non-sequential and random progression of
the episode. The overlap of sub-sequences as shown in Figure 1, allows us to achieve the advantages
of bidirectional learning.

However, the varying length of the state with different episodes poses a problem. To tackle this
issue, we maintain a constant state length through positional encoding.

PE(pos,2i) = sin(pos/100002i/dmodel),

PE(pos,2i+1) = cos(pos/100002i/dmodel).

Additionally, within a single episode, DTF-net differs from previous research by constructing the
state cumulatively, rather than using a fixed window horizon. In other words, with each step within
the episode, the length of the state gradually increases as follows,

E = Ts:s+l,

S0 = PE(E0),

St+1 = PE(E0:t, A0:t).

Consequently, the state consists of both time series data X and action A, and through this cumulative
state, the agent can learn sequential information from the time series (Appendix C.1).

As for the action space, DTF-net aims to identify important points that should be included in the
trend. Therefore, the action space is defined as a discrete set of {0, 1}, where the agent predicts
whether a particular time step is an essential trend point or not.

3.2 REWARD OF DTF-NET

In the stock trading task, RL is optimized based on cumulative return as a reward. However, in
general time series, we cannot specify return as a reward. As a result, similar to traditional trend
filtering, DTF-net aims to preserve the ‘closeness to the original data’ property, fundamental to trend
filtering. However, employing a sum of squared loss function on current values makes it challenging
to reflect appropriate smoothness. Therefore, DTF-net distinguishes itself by optimizing for future
values instead of current ones. By employing Time Series Forecasting (TSF) and training RL to
minimize its cost function, DTF-net can reflect the characteristics of each sub-sequence and learn
temporal dependencies. This allows adjusting smoothness by tuning the prediction window.

As shown in Algorithm 1, the reward process involves time series data X and action A in episode
Et−(h+p):t at time step t, both having a sequence length denoted as h + p, where h denotes the
past horizon, and p denotes the forecasting horizon. The trend T initiates with null values and
values are assigned only under the condition of action a = 1. For the remaining null values, linear
interpolation is applied. Subsequently, forecasting is conducted with a prediction length p defined
by a hyperparameter. The reward is computed as the negative MSE loss between the predicted ŷ and
the ground truth y. As illustrated in Figure 2, effective capture of abrupt changes leads to improved
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Figure 2: How does the reward optimize DTF-net to extract dynamic trends that incorporate abrupt
changes? As shown in case 3, when DTF-net successfully identifies abrupt changes (blue action
points), the prediction outcomes improve significantly, resulting in the highest reward.

Algorithm 1 DTF-net Reward

1: procedure REWARD(Et−(h+p):t) ▷ X, A ∈ Et−(h+p):t at time step t
2: T ← 0 ▷ trend initialization
3: T |a=1 ← X|a=1 ▷ value assign for a=1
4: while n ≤ h do ▷ for linear interpolation
5: // n for time-axis and x ∈ X
6: Tn ← xn = xn−1 +

xn+1−xn−1

2
7: n← n+ 1
8: end while
9: ŷ ← ϕ([X, T ]) ▷ Regression for TSF

10: r ← 1
p

∑p
i=1(yi − ŷi)

2 ▷ MSE loss
11: return −r ▷ minus of forecasting reward
12: end procedure

forecasting performance and a higher final reward. Additionally, to mitigate overfitting issues, DTF-
net utilizes random sampling from a discrete uniform distribution of calculating reward at every time
step, providing better control over model updates as follows,

k ∼ unif{s, s+ l},

R =

{
REWARD(Et−(h+p):t) if t = k,

0 if t ̸= k.

In here, we found that by using a penalty reward as a negative value, irregularly applying penalties
through sampling can prevent overfitting rather than penalizing at every moment (Appendix C.2).
Note that the model ϕ employed within the environment can be any basic machine learning model,
such as Linear Regression.

We use PPO (Schulman et al., 2017) with MLP-policy to learn discrete action (Appendix E).

4 EXPERIMENT

4.1 TREND FILTERING ANALYSIS ON SYNTHETIC DATA

4.1.1 EXPERIMENTAL SETTING

Analyzing trend filtering methods poses two challenges. First, defining a ground truth for the trend
is challenging. For example, in the case of ℓ1, the degree of smoothness varies with λ, resulting
in different trends. Second, labeling abrupt changes is challenging. Obtaining real-world data with
such labels is difficult, and arbitrary assignment to real-world data is subjective. To address this,
we generate a synthetic trend signal with 1, 000 data points, featuring sine and triangle waves with
varying amplitudes. The synthetic dataset has 11 abrupt changes, including gradual variations from
data points 121 to 250, abrupt changes between data points 500 and 719, a sudden drop at data point
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Figure 3: Figures (a) and (b) show the data that contains abrupt change with mean and variance
shifts. In contrast to the underfitting or overfitting of trends caused by the constant smoothness of
ℓ1 trend filtering, (c) and (d), DTF-net applies different levels of smoothness to each sub-sequence,
enabling it to capture abrupt changes while dynamically performing noise filtering (e).

Trend Filtering
Linear Signal Linear Signal+Noise (0.2)

1) full-sequence 2) abrupt-sequence 1) full-sequence 2) abrupt-sequence
MSE MAE MSE MAE MSE MAE MSE MAE

ADAGA (Wu et al., 2020) 4.3507 1.4319 7.0179 1.8476 4.3434 1.4428 7.0120 1.8668
RED-SDS (Ansari et al., 2021) 0.9678 0.6566 1.6329 0.9169 1.0036 0.6782 1.6660 0.9365

TimesNet(Wu et al., 2023) 3.0047 1.4112 3.2740 1.4161 3.0841 1.4204 3.3304 1.4364
EMD (Wu et al., 2007) 5.2836 1.7294 6.4599 1.8313 5.3096 1.7401 6.4410 1.8431
Median (Siegel, 1982) 4.4506 1.5335 5.7018 1.8099 4.4766 1.5525 5.6859 1.8204

H-P (Hodrick & Prescott, 1997) 0.1881 0.2807 0.2923 0.3493 0.2253 0.3311 0.3238 0.3934
Wavelet (Rhif et al., 2019) 0.0427 0.1676 0.0451 0.1740 1e− 30 6e− 16 2e− 30 8e− 16
ℓ1 (λ=0.1) (Kim et al., 2009) 0.0150 0.0885 0.0166 0.0971 0.0461 0.1703 0.0500 0.1807

ℓ1 (λ = 5e− 4) 0.0379 0.1570 0.0403 0.1638 0.0004 0.0175 0.0004 0.0174
DTF-net (ours) 0.0378 0.1554 0.0389 0.1608 0.0289 0.0826 0.0286 0.0855

Table 1: We conduct trend filtering analysis on synthetic data, evaluating it with two ground truths:
only the linear signal and the linear signal with added noise. We consider two cases, one with the
full sequence and the other with a sub-sequence containing abrupt changes. The evaluation metrics
include MSE and MAE, where lower values indicate better performance. The best performance is
bolded, and the second-best performance is underlined.

771, and the initiation of a sine wave at data point 810. We add Gaussian noise with a standard
deviation of 0.2 to simulate real-world conditions.

To evaluate the trend filtering results, we set the experiment as follows. First, we use generated
abrupt changes as oracle points to evaluate abrupt change capture. Performance evaluations include a
30-window interval around abrupt changes to assess temporal dependencies effectively. Second, we
employ Mean Squared Error (MSE) and Mean Absolute Error (MAE) metrics to measure proximity
to the original data, a key aspect of trend filtering. For ground truth, we use a linear signal and a
linear signal with added noise to assess robustness to noisy data. In cases with added noise, we
assume that filtering out at least 10% of noise is necessary to confirm smoothness. Regarding the
comparative approaches, we compare with five prominent trend filtering algorithms, recent CPD
algorithms, and recent anomaly detection algorithms (Appendix F)

4.1.2 PERFORMANCE ANALYSIS

Synthetic Dataset As shown in Table 1, when considering the ground truth of a linear signal, DTF-
net outperforms other prominent trend filtering methods, CPD, and anomaly detection algorithms,
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Methods DTF-Linear (ours) ℓ1(λ = 0.1)-Linear PatchTST/42 NLinear DLinear FEDformer-f FEDformer-w Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange

24 0.0250 0.1198 0.0266 0.1248 0.0387 0.1513 0.0275 0.1264 0.0290 0.1284 0.0381 0.1545 0.0387 0.1564 0.0687 0.2041
48 0.0487 0.1658 0.0505 0.1708 0.0624 0.1873 0.0505 0.1705 0.0585 0.1907 0.0548 0.1818 0.1068 0.2528 0.1095 0.2485
96 0.098 0.2349 0.1007 0.2440 0.1833 0.3436 0.0990 0.2361 0.1063 0.2530 0.1440 0.2980 0.1386 0.2894 0.1834 0.3306
192 0.1983 0.3583 0.2045 0.3518 0.2550 0.3987 0.2030 0.3400 0.1959 0.3554 0.2790 0.4163 0.2841 0.4217 0.3465 0.4510
336 0.3160 0.4561 0.3337 0.4666 0.5161 0.5442 0.4174 0.4857 0.3276 0.4627 0.4466 0.5130 0.5685 0.5890 0.4488 0.5291
720 0.7933 0.6874 0.9515 0.7636 1.1143 0.8063 1.0420 0.7807 0.9071 0.7415 1.2122 0.8492 1.2912 0.8876 1.2463 0.8694

ETTh1

24 0.0253 0.1205 0.0234 0.1140 0.0266 0.1238 0.0266 0.1240 0.0273 0.1262 0.0358 0.1450 0.0381 0.1524 0.0694 0.2042
48 0.0375 0.1479 0.0366 0.1442 0.0393 0.1506 0.0388 0.1503 0.0404 0.1523 0.0547 0.1778 0.0602 0.1921 0.0797 0.2205
96 0.0519 0.1740 0.0521 0.1744 0.0550 0.1790 0.0519 0.1745 0.0551 0.1815 0.0786 0.2126 0.0919 0.2348 0.0857 0.2292
192 0.0676 0.2013 0.0693 0.2034 0.0705 0.2050 0.0694 0.2046 0.0730 0.2076 0.0933 0.2344 0.1000 0.2464 0.0993 0.2428
336 0.0803 0.2247 0.0796 0.2238 0.0814 0.2260 0.0826 0.2280 0.0948 0.2414 0.1117 0.2597 0.1418 0.2958 0.1287 0.2792
720 0.0776 0.2224 0.0789 0.2244 0.0869 0.2329 0.0814 0.2273 0.1800 0.3494 0.1310 0.2858 0.1224 0.2766 0.1378 0.2939

Illness
24 0.5881 0.5358 0.6119 0.5299 0.6228 0.5305 0.6325 0.5639 0.7831 0.7462 0.6969 0.6256 0.7100 0.6352 0.7432 0.6704
48 0.6858 0.6359 0.6925 0.6322 0.7109 0.6642 0.6892 0.6453 0.8217 0.7750 0.7099 0.6935 0.6961 0.6972 0.7855 0.7370
60 0.6640 0.6423 0.6666 0.6324 0.6465 0.6381 0.6730 0.6347 0.9195 0.8361 0.8309 0.7653 0.8192 0.7641 0.8945 0.8055

Table 2: We conduct TSF experiments using three datasets: Exchange Rate, ETTh1, and Illness. We
evaluate performance using MSE and MAE, where lower values indicate better performance. In the
following results, the best-performing models using DTF-net are highlighted in bold, and models
using ℓ1 trend filtering are highlighted in italic. To compare the results, the best-performing models
using the original data are underlined.

except for ℓ1(λ = 0.1). This is attributed to the piece-wise linearity assumption of the ℓ1 method,
extracting more linear features than DTF-net, which prioritizes abrupt change consideration over
linearity. However, our goal is to reflect abrupt changes within noise. Therefore, with the ground
truth of a linear signal added with noise, DTF-net surpasses all prominent methods, except for those
prone to overfitting. As trend filtering should also consider smoothness, we assume a minimum
degree of noise filtering, set at 10% of Gaussian noise. Consequently, Wavelet and ℓ1(λ = 5e −
4) can be considered as overfitting to noisy data. These results suggest that DTF-net exhibits an
enhanced ability to dynamically capture abrupt changes within noisy and complex time series data.

Real-World Dataset To demonstrate the proficiency of DTF-net on complex datasets, we perform
additional trend-filtering analysis using the Nasdaq intraday dataset from July 30th to August 1st,
2019, characterized by rapid changes. Here, we arbitrarily set 6 abrupt changes and qualitatively
analyze the results. As shown in Figure 3, it is evident that the ℓ1 trend filtering algorithm extracts
trends that either underfit or overfit depending on the parameter λ due to constant smoothness. In
contrast, DTF-net accurately captures all six data points and concurrently performs noise filtering for
point 3. This accomplishment is attributed to the dynamic nature of trend extraction within DTF-net.

4.2 TREND FILTERING ANALYSIS ON REAL-WORLD DATASETS

4.2.1 EXPERIMENTAL SETTINGS

Defining the ground truth for trend filtering poses challenges; hence, we indirectly compare methods
within the application to Time Series Forecasting (TSF). TSF models are expected to signal poten-
tial incidents related to extreme values, aiding in critical decision-making (Okubo & Narita, 1980;
Van den Berg et al., 2008). Therefore, to evaluate the practicality of DTF-net in real-world scenarios,
we apply it to TSF, where we incorporate the extracted trend as an additional input feature. Formally,
the forecasting model receives input as X′ = [X,P] ∈ RD+d, with P representing the trend from
DTF-net. Under the same conditions, we compare this model to those using ℓ1 as additional inputs
and only the original sequence X as inputs. We employ the TSF model with NLinear and DLinear
(Zeng et al., 2022), both considered state-of-the-art but simplest in TSF. The experiment focuses on
the univariate case to assess trend filtering effectiveness (Appendix B).

4.2.2 PERFORMANCE ANALYSIS

We specifically select three non-stationary datasets from the TSF benchmark dataset: Exchange
Rate, ETTh1, and Illness. Table 2 indicates that DTF-net outperforms in most cases. In detail,
among the three datasets, the exchange rate dataset is the most intricate, which exhibits the least
seasonality and the highest level of noise. Given the absence of periodicity in financial data, ℓ1
trend filtering encounters difficulties in extracting clear trends. However, DTF-net demonstrates
robustness when dealing with non-stationary time series data.

However, models employing ℓ1 trend filtering, which assumes piece-wise linearity, offer advantages
when dealing with data that exhibits a previous step motion. This linearity is particularly pronounced
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Figure 4: 1) The figure shows how DTF-net addresses overfitting. The x-axis denotes the reward
sampling ratio, while the y-axis represents the MSE. A downward trend indicates better perfor-
mance. Each dataset has an optimal reward ratio, and beyond that point, overfitting occurs. 2) We
conduct experiments to evaluate the influence of trends that incorporate extreme values with long-
heavy tails on forecasting. The figure shows that including extreme values (red) in forecasting plays
a crucial role without undergoing smoothing (blue).

in short-term predictions within ETTh1, as it is the least noisy and most stationary dataset among
the three. As shown in Table 2, ℓ1 achieves the best results for 24- and 48-hour forecasting windows
in ETTh1. While DTF-net also outperforms the single forecasting model, the linearity characteristic
of ℓ1 is better suited for short-term predictions within ETTh1. In contrast, for long-term predictions,
we demonstrate that DTF performs the best. In the case of the Illness with a small dataset size,
DTF-net also performs well without overfitting.

4.2.3 ABLATION STUDY

How to handle overfitting of RL? To mitigate the risk of overfitting in RL-based trend filtering,
we introduce a reward sampling method. This approach offers better control over model updates.
As shown in Figure 4-(a) for the ETTh1 dataset (in blue), reward sampling effectively prevents
overfitting, achieving optimal performance with a reward ratio of 0.1. Similarly, for the Exchange
Rate dataset (in red), optimal performance is observed with a reward ratio of 0.5. Increasing the
reward ratio leads to overfitting and a subsequent decline in performance. Therefore, adjusting the
reward sampling ratio proves effective in mitigating the overfitting problem.

Empirical analysis on extreme value While DNNs typically enhance MSE performance through
empirical risk minimization, they tend to produce smooth, averaged predictions in regression tasks.
However, our objective is to incorporate vital abrupt changes into trends, resulting in predictions
that accurately represent both upward and downward trends rather than providing solely smooth
estimates. Qualitatively, we aim to demonstrate that our methodology better tracks crucial peaks
compared to trends that do not consider extreme values in the prediction task.

We evaluate the impact of trends with extreme values on forecasting tasks by comparing two trends.
The red line includes all DTPs, while the blue line excludes 10% of extreme values. In Figure 4-
(b) for the ETTh1 dataset (pred=24), the blue line struggles to capture abrupt changes effectively,
especially in segments with a variance shift. Consequently, predictions based on the blue dashed
line tend to appear overly smooth. In contrast, forecasts from the trend incorporating extreme values
(illustrated by the red dashed line) exhibit enhanced performance, capturing peaks in the prediction
output and resulting in more accurate forecasts.

5 CONCLUSION

We propose DTF-net, a novel trend filtering approach that directly captures abrupt changes using
RL. Traditional methods fail to capture abrupt changes due to constant smoothness based on approx-
imateness property, whereas DTF-net, directly identifies these points. We define DTPs as essential
trend points and formulate a Trend Point Detection problem as MDP. Using a discrete action space,
the agent identifies critical points, with the reward defined as the MSE of forecasting. In each RL
episode, randomly sampled segments with varying lengths overlap, facilitating bidirectional learn-
ing. The MSE reward allows DTF-net to capture temporal dependencies while extracting trends.
We demonstrate that DTF-net outperforms in identifying abrupt changes using synthetic and Nas-
daq intraday datasets. Additionally, DTF-net excels in predicting by considering crucial peak points
in real-world TSF tasks.
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estimation for heavy-tailed distributions using the champernowne transformation. Statistics, 39
(6):503–516, 2005.

Armin Bunde, Jan F Eichner, Shlomo Havlin, and Jan W Kantelhardt. The effect of long-term corre-
lations on the return periods of rare events. Physica A: Statistical Mechanics and its Applications,
330(1-2):1–7, 2003.

Edoardo Caldarelli, Philippe Wenk, Stefan Bauer, and Andreas Krause. Adaptive gaussian pro-
cess change point detection. In International Conference on Machine Learning, pp. 2542–2571.
PMLR, 2022.

Tony F Chan, Stanley Osher, and Jianhong Shen. The digital tv filter and nonlinear denoising. IEEE
Transactions on Image processing, 10(2):231–241, 2001.

Gregory C Chow. Tests of equality between sets of coefficients in two linear regressions. Econo-
metrica: Journal of the Econometric Society, pp. 591–605, 1960.

Peter F Craigmile and Donald B Percival. Wavelet-based trend detection and estimation. Entry in
the Encyclopedia of Environmetrics. Chichester, UK: John Wiley & Sons, pp. 2334–2338, 2002.

David A Dickey and Wayne A Fuller. Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American statistical association, 74(366a):427–431, 1979.

Daizong Ding, Mi Zhang, Xudong Pan, Min Yang, and Xiangnan He. Modeling extreme events in
time series prediction. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1114–1122, 2019.

Evgeniı̆ Borisovich Dynkin and Evgenij Borisovič Dynkin. Markov processes. Springer, 1965.
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A EXTENDED PROOFS FOR APPROXIMATENESS AND GAUSSIAN
DISTRIBUTION

Ding et al. (2019) provided evidence that minimizing Equation 3 assumes a Gaussian distribution
with variance τ , such that p(yt|xt, θ) = N (ot, τ

2), based on Bregman’s theory Banerjee et al.
(2005); Singh & Gordon (2008).

P̂ (Y ) = min
T∑

t=1

||ot − yt||2,

= maxθΠT
t=1P (yt|xt, θ),

=
1

N

T∑
t=1

N (yt, τ̂
2),

(3)

under the given considerations:

• There is no prior distribution on the discriminative model, and
• The output ot is learned assuming a likelihood such as normal distribution,

the resulting form be similar to a Kernel Density Estimator (KDE) with a Gaussian kernel (Rosen-
blatt, 1956). This indirectly demonstrates that DNNs with a traditional loss function may not per-
form well on extreme values present in heavy-tailed distributions (Buch-Larsen et al., 2005; Ding
et al., 2019).

B EXTENDED EXPERIMENTS ON TSF

B.1 TSF DATASET

We specially choose chaotic datasets in the TSF benchmark for evaluating DTF-net is well-capturing
abrupt changes (Liu et al., 2022b).

Dataset Variable Number Sampling Frequency ADF Test Statistic
Exchange 8 1Day -1.889
ILI 7 1Week -5.406
ETT 7 1Hour / 15Minutes -6.225
Electricity 321 1Hour -8.483
Traffic 862 1Hour -15.046
Weather 21 10Minutes -26.661

Table 3: Summary of TSF datasets. Smaller ADF test statistic indicates a more stationary dataset.

• ETTh1: Electricity Transformer Temperature for a 1-hour period. The data is gathered
over a two-year period from two different Chinese countries. The target value “Oil Tem-
perature” and six power load features make up each data point (Zhou et al., 2021).

• Exchange Rate: The collection of the daily exchange rates of eight foreign countries
including Australia, British, Canada, Switzerland, China, Japan, New Zealand, and Singa-
pore ranging from 1990 to 2016 (Lai et al., 2018).

• Illness: Patient data recorded for influenza illness weekly from the US Centers for
Disease Control and Prevention between 2002 and 2021. This dataset shows the ratio of
patients seen with influenzalike illness and the number of patients (Wu et al., 2021).

B.2 TSF BASELINES.

• Autoformer: As a Transformer-based method, Autoformer learns the temporal pattern
of time series by decomposition and Auto-Correlation mechanism through Fast Fourier
Transform (Wu et al., 2021).
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• FEDformer: As a Transformer-based method, FEDformer introduced a Mixture of Ex-
perts (MOE) for seasonal-trend decomposition and frequency-enhanced block/attention
with Fourier and Wavelet Transform (Zhou et al., 2022).

• DLinear: Only using Linear layers, DLinear decomposes the original input into a trend
and remainder components. Then, two linear layers are applied to each component and
sum up the two features to obtain the final prediction (Zeng et al., 2022).

• NLinear: To overcome the train-test distribution shift in the dataset, NLinear uses a
simple normalization that subtracts the last value from the input and adds it back before
making the final prediction (Zeng et al., 2022).

• PatchTST:As a transformer-based model, PatchTST has two components: segmentation
of time series into subseries-level patches, and channel-independence structure. PatchTST
can capture local semantic information and benefit from longer look-back windows (Nie
et al., 2022).

Dataset Input Length Prediction Length Forecasting Model Reward Ratio Learning Rate RL Epoch Forecasting Epoch Max Sequence Length

Exchange Rate

336 720 DLinear 0.4 5e-4 10000 15 3000
336 336 DLinear 0.4 5e-4 10000 15 3000
336 192 DLinear 0.4 1e-4 10000 15 3000
336 96 NLinear 0.4 1e-4 3000 15 3000
336 48 NLinear 0.4 1e-4 3000 15 3000
336 24 NLinear 0.4 1e-4 3000 15 3000

ETTh1

336 720 NLinear 0.1 1e-3 10000 20 3000
336 336 NLinear 0.1 9e-4 10000 15 3000
336 192 NLinear 0.1 3e-4 10000 15 3000
336 96 NLinear 0.1 5e-4 1000 15 3000
336 48 NLinear 0.1 5e-4 1000 15 3000
336 24 NLinear 0.1 5e-4 1000 15 3000

Illness
104 60 NLinear 0.1 1e-3 1000 15 300
104 48 NLinear 0.1 1e-3 5000 15 300
104 24 NLinear 0.1 1e-3 10000 15 300

Table 4: Hyper-Parameters.

As for baseline, the learning rate follows Table 4, but when overfitting occurs it downgrades to 1e−4
according to (Zeng et al., 2022). Other conditions are the same as follows: Adam optimizer, MSE
loss function, 15 epochs, and 32 batch sizes. Note that Linear models use 336 as the input sequence
length, and the Transformer model uses 96. DTF-net uses PPO (Schulman et al., 2017) to extract
trends. The seed number was arbitrarily set to 2023.
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B.3 EXTENDED EXTREME VALUE STUDY ON TSF
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Figure 5: In addition to Figure 4-(b), we provide a qualitative example to demonstrate the importance
of including extreme values in the trend. Through two datasets, ETTh1 and Exchange rate (EXC),
we can observe that when extreme values are removed (indicated by the blue line) in both short-term
(24 pred) and long-term (336 pred) forecasting, the forecasting results also appear to be smoother.
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C EXTENDED ABLATION STUDY ON DTF-NET
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Figure 6: The figure shows how trends extracted by DTF-net vary within the same sub-sequence
of the exchange rate dataset based on different prediction horizon sizes. As the prediction horizon
increases, Dynamic Trend Points (DTPs) are captured in more detail, as exemplified by the index
at 400. Compared to existing trend filtering methods, DTF-net indicates its ability to extract more
dynamic trends.

C.1 ABLATION STUDY ON STATE

State Episode non-sequential non-sequential sequential sequential zero padding
length dynamic static dynamic static

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange

24 0.0250 0.1198 0.0263 0.1228 0.0264 0.1231 0.0263 0.1227 0.0259 0.1215
48 0.0487 0.1658 0.0500 0.1697 0.0496 0.1689 0.0501 0.1699 0.0486 0.1655
96 0.0983 0.2349 0.0995 0.2363 0.0994 0.2363 0.0982 0.2348 0.0983 0.2350
192 0.1983 0.3583 0.1986 0.3587 0.2013 0.3607 0.1984 0.3582 0.2003 0.3598
336 0.3160 0.4561 0.3163 0.4562 0.3166 0.4562 0.3140 0.4541 0.3166 0.4564
720 0.7933 0.6874 0.7922 0.6822 0.7903 0.6878 0.7893 0.6874 0.7889 0.6871

ETTh1

24 0.0253 0.1205 0.0264 0.1228 0.0255 0.1205 0.0259 0.1214 0.0258 0.1216
48 0.0375 0.1479 0.0381 0.1487 0.0381 0.1485 0.0379 0.1478 0.0379 0.1479
96 0.0519 0.1740 0.0551 0.1810 0.0554 0.1808 0.0553 0.1808 0.0555 0.1811
192 0.0676 0.2013 0.0680 0.2019 0.0700 0.2051 0.0687 0.2026 0.0695 0.2041
336 0.0803 0.2247 0.0805 0.2252 0.0796 0.2238 0.0806 0.2254 0.0803 0.2244
720 0.0776 0.2224 0.0808 0.2271 0.0809 0.2273 0.0808 0.2273 0.0795 0.2255

Illness
24 0.5881 0.5358 0.5805 0.5363 0.5845 0.5376 0.5621 0.5316 0.5808 0.5464
48 0.6858 0.6359 0.6558 0.6329 0.6813 0.6535 0.6255 0.5964 0.6551 0.6310
60 0.6640 0.6423 0.7481 0.7029 0.6506 0.6265 0.7455 0.6979 0.6513 0.6270

Table 5: State ablation study results. The table shows the forecasting performance across different
state encoding. The results exhibit best performance are highlighted in bold and the second best
performance are underlined. Additionally, for the zero padding compared to positional encoding,
the beaten performance is highlighted.

We conduct an ablation study based on the state encoding method. First, the construction of episodes
is divided into two approaches: a non-sequential method based on random sampling and a sequential
method following the conventional time axis order. Next, the composition of episode length is
categorized into a dynamic approach with random sampling and a static approach using a fixed
window. Note that static length is set to 1500 for Exchange and ETTh1, and 200 for Illness. As
shown in Table 5, it is evident that the proposed method, non-sequential episodes with dynamic
length, exhibits the most superior and robust performance, overall. Following this, the traditional
approach, sequential episodes with static length, shows second robust performance. This confirms
that DTF-net achieves excellent performance through the bidirectional learning it aims for, while the
sequential episode with static length method occasionally exhibits overfitting results.

Next, positional encoding achieves superior performance compared to zero padding. However, in
the Illness dataset, zero padding performs better. This is because Illness has a relatively short past
horizon, which is 104, making simple zero padding more effective compared to Exchange and ETTh.
However, as the past horizon for forecasting increases, reaching 336, positional encoding proves to
be more effective.
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C.2 ABLATION STUDY ON REWARD WITH SEED TEST

Seed 2023 52 454 470 515 695 1561 1765 1953 2021 2022
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange

24 0.0250 0.1198 0.0265 0.1236 0.0256 0.1211 0.0256 0.1220 0.0258 0.1209 0.0267 0.1237 0.0261 0.1226 0.0253 0.1203 0.0267 0.1239 0.0263 0.1227 0.0265 0.1231
48 0.0487 0.1658 0.0499 0.1682 0.0498 0.1677 0.0503 0.1691 0.0492 0.1658 0.0492 0.1674 0.0500 0.1681 0.0480 0.1655 0.0493 0.1680 0.0480 0.1650 0.0510 0.1703
96 0.0983 0.2349 0.1007 0.2363 0.0989 0.2349 0.0970 0.2322 0.0985 0.2322 0.0982 0.2356 0.0992 0.23540 0.0994 0.2360 0.0982 0.2350 0.1007 0.2335 0.1004 0.2368

192 0.1983 0.3583 0.2096 0.3673 0.2004 0.3562 0.2023 0.3565 0.2115 0.3751 0.2009 0.3567 0.1978 0.3595 0.2063 0.3667 0.1904 0.3513 0.2056 0.3649 0.1929 0.3512
336 0.3160 0.4561 0.4085 0.4939 0.3311 0.4712 0.3288 0.4678 0.3409 0.4716 0.3180 0.4467 0.3199 0.4587 0.3559 0.4874 0.3333 0.4626 0.3124 0.4578 0.3606 0.4768
720 0.7933 0.6874 0.7583 0.6847 0.8022 0.7083 0.8888 0.7331 1.0462 0.7938 0.9455 0.7649 0.9338 0.7445 1.0001 0.7788 0.8769 0.8769 0.9480 0.7534 0.7889 0.6985

ETTh1

24 0.0253 0.1205 0.0258 0.1219 0.0259 0.1218 0.0266 0.1234 0.0259 0.1222 0.0250 0.1197 0.0261 0.1224 0.0264 0.1235 0.0263 0.1233 0.0258 0.1214 0.0260 0.1221
48 0.0375 0.1479 0.0381 0.1485 0.0383 0.1489 0.0388 0.1501 0.0404 0.1546 0.0388 0.1497 0.0391 0.1507 0.0389 0.1505 0.0370 0.1467 0.0391 0.1508 0.0386 0.1490
96 0.0519 0.1740 0.0528 0.1763 0.0561 0.1824 0.0532 0.1774 0.0536 0.1774 0.0540 0.1780 0.0544 0.1789 0.0525 0.1755 0.0531 0.1768 0.0539 0.1777 0.0536 0.1783

192 0.0676 0.2013 0.0697 0.2041 0.0683 0.2036 0.0704 0.2057 0.0698 0.2048 0.0703 0.2054 0.0681 0.2024 0.0695 0.2034 0.0695 0.2049 0.0694 0.2044 0.0686 0.2032
336 0.0803 0.2247 0.0856 0.2325 0.0781 0.2231 0.0818 0.2272 0.0834 0.2285 0.0833 0.2291 0.0801 0.2247 0.0792 0.2232 0.0815 0.2266 0.0819 0.2278 0.0807 0.2253
720 0.0776 0.2224 0.0784 0.2239 0.0823 0.2288 0.0820 0.2285 0.0832 0.2304 0.0820 0.2278 0.0813 0.2278 0.0814 0.2282 0.0792 0.2255 0.0802 0.2252 0.0805 0.2262

Illness
24 0.5881 0.5358 0.6275 0.5617 0.6100 0.5498 0.6684 0.5718 0.6285 0.5689 0.5647 0.5117 0.5764 0.5310 0.6112 0.5424 0.5476 0.5303 0.7151 0.6080 0.6570 0.5621
48 0.6858 0.6359 0.7178 0.6531 0.6534 0.6170 0.7407 0.6822 0.7241 0.6626 0.5881 0.5655 0.6829 0.6604 0.6343 0.6021 0.5991 0.5642 0.7104 0.6532 0.7159 0.6435
60 0.6640 0.6423 0.6682 0.6448 0.7822 0.7338 0.7314 0.6879 0.6492 0.6290 0.7194 0.6805 0.7020 0.6607 0.6526 0.6399 0.7493 0.6955 0.6769 0.6408 0.6479 0.6196

var / length 24 48 60 96 192 336 720
Exchange 3e− 7 9e− 7 - 1e− 6 5e− 5 8e− 4 9e− 3

ETTh1 1e− 7 7e− 7 - 1e− 6 6e− 7 5e− 6 2e− 6
Illness 3e− 3 3e− 3 2e− 3 - - - -

Table 6: Seed test result with interval reward. The table shows the forecasting performance across
various seeds. The performance is evaluated using DTF-net with rewards sampled at equal intervals.
The results from the seed that exhibited better performance, with 2023 as the reference seed, are
highlighted in bold. The second table shows the performance variance of the seed tests based on
MSE.

Seed 2023 52 454 470 515 695 1561 1765 1953 2021 2022
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange

24 0.0250 0.1198 0.0265 0.1237 0.0251 0.1198 0.0259 0.1228 0.0250 0.1186 0.0254 0.1207 0.0254 0.1205 0.0257 0.1210 0.0269 0.1244 0.0263 0.1230 0.0261 0.1218
48 0.0487 0.1658 0.0491 0.1666 0.0498 0.1678 0.0502 0.1682 0.0492 0.1658 0.0491 0.1665 0.0497 0.1670 0.0479 0.1652 0.0495 0.1682 0.0485 0.1665 0.0498 0.1683
96 0.0983 0.2349 0.1003 0.2356 0.1009 0.2348 0.0970 0.2322 0.0968 0.2308 0.0952 0.2323 0.0985 0.2345 0.0991 0.2355 0.0996 0.2366 0.1006 0.2343 0.1004 0.2366
192 0.1983 0.3583 0.2091 0.3652 0.2019 0.3575 0.1994 0.3538 0.2130 0.3760 0.2028 0.3579 0.1990 0.3593 0.2093 0.3693 0.1907 0.3515 0.2055 0.3648 0.1924 0.3508
336 0.3160 0.4561 0.4040 0.4926 0.3329 0.4728 0.3284 0.4675 0.3409 0.4719 0.3202 0.4480 0.3193 0.4581 0.3571 0.4880 0.3334 0.4629 0.3122 0.4585 0.3638 0.3638
720 0.7933 0.6874 0.7600 0.6855 0.7693 0.6920 0.8888 0.7332 1.0404 0.7913 0.9442 0.7636 0.9398 0.7483 0.9685 0.7745 0.8746 0.7249 0.9457 0.7529 0.7856 0.6955

ETTh1

24 0.0253 0.1205 0.0257 0.1214 0.0258 0.1218 0.0268 0.1235 0.0257 0.1218 0.0250 0.1196 0.0261 0.1225 0.0260 0.1222 0.0254 0.1203 0.0258 0.1215 0.0261 0.1222
48 0.0375 0.1479 0.0381 0.1485 0.0386 0.1493 0.0396 0.1513 0.0378 0.1488 0.0389 0.1499 0.0391 0.1506 0.0387 0.1502 0.0370 0.1470 0.0388 0.1502 0.0385 0.1490
96 0.0519 0.1740 0.0529 0.1765 0.0557 0.1819 0.0535 0.1779 0.0537 0.1778 0.0525 0.1751 0.0543 0.1789 0.0526 0.1757 0.0525 0.1760 0.0538 0.1774 0.0536 0.1783
192 0.0676 0.2013 0.0698 0.2040 0.0709 0.2067 0.0717 0.2081 0.0698 0.2049 0.0697 0.2046 0.0680 0.2023 0.0696 0.2034 0.0703 0.2063 0.0695 0.2042 0.0690 0.2040
336 0.0803 0.2247 0.0845 0.2314 0.0783 0.2229 0.0818 0.2272 0.0825 0.2277 0.0844 0.2302 0.0800 0.2251 0.0822 0.2268 0.0806 0.2256 0.0820 0.2271 0.0807 0.2250
720 0.0776 0.2224 0.0782 0.2234 0.0808 0.2267 0.0826 0.2292 0.0823 0.2292 0.0790 0.2237 0.0808 0.2272 0.0801 0.2253 0.0805 0.2271 0.0804 0.2254 0.0800 0.2253

Illness
24 0.5881 0.5358 0.6157 0.5495 0.6326 0.5689 0.6237 0.5672 0.7393 0.6669 0.5641 0.5293 0.6009 0.5684 0.6278 0.5575 0.6121 0.5471 0.6330 0.5590 0.6681 0.5958
48 0.6858 0.6359 0.7181 0.6537 0.7076 0.6407 0.7800 0.7061 0.7205 0.6726 0.6398 0.5907 0.6958 0.6621 0.6363 0.6025 0.6254 0.5743 0.6340 0.6171 0.7155 0.6495
60 0.6640 0.6423 0.6542 0.6329 0.7767 0.7326 0.7394 0.6881 0.6728 0.6501 0.7359 0.6929 0.7140 0.6658 0.6626 0.6460 0.7291 0.6829 0.6598 0.6236 0.6483 0.6203

var / length 24 48 60 96 192 336 720
Exchange 4e− 7 5e− 7 - 4e− 7 5e− 7 8e− 4 9e− 3

ETTh1 2e− 7 5e− 7 - 1e− 6 1e− 6 4e− 6 2e− 6
Illness 2e− 3 3e− 3 2e− 3 - - - -

Table 7: Seed test result with random reward. The table shows the forecasting performance
across various seeds. The performance is evaluated using DTF-net with rewards sampled at random
intervals. The results from the seed that exhibited better performance, with 2023 as the reference
seed, are highlighted in bold. The second table shows the performance variance of the seed tests
based on MSE.

We perform experiments under two conditions to evaluate the performance of DTF-net using dif-
ferent seeds: 1) sampling rewards at equal intervals (Table 6), and 2) randomly sampling rewards
(Table 7), using 10 randomly selected seeds. The outcomes presented in Tables 6 and 7 reveal a lim-
itation associated with high variance, stemming from the sensitivity of RL’s hyperparameters and
the choice of seeds. However, it’s worth noting that there is also an advantage in that by identifying
optimal hyperparameters and seeds, better performance can be achieved.
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D LIMITATION OF DTF-NET

0 200 400 600 800

0.5

0.4

0.3

0.2

0.1

0.0

0th episode
1th episode
2th episode
3th episode
4th episode
5th episode
6th episode
7th episode

(a) ETTh1 Reward

0 200 400 600 800
0.12

0.10

0.08

0.06

0.04

0.02

0.00

0th episode
1th episode
2th episode
3th episode
4th episode
5th episode
6th episode
7th episode

(b) EXC Reward

Figure 7: The figure shows rewards obtained from dynamically segmented sub-sequences across
different episodes from ETTh1 and exchange rate (EXC). Since DTF-net uses the forecasting cost
function as a reward, the reward tends to be unstable.

D.1 DTF-NET ON STATIONARY TSF: WEATHER AND TRAFFIC DATASET

Methods DTF-Linear (ours) ℓ1(λ = 0.1)-Linear NLinear DLinear FEDformer-f FEDformer-w Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

24 0.0004 0.0143 0.0004 0.0133 0.0004 0.0128 0.0019 0.0323 0.0272 0.1263 0.0217 0.0217 0.0133 0.0957
48 0.0008 0.0208 0.0008 0.0188 0.0007 0.0190 0.0043 0.0513 0.0053 0.0586 0.0055 0.0599 0.0115 0.0850
96 0.0010 0.0236 0.0010 0.0227 0.0010 0.0233 0.0047 0.0543 0.0096 0.0770 0.0055 0.0593 0.0094 0.0769

192 0.0012 0.0253 0.0012 0.0257 0.0012 0.0261 0.0054 0.0591 0.0048 0.0558 0.0048 0.0559 0.0055 0.0570
336 0.0014 0.0277 0.0014 0.0279 0.0014 0.0278 0.0064 0.0664 0.0049 0.0554 0.0049 0.0552 0.0082 0.0683
720 0.0019 0.0318 0.0019 0.0323 0.0019 0.0329 0.0066 0.0679 0.0036 0.0479 0.0036 0.0478 0.0055 0.0561

Traffic

24 0.1155 0.1963 0.1248 0.2174 0.1159 0.1962 0.1166 0.1986 0.1526 0.2535 0.1506 0.2432 0.2279 0.3461
48 0.1251 0.2110 0.1327 0.2240 0.1214 0.2002 0.1228 0.3505 0.1729 0.2772 0.1803 0.2759 0.2523 0.3666
96 0.1391 0.2283 0.1402 0.2322 0.1282 0.2074 0.1300 0.2114 0.1890 0.2884 0.1933 0.2872 0.2550 0.3665

192 0.1389 0.2263 0.1429 0.2354 0.1328 0.2132 0.1331 0.2151 0.1901 0.2936 0.1955 0.2978 0.2531 0.3594
336 0.1619 0.2629 0.1419 0.2377 0.1301 0.2163 0.1331 0.2213 0.1980 0.3073 0.2000 0.3092 0.2965 0.3926
720 0.1548 0.2518 0.1550 0.2516 0.1423 0.2283 0.1455 0.2349 0.2601 0.3469 0.2634 0.3474 0.3935 0.4562

Table 8: We conduct TSF experiments using three datasets: Weather and Traffic. We evaluate
performance using MSE and MAE, where lower values indicate better performance. In the following
results, the best-performing models using DTF-net are highlighted in bold, and models using ℓ1
trend filtering are highlighted in italic. To compare the results, the best-performing models using
the original data are underlined.

Limitation DTF-net is primarily designed to address the trend filtering problem, with a specific
focus on capturing abrupt changes driven by extreme values. Consequently, DTF-net may not be
the most suitable choice for handling stationary datasets. To support this claim, we observed that
both DTF-net and traditional trend filtering exhibit suboptimal performance in the realm of TSF
when applied to stationary datasets. This suggests that, in the context of stationary datasets, whether
the emphasis is on smoothing or capturing abrupt changes, trend filtering may impede rather than
enhance TSF performance. However, as indicated by the results in Table 8, we substantiate that
DTF-net excels in terms of performance when dealing with non-stationary and complex datasets.

D.2 COMPUTATIONAL COST

Trend filtering is currently being researched in various approaches, ranging from traditional algo-
rithms that optimize a single objective function to methods that utilize deep learning (Xu et al.,
2020; Khodadadi & McDonald, 2019; Wang et al., 2021a; Liu et al., 2020; Wang et al.). While
directly comparing the computational cost of deep learning and traditional methods is hard, when
comparing optimization and time complexity, traditional algorithms optimize a single sequence at
once, resulting in O(1) complexity. In contrast, deep learning methods train in batches, leading
to O(n) complexity, where n is the data size. In other words, the computational cost for training
and inference in deep learning increases with the data size. However, deep learning offers the ad-
vantage of higher model capacity compared to conventional methods and the ability to learn in a
data-dependent manner.
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The computational cost of RL can vary widely depending on several factors such as the complexity
of the environment, the algorithm being used, the size of the action and state spaces, and the number
of training iterations. RL algorithms involve interactions between the agent and the environment,
where the agent learns to take actions to maximize cumulative rewards over time. This learning
process often requires multiple iterations of trial and error.

Some RL algorithms, like Q-learning or DQN, can be computationally expensive due to their re-
liance on maintaining value functions or action-value tables. On the other hand, more modern
algorithms like A2C, PPO, or SAC are designed to distribute the learning process across multiple
parallel agents, which can significantly reduce the time required for convergence.

Additionally, the choice of neural network architecture, hyperparameters, and the size of the training
dataset can also impact the computational costs. Training deep neural networks, which is common
in RL, can be resource-intensive, especially if large datasets are used.

Therefore, DTF-net may have limitations on computational expenses, overfitting issues, and tuning
hyper-parameters, since it’s based on RL. However, DTF-net addresses these issues as follows,

• Data-expensive: While deep networks typically require a substantial amount of data, DTF-
net demonstrates robust performance even with small synthetic datasets or Illness data,
utilizing a simple MLP policy.

• Computational-expensive: As discussed in the Appendix, we acknowledge the high com-
putational cost of RL. However, we structured episodes through sampling to optimize DTF-
net with a minimal number of steps.

• Overfitting: We address the overfitting issue through reward sampling. Given that the
reward we employ is a penalty with a negative value, RL learns to minimize this penalty.
However, continuous application of the penalty may lead to overfitting. To mitigate this,
we intermittently apply the penalty during the training of DTF-net, aiming to prevent over-
fitting.

• Hyper-parameter tuning: To minimize the number of hyperparameters and ensure the
robust performance of DTF-net, we have introduced a sampling methodology.

21



Under review as a conference paper at ICLR 2024

E EXTENDED RELATED WORK ON RL FOR DISCRETE ACTION SPACE
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Figure 8: The figure presents diverse trend-filtering outcomes achieved through various RL algo-
rithms. Specifically, DQN exhibits an underfitting trend, whereas A2C displays an overfitting trend.

The agent performs the action At at the state St. The environment returns St+1 corresponding to
the following state and the reward Rt+1 to the agent. In MDP, the agent learns to predict action
to maximize the cumulative reward for each state. The probability distribution that the action is
selected for each state is called policy π(a|s) = Pr(At = a|St = s). State-value function, denoted
as vπ(s) is the expected value of return following policy π from state s as follows,

vπ(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γvπ(St+1)|St = s]

=
∑
a∈A

π(a|s)(r(s, a) + γ
∑
s′∈S

p(s′|s, a)vπ(s′)). (4)

Action-value function, denoted as qπ(s, a) is the expected value of return from action a and state s
as follows,

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = s]

= r(s, a) + γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)qπ(a′|s′).
(5)

Then, the Bellman equations express vπ and qπ and the optimality equations v∗ and q∗. The model
that needs the state transition probability and the corresponding reward in each state, such as value-
iteration, is called Model-based. The model that does not need the above information, such as
Q-learning, is called Model-free (Jaderberg et al., 2016; Sutton & Barto, 2018; Mnih et al., 2013;
Silver et al., 2014).

DQN DQN is the first approach to solve the problems of traditional RL, such as sample correlation
and change in the data distribution. The target value is defined by the following two methods.
First, the Experience Replay Buffer decreases updated variance and sample correlation by random
extraction. Since the Q-function considers various actions simultaneously, the policy is averaged
to solve a bias in the data distribution. Second, the target network has a dual structure in the main
Q-Network (Mnih et al., 2013; 2015).

A2C If the episode is prolonged, the variance increases. To overcome this, Actor-Critic does not
use the Replay Buffer but learns action directly. The actor-critic defines the policy network using
the estimated value function (Sutton & Barto, 2018).

PPO As for model-free-based learning, PPO is a variation of A2C, which reuses learned data with
sampling. PPO has the advantage of using both continuous and discrete actions. PPO approxi-
mates first-order derivation using clipping to solve the complexity of the surrogate object function
in TRPO. Here, TRPO is a trust region that makes stability in training. Finally, PPO optimizes
the objective function by reflecting the Action Entropy for State-Value and Exploration (Schulman
et al., 2015; 2017).
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Figure 9: 1) The first-column graph shows the trend extracted from the ℓ1, Wavelet, and EMD
methods. The constant smoothness extracts a rigid trend that filters out noise for entire sequences.
2) The second-column graph shows that statistical-based and CPD algorithms detect abrupt changes
with their criteria in a real-world dataset: ETTh1. The detected points are irregular and difficult
to validate. 3) Figure (f) shows the challenges with current algorithms when identifying abrupt
changes, as highlighted by the red circle, through only shifts in variance.

F DISCUSSION

F.1 LIMITATIONS OF TRADITIONAL TREND FILTERING ALGORITHMS

H-P and ℓ1 Trend Filtering Hodrick-Prescott filtering (H-P) (Hodrick & Prescott, 1997) extracts
trends by minimizing the residual between original data yt and trend xt. Given a scalar time series
yt ∈ R, where t = {1, ..., n}, assume slow-varying xt ∈ R and abrupt-varying (yt − xt). To
estimate xt, H-P trend filtering minimizes the weighted sum objective function as follows,

1

2

n∑
t=1

(yt − xt)
2 + λ

n−1∑
t=2

(xt−1 − 2xt + xt+1)
2, (6)

where λ ∈ R+ is a regularization parameter, which adjusts the degree of smoothness.

ℓ1 trend filtering (Kim et al., 2009) is a variation on H-P trend filtering. ℓ1 trend filtering estimates
the smoothness in a piece-wise linear sense. To better reflect abrupt changes, ℓ1 trend filtering
replaces the sum of squares term with a sum of the absolute values. However, the second-order
difference operators cause two crucial limitations. One is delayed detection of abrupt changes, even
using future time-step xt+1. The other is that optimal λ should be found to obtain the trend with the
appropriate degree of smoothness (Moghtaderi et al., 2011). On the other hand, TV-denoising trend
filtering (Chan et al., 2001), which utilizes first-order differences, focuses excessively on abrupt
changes, resulting in delays in capturing slow-varying trends (Wen et al., 2019).

Wavelet Trend Filtering Wavelet extract trends depend on the time and frequency domain to handle
non-stationary signals. Utilizing both time and frequency extracts a more robust trend containing
abrupt changes. However, choosing an orthogonal basis is a difficult problem and can lead to high
levels of overfitting (Wen et al., 2019; Rhif et al., 2019; Craigmile & Percival, 2002).

EMD The Empirical Mode Decomposition (EMD) (Wu et al., 2007) decomposes a time series into
a finite set of oscillatory modes known as the Intrinsic Mode Functions (IMFs) (Huang et al., 1998;
Moghtaderi et al., 2011; Gaci, 2016). However, EMD needs to choose a free parameter for IMF that
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adjusts the smoothness of the trend. In addition, the mode mixing effect can occur and the wrong
mode can limit EMD due to bias in the local mean value.

A common limitation of existing trend filtering methods is their noise filter with a fixed window,
which results in the inability to accurately capture abrupt changes. Constant smoothness ignores
important events in long-tail time series distributions. As shown in the first column of Figure 9, the
abrupt change at the 100th point is not reflected in any of the trend filtering methods.

F.2 LIMITATIONS OF STRUCTURAL BREAK POINTS AND CHANGE POINT DETECTION
ALGORITHMS TO DETECT ABRUPT CHANGES

Statistical Test Structural Break Points (SBP) can be applied to a wide range of time series domains.
There are various statistic-based algorithms that can validate found SBPs, such as Chow (Chow,
1960), Augmented Dickey-Fuller (Dickey & Fuller, 1979), and CUSUM (Ploberger & Krämer,
1992). However, in real-world applications, detection should precede even without prior knowledge.

Figure 9 (b) shows the results of detected SBP by different statistical algorithms based on the max-
imum F-value. In various characteristics of SBP, each algorithm only detects fitted SBP according
to their own rules. The detected breakpoints are irregular and difficult to adapt to the trend.

Change Point Detection Change Point Detection (CPD) is a method for identifying abrupt changes
in time series data when the probability distribution changes. While CPD algorithms aren’t inher-
ently tailored for trend filtering, there is a certain degree of overlap in their objectives with trend
filtering in the perspective of capturing abrupt changes. One popular approach to CPD is Bayesian
Online Change Point Detection (BOCPD) (Adams & MacKay, 2007), which uses Bayesian infer-
ence. However, BOCPD has limitations in practical applications due to its assumption of indepen-
dence and the presence of temporal correlations between samples (Saatçi et al., 2010; Caldarelli
et al., 2022). Additionally, the constant hazard function H(τ) makes BOCPD sensitive to hyper-
parameters (Han et al., 2019).

The Kolmogorov-Smirnov (KS) test (Gong & Huang, 2012) segments time series into left and right
sections. Since the KS algorithm is only applicable in offline detection, the dynamic length of
segmentation is extracted by considering all segment cases of the entire time series. However, of-
fline detection is highly sensitive to the input length, and an additional threshold must be defined
heuristically to detect change points. Additionally, RED-SDS (Ansari et al., 2021) needs to em-
ploy a labeling process to determine the correct change points. Segmentation algorithms can miss
important change points within the segment due to the clustering effect.

The clustering-based TICC algorithm (Hallac et al., 2017) generates a sparse Gaussian inverse co-
variance matrix by segments, using Lasso regularization. However, since the number of clustering
functions is a hyper-parameter that requires prior knowledge, only a fixed number of change points
can be detected. Similar to the KS test, finding change points within the same cluster is difficult.

The Gaussian Process (GP) and Bayesian-based ADAGA algorithm (Caldarelli et al., 2022) detects
mean shifts as change points, but its results depend on the kernel type used (IP and QFF). While GP
approximates smoothness using mean-square differentiable functions (Banerjee & Gelfand, 2003), it
has limitations in capturing non-smoothness (Luo et al., 2021). Consequently, Bayesian models are
well-suited for CPD, but their applicability to trend filtering, which aims to include extreme values,
remains uncertain.

The second column of Figure 9 reveals irregularities in detecting change points on the ETTh1
dataset (Zhou et al., 2021) by algorithms such as Chow, ADF, CUSUM, KS test, TICC, and BOCPD,
which rely on different criteria. Furthermore, as shown in Figure 9 (f), probabilistic models (Adams
& MacKay, 2007; Caldarelli et al., 2022; Ansari et al., 2021) have a significant limitation in detect-
ing mid-points (green) instead of the vertices of abrupt changes (red). Further discussion on this
topic can be found in the Appendix.

F.3 LIMITATION OF ANOMALY DETECTION ALGORITHMS TO DETECT ABRUPT CHANGES

Anomaly detection involves identifying abnormal points or sub-sequences in time series data, align-
ing with the concept of extreme values. As capturing extreme values is a common objective with
DTF-net, we compare recent anomaly detection algorithms regarding their ability to capture abrupt
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Figure 10: A comparative experiment between Change Point Detection (CPD), Anomaly De-
tection, and DTF-net for trend filtering on ETTh1. While the CPD algorithm effectively captures
change points, it faces challenges in extracting trends only based on the detected points (red dots).
However, DTF-net (red line) dynamically performs trend filtering by including abrupt changes, such
as the 300th point.

changes. This includes assessments of TimesNet (Wu et al., 2023), DCdetector (Yang et al., 2023),
and Anomaly Transformer (Xu et al., 2022).

First, TimesNet employs a Temporal Variation Modeling methodology to transform the original 1D
time series into a 2D space, unifying intra-period and inter-period variations. However, it tends
to underfit, capturing only extreme anomalies and making trend extraction challenging. Next, DC
detector adopts a novel dual attention asymmetric design, creating a permutated environment and
using pure contrastive loss for the learning process. While effective in capturing anomalies, DC
detector is weak in handling complex sub-sequences, such as those around axis 80. Finally, Anomaly
Transformer introduces a new Anomaly-Attention mechanism to compute association discrepancies,
applying a minimax strategy to enhance normal-abnormal distinguishability. Although Anomaly
Transformer closely performs trend filtering as anomaly detection, it misses important peaks like
those at 150, 250, and 450. In conclusion, anomaly detection results in varying smoothness of
extracted trends depending on the threshold, and even with an appropriate threshold, points are
often missed in peak regions.

F.4 TREND FILTERING AND ABRUPT CHANGE POINT

Existing trend filtering research has primarily focused on capturing abrupt changes in trends. More
recently, there has been a growing interest in utilizing deep learning models for trend filtering (Wang
et al., 2021a; Liu et al., 2020; Wang et al., 2021b; Xu et al., 2020). However, a common drawback
observed in these studies is their still failure to effectively capture abrupt changes in the data. Abrupt
changes correspond to points in the time series where the trend’s slope experiences significant vari-
ations, often indicating important events. To overcome this limitation, we propose a novel approach
that specifically targets abrupt changes in trend filtering. DTF-net is an innovative methodology that
leverages RL techniques grounded in EVT to detect trend points, including abrupt changes, enabling
dynamic trend filtering.

Since real-world time series data is non-stationary and chaotic, it is challenging to extract trends
using a fixed criterion or a single distribution. Consequently, recent methods have been proposed to
address the Out-Of-Distribution (OOD) challenge (Lu et al., 2022; Belkhouja et al., 2022). However,
finding the optimal number of sub-distributions is difficult, and dividing the entire sequence into
numerous distributions is not a fundamental solution. This approach can lead to overfitting due to
the limited number of distributions in the dataset and make it challenging to learn invariant features
from sub-series (Lu et al., 2022).

In contrast, our objective is not only to identify change points between sub-sequences with differ-
ent distributions but also to incorporate important extreme values that could be considered outliers
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within the same distribution into the trend. To accomplish this, we needed to take a different ap-
proach from existing OOD methods or CPD techniques.

As illustrated in Figure 10 (a) and (b), Bayesian-based change point detection effectively captures
points (red or blue) between sub-sequences with different distributions. However, constructing the
trend using only these points remains challenging due to over-smoothing issues. Therefore, as de-
picted in (c), we employed RL to identify valid points and integrate them into the trend, thereby
accurately representing the non-stationarity of the original data.

G FUTURE WORK

Multivariate Trend Filtering and Time Series Forecasting DTF-net is applied to multivariate
time series data features with the target of univariate trend filtering. This means that RL exam-
ines multidimensional aspects to perform trend filtering on the target. However, individual trend
filtering for each dimension in the multidimensional case has not yet been addressed in this study.
Nevertheless, this is achievable through the multi-discrete action prediction of the PPO algorithm.
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