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Abstract
We present the first systematic evaluation ex-001
amining format bias in performance of large002
language models (LLMs). Our approach distin-003
guishes between two categories of an evalua-004
tion metric under format constraints to reliably005
and accurately assess performance: one mea-006
sures performance when format constraints are007
adhered to, while the other evaluates perfor-008
mance regardless of constraint adherence. We009
then define a metric for measuring the format010
bias of LLMs and establish effective strategies011
to reduce it. Subsequently, we present our em-012
pirical format bias evaluation spanning four013
commonly used categories—multiple-choice014
question-answer, wrapping, list, and mapping—015
covering 15 widely-used formats. Our evalua-016
tion on eight generation tasks uncovers signifi-017
cant format bias across state-of-the-art LLMs.018
We further discover that improving the format-019
instruction following capabilities of LLMs020
across formats potentially reduces format bias.021
Based on our evaluation findings, we study022
prompting and fine-tuning with synthesized for-023
mat data techniques to mitigate format bias.024
Our methods successfully reduce the variance025
in ChatGPT’s performance among wrapping026
formats from 235.33 to 0.71 (%2).027

1 Introduction028

To unlock the full potential of automating real-029

world applications, state-of-the-art large language030

models (LLMs) (Brown et al., 2020; Chowdhery031

et al., 2022; OpenAI, 2022; Touvron et al., 2023)032

are increasingly leveraged to tailor outputs to spe-033

cific task formats. This powerful approach has034

driven advancements across domains including035

medicine (Thirunavukarasu et al., 2023; Clusmann036

et al., 2023), data analysis (Cheng et al., 2023; Liu037

et al., 2023), and even evaluating models them-038

selves (Chiang and Lee, 2023; Chang et al., 2024).039

Employing LLMs in such applications heavily de-040

pends on not only their format-following capability041

but also high-quality results within formats.042

 Prompt: Answer the following question step-by-step. Your final answer is a 
 character identifier (A or B or C or D).

 Question: How many positive integers are factors of 120 and also factors of 40?
 Answer choices: A. 4 | B. 8 | C. 2 | D. 1                                          

 1: Find the prime...the 
 final answer is B. 8.

 To find the number...
 The correct answer is C.

Answer:
Format: 

Answer:
Format: 

 To solve this problem... 
 "The answer is [B]."

Answer:
Format: 

Evaluation

Correct: B. 8

Format prompt: 
Bold the final 

answer. 

Format prompt: 
Filling in the blank:

"The answer is [X]." 

Format prompt:
Italicize the final

answer. 

21 3

Evaluation Evaluation

Figure 1: A MMLU example (Hendrycks et al., 2021) with
ChatGPT across different formats. In Case (1), the model
can answer the question but fails to bold only the answer,
hindering automatic evaluation. In Case (2), the model follows
the format but produces an incorrect result. In Case (3), the
model yields the correct answer and format. These show bias
in ChatGPT’s performance across formats.

While many studies, including those listed above, 043

have utilized LLMs to output in specific formats, 044

understanding their format capabilities is critical 045

yet has received limited attention. Recently, Zhou 046

et al. (2023) and Xia et al. (2024) introduced bench- 047

marks assessing LLM format-following proficiency. 048

However, these studies neglect deeper insights 049

into how these formats impact model performance, 050

which is the ultimate concern for industrial and 051

practical applications. Given numerous formats 052

recently introduced across tasks and models, as- 053

sessing this aspect is essential for business yet chal- 054

lenging. Evaluation can be ambiguous and often 055

overlook cases where models provide correct an- 056

swers but are formatted wrong (Case (1) in Fig. 1). 057

Bridging these gaps, we conduct the first system- 058

atic evaluation of the format bias of LLMs. Our 059

study attempts to answer the research questions: 060

How can we systematically and accurately
assess format bias in the performance of
LLMs, and to what extent are they biased?

061
To fairly assess bias in model performance 062

across formats, it is crucial to evaluate all scenarios 063
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depicted in Fig. 1. Nonetheless, Case (1) is chal-064

lenging to automatically measure, requiring costly065

human investigation. Therefore, we propose a re-066

liable estimator for evaluating LLM performance067

under format constraints without human interven-068

tion by considering format-following scores. We069

start by redefining LLM evaluation metrics into070

two distinct classes to construct the estimator, as071

detailed in §3.1. Accordingly, we define a metric to072

quantify format bias in LLMs and establish criteria073

for evaluating methods that successfully mitigate074

this bias (§3.2). Based on these formulations, we075

present our format evaluation framework, compris-076

ing of the widely-utilized categories of multiple-077

choice question–answer (MCQ; §5.1), wrapping078

(§5.2), list (§5.3) and mapping formats (§5.4).079

Across 15 widely-used formats, our evalua-080

tion with zero-shot and zero-shot chain-of-thought081

prompting (Kojima et al., 2022) on eight question-082

answering and reasoning tasks reveals substantial083

performance and format-instruction following in-084

equalities. To address this, we examine prompting085

and fine-tuning using synthesized format data tech-086

niques that work for both open- and closed-source087

LLMs. Our study validates that enhancing LLMs’088

capabilities to follow format instructions poten-089

tially mitigates format bias: (1) Prompting with090

demonstrations and (2) Repeating format instruc-091

tions substantially alleviates this bias. Moreover,092

we investigate (3) Synthesizing limited format data093

based on our evaluation results for fine-tuning. Our094

approaches significantly decrease ChatGPT per-095

formance variance across wrapping formats from096

235.33 to 0.71 (%2) on MMLU (Hendrycks et al.,097

2021). Our key contributions are:098

1. We introduce the first systematic framework099

to evaluate format performance bias in LLMs.100

2. A large-scale evaluation spanning 15 formats,101

8 tasks, and 3 models revealing substantial102

LLM performance variance across formats.103

3. The development of 3 novel prompting and104

fine-tuning methods to mitigate this bias.105

2 Related Works106

Large language models (LLMs) have shown re-107

markable proficiency in formatting outputs to meet108

human expectations. Such formats include mark-109

down for lists and pointers (Achiam et al., 2023),110

code blocks (Gur et al., 2022), and integrate tags,111

or LaTeX for scientific texts (Singh et al., 2023; 112

Wang et al., 2024). Given the rising importance of 113

formatting capabilities in LLMs, recently, format- 114

following benchmarks have been developed for 115

assessing LLMs’ adherence to specified formats 116

(Zhou et al., 2023; Xia et al., 2024; Chen et al., 117

2024; Macedo et al., 2024; Liu et al., 2024). How- 118

ever, these studies only evaluate format-instruction 119

following capabilities. Our research further as- 120

sesses LLM performance across different formats, 121

uncovering significant format bias in various tasks 122

and models. We also acknowledge the concurrent 123

work by Tam et al. (2024), which examines the 124

impact of format restrictions on LLM performance. 125

However, unlike our approach, they do not disen- 126

tangle evaluation metrics under format constraints 127

and only evaluate 3 structured formats, substan- 128

tially fewer than our study. 129

3 Output Format Evaluation Framework 130

3.1 Theoretical Analysis: Format Evaluation 131

Automatic evaluation of LLMs in question- 132

answering and reasoning tasks mainly relies on 133

rule-based extraction to identify final answers from 134

generated texts (Guo et al., 2023). Within for- 135

mat constraints, determining the model’s true per- 136

formance, which is our focus, can be ambiguous 137

and inaccurate, as correct responses might be over- 138

looked due to format discrepancies (e.g., Case (1) 139

in Fig. 1). To address this, we propose redefin- 140

ing these rule-based evaluation metrics to reliably, 141

transparently and accurately measuring the LLM 142

performance given formats restrictions. 143

Notations. Suppose that we are interested in eval- 144

uating an LLM M on a task T using an evaluation 145

metric E (such as “Accuracy”) under a format con- 146

straints C (such as “Bold the final answer.”) on n 147

samples with the ground-truth answers {y1, ..., yn} 148

and raw generated answers {ŷ1, ..., ŷn}, where 149

yi, ŷi ∈ Y ∀i with Y being the answer token se- 150

quence space. We denote FC as the binary format- 151

following evaluation function of C: 152

FC(ŷi) =

{
1, if ŷi satisfies C.
0, otherwise.

(1) 153

From Eq. (1), we define the Format Instruction- 154

following (FI) Score, denoted as FIC , as the per- 155

centage of generated outputs satsisfying C: 156

FIC =

∑n
i=1 FC(ŷi)

n
· 100 (2) 157
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Prior studies extensively focus on evaluating158

FIC (Zhou et al., 2023; Xia et al., 2024). Our159

work further targets evaluating the performance160

of LLMs given the format constraints C. Under161

C, we denote ExtC() as the rule-based answer ex-162

tractor (or a mixture of extractors) to extract the163

final answer from ŷi for comparing it with yi. We164

define: two evaluation scores based on E:165

Definition 3.1 (Systematic Evaluation Score166

(SysE)).

SysE =
1

n

n∑
i=1

(E(yi, ExtC(ŷi)).FC(ŷi)) (3)167

Essentially, SysE quantifies the performance of168

M on task T based on the generated answers that169

meet the format constraints C. For example, in170

Fig. 1, Case (1) yields a SysE score of 0, while171

Case (3) achieves 1. This also shows that SysE172

may not accurately reflect the actual performance173

of M on T , because ExtC() may fail to extract the174

final answers from (correct) answers dissatisfying175

C (e.g., Case (1) in Fig. 1). We define the True176

Evaluation Score to address this. Assume that we177

have an oracle extractor function OracExtC() that178

can extract the final answer from ŷi, regardless of179

whether ŷi fulfills C, we have:180

Definition 3.2 (True Evaluation Score (TrueE)).181

TrueE =
1

n

n∑
i=1

E(yi, OracExtC(ŷi)) (4)182

TrueE measures the performance of M on task183

T across all generated answers given the format184

constraints C, regardless of format satisfaction.185

In Fig. 1, both Cases (1) and (3) achieve a true186

accuracy of 1. This score is crucial for assessing187

the true performance of LLMs given the format.188

Prior studies do not clearly differentiate between189

SysE and TrueE. In practice, measuring TrueE190

is challenging because OracExtC() is unavailable.191

While researchers typically employ a mixture of192

methods to extract answers, this approach encoun-193

ters two severe issues. First, these mixture-of-194

method extractors can be complex, unreliable, and195

often impractical for large-scale experiments with196

diverse formats like ours. Second, designing them197

to be reliable for complex formats such as medi-198

cal reports can be impossible due to the countless199

potential errors. Another alternative is to assign200

a default value to ExtC(ŷi). While this can tem-201

porarily avoid cases M fails to fulfill C, this is an202

incorrect practice since the default value may not 203

be the actual output. Reliably measuring TrueE 204

often requires human investigation (Lin et al., 2022) 205

or the fine-tuning of evaluation models as scorers 206

(Yang et al., 2024), both of which are costly. 207

Nevertheless, TrueE is crucial for a fair evalu- 208

ation of LLM performance bias across formats. 209

Therefore, we propose a simple estimator of 210

TrueE, denoted as EstTrueE: 211

EstTrueE =

{
SysE. 100FIC

, if FIC ̸= 0.

0, otherwise.
(5) 212

When FIC = 0, estimating EstTrueE be- 213

comes impossible. EstTrueE enables the fair 214

format bias evaluation because normalizing SysE 215

by FIC prevents skewing comparisons of how dif- 216

ferent formats affect the LLM due to FIC . It is 217

especially useful for large-scale experiments since 218

it is fully automatic. Let the EstTrueE margin 219

of error be ϵ with a confidence interval 1− α and 220

SC = n · FIC as #generated answers satisfying C. 221

Theorem 3.1 (Reliability of EstTrueE). 222

EstTrueE is consistent. Moreover, EstTrueE 223

is reliable if and only if: 224

FIC ≥ 1

1 + n ·
(

ϵ
v·s

)2 (6) 225

Moreover, we have: 226

lim
FIC→100

EstTrueE = TrueE (7) 227

where s2 is the sample variance of evaluation 228

scores of generated answers satisfying C and 229

v = tα/2,SC−1 is the critical value from the t- 230

distribution with SC − 1 degrees of freedom. 231

In summary, we have proposed a consistent es- 232

timator EstTrueE of the true performance of 233

LLMs measured by metric E under the format 234

constraints (Def. 3.2). This estimator is essential 235

because it: (1) ensures transparent and fair LLM 236

performance evaluation across different formats; 237

and (2) supports large-scale format bias evaluation. 238

Note that a high score EstTrueE is only reliable 239

iff FIC is high enough (Thm. 3.1). Henceforth, un- 240

less otherwise specified, EstTrueE is our primary 241

metric for measuring model performance given for- 242

mat constraints. The proof of Thm. 3.1 is in §B.1. 243

3.2 Theoretical Analysis: Format Bias 244

This section defines the metric to quantify format 245

bias and outlines the criteria to mitigate such bias. 246
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Bias measurement. To measure the for-247

mat bias of the LLM M across k for-248

mats Fo = {C1, . . . , Ck}, we define a249

single metric, BiasFo, as the variance of250

EstTrueE scores over these k formats, de-251

noted as {EstTrueE1, . . . , EstTrueEk}. Let252

µEstTrueE = 1
k

∑k
i=1EstTrueEi represent the253

mean EstTrueE score. Then:254

BiasFo =
1

k

k∑
i=1

(EstTrueEi − µEstTrueE)
2

(8)255

Realiability of BiasFo. By Eq. (8), the lower256

BiasFo is, the less format-Fo-biased M is, sug-257

gesting a criterion for mitigating output format bias.258

However, BiasFo is an estimator based on the es-259

timators EstTrueEi. Therefore, to enhance the260

reliability of BiasFo, it is also necessary to im-261

prove the reliability of EstTrueEi by increasing262

FICi ∀i (Thm. 3.1). Therefore, we propose two263

necessary criteria for an effective method to mit-264

igate format bias in LLMs: (i) Minimize bias265

metric: reducing BiasFo, indicating less format-266

Fo-bias in M; (ii) Increase the format-following267

scores for all formats: ensuring the reliability of268

BiasFo by increasing the FI scores across all the269

formats: {FIC1 , ..., F ICk
} (Eq. (2)).270

3.3 Formats for Evaluation271

We establish 4 format categories for evaluation con-272

sisting of 15 formats introduced by prior practices:273

(i) Multiple-choice question (MCQ) answer274

(§5.1). where LLMs answer questions by select-275

ing from provided choices, presented as either a276

(1) Character identifier (Robinson and Wingate,277

2023); or (2) Choice value (Chen et al., 2023).278

(ii) Wrapping (§5.2). where LLMs must enclose279

the final answer within the two characters, which280

is crucial for automatic evaluation to isolate the281

final answer from reasoning thoughts. We focus on282

evaluating 7 widely used wrapping strategies: (1)283

Special character (Gur et al., 2022); (2) Bolding284

(Zhou et al., 2023); (3) Italicizing (Zhou et al.,285

2023); (4) Double brackets (Luo et al., 2024); (5)286

Double parentheses; (6) Placeholder (Wang et al.,287

2024); (7) Quoting (Zhou et al., 2023).288

(iii) List (§5.3). where the output of LLMs is289

a list of elements. We investigate 4 formats rep-290

resenting lists: (1) Python list (Do et al., 2023);291

(2) Bullet-point list (Liu et al., 2024); (3) List 292

of elements separated by a special character 293

”[SEP]” (Boucher, 2023); and (4) List of elements 294

arranged on separate lines (Mishra, 2023). 295

(iv) Mapping (§5.4). where LLMs are employed 296

to output dictionaries or maps. We focus on 297

two ubiquitously used mapping structures: (1) 298

Python dictionary/JSON (JavaScript Object No- 299

tation) (Baumann et al., 2024) and (2) YAML (Yet 300

Another Markup Language) (Goel et al., 2023). 301

Format-instruction following. We introduce 302

Appx.-Alg. 1, a rule-based heuristic to deter- 303

mine the format-instruction following function FC 304

(Eq. (1)) for our benchmarked formats. It calculates 305

the binary FI score by verifying that the generated 306

output includes the specified formatting tokens and 307

that the extracted final answer matches the expected 308

type. It is highly extendable to other formats (§A). 309

4 General Experimental Setups 310

Benchmarks. For MCQ bias evaluation (§5.1), 311

we select two datasets: MMLU (Hendrycks et al., 312

2021) and BBH (Suzgun et al., 2023). For MMLU, 313

we randomly choose 27 subcategories. For BBH, 314

we select the sports_understanding category 315

following Gupta et al. (2024). For wrapping bias 316

assessment (§5.2), in addition to MCQ benchmarks, 317

the following datasets are experimented: GSM8K 318

(Cobbe et al., 2021) for reasoning, FairytaleQA 319

(Xu et al., 2022a) for narrative comprehension, and 320

HotpotQA (Yang et al., 2018a) for multi-hop rea- 321

soning. For list bias investigation (§5.3), we use 322

SciDocsRR (Muennighoff et al., 2023), a scientific 323

document ranking task as the order list generation 324

task, and SemEval 2017 (Augenstein et al., 2017a), 325

the keyphrase extraction task as the unordered list 326

generation. For mapping bias examination (§5.4), 327

we utilize a document-level information extraction 328

task named SciREX (Jain et al., 2020a) by synthe- 329

sizing three extraction difficulty levels: easy (ex- 330

tracting from 1 sentence for 1 category), medium 331

(3 sentences, 2 categories), and hard (5 sentences, 332

4 categories). For all benchmarks except MCQ, we 333

sample 200 points for evaluation (Bai et al., 2023). 334

Models. We select both open- and closed-source 335

LLMs for our evaluation: Gemma-7B-it (Team 336

et al., 2024) and Mistral-7B-it-v0.2 (Jiang et al., 337

2023) for open-source as they are among state- 338

of-the-art open-source LLMs; ChatGPT (gpt-3.5- 339

turbo-0125) for closed-source as this premier chat- 340
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bot possesses superior instruction-following ability.341

Our purpose is not to reproduce the models’ perfor-342

mance, but to show the bias.343

Metrics. Following our discussion in §3.1, we344

disentangle Accuracy (Acc) for MMLU and BBH345

(Guo et al., 2023); F1 for GSM8K, HotpotQA,346

FairytaleQA; and Mean Average Precision (MAP)347

for SciDocsRR (Muennighoff et al., 2023) and348

we report the metrics EstTrueAcc, EstTrueF1,349

EstTrueMAP (Eq. (5)) in the main text. For350

metrics’ reliability, we set α = ϵ = 5%.351

Prompting baselines. Our focus is on two352

widely used prompting baselines: (1) Zero-shot353

(ZS) prompting and (2) Zero-shot Chain-of-354

Thought (ZS-CoT) prompting (Kojima et al.,355

2022). For the ZS baseline, we instruct LLMs356

to answer the question with the prompt “Answer357

the following question...” followed by the suffix358

“without any explanation”. For ZS-CoT, we use359

the suffix “step-by-step” instead. For the ZS-CoT360

experiments in Sections 5.1, 5.3 and 5.4, LLMs361

are instructed to wrap the final answer by “<AN-362

SWER>” and “</ANSWER>” tokens to distinctly363

isolate it from the reasoning chains (see Tab. 1 for364

the wrapping instruction). We use this wrapping365

method since our experiment in §5.2 shows that366

it achieves the highest instruction-following score367

on average across LLMs. Detailed prompts are368

provided in §E. We average the performance under369

two prompting methods to report in the main text.370

5 Format Evaluation Experiments371

Overall, we find that: (1) Models show substantial372

format-following bias across formats for all bench-373

marks; (2) For all models and datasets, significant374

performance bias exists across formats; (3) 77.67%375

of the EstTrue results are reliable, with 16/24376

for MCQ, 169/210 for wrapping, 35/48 for list,377

and 27/36 for mapping formats. We dive into (2)378

for every format as it is our main focus, (1, 3) are379

discussed in detail in Appendices C.1 to C.4.380

5.1 Experiments on MCQ Format381

Setups. We investigate the bias of LLMs towards382

different MCQ output formats. We assess two for-383

mats as introduced in §3.3: (1) Character identifier384

and (2) Choice value. For example, if the choice is385

“[A. Yes, B. No]”, then the character identifier can386

be “A/B”, while the choice value can be “Yes/No”.387

We exclude the format combining the character388

Figure 2: Average estimated true accuracy (§3.1) results of
MCQ benchmarks across models (left) and datasets (right)
showing performance bias of LLMs across formats.

identifier and choice value (such as “A. Yes”) from 389

our evaluation because instructing LLMs to out- 390

put this format can be non-trivial and require man- 391

ual effort to craft instructions tailored for differ- 392

ent models. To ensure that LLMs understand the 393

“Character identifier” and “Choice value” as we ex- 394

pect, we add a contrastive format requirement to 395

the prompts (e.g., “without any textual description” 396

for the “Character identifier” prompts). 397

Results. Fig. 2 provides a synopsis of our evalua- 398

tion results, with numerical values shown in Appx.- 399

Tab. 2. From Fig. 2-left, we observe that Mistral 400

possesses the highest disparity between the two 401

MCQ answer formats, with 58.69% accuracy on 402

average for character and only 4.22% for textual 403

value. Additionally, despite ChatGPT often being 404

regarded as one of the most robust LLMs, it shows 405

a significant performance difference between the 406

two formats (19.03%). Overall, LLMs are heavily 407

biased towards outputting character identifiers. Re- 408

quiring them to generate the choice’s value causes 409

notable performance drops of 28.76% on average. 410

From Fig. 2-right, we notice that the models 411

exhibit higher bias on BBH, which appears to be 412

an easier benchmark than MMLU. We attribute 413

this to the small size of BBH, which makes the 414

performance more sensitive to format variations. 415

Why such bias? We hypothesize the root cause 416

of the significant performance bias across different 417

formats is the format token bias of LLMs. The 418

non-uniform distribution of FI scores among for- 419

mats suggests that the models assign probabilities 420

to format instructions differently based on their 421

training data. This leads to varying prior assign- 422

ments of probabilities to specific tokens, causing 423

final predictions non-uniformly distributed across 424

formats. This hypothesis is supported by our sim- 425

ple fine-tuning with formatted data, which famil- 426
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Wrapping type (start, end) Prompt: Wrap your final answer...

Special char. (<ANSWER>, </ANSWER>) by <ANSWER> and </ANSWER>.

Bolding (**, **) in bold by enclosing it with double asterisks.

Italicizing (*, *) in italics by enclosing it with single asterisks.

Brackets ([[, ]]) using double square brackets.

Parentheses (((, ))) using double parentheses.

Placeholder None by filling in the placeholder below:
“So the answer is: [placeholder]”

Quoting (”””, ”””) using triple double-quotation marks.

Table 1: Wrapping “start” and “end” tokens with instructions.

iarizes LLMs with format instructions relatively427

equally leading to a drastic format bias reduction428

(§6). This emphasizes the necessity of more re-429

search in fine-tuning LLMs to reduce format bias430

and raises concerns about the reliability and repro-431

ducibility of recent studies using varied formats.432

5.2 Experiments on Wrapping Format433

Setups. We study LLM bias towards 7 wrapping434

methods: (1) Special character; (2) Bolding; (3)435

Italicizing; (4) Brackets; (5) Parentheses; (6) Place-436

holder; (7) Quoting, detailed in Tab. 1. We evaluate437

LLM performance across formats on the MMLU,438

BBH, GSM8K, FairytaleQA, and HotpotQA.439

Results. Fig. 3 outlines an overview of our evalu-440

ation outcomes with results in Appx.-Tab. 6. From441

Fig. 3-left, we see that Gemma exhibits the high-442

est bias towards different formats with a BiasFo443

value (Eq. (8) (variance) of 56.33%2, while Chat-444

GPT performs the best with only 12.26%2. No-445

tably, for “Quoting” and “Parenthesis”, the Gemma446

follows instructions only about 0 − 4% yielding447

nearly zero performance, highlighting its critical448

weaknesses. Among the 7 formats, “Placeholder”449

(35.92%) proves to be the most effective wrapping450

output format, while “Quoting” (23.74%), “Paren-451

thesis” (28.64%) are among those that achieve the452

lowest performance.453

From Fig. 3-right, models exhibit bias across all454

tasks, with the lowest on GSM8K (12.97%2) possi-455

bly because the models were trained on (part of) it,456

and the highest on BBH (70.16%2), the challeng-457

ing task without train data. This demonstrates the458

pervasive presence of wrapping bias in LLMs.459

Why such bias? The format token bias of LLMs460

as explained in §5.1 is also our hypothesis. Specifi-461

cally, we found the low performance of the “Quot-462

ing” and ”Parenthesis” because, in generation tasks,463

models often wrap (via quoting/parenthesizing) not464

only the final answer, as instructed, but also parts465

of the context (e.g., “‘The answer is 3.”’), leading466

to poor F1 scores. Moreover, Gemma completely467

ignores the above format instructions, resulting in 468

0% FI scores, which also contribute to the low av- 469

erage estimated F1 scores. These strongly indicate 470

the presence of format token bias. 471

5.3 Experiments on List Format 472

Setups. We explore the bias of LLMs in gener- 473

ating lists following 4 formats: (1) Python list, (2) 474

Bullet-point list, (3) Character-separated list, and 475

(4) Newline-separated list. We evaluate the models 476

on two list generation tasks: (i) Unordered list, us- 477

ing the keyphrase extraction task on the SemEval 478

2017 dataset, and (ii) Ordered list, using the docu- 479

ment ranking problem on the SciDocsRR task. 480

Results. Fig. 4 displays the key findings of our 481

evaluation across models and datasets with numeri- 482

cal results in Appx.-Tab. 10. From Fig. 4-left, we 483

notice that Mistral exhibits the most bias, with the 484

BiasFo value (Eq. (8)) of 353.80%2. In contrast, 485

ChatGPT and Gemma show much lower bias, with 486

values of 7.08%2 and 1.32%2, respectively. Of the 487

four formats, the “Python” and “Newline-separated” 488

formats yield the highest performance, likely due 489

to models trained extensively on code data. Con- 490

versely, the “Bullet-point list” format results in the 491

lowest performance, particularly for Mistral, high- 492

lighting the inherent bias for such formats. 493

The performance bias is regardless of the task 494

as plotted in Fig. 4-right, with the highest BiasFo 495

value of 67.07%2 on the order list generation task 496

SciDocsRR, and significantly lower (27.58%2) on 497

SemEval2017 task. The high bias in the SciDoc- 498

sRR task is because Mistral and Gemma mostly 499

failed to perform this task following the “Bullet” 500

and “Special character” list formats while excelling 501

in solving it following the other formats. 502

Why such bias? We attribute the bias to the for- 503

mat token bias (§5.1). Since the models were ex- 504

tensively trained on code data, they excel in solv- 505

ing code-related instructions. In contrast, “Bullet- 506

point” and “Special character” lists are much less 507

common. One interesting case is Gemma where it 508

performed worse on generating “Python” lists com- 509

pared to “Bullet-point” lists. Our analysis suggests 510

that Gemma misinterprets the format instruction as 511

a coding request, generating Python code programs 512

instead of an answer in a Python list, suggesting 513

Gemma was predominantly trained on code data. 514
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Figure 3: Average estimated true Accuracy (MCQ) and F1 (GSM8K, HotpotQA, FairytaleQA) scores (§3.1) across models (left)
and across benchmarks (right), showing performance bias of LLMs across 7 widely used wrapping methods.

Figure 4: Average EstTrueF1 (SemEval2017) and
EstTrueMAP (SciDocsRR) (§3.1) across models (left) and
benchmarks (right) showing performance difference of LLMs
across 4 widely used list formats.

5.4 Experiments on Mapping Format515

Setups. We examine the performance bias of516

LLMs on two mapping formats as discussed in517

§3: (1) Python dictionary/JSON; (2) YAML. We518

preprocess the SciREX task (Jain et al., 2020a) as519

described in §4 into three extraction levels: (i) Easy520

(1 sentence, “Task” category); (2) Medium (3 sen-521

tences, “Task, Method”); (3) Hard (5 sentences,522

“Task, Method, Material, Metric” categories).523

Results. Fig. 5 illustrates a summary of our eval-524

uation with numerical details in Appdx.-Tab. 14.525

From Fig. 5-left, Gemma is the most biased, with a526

performance gap of 16.51% between the two for-527

mats, followed by Mistral with a 16.07% gap. Chat-528

GPT, however, is relatively robust against format529

variations, exhibiting a gap of only 4.05%. On530

average, JSON performs significantly better than531

YAML for mapping, likely because more JSON532

data is used to train models due to its popularity.533

From Fig. 5-right, extracting 4 categories in the534

Hard task shows the largest performance gap be-535

tween mapping formats. Surprisingly, the Medium536

Figure 5: Average estimated true F1 scores (§3.1) across
models (left) and benchmarks (right) showing performance
bias of LLMs across 2 widely used mapping formats.

task displays the least bias, likely because models 537

perform best in this task. 538

Why such bias? The bias is attributed to the 539

format token bias (§5.1). While Mistral excels 540

in generating JSON, it and Gemma struggle with 541

YAML. Even successfully generating YAML out- 542

put, Mistral and Gemma frequently introduce noisy 543

information (88%-65% for Mistral with and with- 544

out CoT, 98%-79% for Gemma) in the response 545

(e.g., a key “Task" should have multiple values, 546

Mistral generates multiple key-value pairs instead 547

e.g., “Task_1:Training · · · Task_2: · · · ”), resulting 548

in poor overall performance. 549

6 Mitigating Performance Format Bias: 550

Actionable Recommendations 551

We propose methods as actionable recommenda- 552

tions for mitigating format bias. Generally, three 553

primary streams of techniques have been widely 554

studied and applied to tackle LM biases: (1) 555

Prompting (Xu et al., 2024; Macedo et al., 2024); 556

7
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Figure 6: More demonstrations and repeating format instruc-
tions mitigate format bias. Finetuning mostly eliminates the
format bias. The performance is reported using ChatGPT on
MMLU (Appx.-Tab. 18 for num. results).

(2) Calibrating (Roelofs et al., 2022; Li et al., 2024);557

and (3) Fine-tuning (Schick et al., 2021; Ghaddar558

et al., 2021). While calibration techniques can only559

be used for white-box models, prompting and fine-560

tuning can be applied for both black-box (via API)561

and white-box ones. Therefore, we explore prompt-562

ing and fine-tuning techniques to reduce format563

bias. We target mitigating the format bias of Chat-564

GPT, the strongest model that we benchmarked,565

on MMLU. We aim to reduce the wrapping bias566

(§5.2) due to resource limits, but our methods can567

be generalized to any model and format.568

Demonstration(s) reduce(s) format bias. As569

discussed in §5.1, LLMs show bias across formats570

possibly because of the token bias issue, causing571

LLMs to non-uniformly comprehend the format572

instructions. To address this, we examine whether573

demonstrations with formats can reduce such bias,574

as they are commonly utilized to enhance LLM’s575

comprehension of the task patterns (Xie et al.,576

2022). Particularly, for each wrapping format in577

§5.2, we select 1 and 5 random samples from the578

auxiliary train data of MMLU and manually for-579

mat the answers as demonstrations. The results are580

outlined in Fig. 6. Firstly, incorporating demon-581

strations typically enhances the FI scores (i) (from582

72.99% to 79.19% and 85.31%) of the model, with583

five demonstrations yielding the most. Secondly,584

we observe a notable decrease in the BiasFo score585

(ii) upon supplementing demonstrations. From (i),586

(ii) and §3.2, we conclude integrating demonstra-587

tions mitigates format bias.588

Repeating format instructions reduces format589

bias. We found that repeating instructions gener-590

ally increases FI scores (i) across most formats ex-591

cept “Placeholder”, which can consequently lessen592

the mode’s token bias towards format instructions593

(§5.1). Using our two proposed criteria for effective 594

format bias mitigation in §3.2, it is worth examin- 595

ing if this approach reduces BiasFo, thereby being 596

an effective mitigation. Our answer is yes. By 597

repeating the wrapping instructions of ChatGPT 598

thrice, we observed a decrease in the BiasFo (ii) 599

score presented in Fig. 6. Combining (i) and (ii) 600

suggests that this strategy is an effective mitigation. 601

For "Placeholder," human investigation reveals that 602

multiple placeholder instructions cause ChatGPT 603

to be confused about where the placeholder is, mak- 604

ing it frequently misunderstand and fail to follow 605

this format instruction. 606

Fine-tuning with additional format data can 607

eliminate format bias. We hypothesize that com- 608

pletely solving the format token bias problem of 609

LLMs necessitates finetuning them on format data 610

so that they are familiar with tokens in format in- 611

structions evenly. We propose a simple data syn- 612

thesis strategy for finetuning LLMs: we sample a 613

small set of training data for all evaluated formats, 614

with ratios inversely proportional to their system- 615

atic evaluation scores (§3.1). We chose SysE 616

scores over the EstTrueE because they reflect 617

the current model performance. Practically, based 618

on ChatGPT’s zero-shot systematic performance 619

on MMLU colored in blue in Appx.-Tab. 6, we 620

approximate the formats’ performance ratios as 621

“1, 1, 12 ,
1
2 ,

1
3 , 1,

1
3” from left-to-right, resulting in 622

training data ratios of formats of “1, 1, 2, 2, 3, 1, 3”. 623

We then preprocess the MMLU auxiliary training 624

data according to these ratios, scaled by 500 (6500 625

samples total), and train ChatGPT on this dataset. 626

The finetuned results are plotted in Fig. 6. Firstly, 627

after finetuning, the average FI score across all for- 628

mats is nearly perfect at 99.58% (ii). Secondly, 629

the BiasFo score is significantly reduced from 630

235.33%2 to 0.71%2 (ii). These (i) and (ii) indicate 631

finetuning largely eliminates format bias. 632

7 Conclusions 633

We introduce the pioneering systematic investiga- 634

tion of format bias in LLM performance, revealing 635

significant biases across widely used formats for all 636

models and benchmarks. Our method involves de- 637

veloping metrics to assess this bias and establishing 638

criteria for effective mitigation. We then introduce 639

prompting and fine-tuning techniques to alleviate 640

format bias based on our evaluation findings. Our 641

work aims to sharpen the focus of future LLM re- 642

search toward fairer and more robust development. 643
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Limitations644

Our study has several limitations. Firstly, the645

metrics EstTrue and BiasFo proposed in §3.1646

and §3.2 are estimators, not exact measures. As647

discussed, determining TrueE (Eq. (4)) is in-648

feasible, especially for large-scale experiments649

across various models and datasets. Achieving650

this would require extensive fine-tuning and com-651

prehensive human evaluations, both prohibitively652

expensive and impractical in many scenarios. Our653

proposed metrics EstTrue and BiasFo are handy654

for large-scale experiments with multiple models655

and datasets due to their fully automatic nature. We656

further propose Thm. 3.1 to validate the reliability657

of TrueE statistically.658

Secondly, our empirical evaluation of format659

bias is limited by computational and budget con-660

straints to specific datasets, formats, and models.661

This restriction limits the generalizability of our662

findings and may obscure further insights that could663

be gained from expanding the experiments to in-664

clude more formats, larger-scale datasets, and addi-665

tional task categories.666

Finally, while our study primarily attributes for-667

mat bias to token bias in the training data of LLMs668

and proposes data-focused approach, it does not669

extensively explore other factors related to model670

architecture and training processes. This omission671

represents a significant area for future research,672

as more fundamental, architecture-level solutions673

could be crucial, for addressing format bias in674

LLMs. Our study underscores the importance of675

continued research dedicated to quantifying and676

mitigating format bias.677

Ethical Considerations678

Our work uncovers significant format bias in LLMs,679

raising concerns regarding fairness and potential680

discrimination in real-world applications.681

Bias and fairness. Format bias in LLMs can re-682

sult in unfair treatment, especially in tasks where683

multiple possible formats can be used. Our re-684

search suggests ways to identify and mitigate for-685

mat bias, aiming for fairer and more equitable LLM686

applications.687

Societal impact. Format bias in LLMs has the688

potential to disproportionately impact specific pop-689

ulations, as different demographics may have pref-690

erences for different communication formats. Fur-691

ther research is essential to fully understand its692

societal implications and ensure fairness across di- 693

verse demographics. 694
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A Format-Instruction Following Scorer 1058

Algorithm 1 Format-Instruction Following Scorer

Input: Task T , language model M, format constraints C, generated output Y .
Input: If C includes wrapping characters, we denote as {W1,W2} and is_wrapping = True.
Input: output_type is the data type required by C when T is not MCQ.

1: if is_wrapping then
2: return False if (any of {W1,W2} ̸∈ Y ) or (number of W1 ∈ Y + number of W2 ∈ Y ̸= 2).
3: ans = Extract string in between {W1,W2}.
4: else
5: ans = Y
6: end if
7: if T is MCQ then
8: if MCQ output type is character identifier then
9: return True if ans ∈ {A,B,C,D}. False otherwise.

10: else
11: return True if ans ∈ {options’ values}. False otherwise.
12: end if
13: else
14: return True if we can parse ans as an instance of the class output_type. False otherwise.
15: end if

Alg. 1 presents our heuristic algorithm for evaluating the format-instruction following capabilities of 1059

LLMs, which is used to compute FC in Eq. (1). The algorithm is divided into two three main parts: 1060

1. Lines 1-6. These lines focus on examining the wrapping requirements by verifying the presence and 1061

correctness of the specified wrapping tokens. 1062

2. Lines 7-12. These lines are dedicated to checking the formats of MCQ answers (§5.1). 1063

3. Lines 13-15. These lines address the remaining formats, including list and mapping formats. 1064

It is worth noting that Alg. 1 is highly adaptable; formats can be added or removed to tailor it for 1065

specific downstream applications. 1066

B Theoretical Analysis: Reliability of EstTrueE 1067

B.1 Proof of Thm. 3.1 1068

Proof of Thm. 3.1. We omit the case when FIC = 0 since in that case, we cannot estimate TrueE. 1069

By the definition in Thm. 3.1, we have SC generated answers that satisfy C. Let’s denote k = SC for 1070

simplicity. Let’s denote k performance scores of answers satisfying C as x1, · · · , xk, and x̄ =
∑k

i=1(xi)
k 1071

as the mean. Finally, TrueE is the population mean of the performance scores, denoted as µ. 1072

Statement 1: EstTrueE is consistent. From Eq. (5), by rewriting EstTrueE, we have EstTrueE = 1073
1
n ·
∑k

i=1(xi)·
n
k = x̄, which is an unbiased estimator of the average performance TrueE, i.e., Bias(x̄) = 0 1074

or limk→∞Bias(EstTrueE) = 0 (1). Now, let’s denote the variance of the performance scores as σ2, 1075

then the variance of EstTrueE is V ar(EstTrueE) = V ar(x̄) = σ2

n and limk→∞ V ar(EstTrueE) = 1076

0 (2). From (1) and (2), by the Sufficient Condition for Consistency (Amemiya, 1985), we conclude that 1077

EstTrueE is a consistent estimator. 1078

Statement 2: FIC value. Let’s denote s2 = 1
k−1

∑k
i=1(xi−x̄)2 as the sample variance of the performance 1079

scores xis. It is well-known that
√
k(x̄−µ)

s ∼ tk−1. For estimating the population mean µ with finite 1080

population size n and the type I error α, we have the margin of error ϵ: 1081
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ϵ ≥ tα/2,k−1 ·
√

n− k

n
· s

2

k
(9)1082

where n−k
n is the finite population correction factor. Eq. (9) is equivalent to:1083

k ≥ n− k

n
·
(
tα/2,k−1 · s

ϵ

)2

(10)1084

which yields1085

k ≥ 1

1
n +

(
ϵ

tα/2,k−1·s

)2 . (11)1086

then1087

FIC =
k

n
≥ 1

1 + n ·
(

ϵ
tα/2,k−1·s

)2 . (12)1088

Statement 3: When FIC approaches 1, EstTrueE approaches TrueE. Since EstTrueE by its1089

definition in Eq. (5) is continuous with respect to FIC (Eq. (5)), SC (Eq. (3)) and FC (Eq. (3)), therefore,1090

we have the equality:1091

lim
FIC→100%

(EstTrueE) = EstTrueE(FIC = 100%) = TrueE.1092

1093

B.2 Python Codes for Computing Reliability1094

1 import numpy as np1095
2 from scipy.stats import t1096
3 import math1097
41098
5 def compute_sample_variance(data):1099
6 n = len(data)1100
7 mean = np.mean(data)1101
8 squared_deviations = [(x - mean) ** 2 for x in data]1102
9 sample_variance = sum(squared_deviations) / (n - 1)1103

10 return sample_variance1104
111105
12 def is_estimator_reliable(num_FI , list_eval_scores , num_samples =200):1106
13 ####### t-statistics #######1107
14 alpha = 0.05 # 5% significance level1108
15 df = num_FI - 1 # degrees of freedom1109
16 alpha_two_tailed = alpha / 21110
17 t_statistic = t.ppf(1 - alpha_two_tailed , df)1111
181112
19 ####### Compute MOE_FI #######1113
20 epsilon = 0.05 # 5% margin of error1114
21 s = math.sqrt(compute_sample_variance(list_eval_scores))1115
22 return num_FI/num_samples > 1/(1 + num_samples * (epsilon /( t_statistic * s))**2)1116

Code Listing 1: Python codes for computing the reliability of EstTrueE with margin of errors 5% performance with a
significance level 5%.
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C Detailed Discussions 1117

We give the numerical results and discussions for all figures and points made in the main paper. 1118

C.1 Multiple-choice Question (MCQ) Discussions 1119

We evaluate Gemma, Mistral, and ChatGPT on the MMLU and BBH datasets using two prompting 1120

techniques, Zero-shot (ZS) and Zero-shot Chain-of-Thought (ZS-CoT) (§5.1). The prompts are specified 1121

in §E.1. We report the FIC , SysE,EstTrueE scores. The results are presented in Tab. 2. Additionally, 1122

Tab. 3, Tab. 4, and Tab. 5 are the distillation results of Tab. 2: 1123

1. Tab. 3. For each model, we average its EstTrueE performance overall benchmarks and prompt- 1124

ing techniques. For each task, we average the EstTrueE scores overall models and prompting 1125

techniques. The results of this table are plotted in Fig. 2 and discussed in §5.1. 1126

2. Tab. 4. The purpose of this table is to compare the FI scores across formats. We average all the FI 1127

scores across models and tasks. 1128

3. Tab. 5. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias. 1129

We average all the EstTrueE scores over all models and benchmarks for each ZS and ZS-CoT 1130

prompting method. 1131

MCQ type Char. Text.

MMLU
Gemma-7B-it (EstTrue-Acc) 0.53 / 27.25 8.10 / 18.63
Gemma-7B-it (Systematic-Acc) 0.12 / 10.32 0.17 / 4.86
Gemma-7B-it (FI) 22.47 / 37.87 2.10 / 26.09

Mistral-7B-it (EstTrue-Acc) 46.14 / 49.31 8.37 / 8.52
Mistral-7B-it (Systematic-Acc) 41.59 / 45.94 0.17 / 0.19
Mistral-7B-it (FI) 90.12 / 93.16 2.03 / 2.23

ChatGPT (EstTrue-Acc) 68.55 / 45.53 54.85 / 59.67
ChatGPT (Systematic-Acc) 66.20 / 42.22 12.71 / 26.31
ChatGPT (FI) 96.56 / 92.73 23.17 / 44.09

BBH
Gemma-7B-it (EstTrue-Acc) 42.11 / 23.05 0.00 / 15.11
Gemma-7B-it (Systematic-Acc) 0.40 / 13.00 0.00 / 6.80
Gemma-7B-it (FI) 0.95 / 56.40 0.00 / 45.00

Mistral-7B-it (EstTrue-Acc) 76.81 / 62.50 0.00 / 0.00
Mistral-7B-it (Systematic-Acc) 21.20 / 22.00 0.00 / 0.00
Mistral-7B-it (FI) 27.60 / 35.20 0.00 / 1.60

ChatGPT (EstTrue-Acc) 73.03 / 57.14 53.63 / 0.00
ChatGPT (Systematic-Acc) 26.00 / 16.0 53.20 / 0.00
ChatGPT (FI) 35.60 / 28.00 99.20 / 0.00

Table 2: MCQ output format results. Red results are unreliable results measured by Thm. 3.1 i.e., inequality Eq. (6) does not
hold.

Format instruction-following bias. The FI scores across formats are illustrated in Tab. 4. There is a 1132

notable difference between the scores for character-based and textual value-based formats. The score for 1133

character format (51.39%) is more than twice as high as that for textual value format (20.46%). Among 1134

the models, ChatGPT follows the instructions best with FI score 52.42%. Below we present two examples 1135

of Gemma and Mistral failing to follow the format instructions: 1136
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Char. Text. BiasFo (Var)

Models

Gemma 23.24 10.46 40.83
Mistral 58.69 4.22 741.74
ChatGPT 61.07 42.04 90.53

Tasks

MMLU 39.56 26.36 43.56
BBH 55.77 11.46 490.84

Table 3: Average. estimated true accuracy results of MCQ benchmarks across models (Gemma-7B-it, Mistral, ChatGPT) and
datasets (MMLU, BBH) with two MCQ formats (Character and Textual Value). This table is the distillation result of averaging
all the estimated true performance scores across models (Models) and tasks (Tasks) in Tab. 3.

Models Char. Text. Avg. BiasFo (Var)

Gemma 29.42 18.29 23.86 30.96
Mistral 61.52 1.46 31.49 901.80

ChatGPT 63.22 41.61 52.41 116.74

Avg. 51.39 20.46 35.92 239.16

Table 4: MCQ format-instruction following scores across formats. This table is the distillation result of averaging all the FI
scores across tasks and prompting techniques in Tab. 3.

Answer the following question by outputting the textual value of the choice
without its character identifier. Wrap your final answer by <ANSWER> and
</ANSWER>.

Question: Is the following sentence plausible? “John Carlson scored in
the third period.”
Answer choices: A. yes | B. no

Gemma: <ANSWER>A</ANSWER>
1137

Answer the following question by outputting the textual value of the choice
without its character identifier. Wrap your final answer by <ANSWER> and
</ANSWER>.

Question: Is the following sentence plausible? “Marcelo got on the end
of a through ball.”
Answer choices: A. yes | B. no

Mistral: Based on the given sentence and the provided answer choices,
the answer is: A. yes. The sentence describes Marcelo receiving a through ball
and getting on the end of it, which is a common football (soccer) term for
receiving a long, accurate pass and finishing a move with a shot or a goal.

1138

ZS versus ZS-CoT. We investigate the impact of Chain-of-Thought (CoT) (Wei et al., 2022) on1139

mitigating format bias. The average of estimated True Accuracy scores across models and tasks for the1140

ZS prompting and ZS-CoT prompting are shown in Tab. 5. ZS prompting achieves a higher score in1141
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the character category (51.20%) compared to ZS-CoT prompting (44.13%). Similarly, for textual value 1142

format, ZS prompting scores higher (20.83%) than ZS-CoT prompting (16.99%). However, the BiasFo 1143

is lower for the ZS-CoT model (184.14%2) compared to the ZS model (230.58%2), indicating that CoT 1144

slightly decreases the format bias. 1145

Char. Text. BiasFo

Zero-shot 51.20 20.83 230.58
Zero-shot Chain-of-Thought 44.13 16.99 184.14

Table 5: MCQ CoT versus non-CoT. This table is the distillation result of averaging all the Zero-shot and Zero-shot Chain-of-
Thought scores across models and tasks in Tab. 3.

Reliability of the results. From Tab. 2, we see that 16/24 of the estimated EstTrue results are 1146

reliable. The reliability of results in the MCQ output format varies across different models. Gemma- 1147

7B-it and Mistral-7B-it show significant unreliability in textual value format, evidenced by numerous 1148

red-marked scores due to models not following the format instructions to output correct formats. In 1149

contrast, ChatGPT’s results are significantly more reliable in the MMLU and BBH benchmarks (7/8), 1150

with only one unreliable result in the BBH textual format output. 1151

C.2 Wrapping Discussions 1152

We examine Gemma, Mistral, and ChatGPT on the MCQ datasets (MMLU,BBH) and generation 1153

datasets (GSM8K, HotpotQA, FairytaleQA) utilizing two prompting techniques, Zero-shot (ZS) and 1154

Zero-shot Chain-of-Thought (ZS-CoT) (§5.2). The prompts are also provided in §E.2. We measure the 1155

FIC , SysE,EstTrueE. The results are shown in Tab. 6. Furthermore, Tab. 7, Tab. 8 and Tab. 9 are the 1156

distillation outcome of Tab. 6: 1157

1. Tab. 7. For each model, we average its EstTrueE performance overall benchmarks and prompt- 1158

ing techniques. For each task, we average the EstTrueE scores overall models and prompting 1159

techniques. This table is plotted in Fig. 3 and discussed in §5.2. 1160

2. Tab. 8. The purpose of this table is to compare the FI scores across formats. We average all the FI 1161

scores across models and tasks. 1162

3. Tab. 9. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias. 1163

We average all the EstTrueE scores over all models and benchmarks for each ZS and ZS-CoT 1164

prompting method. 1165

Format instruction-following bias. The FI scores over formats are provided in Tab. 8. Overall, LLMs 1166

exhibit significant format-following bias across formats with a variance of FI scores of 297.28%2. Among 1167

the models, ChatGPT follows the instructions best with average FI Score 85.01%. The “Special Character” 1168

wrapping format has the highest FI score of 73.34%. Following it is the “Placeholder” wrapping format 1169

also shows a high FI score of 68.37%, suggesting it is another effective format for ensuring instruction 1170

adherence. In contrast, the “Quoting” wrapping format has the lowest FI score of 17.06%. This significant 1171

drop compared to other formats suggests that quoting is the least effective method for wrapping instructions, 1172

possibly causing confusion or misinterpretation by the models. Below we present two examples of Gemma 1173

and Mistral failing to follow the format instructions: 1174
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Wrapping type Special character Bolding Italicizing Brackets Parentheses Placeholder Quoting

MMLU
Gemma-7B-it (EstTrue-Acc) 35.59 / 20.28 41.28 / 44.27 49.85 / 74.18 36.36 / 32.95 36.68 / 20.12 46.45 / 25.77 60.41 / 74.06
Gemma-7B-it (Systematic-Acc) 27.82 / 20.28 21.66 / 17.73 26.64 / 27.89 28.55 / 27.28 10.53 / 12.96 29.80 / 21.96 2.64 / 2.37
Gemma-7B-it (FI) 78.16 / 100.00 52.47 / 39.60 53.44 / 37.60 78.52 / 82.80 28.71 / 64.40 64.15 / 85.20 4.37 / 3.20

Mistral-7B-it (EstTrue-Acc) 53.63 / 58.34 48.43 / 63.09 51.84 / 61.66 67.36 / 61.58 64.99 / 62.71 75.35 / 6.03 100.00 / 8.33
Mistral-7B-it (Systematic-Acc) 13.42 / 20.04 1.08 / 9.40 4.80 / 10.15 20.08 / 17.28 11.10 / 13.42 1.07 / 0.14 0.03 / 0.01
Mistral-7B-it (FI) 23.81 / 34.35 2.23 / 14.90 9.26 / 16.46 29.81 / 28.06 17.08 / 21.40 1.42 / 2.32 0.03 / 0.12

ChatGPT (EstTrue-Acc) 54.64/ 71.28 67.40 / 75.86 44.76 / 64.79 59.80 / 71.42 57.82 / 71.11 66.24 / 72.81 68.29 / 70.68
ChatGPT (Systematic-Acc) 48.54 / 63.64 66.59 / 48.59 38.24 / 36.77 31.65 / 60.86 28.54 / 60.57 63.88 / 50.09 26.72 / 30.26
ChatGPT (FI) 88.84 / 89.28 98.80 / 64.05 85.43 / 56.75 52.93 / 85.21 49.36 / 85.18 96.44 / 68.80 39.13 / 42.81

BBH
Gemma-7B-it (EstTrue-Acc) 25.00 / 16.00 49.09 / 38.38 52.94 / 24.47 63.04 / 47.34 36.73 / 26.09 7.07 / 3.76 60.00 / 20.00
Gemma-7B-it (Systematic-Acc) 24.00 / 16.00 21.60 / 15.20 10.80 / 9.20 23.20 / 19.60 14.40 / 16.80 5.20 / 3.20 2.40 / 0.40
Gemma-7B-it (FI) 96.00 / 100.00 44.00 / 39.60 20.40 / 37.60 36.80 / 41.40 39.20 / 64.40 73.60 / 85.20 4.00 / 2.00

Mistral-7B-it (EstTrue-Acc) 52.40 / 64.00 10.40 / 11.60 36.80 / 21.20 16.00 / 8.40 6.4 / 12.00 32.80 / 72.80 0.00 / 0.00
Mistral-7B-it (Systematic-Acc) 49.04 / 58.11 1.37 / 1.85 34.88 / 14.24 6.84 / 1.61 1.51 / 3.98 13.38 / 71.05 0.00 / 0.00
Mistral-7B-it (FI) 93.60 / 90.80 13.20 / 16.00 94.80 / 67.20 42.80 / 19.20 23.60 / 33.20 40.80 / 97.60 0.00 / 0.00

ChatGPT (EstTrue-Acc) 64.00 / 47.20 74.80 / 36.80 9.20 / 14.40 53.60 / 51.60 63.60 / 13.60 54.00 / 14.80 14.00 / 18.00
ChatGPT (Systematic-Acc) 64.00 / 16.80 74.80 / 30.62 9.20 / 10.02 51.67 / 38.60 57.24 / 3.75 54.00 / 14.80 3.19 / 0.58
ChatGPT (FI) 100.00 / 35.60 100.00 / 83.20 100.00 / 69.60 96.40 / 74.80 90.00 / 27.60 100.00 / 100.00 22.80 / 3.20

GSM8K
Gemma-7B-it (EstTrue-F1) 3.65 / 5.00 0.99 / 3.13 5.20 / 1.46 7.45 / 0.42 0.00 / 0.00 9.13 / 9.92 0.0 / 0.0
Gemma-7B-it (Systematic-F1) 2.54 / 2.45 0.50 / 2.00 4.26 / 1.19 3.50 / 0.17 0.00 / 0.00 4.52 / 4.71 0.0 / 0.0
Gemma-7B-it (FI) 69.50 / 49.00 50.50 / 64.00 82.00 / 81.50 47.00 / 40.05 2.50 / 0.50 49.50 / 47.50 0.0 / 0.0

Mistral-7B-it (EstTrue-F1) 4.03 / 25.74 9.03 / 31.61 2.87 / 30.76 2.57 / 46.98 1.29 / 39.44 3.28 / 39.37 0.00 / 73.52
Mistral-7B-it (Systematic-F1) 3.43 / 23.43 1.40 / 4.11 1.42 / 20.76 1.67 / 38.76 0.60 / 24.26 3.28 / 38.78 0.00 / 6.25
Mistral-7B-it (FI) 85.00 / 91.00 15.50 / 13.00 49.50 / 67.50 65.00 / 82.50 46.50 / 61.50 100.00 / 98.50 5.00 / 8.50

ChatGPT (EstTrue-F1) 19.54 / 43.98 22.95 / 24.36 21.22 / 30.57 21.27 / 69.00 22.02 / 63.83 23.03 / 60.25 16.43 / 24.01
ChatGPT (Systematic-F1) 19.44 / 43.98 22.84 / 23.39 21.12 / 24.15 20.74 / 67.62 21.25 / 62.24 23.03 / 59.05 9.78 / 14.65
ChatGPT (FI) 99.50 / 100.00 99.50 / 96.00 99.50 / 79.00 97.50 / 98.50 96.50 / 97.50 100.00 / 98.00 59.50 / 61.00

HotpotQA
Gemma-7B-it (EstTrue-F1) 14.12 / 9.88 21.43 / 32.11 19.83 / 27.06 23.63 / 30.44 0.00 / 0.00 43.70 / 53.62 2.33 / 6.60
Gemma-7B-it (Systematic-F1) 4.59 / 5.53 9.00 / 12.20 7.93 / 8.93 3.90 / 14.00 0.00 / 0.00 5.90 / 9.92 0.03 / 0.03
Gemma-7B-it (FI) 32.50 / 56.00 42.00 / 38.00 40.00 / 33.00 16.50 / 46.00 3.50 / 2.50 13.50 / 18.50 1.50 / 0.50

Mistral-7B-it (EstTrue-F1) 12.86 / 11.43 25.84 / 29.21 20.93 / 14.56 16.93 / 13.20 15.39 / 13.21 20.41 / 21.58 0.00 / 25.00
Mistral-7B-it (Systematic-F1) 7.27 / 3.83 8.27 / 3.36 6.91 / 4.95 16.51 / 10.76 14.55 / 10.24 19.70 / 14.75 0.00 / 0.05
Mistral-7B-it (FI) 56.50 / 33.50 32.00 / 11.50 33.00 / 34.00 97.50 / 81.50 94.50 / 77.50 96.50 / 91.50 0.00 / 0.20

ChatGPT (EstTrue-F1) 29.86 / 27.52 41.00 / 33.14 35.39 / 28.96 23.94 / 35.48 29.30 / 34.83 38.72 / 28.69 41.52 / 16.97
ChatGPT (Systematic-F1) 25.24 / 27.11 40.59 / 30.82 33.45 / 26.64 17.00 / 33.36 23.46 / 33.44 38.72 / 27.69 11.73 / 7.13
ChatGPT (FI) 84.50 / 98.50 99.00 / 93.00 94.50 / 92.00 71.50 / 94.00 80.05 / 96.00 100.00 / 96.50 28.50 / 42.00

FairytaleQA
Gemma-7B-it (EstTrue-F1) 17.42 / 29.72 8.91 / 0.97 8.12 / 14.50 22.13 / 18.62 0.00 / 0.00 20.64 / 22.05 0.00 / 0.00
Gemma-7B-it (Systematic-F1) 6.62 / 11.74 4.68 / 0.64 4.75 / 9.79 1.77 / 1.21 0.00 / 0.00 2.58 / 4.08 0.0 / 0.0
Gemma-7B-it (FI) 38.00 / 39.50 52.50 / 66.00 58.50 / 67.50 8.00 / 6.50 0.00 / 0.00 12.50 / 18.50 0.0 / 0.0

Mistral-7B-it (EstTrue-F1) 27.19 / 22.20 23.78 / 50.00 47.36 / 29.49 32.42 / 25.90 30.33 / 22.46 36.07 / 31.77 19.50 / 20.00
Mistral-7B-it (Systematic-F1) 22.16 / 18.54 3.21 / 0.50 18.47 / 15.19 32.42 / 25.00 29.73 / 21.00 35.89 / 31.62 0.39 / 1.30
Mistral-7B-it (FI) 81.50 / 83.50 13.50 / 1.00 39.00 / 51.50 100.00 / 96.50 98.00 / 93.50 99.50 / 99.50 2.00 / 6.50

ChatGPT (EstTrue-F1) 41.93 / 31.95 46.08 / 32.84 48.11 / 33.46 41.53 / 38.25 38.25 / 34.82 46.83 / 32.85 45.78 / 27.75
ChatGPT (Systematic-F1) 38.58 / 31.47 46.08 / 31.86 48.11 / 31.96 41.33 / 38.06 45.91 / 34.30 46.83 / 32.85 27.24 / 14.71
ChatGPT (FI) 92.00 / 98.50 100.00 / 97.00 100.00 / 95.50 99.50 / 99.50 99.50 / 98.50 100.00 / 100.00 59.50 / 53.00

Table 6: Wrapping output format results. Red results are unreliable results measured by Thm. 3.1 i.e., inequality Eq. (6) does not
hold.

Special Character Bolding Italicizing Brackets Parentheses Placeholder Quoting BiasFo (Var)

Models

Gemma 31.09 20.11 24.77 23.39 14.61 33.86 11.63 56.33
Mistral 34.06 42.43 27.91 37.44 32.83 35.49 30.90 18.83
ChatGPT 32.47 33.40 32.95 38.16 38.49 38.40 28.69 12.26

Average 32.54 31.98 28.54 33.00 28.64 35.92 23.74 13.55

Tasks

MMLU 49.42 56.72 57.85 54.91 52.24 48.77 63.63 23.26
BBH 44.77 36.85 26.50 40.00 26.40 30.87 18.67 70.16
GSM8K 17.00 15.35 15.35 24.56 21.10 24.16 19.00 12.97
HotpotQA 17.62 30.46 24.46 23.91 15.46 32.21 15.19 41.40
FairytaleQA 28.40 27.10 30.18 26.12 22.29 31.70 18.84 17.28

Average 31.44 33.29 30.87 33.90 27.50 33.57 27.06 6.88

Table 7: Avg. estimated true accuracy results of benchmarks across models (Gemma-7B-it, Mistral, ChatGPT) and datasets
(MMLU, BBH) with seven Wrapping format (Special Character, Bolding, Italicizing, Brackets, Parentheses, Placeholder,
Quoting). This table is the distillation result of averaging all the estimated true performance scores across models and
benchmarks in Tab. 6.
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Model Special Character Bolding Italicizing Brackets Parentheses Placeholder Quoting Avg. BiasFo (Var)

Gemma 62.27 46.07 49.51 37.06 15.33 45.58 1.36 36.74 384.31
Mistral 63.00 15.36 40.94 67.53 54.72 64.48 4.04 44.30 553.55

ChatGPT 94.77 93.49 88.35 88.93 88.69 95.06 45.79 85.01 263.71

Avg. 73.34 51.64 59.60 64.51 52.91 68.37 17.06 55.35 297.28

Table 8: Avg. Following Instruction Score over all the wrapping formats. This table is the distillation result of averaging all the
FI scores across models and benchmarks in Tab. 6.

Answer the following question without any explanation. Wrap your final answer
using triple quotation marks.

Question (HotpotQA): “What was the MGM Grand Garden Arena in which Britney
Spears recorded fourth video album originally known as?”
Context:...

Gemma: MGM Grand Garden Special Events.
1175

Answer the following question without any explanation. Wrap your final answer
using triple quotation marks.

Question (BBH): Is the following sentence plausible? “David Silva took
a throw-in.”

Mistral: A. “yes”.
1176

ZS versus ZS-CoT. The average of estimated True Accuracy scores across models and tasks for the 1177

ZS and ZS-CoT prompting are shown in Tab. 9. For the majority of the wrapping methods (“Special 1178

Character”, “Bolding”, “Italicizing”, and “Brackets”), the ZS-CoT model generally shows higher or 1179

comparable performance to the ZS model. The “Brackets” shows a significant improvement when using 1180

ZS-CoT, with a jump from 31.05% (ZS) to 36.00% (ZS-CoT). However, the BiasFo metric shows a 1181

considerable divergence between 4.89%2 (ZS) and 11.65%2 (ZS-CoT). This depicts that while applying 1182

CoT may improve accuracy in certain methods, it does not generally reduce format bias. 1183

Special Character Bolding Italicizing Brackets Parentheses Placeholder Quoting BiasFo

Zero-shot 30.57 32.76 30.30 31.05 27.38 34.42 28.50 4.89
Zero-shot Chain-of-Thought 27.99 34.32 32.33 36.00 27.05 31.02 26.58 11.65

Table 9: Avg.Estimated Accuracy of non CoT versus CoT for wrapping methods. This table is the distillation result of averaging
all the Zero-shot and Zero-shot Chain-of-Thought scores across models and tasks in Tab. 6.

Reliability of the results. Overall, 80% of the EstTrue results (169/210) are reliable. Gemma-7B-it 1184

shows mixed reliability, with some red-marked scores indicating unreliable results, particularly in the 1185

“Quoting” format. This is because Gemma failed to follow the quoting instruction to quote the final answer. 1186

Mistral-7B-it exhibits similar variability, with some unreliable scores in “Quoting” and “Placeholder” 1187

formats. ChatGPT generally demonstrates mostly reliable results, with only 1 quoting result unreliable. 1188

C.3 List Discussions 1189

We assess Gemma, Mistral, and ChatGPT with two prompting techniques, Zero-shot (ZS) and Zero-shot 1190

Chain-of-Thought (ZS-CoT) (§5.3) on two benchmarks SciDocsRR and SemEval2017. Our prompts are 1191

provided in E.3. We utilize FIC , SysE, TrueE as our evaluation metrics. The results are illustrated in 1192

Tab. 10. In addition, Tab. 11, Tab. 12 and Tab. 13 are the distillation results of Tab. 10: 1193
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Listing type Python Bullet Spe. Char. Newline

SciDocsRR
Gemma-7B-it (EstTrue-mAP ) 0.0 / 61.65 0.0 / 73.0 0.0 / 60.00 0.0 / 60.15
Gemma-7B-it (Systematic-mAP ) 0.0 / 15.72 0.0 / 1.46 0.0 / 0.90 0.0 / 28.27
Gemma-7B-it (FI) 0.0 / 25.50 0.0 / 2.00 0.0 / 1.50 0.0 / 47.00

Mistral (EstTrue-mAP ) 50.21 / 52.61 0.00 / 0.00 0.00 / 0.00 78.08 / 58.36
Mistral (Systematic-mAP ) 37.41 / 9.47 0.00 / 0.00 0.00 / 0.00 18.35 / 27.14
Mistral (FI) 74.50 / 18.00 0.00 / 0.00 0.00 / 0.00 23.50 / 46.50

ChatGPT (EstTrue-mAP ) 35.29 / 50.17 49.94 / 59.64 55.69 / 57.78 38.54 / 57.56
ChatGPT (Systematic-mAP ) 33.17 / 28.60 49.19 / 25.05 55.69 / 37.85 35.46 / 35.41
ChatGPT (FI) 94.00 / 57.00 98.50 / 42.00 100.00 / 65.50 92.00 / 61.50

SemEval2017
Gemma-7B-it (EstTrue-F1) 4.00 / 8.86 7.10 / 7.20 4.80 / 13.50 7.21 / 3.25
Gemma-7B-it (Systematic-F1) 0.04 / 1.64 1.80 / 2.10 4.80 / 13.50 7.21 / 1.51
Gemma-7B-it (FI) 1.00 / 18.50 25.50 / 29.15 100.00 / 100.00 100.00 / 46.50

Mistral (EstTrue-F1) 34.82 / 30.24 23.2 / 0.00 0.00 / 13.57 12.17 / 20.84
Mistral (Systematic-F1) 33.95 / 24.19 23.20 / 0.00 0.00 / 10.72 12.17 / 20.84
Mistral (FI) 97.50 / 80.00 100.00 / 100.00 0.00 / 79.00 100.00 / 100.00

ChatGPT (EstTrue-F1) 42.25 / 15.33 8.87 / 16.46 32.19 / 16.33 37.16 / 22.87
ChatGPT (Systematic-F1) 39.51 / 6.04 8.87 / 16.13 31.07 / 15.51 37.16 / 22.75
ChatGPT (FI) 93.50 / 39.39 100.00 / 97.97 96.50 / 94.94 100.00 / 99.49

Table 10: List output format results. Red results are unreliable results measured by Thm. 3.1 i.e., inequality Eq. (6) does not
hold.

1. Tab. 11. For each model, we average its EstTrueE performance overall benchmarks and prompt-1194

ing techniques. For each task, we average the EstTrueE scores overall models and prompting1195

techniques. This table is drawn in Fig. 4 and its discussions are conducted in §5.3.1196

2. Tab. 12. The purpose of this table is to compare the FI scores across formats. We average all the FI1197

scores across models and tasks.1198

3. Tab. 13. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias.1199

We average all the EstTrueE scores over all models and benchmarks for each ZS and ZS-CoT1200

prompting method.1201

Python Bullet Special Character Newline BiasFo (Var)

Models

Gemma 17.12 18.25 15.12 16.21 1.32
Mistral 41.98 5.80 3.39 42.37 353.80
ChatGPT 35.76 33.73 40.50 39.03 7.08

Average 31.62 19.26 19.67 32.53 39.87

Tasks

SemEval2017 21.58 8.09 10.43 16.29 27.58
SciDocsRR 41.66 30.43 28.91 48.78 67.08

Average 31.62 19.26 19.67 32.54 39.91

Table 11: Avg estimated true F1 (SemEval2017) and MAP (SciDocsRR) scores over benchmarks (SemEval2017, SciDocsRR)
and models (Gemma-7B-it, Mistral, ChatGPT) across 4 widely used list formats (Python, Bullet, Special Character, Newline)

Format instruction-following bias. From Tab. 12, the “Newline list” format has the highest FI score of1202

66.05%, while the FI scores of other formats are around 48.6%. Among the models, ChatGPT follows1203

the instructions best with FI score 83.27%. Specifically, ChatGPT excels at following instructions for all1204

formats. In comparison, Mistral performs poorly with “Special character list”, while Gemma struggles the1205

most with “Python” and “Bullet point list”. Explaining these phenomena, we observe that Gemma often1206

misinterprets the task of converting textual samples into lists of numbers as a coding task, resulting in1207
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answers that do not match the desired format or content. We take an example in dataset SciDocsRR §D.1 1208

with detailed prompt as in §E.3 1209

Given a query, and a list of documents.
Query: Declarative Terrain Modeling for Military Training Games
Documents: [...]

You are required to transform the list of documents into a binary list
of 1 or 0 where 1 indicates the document brings useful information to the
topic, and 0 indicates the document does not bring useful information to the
topic. Generate your binary list as a Python list

Gemma: You should not use any packages such as sklearn, gensim, and
NLTK. You are required to write a short explanation for your binary list.

1210

Given a query, and a list of documents.
Query: Declarative Terrain Modeling for Military Training Games
Documents: [...]

You are required to transform the list of documents into a binary list
of 1 or 0 where 1 indicates the document brings useful information to the
topic, and 0 indicates the document does not bring useful information to the
topic. Generate your binary list using bullet points

Gemma: Your binary list must be in the following format: [1, 0, 1, 0,
0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0].

1211

Model Python Bullet Special Character Newline Avg. BiasFo (Var)

Gemma 7.51 13.41 34.55 42.40 24.46 277.69
Mistral 67.50 50.00 19.75 67.50 51.19 507.31

ChatGPT 70.97 84.61 89.24 88.25 83.27 71.13

Avg. 48.66 49.34 47.84 66.05 52.97 76.36

Table 12: Avg Following Instruction scores over benchmarks (SemEval2017, SciDocsRR) and models (Gemma-7B-it, Mistral,
ChatGPT) across 4 widely used list formats (Python, Bullet, Special Character, Newline). This table is the distillation result of
averaging all the FI scores across models and benchmarks in Tab. 10.

ZS versus ZS-CoT. The results, detailed in Tab. 13 indicate that prompting with ZS-CoT substantially 1212

enhances model performance across various formats. Moreover, ZS-CoT effectively reduces format bias, 1213

as evidenced by the BiasFo metric decreasing from 46.88%2 to 33.69%2. From this, we conclude that 1214

CoT reduces format bias. 1215

Python Bullet Special Character Newline BiasFo (Var)

Zero-shot 27.76 13.67 14.73 27.98 46.88
Zero-shot Chain-of-Thought 35.47 24.85 24.62 37.09 33.69

Table 13: Avg estimated true F1 (SemEval2017) and MAP (SciDocsRR) scores of non-CoT versus CoT for list formats. This
table is the distillation result of averaging all the scores across models and benchmarks in Tab. 10.

Reliability of the results. From Tab. 10, 73%(35/48) of the EstTrue results are reliable. However, 1216

some scores of Gemma-7B-it (8/16) and Mistral-7B-it (5/16) on these benchmarks are red-marked, 1217
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indicating unreliable results of this model. In contrast, the ChatGPT’s results are perfectly reliable.1218

C.4 Mapping Discussions1219

Mapping type JSON YAML

SciREX Easy
Gemma-7B-it (EstTrue-F1) 14.60 / 20.84 18.20 / 0.82
Gemma-7B-it (Systematic) 3.54 / 3.79 3.03 / 0.10
Gemma-7B-it (FI) 24.24 / 18.18 16.64 / 12.12

Mistral-7B-it (EstTrue-F1) 28.83 / 32.82 0.00 / 0.00
Mistral-7B-it (Systematic) 11.36 / 32.33 0.00 / 0.00
Mistral-7B-it (FI) 39.39 / 98.48 0.00 / 3.03

ChatGPT (EstTrue-F1) 35.99 / 22.40 23.63 / 26.60
ChatGPT (Systematic) 32.72 / 19.69 22.92 / 20.15
ChatGPT (FI) 90.90 / 87.87 96.96 / 75.75

SciREX Medium
Gemma-7B-it (EstTrue-F1) 18.17 / 5.27 0.00 / 1.87
Gemma-7B-it (Systematic) 3.03 / 0.88 0.00 / 0.17
Gemma-7B-it (FI) 16.67 / 16.67 18.18 / 9.09

Mistral-7B-it (EstTrue-F1) 26.48 / 23.81 18.97 / 20.83
Mistral-7B-it (Systematic) 21.27 / 23.81 1.15 / 0.25
Mistral-7B-it (FI) 80.30 / 100.00 6.06 / 1.20

ChatGPT (EstTrue-F1) 29.07 / 27.29 36.55 / 22.70
ChatGPT (Systematic) 28.19 / 26.47 21.60 / 22.70
ChatGPT (FI) 96.96 / 96.96 59.09 / 100.00

SciREX Hard
Gemma-7B-it (EstTrue-F1) 34.40 / 29.18 1.65 / 0.87
Gemma-7B-it (Systematic) 4.17 / 10.61 0.25 / 0.04
Gemma-7B-it (FI) 12.12 / 36.36 15.15 / 4.55

Mistral-7B-it (EstTrue-F1) 22.44 / 30.34 12.54 / 15.95
Mistral-7B-it (Systematic) 20.40 / 26.66 1.71 / 1.58
Mistral-7B-it (FI) 90.90 / 87.87 13.63 / 9.90

ChatGPT (EstTrue-F1) 20.25 / 22.57 11.76 / 12.07
ChatGPT (Systematic) 19.64 / 22.23 11.59 / 10.43
ChatGPT (FI) 96.96 / 98.48 98.48 / 86.36

Table 14: Mapping output format results. Red results are unreliable results measured by Thm. 3.1 i.e., inequality Eq. (6) does
not hold.

JSON YAML Average BiasFo (Var)

Models

Gemma 20.42 3.91 12.17 68.14
Mistral 27.46 11.39 19.43 64.56
ChatGPT 26.27 22.22 24.25 4.10

Tasks

Easy 25.92 11.55 18.74 51.62
Medium 21.69 16.82 19.26 5.92
Hard 26.53 9.15 17.84 75.51

Table 15: Avg estimated true F1 scores over benchmarks (SciREX Easy, SciREX Medium and SciREX Hard) and models
(Gemma-7B-it, Mistral, ChatGPT) across 2 widely used mapping formats (JSON and YAML). This table is the distillation result
of averaging all the estimated true performance scores across models and benchmarks in Tab. 14.

We select Gemma, Mistral, and ChatGPT for our evaluation, using two prompting techniques: Zero-shot1220

(ZS) and Zero-shot Chain-of-Thought (ZS-CoT) (§5.4). These models are tested on the SciREX dataset1221

across three difficulty levels: Easy, Medium, and Hard. Detailed prompt specifications are provided in1222

§E.4. We calculate FIC , SysE,EstTrueE with the results presented in Tab. 14. Furthermore, Tab. 15,1223
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Tab. 16 and Tab. 17 are distilled from Tab. 14: 1224

1. Tab. 15. For each model, we average its EstTrueE performance overall benchmarks and prompt- 1225

ing techniques. For each task, we average the EstTrueE scores overall models and prompting 1226

techniques. This table is numerical results of Fig. 5 and discussed in §5.4. 1227

2. Tab. 16. The purpose of this table is to compare the FI scores across formats. We average all the FI 1228

scores across models and tasks. 1229

3. Tab. 17. The purpose of this table is to see whether CoT (Wei et al., 2022) mitigates format bias. 1230

We average all the EstTrueE scores over all models and benchmarks for each ZS and ZS-CoT 1231

prompting method. 1232

Format instruction-following bias. From this Tab. 16, noticeably, there is a significant difference in 1233

the FI scores of two mapping formats (“JSON” and “YAML”). The average FI scores of the “JSON” 1234

mapping format is 66.07%, which is exceptionally higher (double time higher) than the one of the “YAML” 1235

mapping format (34.62%), resulting in high format bias (BiasFo = 494.64%2). Overall, among models, 1236

ChatGPT yields the best result of 90.40%. Mistral fails to follow “YAML” format instruction, e.g. for the 1237

question in dataset SciREX Easy §D.1 with detailed promt as in §E.4 1238

Extract the entities reflecting the tasks in the following document:

Document: Published as a conference paper at ICLR 2017 QUERY - REDUCTION
NETWORKS FOR QUESTION ANSWERING.

Your output must be in YAML format: “““ Task: [...] ”””. Wrap your
final answer by <ANSWER> and </ANSWER>.

Mistral: “‘yaml
- TASK_1: Prepare conference paper
- TASK_2: Submit conference paper to ICLR 2017
- TASK_3: Research and develop Query-Reduction Networks for Question Answering
”’
<ANSWER>
“‘yaml
- TASK_1: Prepare conference paper
- TASK_2: Submit conference paper to ICLR 2017
- TASK_3: Research and develop Query-Reduction Networks for Question Answering”’
</ANSWER>.

1239

Model JSON YAML Avg. BiasFo

Gemma 20.71 12.62 16.66 32.68
Mistral 82.82 5.13 43.98 3018.00

ChatGPT 94.69 86.11 90.40 36.82

Avg. 66.07 34.62 50.35 494.64

Table 16: Avg FI scores over benchmarks and models across 2 widely used mapping formats (JSON and YAML). This table is
the distillation result of averaging all the FI scores across models and benchmarks in Tab. 14.

ZS versus ZS-CoT. From Tab. 17, it is evident that the performance of ZS prompting surpasses that of 1240

ZS-CoT for both formats. Upon comparing the BiasFo across prompting techniques, we conclude that 1241

CoT (Wei et al., 2022) does not mitigate format bias. 1242

23



JSON YAML BiasFo

Zero-shot 25.59 13.70 35.30
Zero-shot Chain-of-Thought 23.84 11.31 39.29

Table 17: Avg ZS and ZS-CoT scores over benchmarks and models across 2 widely used mapping formats (JSON and YAML).
This table is the distillation results across models and benchmarks in Tab. 14.

Reliability of the results. From Tab. 14, 75% of the EstTrue results are reliable. The reliability of the1243

results in the mapping output format shows variability across different models and formats. Noticeably,1244

“YAML” mapping format results are less reliable than “JSON” ones. On the other hand, ChatGPT1245

illustrates its high reliability in all mapping formats while Mistral-7B-it and Gemma-7B-it are opposite,1246

and all the results in the “YAML” mapping format of these models are unreliable.1247

C.5 Mitigating Format Bias Results1248

Index Wrapping type Special character Bolding Italicizing Brackets Parentheses Placeholder Quoting Avg. BiasFo (Var)

No demo (Zero-shot)
1 ChatGPT (EstTrue-Acc) 54.63 67.39 44.76 59.79 57.82 66.23 68.28 235.33
2 ChatGPT (Systematic) 48.54 66.59 38.24 31.65 28.54 63.88 26.72 532.75
3 ChatGPT (FI) 88.84 98.80 85.43 52.93 49.36 96.44 39.13 72.99 61.12

Repeat format prompt thrice
4 ChatGPT (EstTrue-Acc) 60.09 67.88 55.65 61.99 63.71 30.31 68.28 146.79
5 ChatGPT (Systematic) 56.65 66.98 49.93 35.74 51.63 2.85 33.13 377.66
6 ChatGPT (FI) 94.26 98.67 89.71 57.65 81.03 9.40 48.52 68.46 884.34

1 demo
7 ChatGPT (EstTrue-Acc) 55.12 65.08 47.18 52.23 56.13 65.92 63.60 172.69
8 ChatGPT (Systematic) 50.54 64.49 43.98 40.02 31.02 62.19 28.10 397.62
9 ChatGPT (FI) 91.68 99.09 93.22 76.61 55.26 94.34 44.18 79.20 43.75

5 demos
10 ChatGPT (EstTrue-Acc) 51.77 58.30 45.21 46.79 52.52 62.84 55.24 111.78
11 ChatGPT (Systematic) 51.18 56.66 40.69 41.36 39.78 60.88 27.72 259.37
12 ChatGPT (FI) 98.85 97.19 90.01 88.39 75.74 96.88 50.18 85.32 32.93

Finetuned
13 ChatGPT (EstTrue-Acc) 74.02 74.73 71.53 73.88 74.09 74.27 74.19 0.71
14 ChatGPT (Systematic) 73.99 74.11 71.52 73.66 73.47 74.15 73.70 0.11
15 ChatGPT (FI) 99.96 99.17 99.98 99.69 99.16 99.83 99.33 99.59 0.93

Table 18: Supplementing demonstrations, repeating format instructions, and extra fine-tuning with formats’ data reduce format
bias. Performance of ChatGPT on MMLU. All results are reliably measured by Thm. 3.1 i.e., inequality Eq. (6) holds.

In this section, we present the numerical results of our proposed techniques for mitigating format biases1249

using ChatGPT on MMLU, as shown in Tab. 18.1250

1. Demonstrations with formats reduce bias (Indexes 7-12). From Tab. 18 indexes 7-12, we observe1251

that using demonstrations with formats generally increases the average of FI scores, from 72.99%1252

without any demonstration (index 3), to 79.20% with using one demonstration and 85.32% with1253

using 5 demonstrations. Moreover, we find that the performance does not scale linearly with the1254

FI score, indicating that simply increasing the FI score does not necessarily improve the models’1255

performance or reduce format biases.1256

2. Repeating format instructions reduces format bias (Indexes 4-6). From Tab. 18 index 6, most of1257

the formats, repeating the format instruction can increase the FI score (compared to index 3), except1258

for the “Placeholder”. Manual investigation reveals that repeatedly using the “Placeholder” format1259

confuses the model about the actual location of the placeholder, leading to the model omitting the1260

format. Nevertheless, this strategy generally reduces the format bias by decreasing the variance of1261

results from formats other than “Placeholder”, leading to overall reduction.1262

3. Fine-tuning with additional format data can eliminate format bias (Indexes 13-15). Finetuning1263

mostly eliminates the format bias problem of the LLM with the bias score only 0.71%2 from1264

Tab. 18 indexes 13-15, while increasing the average FI score up to almost perfect with 99.59%.1265

This demonstrates that finetuning can help LLMs become more familiar with format tokens and1266

requirements, reducing bias towards different formats.1267
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D Experimental Details 1268

D.1 Dataset Details 1269

We provide descriptions of all datasets we use in this paper. 1270

MMLU (Hendrycks et al., 2021). MMLU is a benchmark for evaluating the performance of language 1271

models on Multiple Choices Question on a wide range of subjects across STEM, the humanities, social 1272

sciences, and other areas, testing the model’s ability to understand and reason in diverse domains. 1273

BBH (Suzgun et al., 2022). BBH is a MCQ dataset which includes a variety of challenging benchmarks 1274

that require advanced reasoning, comprehension, and other complex cognitive skills. 1275

GSM8K (Cobbe et al., 2021). GSM8K is a dataset of 8,000 math word problems designed for grade 1276

school students. The problems require not just basic arithmetic but also multi-step reasoning to solve. 1277

HotpotQA (Yang et al., 2018b). HotpotQA is a question-answering dataset with a focus on multi-hop 1278

reasoning. It contains questions that require finding and combining information from multiple Wikipedia 1279

articles to derive the answer. 1280

FairytaleQA (Xu et al., 2022b). FairytaleQA is a dataset designed for evaluating narrative comprehen- 1281

sion, particularly in the context of children’s fairytales. It includes questions that test understanding of 1282

characters, plots, and settings in fairytales. 1283

SciDocsRR (Cohan et al., 2020). SciDocsRR is a dataset for evaluating information retrieval systems, 1284

particularly in the scientific domain. It includes tasks like citation prediction, document classification, and 1285

other retrieval-based evaluations. 1286

SemEval2017 (Augenstein et al., 2017b). SemEval2017 is part of an ongoing series of evaluations for 1287

semantic analysis in natural language processing. It includes a wide range of tasks such as sentiment 1288

analysis, semantic textual similarity, and information extraction. 1289

SciREX (Jain et al., 2020b). SciREX is a dataset for evaluating models on the task of information 1290

extraction from scientific literature. It focuses on extracting entities, relations, and other structured 1291

information from research papers. 1292

D.2 Experimental Results 1293

We present the hyperparameters setting for our experiments below. 1294

Gemma-7B-it (Team et al., 2024). For Gemma 7B-it, use the weights from Google and Huggingface1. 1295

We use Nucleus Sampling (Holtzman et al., 2020) as our decoding strategy with a p value of 0.95, a 1296

temperature value of 0.1, and a window size of 1024. 1297

Mistral-7B-it-v0.2 (Jiang et al., 2023). For Mistral 7B-it, use the weights from MistralAI and Hug- 1298

gingface2. We use Nucleus Sampling (Holtzman et al., 2020) as our decoding strategy with a p value of 1299

0.9, and a window size of 1024. 1300

ChatGPT (gpt3.5-turbo-0125) (OpenAI, 2022). For ChatGPT, we use the system role: “You are 1301

helpful assistant!”. We set the “max_tokens” to be 1024, “top_p=1”, “frequency_penalty=0”, “pres- 1302

ence_penalty=0”, and the model mode is “gpt3.5-turbo-0125”. 1303

Datasets for finetuning ChatGPT and finetuning setups. We preprocess the “auxiliary_train”3 dataset 1304

of MMLU (Hendrycks et al., 2021), resulting in the training set of 6500 samples as discussed in §6. 1305

We preprocess a small, distinct validation set with the same ratio as the training set among formats 1306

”20-20-40-40-50-20-50”, resulting in a total of 240 samples for validation. 1307

We use the default finetuning setup of OpenAI for ChatGPT. Our finetuning costs 63.86 US$. 1308

1https://huggingface.co/google/gemma-7b-it
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
3https://huggingface.co/datasets/cais/mmlu/viewer/auxiliary_train
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E Prompting1309

E.1 MCQ Prompt Details1310

The input for the models is the combination of the following components:1311

Input = {non-CoT/CoT × Char./Text.} Instruction + Question + (CoT Wrapping)1312

where non-CoT/CoT Instruction shows that model uses Zero-shot or Chain-of-Thought, given that1313

• non-CoT × Char. Instruction = “Answer the following multiple-choice question by outputting only1314

the designated character identifier.”1315

• non-CoT × Text. Instruction = “Answer the following multiple-choice question by outputting the1316

textual value of your choice without the character identifier without any textual description.”1317

• CoT × Char. Instruction = “Answer the following multiple-choice question step-by-step by1318

outputting only the designated character identifier.”1319

• CoT × Text. Instruction = “Answer the following multiple-choice question step-by-step by1320

outputting the textual value of your choice without the character identifier.”1321

Question is the main content of the task and CoT Wrapping is wrapping instruction if using CoT. i.e.1322

CoT Wrapping = “Wrap your final answer by <ANSWER> and </ANSWER>.”1323

E.2 Wrapping Prompt Details1324

The input for the models is the combination of the following components:1325

Input = non-CoT/CoT Instruction + Question + Wrapping Format Instruction1326

where non-CoT/CoT Instruction shows that model uses Zero-shot or Chain-of-Thought, given that1327

• If MCQ task (MMLU,BBH)1328

1. non-CoT Instruction = “Answer the following multiple-choice question by outputting only the1329

designated character identifier.”1330

2. CoT Instruction = “Answer the following multiple-choice question step-by-step by outputting1331

only the designated character identifier.”1332

• If generation task (GSM8K, HotpotQA, FairytaleQA)1333

1. non-CoT Instruction = “Answer the following question.”1334

2. CoT Instruction = “Answer the following question step by step.”1335

Question is the main content of the task, and Wrapping Format Instruction is the format we want the1336

model to output, detailed as1337

• Special Character wrapping = “Wrap your final answer by <ANSWER> and </ANSWER>.”1338

• Bolding wrapping = “Wrap your final answer in bold by enclosing it with double asterisks.”1339

• Italicizing wrapping = “Wrap your final answer in italics by enclosing it with single asterisks.”1340

• Brackets wrapping = “Wrap your final answer using double square brackets.”1341

• Parentheses wrapping = “Wrap your final answer using double parentheses.”1342

• Placeholder wrapping = “Wrap your final answer by filling in the placeholder below: ‘So the1343

answer is: {{placeholder}}”’1344

• Quoting wrapping = “Wrap your final answer using triple quotation marks.”1345

26



E.3 List Prompt Details 1346

For dataset SciDocsRR, the input for the models is the combination of the following components: 1347

Input = Information + Requirement + List Format Instruction 1348

+ non-CoT / CoT Instruction + (CoT Wrapping) 1349

where 1350

• Information = “Given a query, and a list of documents: Topic: Topic. List of documents: Samples” 1351

• Requirement = “You are required to transform the list of documents into a binary list of 1 or 0 where 1352

1 indicates the document brings useful information to the topic, and 0 indicates the document does 1353

not bring useful information to the topic.” 1354

• List Format Instruction includes four categories: 1355

1. Python = “Generate your binary list as a Python list” 1356

2. Bullet = “Generate your binary list using bullet points” 1357

3. Special Character = “Generate your binary list using <SEP> to separate elements” 1358

4. New Line = “Generate your binary list such that each element is in a new line” 1359

• non-CoT / CoT Instruction includes: 1360

1. non-CoT Instruction = “without any explanation.” 1361

2. CoT Instruction = “step by step” 1362

• CoT Wrapping = “Wrap your final list by <ANSWER> and </ANSWER>.” 1363

For dataset SemEval2017, the input for the models is the combination of the following components: 1364

Input = Requirement + Document + List Format Instruction 1365

+ non-CoT / CoT Instruction + (CoT Wrapping) 1366

where 1367

• Requirement = “Extract a list of keyphrases from the following document:” 1368

• Document is the main content of the task. 1369

• List Format Instruction includes four categories: 1370

1. Python = “Generate your binary list as a Python list” 1371

2. Bullet = “Generate your binary list using bullet points” 1372

3. Special Character = “Generate your binary list using <SEP> to separate elements” 1373

4. New Line = “Generate your binary list such that each element is in a new line” 1374

• non-CoT / CoT Instruction includes: 1375

1. non-CoT Instruction = “without any explanation.” 1376

2. CoT Instruction = “step by step” 1377

• CoT Wrapping = “Wrap your final list by <ANSWER> and </ANSWER>.” 1378
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E.4 Mapping Prompt Details1379

For all three datasets, we use the following formula for the input of the models1380

Input = Requirement + Document + Mapping Format Instruction + (CoT Wrapping)1381

where1382

• Requirement = “Extract the entities reflecting the tasks in the following document:” if using non-1383

CoT model and “Extract the entities reflecting the tasks in the following document step-by-step:” if1384

using CoT model1385

• Document is the main content of the task.1386

• CoT Wrapping = “Wrap your final list by <ANSWER> and </ANSWER>.”1387

• Mapping Format Instruction starts with defining a specific format for the model and then instructs1388

the model to follow. In detail, we have1389

1. For Easy dataset, we define:1390

1 JSON_FORMAT = {1391
2 ''Task '': [...]1392
3 }1393
41394

1 YAML_FORMAT = '''''' Task: [...] ''''''1395
21396

Then1397

– JSON Mapping = “Your output must be a Python dictionary with the key ‘Task’ and value1398

as a list of task name entities: {str(JSON_FORMAT)}”1399

– YAML Mapping = “Your output must be in YAML format: {str(YAML_FORMAT)}”1400

2. For Medium dataset, we define:1401

1 JSON_FORMAT = {1402
2 ''Task '': [...],1403
3 ''Method '': [...]1404
4 }1405
51406

1 YAML_FORMAT = ''''''1407
2 Task: [...]1408
3 Method: [...]1409
4 ''''''1410
51411

Then1412

– JSON Mapping = “Your output must be a Python dictionary with the keys ‘Task’1413

and ‘Method’, and value is a list of task name entities and method name entities:1414

{str(JSON_FORMAT)}”1415

– YAML Mapping = “Your output must be in YAML format: {str(YAML_FORMAT)}”1416

3. For Hard dataset, we define:1417

1 JSON_FORMAT = {1418
2 ''Task '': [...],1419
3 ''Method '': [...],1420
4 ''Material '': [...],1421
5 ''Metric '': [...]1422
6 }1423
71424

28



1 YAML_FORMAT = '''''' 1425
2 Task: [...] 1426
3 Method: [...] 1427
4 Material: [...] 1428
5 Metric: [...] 1429
6 '''''' 1430
7 1431

Then 1432

– JSON Mapping = “Your output must be a Python dictionary with the keys are ‘Task’, 1433

‘Method’, ‘Material’, ‘Metric’, and value is a list of task name entities, method name entities, 1434

material name entities, metric name entities: {str(JSON_FORMAT)}” 1435

– YAML Mapping = “Your output must be in YAML format: {str(YAML_FORMAT)}” 1436
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