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ABSTRACT

This paper proposes a methodology for generating synthetic mathematical deriva-
tions via a computer algebra system to evaluate the generalisability of Transformers
in symbolic and quantitative reasoning problems, and provides a general framework
for building large-scale and high-quality benchmarks in the mathematical domain.
In the context of classification tasks involving multi-step annotated derivations
(spanning 18 mathematical operators), we leverage the framework to compare the
mathematical capabilities of GPT-4, GPT-3.5, and a canon of fine-tuned BERT
models, and explore the relationship between specific operators and generalisation
failure. Surprisingly, the average in-distribution performance of BERT models
surpasses GPT-3.5, and rivals GPT-4, yet simple symbolic perturbations reduce
BERT scores by up to 80 F1 points. The results suggest that the in-distribution per-
formance and generalisability of smaller open-source models may potentially rival
GPT in narrow mathematical domains by incorporating appropriately structured
discourse-level relations during training, and highlight a shared weakness between
BERT and GPT involving a relative inability to decode dependency relations in-
volving indirect references to mathematical entities. We release the data generation
framework along with all the resulting datasets and fine-tuned models1.

1 INTRODUCTION

Out-of-distribution (OOD) generalisation in Transformers (Vaswani et al., 2017) is a fundamental
property for domain-specific/specialised natural language inference (Schlegel et al., 2023; Belinkov,
2022; Teney et al., 2020) in areas which require rigorous and controlled reasoning such as mathematics,
physics, biomedicine, and software verification (Frieder et al., 2023; Lee et al., 2022; Valentino
et al., 2022b; Lewkowycz et al., 2022; Drori et al., 2022; Welleck et al., 2021; Kumar et al., 2020).
Various strategies have been proposed to evaluate model generalisability, including direct input
manipulation (Rozanova et al., 2023b; Stolfo et al., 2022; Nie et al., 2020; Kaushik et al., 2019) and
probing on the internal representation (Rozanova et al., 2023a; Ravichander et al., 2021; Elazar et al.,
2021; Veitch et al., 2020). This paper considers input interventions through syntactic and semantic
perturbations to mathematical text. Current interventional approaches are challenged by the difficulty
of isolating confounding factors, and formalising the expected causal mechanisms that underpin the
models’ predictions (Rozanova et al., 2023b; Stolfo et al., 2022; Ribeiro et al., 2020; Kaushik et al.,
2019). Particularly in the mathematical domain, these hurdles impact the scope and reliability of
causality and robustness studies (Pearl, 2009; Shreya et al., 2022).
To tackle existing limitations, we leverage the rich environment of symbolic engines to design a data
generation and evaluation framework that generates mathematical reasoning steps possessing diverse
symbolic properties and produces equation derivations at scale. Strict symbolic rules offer a systematic
approach to perturbing mathematical reasoning and hence evaluating the OOD generalisation of
neural models in various tasks. This allows us to explore deep relationships between semantic
and syntactic elements of math reasoning and model generalisability across diverse subdomains,
extending beyond the limited interventional scope of previous works (Stolfo et al., 2022; Welleck
et al., 2022; Patel et al., 2021; Ribeiro et al., 2020; Kaushik et al., 2019; Yao et al., 2021). In this
work we explore generalisability in the context of multi-hop equational reasoning and sequence
classification tasks, where sequences of mathematical operators are applied to premises and prior
equations to advance derivations, and provide model input.

1https://github.com/anonymous/TBA
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Figure 1: An overview of the proposed framework (left) and example of a generated derivation (right).
We leverage computer algebra to generate large-scale training data for mathematical reasoning tasks
(a) and apply systematic perturbations to examples from a static test set to form a perturbed test set
(b). The static evaluation scores are compared with scores on the perturbed set, given some metric,
to determine model robustness and generalisation (c). In the derivation (right), colours highlight
long-range dependencies.

Additionally, we dialogue with an impending data scarcity problem, where high-quality data is
forecast to be outpaced by the training needs of models within the decade (Villalobos et al., 2022).
Symbolic engines facilitate the generation of annotated mathematical reasoning, which allows the
construction of high-quality datasets for various tasks. We combine (18) symbolic operators with
hand-crafted rules that guide the exploration of equational state spaces and generate derivations, then
perturb and adapt them for exemplar entailment tasks. In this case, these are sequence classification
tasks that focus on operator usage in reasoning chains.
To demonstrate our approach, we fine-tune a canon of BERT-based models used in mathematical
language processing (Li et al., 2023; McNichols et al., 2023; Zhong et al., 2022; Meadows & Freitas,
2022), and few-shot prompt GPT-3.5 and GPT-4, to determine their capacity for recognising coherent
math reasoning, and to abstract fundamental properties impacting their ability to generalise. To
summarise, the paper offers the following contributions:
1. An approach to generating annotated derivations of controllable complexity levels, involving
premise equation generation (Algorithm 1) and the sequential application of operators to prior
equations to derive new results (Algorithm 2).
2. A systematic and scalable methodology to perturb various aspects of mathematical data including
syntax and semantics. We outline a number of simple perturbations in this initial case.
3. An experimental framework for training models on mathematical reasoning tasks and evaluating
their robustness, including dataset generation, systematic perturbation, training, and evaluation
(Fig. 1).
4. Example instantiation of the framework involving sequence classification tasks. The generated
datasets include static and perturbed derivations totalling over 200K examples.
5. An extensive comparative evaluation of various BERT-based and GPT models culminating
in a discussion relating the limited generalisability of models with respect to key operators and
mathematical content.
To the best of our knowledge, this work is the first to propose a general symbolic engine-based
framework for producing large-scale and highly controllable benchmarks for multi-step mathematical
reasoning (in both LaTeX and SymPy notation).
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2 RELATED WORK

Computer algebra. SymPy (Meurer et al., 2017) is a computer algebra system used in conjunction
with a number of language processing methods. For example, Chen et al. (2022) solve numerical
reasoning tasks including simple math elements such as numbers, by chain-of-thought prompting
language models to generate SymPy solvable code. Mandlecha et al. (2022) use SymPy to generate
data for answering questions ranging from arithmetic to calculus without exploring generalisability
aspects. Hu & Yu (2022) solve a similar array of problems from a large-scale dataset (Saxton et al.,
2019), and test for generalisability to an extrapolation set of problems. Drori et al. (2022) fine-tune
the decoder model, Codex (Chen et al., 2021), on a dataset of questions from MIT’s university-level
mathematics courses, generating SymPy solution code. Lample & Charton (2019) train a model to
integrate and solve differential equations more successfully than computer algebra systems, but as
noted elsewhere (Davis, 2019) they do not explore OOD performance. Welleck et al. (2022) conduct
similar experiments using a single model and a single operator (integration) on a single task. We
consider 18 operations, 7 models, multiple tasks, and emphasize perturbations applied to multi-step
reasoning.
Reasoning with mathematical language. Transformers (Saxton et al., 2019; Clark et al., 2020;
Rabe et al., 2020) defined the state-of-the-art (SotA) in multiple subdomains and tasks in mathemat-
ical language processing (Meadows & Freitas, 2022; Lewkowycz et al., 2022; Drori et al., 2022).
Transformer encoder models obtain SotA performance in variable typing (Ferreira et al., 2022; Lai
et al., 2022), formula search (Zhong et al., 2022; Peng et al., 2021), natural language premise selec-
tion (Valentino et al., 2022a; Tran et al., 2022), and retrieval-based math question answering (Reusch
et al., 2022; Novotnỳ & Štefánik, 2022), among other tasks. The evaluation of the mathematical
capabilities of GPT models, as well as the comparison between GPT and smaller fine-tuned models
when deriving equations, has been considered elsewhere (Meadows et al., 2023; Frieder et al., 2023).
Data augmentation and evaluation frameworks. Many approaches exist related to evaluating
the mathematical and symbolic capabilities and robustness of models. Stolfo et al. (2022) perturb
elements of math word problems (Liang et al., 2022) such as numerical operands of implicit arithmetic
operations, and natural language, inspired by related work (Pearl, 2022; Christiansen et al., 2021;
Patel et al., 2021; Ribeiro et al., 2020) in causal analysis. Similar to other work Welleck et al. (2022),
their approach focuses on one or two task-dependent perturbations. Our approach to generating and
perturbing data is largely task-independent, and allows for the complex augmentation of operators,
variables, expressions, and equations in multi-hop reasoning chains.

3 GENERATING AND PERTURBING DERIVATIONS WITH SYMBOLIC ALGEBRA
ENGINES

In this section, we describe the methodology for generating synthetic mathematical derivations from
a vocabulary of symbols and a set of operators. The set of operators includes addition, subtraction,
multiplication, division, exponentiation, cos, sin, log, exp, operations for setting up derivatives and
integrals, expression substitutions, and operations for defining premises. An example derivation is
given in Fig. 1.

3.1 PREMISE GENERATION

A derivation represents a sequence of operations initially applied to premise equations, as shown in
Fig. 1. To generate premises we adopt a vocabulary and a set of operators defined within the symbolic
engine. The vocabulary includes uppercase and lowercase English characters, excluding {i, e, d, O}
to avoid overlap with standard mathematical notation. Operators are separated by their arity. For
example, the symbols Z and o are sampled from the vocabulary and used as operands for the 2-arity
operator “divide”. Then, Z is sampled from the vocabulary as an operand for the 1-arity operator
“integrate”. This expression becomes

∫
Z
o dZ, and consists of the free symbols Z and o. This is the

RHS of the premise equation. To form the LHS, a function symbol is sampled from the vocabulary,
in this case S, and the two free symbols are assigned as variables. The LHS and RHS are themselves
inputted as arguments of an equation operation, and the premise (1) is obtained. A formal description
of the premise generation process is given by Algorithm 1 in Appendix D.
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3.2 DERIVATION GENERATION

To summarise the primary mechanism for the derivation generation approach, operators are classified
by their arity ∈ [0, 2] which determines step annotations. A sampled operator is then applied to
expressions to each side of a sampled equation to generate new equations.
For example, starting from the premise in Fig. 1 (right), given by (Z, o) =

∫
Z
o dZ, the 2-arity class

can be selected and the operation “differentiate” can be chosen from the list of operators matching that
arity. Subsequently, the algorithm randomly selects a variable to which to apply the operation (i.e., Z).
The generated annotation [‘differentiate’, 1, Z], therefore, means that the operator "differentiate" was
applied to operand equation (1), with respect to Z to yield ∂

∂ZS(Z, o) = ∂
∂Z

∫
Z
o dZ. Similarly, the

notation [‘minus’, 1, Derivative(S(Z,o), Z)] means that the 2-arity operation "minus" was selected, the
operator and the LHS of (2) is selected as the second operand. This step-wise procedure repeats up to
a predefined number of steps to produce a full derivation with structured inter-statement relations and
references, where the correctness of step calculations are guaranteed by the computer algebra engine.
We describe this formally in Algorithm 2 with a more detailed description of hyperparameters and
equation sampling in Appendix E.

3.3 PERTURBATIONS

Figure 2: Example perturbations applied to a derivation using computer algebra.

To perturb LaTeX sequences, the examples in the static set are re-interpreted by the computer
algebra engine using SymPy’s srepr tree representation2. The one-to-one mapping between LaTeX
and Sympy allows for derivations to be perturbed with respect to a target property of interest,
and represented using different formats. In this paper, we consider four different perturbations
for evaluation (Fig. 2). However, the compatibility with the computer algebra system facilitates
perturbed reasoning that ranges from small-scale interventions to single variables through to long-
range interventions targeting complex semantic relationships between any number of distant sequence
elements. For instance, one may choose to only perturb reasoning chains that involve a premise
renaming operation followed directly by integration, or square a variable and propagate that change
through the entire reasoning chain. The perturbations adopted in our evaluation are as follows:
Variable Renaming (VR). For each example in the static set, we uniquely map each symbol to
an out-of-vocabulary symbol sampled from 10 Greek letters (e.g., E(n, x) = n + x becomes
α(β, γ) = β + γ).
Expression Exchange (EE). For each example in the static set, we swap expressions either side of
the equality (e.g., E(n, x) = n+ x becomes n+ x = E(n, x)). This reverses the overrepresentation
of LHS functions in the static set.
Annotation Replacement (AR). Each example in the static set contains a positive and negative
final equation. For each example, the operator and operands (and hence the annotation) responsible
for generating the negative equation are calculated, replacing the corresponding annotation in the
sequence and swapping the label (i.e. from positive to negative and vice-versa).

2https://docs.sympy.org/latest/tutorials/intro-tutorial/manipulation.
html
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Equation Conversion (EC). If a sequence consists of a chain such as log(x) [SEP] x [SEP] 1
x ,

and the implicit operation is differentiation (e.g., Fig. 3(b)), a random symbol is sampled from
the vocabulary (e.g., Q), and the sequence becomes Q(x) = log(x) [SEP] x [SEP] dQ(x)

dx = 1
x . If

integrating, then the (negative) sequence becomes dQ(x)
dx = log(x) [SEP] x [SEP] Q(x) = 1

x .

4 TASKS

Figure 3: Input formats for the two sequence classification tasks (left): Derivation Step Classification
(a) and Calculus Classification (b). Specific inputs are shown on the right.

We instantiate the general framework described in Section 3 in the context of two sequence classifica-
tion tasks, where models must predict whether the final expression or equation in the sequence follows
from the prior context. The main data generation algorithm outputs a derivation (Alg. 2) in LaTeX
and SymPy (Fig. 1) which must then be adapted for specific tasks. Training and prompt exploration
details for each task are described in Appendix A. Task dataset sizes and sequence construction
details are described in Appendix B.
Derivation Step Classification. Fig. 3(a) describes the model input format for this task. The aim
of the task is to predict the final result of a sequence of operations. Each individual step consists of
an equation and an annotation that describes the details of the applied operation (Fig. 1). Negative
examples are generated by applying either a different operation, or the same operation with different
operands. Therefore, to solve this task while being robust to perturbations, a model must learn the
necessary equation dependencies required to form the final equation in the derivation, guided by the
final annotation. In experiments we consider derivations composed of up to four steps.
Calculus Classification. Fig. 3(b) describes the model input for this task, which consists in a
single-step calculation of derivatives and integrals (related to Lample & Charton (2019); Welleck
et al. (2022)). Separately to the previous task, here we aim to evaluate the capability of the models to
perform a single inference step without access to the operation annotation. Therefore, to build the
dataset, we generate a premise expression containing at least two variables, and use as the ground
truth the resulting expression after differentiating or integrating with respect to a randomly selected
variable. The negative examples are generated by sampling from a list of alternative premises that
include the result of differentiating/integrating premises either by fixing the variable and changing
the expression, or vice versa.
Generalisation to simpler mathematics. A model that can sufficiently generalise the mathematical
rules underlying the tasks should be able to solve (on average) mathematically less complex versions
of problems encountered during training. To this end, in Derivation Step Classification, we evaluate
models exposed to derivations with a fixed step count on a set of derivations composed of a lower
number of steps. This is represented in the s - 1 and s - 2 columns in Tab. 1 given initial step count, s.
In Calculus Classification, where models are exposed to examples comprising at least two variables,
(e.g., cos(ax)− z) we generate a set of easier problems with 1.5k examples that consist of only one
variable (e.g., cos(x)).

5 EVALUATION

In this section, we present and discuss the various scores obtains by range of fine-tuned and pre-
trained Transformer-based models on the classification tasks in Tables 1 and 2. Additional details
regarding experimental setup and reproducibility are discussed in Appendix A.

GPT-4 rivals in-distribution performance of fine-tuned BERT-based models while demonstrat-
ing better generalisation. Assuming a suitably descriptive few-shot prompt, where necessary context
is provided through either the task description or in-context examples (Appendix A), GPT-4 can rival
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Static VR EE AR s - 1 s - 2

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT-base-uncased (s=2) 87.7 88.9 87.0 88.1 87.0 88.0 87.5 88.7 - - - -
BERT-base-uncased (s=3) 78.9 78.7 71.9 71.0 69.1 66.0 53.7 50.6 68.4 69.0 - -
BERT-base-uncased (s=4) 58.8 63.6 55.0 60.3 56.4 60.3 42.4 48.1 65.7 62.2 52.8 29.8

BERT-base-cased (s=2) 87.2 88.5 81.9 83.2 85.3 86.1 85.5 87.2 - - - -
BERT-base-cased (s=3) 78.2 77.3 68.8 64.5 65.0 58.9 54.5 49.6 54.6 30.5 - -
BERT-base-cased (s=4) 66.8 71.7 58.5 61.5 62.6 67.2 43.3 53.1 71.9 73.9 54.3 21.8

MathBERT (s=2) 83.2 82.0 76.2 70.6 79.0 75.7 78.5 76.0 - - - -
MathBERT (s=3) 84.2 83.9 69.1 64.5 63.3 52.2 66.3 64.0 67.4 58.7 - -
MathBERT (s=4) 67.1 68.4 59.5 52.6 62.3 62.1 48.5 47.9 68.6 68.0 51.8 29.0

SciBERT-uncased (s=2) 92.5 92.6 72.9 70.4 86.8 86.1 90.0 90.2 - - - -
SciBERT-uncased (s=3) 88.9 89.4 82.1 81.9 70.3 66.4 70.9 72.2 80.6 81.8 - -
SciBERT-uncased (s=4) 76.3 76.5 69.5 66.8 68.6 65.9 60.7 59.6 76.9 77.9 59.3 57.4

SciBERT-cased (s=2) 92.6 93.1 85.3 87.1 89.8 90.2 91.0 91.7 - - - -
SciBERT-cased (s=3) 77.2 72.4 72.7 67.2 61.0 44.1 50.8 29.5 52.9 12.8 - -
SciBERT-cased (s=4) 71.0 70.9 65.1 64.6 66.6 65.4 47.0 42.9 77.9 74.9 52.7 11.0

Encoder Average (s=2) 88.6 89.0 80.7 79.9 85.6 85.3 86.5 86.8 - - - -
Encoder Average (s=3) 81.5 80.3 72.9 69.8 65.7 57.5 59.2 53.2 - - - -
Encoder Average (s=4) 68.0 70.2 61.5 61.2 63.3 64.2 48.4 50.3 - - - -

GPT-3.5 (s=2) 66.0 72.6 65.5 72.5 59.0 65.3 53.0 63.3 - - - -
GPT-3.5 (s=3) 57.0 64.2 61.5 67.0 60.5 65.5 46.0 54.2 56.5 64.5 - -
GPT-3.5 (s=4) 51.5 59.1 49.5 56.3 54.0 59.6 44.5 52.8 56.0 62.7 59.0 67.7

GPT-4 (s=2) 88.0 88.5 87.5 88.2 82.5 81.1 64.5 66.4 - - - -
GPT-4 (s=3) 77.5 77.4 77.5 76.7 78.5 77.2 50.0 55.0 73.5 77.4 - -
GPT-4 (s=4) 68.0 68.0 69.0 69.6 66.0 64.6 42.0 42.6 76.0 76.9 77.5 80.2

Encoder (steps avg) 79.4 79.8 71.7 70.3 71.5 69.0 64.7 63.4 - - - -

GPT-3.5 (steps avg) 58.2 65.3 58.8 65.3 57.8 63.5 47.8 56.8 - - - -

GPT-4 (steps avg) 77.8 78.0 78.0 78.2 75.7 74.3 52.2 54.7 - - - -

Table 1: Model performance on the Derivation Step Classification task. Bold numbers denote highest
F1 scores for 2-step derivations. Bold italic numbers denote highest 3-step scores. Bold, italic, and
underlined numbers denote highest 4-step scores.

Static VR EC Easy

Acc F1 Acc F1 Acc F1 Acc F1

BERT-base-uncased (int) 90.0 90.7 68.8 70.4 75.1 78.0 62.7 72.9
BERT-base-uncased (diff) 75.9 80.3 64.9 73.3 62.2 69.8 55.1 69.1

BERT-base-cased (int) 93.0 93.4 71.6 77.7 85.2 86.7 63.8 71.8
BERT-base-cased (diff) 74.2 77.9 64.2 72.4 60.3 64.9 56.7 69.6

MathBERT (int) 92.2 92.3 74.4 75.8 74.4 71.8 58.6 68.6
MathBERT (diff) 84.7 85.9 59.7 48.1 58.4 47.3 56.1 50.0

SciBERT-uncased (int) 96.8 96.8 65.6 74.4 54.1 15.8 62.6 71.1
SciBERT-uncased (diff) 91.8 92.3 72.6 76.5 66.8 58.1 55.2 67.8

SciBERT-cased (int) 97.1 97.2 68.1 75.8 54.2 17.0 58.0 67.1
SciBERT-cased (diff) 92.3 92.7 70.9 76.5 65.4 54.6 61.5 72.3

Encoder Average (int) 93.8 93.2 69.7 74.8 68.6 53.7 61.1 70.3
Encoder Average (diff) 83.8 85.8 66.5 69.4 62.6 58.9 56.9 65.8

GPT-3.5 (int) 49.5 56.3 49.5 56.3 51.5 60.1 54.5 58.1
GPT-3.5 (diff) 49.0 55.3 48.5 54.2 53.0 65.7 54.5 59.2

GPT-4 (int) 64.0 60.0 67.0 64.1 66.5 68.5 57.5 56.4
GPT-4 (diff) 59.5 55.2 61.0 57.1 66.5 72.9 68.5 66.3

Encoders (int/diff avg) 88.8 89.5 68.1 72.1 65.6 56.3 59.0 68.1

Table 2: Model performance on the Calculus Classification task. Bold numbers denote highest F1
scores for integration derivations. Bold italic denotes highest differentiation scores.

the average static scores of the fine-tuned encoder models, and surpass them on out-of-distribution
test sets. This is demonstrated by the Derivation Step Classification results (Tab. 1). For instance,
SciBERT-cased (s=4) scores 11% F1 when classifying sequences with s=2 steps. GPT-4 obtains 80%
F1 in this case. Similar generalisation is observed on the VR (Variable Renaming) set, likely due to
GPT-4’s exposure to vast vocabularies of mathematical symbols (e.g., Greek symbols), and the EE
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(Expression Exchange) set, likely due to GPT-4’s exposure to equations with RHS functions which
lessens the impact of LHS function bias.

GPT-4 can fail to predict mathematical coherence from in-context examples alone. The Calculus
Classification task includes minimalistic sequences without operation annotations.Surprisingly, while
GPT4 achieves the best performance on Derivation Step Classification, competitive performance is
not observed in Calculus Classification despite its lower complexity. We attribute this to the fact that,
unlike BERT, GPT is not fine-tuned on a specific operation and in-context examples alone might not
contain enough information to consistently discriminate whether a particular sequence involves either
differentiation or integration. This is evidenced by the fact that both GPT models score higher on
the EC (Equation Conversion) set. The EC perturbation changes nothing about the operation being
performed, but adds context by writing (e.g.) differentiated expressions as equations with a LHS that
includes d

dx . F1 scores in GPT models increase by up to 12 points in this case, while BERT-based
scores decrease by up to 80 points (Tab. 2). Additionally, in Derivation Step Classification, both GPT
models obtain comparatively lower scores on the AR (Annotation Replacement) set. This is because
sufficient context has been provided for an operator that differs to the operator of interest. GPT only
learns the format of the sequences and the expected output for the task in this case. However, static
performance is maximised by designing the prompt in this manner (Tab. 4). We exclude AR scores
when comparing GPT to BERT.

GPT-3.5 cannot effectively classify mathematical reasoning. GPT-3.5 scores 15 less F1 points
than the average encoder score of 80% on the static set, and is notably outperformed by BERT-based
models on most test sets (particularly SciBERT). A notable exception are those that contain less steps
(Tab. 1), where performance generally increases comparative to static scores. This contrasts with
the significant corresponding performance drops observed in the BERT-based evaluation, indicating
that GPT learns enough from in-context examples to generalise to derivations with less steps, and
therefore has a deeper relative understanding of the underlying mathematics.

Encoder models fail to generalise. For Derivation Step Classification, models average 80% F1
over all static derivation lengths, and decreases due to perturbations average 10% (VR), 11% (EE),
and 16% (AR). This is at most 4% above F1 majority baseline. BERT-uncased and SciBERT-cased
fine-tuned on 2-step derivations are exceptions, but the 13 other encoder models are sensitive to at
least one perturbation. All models tested do not generalise to less derivation steps, reaching as low as
11% F1. In Calculus Classification static scores average 90% and perturbations decrease this by 17%
(VR) and 33% for EC. All fine-tuned models fail to generalise to perturbations and simpler examples,
with 97% F1 scores repeatedly dropping below 17%. Despite the in-distribution performance, this
indicates a reliance on superficial patterns rather than the underlying rules of the operators.

5.1 RELATING OPERATORS TO MODEL GENERALISABILITY VIA PAIRWISE ANALYSIS

We can alternatively measure generalisability by examining the proportion of examples where
predictions involving static sequences are correct, while predictions for mathematically equivalent
perturbed sequences are incorrect. Defining an example to consist of a static sequence grouped with
its perturbed equivalents, if a static prediction is correct while all perturbation predictions fail, this
gives a strict measure of generalisability (denoted by G in Tab. 3) and complements previous analysis.
These grouped examples allow examination of how well models understand each operator, and can
highlight their weaknesses. We identify such weaknesses shared between GPT and BERT models
and discuss clear dissimilarities in a more focused discussion in this section.

Which operators are most difficult to learn? Substitution is dependency-wise the most complicated
operation and is not associated with a fixed token (such as addition’s "+"). It requires a deeper under-
standing of derivation structure due to a necessary reliance on dependency relations across equations
(see Fig. 1). All models interpret substitution relatively poorly (None column, Tab. 3). Operator
usage that is easier for models to recognise (and generalise) involves integration or differentiation
(All column, Tab 3), and these are associated with specific text spans such as "\int" or "\partial".
Together, this indicates that all models struggle most when operators are not associated with fixed
text spans or when they rely on explicitly structured dependency relations.

Which operations contribute to poor generalisability? We consider the proportion of examples
where static predictions succeed while all perturbation predictions fail (column G, Tab. 3). For
BERT models, premise renaming and integration/differentiation evaluation operations rank highly,
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Static (S) Generalisability (G) None All

BERT
76.0 3.3 16.5 60.8∫

E
R

∫
∂ ×

∫
E

R + ∂E − SL SR + XO ×
∫

∂ × − XO

MathBERT
79.7 9.0 13.2 57.2∫

E
R

∫
∂ ∂E R

∫
E

XO ∂E ÷ + SL ÷ SR cos ∂
∫

XO + ÷

SciBERT
87.8 5.0 7.0 62.7

R
∫
E

∫
− ÷ R ÷ ∂E + XO SL SR + cos×

∫
∂ − + ∂E

GPT-3.5
58.2 2.3 29.7 45.5

cos XO ∂
∫

R SL

∫
E

SR + XO −
∫
E

× +÷ cos XO
∫

∂ ∂E

GPT-4
77.8 1.7 12.0 64.7

cos ∂
∫

XO
∫
E

cos × ∂E ÷ R SL SR − R × cos ∂ XO
∫
×

Table 3: Static (S) represents model accuracy with respect to unperturbed examples. Generalisability
(G) represents the percentage of examples where static predictions are correct and all perturbed
predictions failed (lower is better). None represents examples where models failed predictions in
all cases, and All represents the opposite. Symbols correspond to the top-5 most frequent (final)
operators in each unperturbed sequence, where frequency is normalized with respect to operator
count in the static set. R is a premise renaming operator.

∫
and ∂ are integration and differentiation

operators.
∫
E

and ∂E are respective evaluation operators. XO is exponentiation, SL and SR are
LHS and RHS substitutions, and arithmetic symbols have their usual meaning. This table ignores the
Annotation Replacement perturbation for fairer comparison between BERT and GPT.

yet this is not mirrored by GPT. To explain this difference we plot Fig. 4(a), which displays the
proportion of operators (ÑP ) that contribute to examples where models generalise poorly at a given
rank. For example, the highest ranking operator for MathBERT has ÑP > 25. From Tab. 3 this
operator performs premise renaming, denoted by R. Therefore, over 1/4 of examples involving R
contribute to poor model generalisability. In fact for all BERT-based models, the R (and less so the
int/diff evaluation) operators have a higher ÑP than other operators. This effect is less prominent
for the GPT models. This gives a clear indication that high ranking operators have a major impact
on generalisation in BERT models, and it is likely that other factors (such as the complexity of
equations) are more impactful for GPT. From Tab. 3 we can see that the highest ranking operator
for GPT-4 in this context is cos, which is also the highest ranking operator in examples where it
generalises well. This overlap does not exist in BERT-based models and supports the conclusion that
the operators themselves are not as powerful predictors of poor generalisability of GPT as they are in
BERT. Fig. 4(b) accounts for each model’s static and generalisation scores by multiplying ÑP by the
ratio G/S (Tab. 3) (and taking the negative log), resulting in a clearer separation between models and
a better visualisation of generalisability rankings.

Why is R associated with generalisation failure for BERT but not for GPT? Prior analysis points
to the premise renaming operator R as a useful point of comparison between fine-tuned BERT and
few-shot GPT. Prompting GPT-3.5 by appending “Describe what function renaming_premise
performs.” to a static prompt (associated with GPT-3.5’s generalisation failure) returns the following
definition of R: “the renaming_premise function is used to create a new expression or equation
by assigning an existing expression or function to a new variable or function symbol.” This appropriate
understanding persists even for perturbed prompts, and naturally extends to GPT-4. In contrast,
further analysis (Appendix C) reinforces that BERT models do not share this out-of-distribution
understanding. The main difference between R and all other operators is that it appears in sequences
without any reference to prior equations. The substitution operations are the opposite of this
(referencing the most equations of any operators), and both GPT-4 and BERT frequently fail to
make correct predictions given this operator. On one hand, the operator with the least referencing
is significantly associated with generalisation failure for BERT, but not GPT-4. On the other, the
operator with the most referencing is not significantly associated with generalisation failure in either
case, as all models are not effectively learning substitution in-distribution. BERT is dependent on
more localised learning where the necessary semantics is expressed within a short text span during
training, rather than a span that explicitly relates to other textual elements (e.g., through regular
reference). In other words, a lack of explicit discourse relations that predictably vary with the ground
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truth obstructs models from learning latent relations that allow them to generalise. However, the
explicit relations can not be too complex (as with substitution). R lends itself to generalisation failure
because it lacks structured discourse relations of the appropriate complexity for BERT (that others
operators do not). R is simpler for GPT because of its varied exposure to structured text featuring
such relations (e.g., code) and obviously its relative size.

Figure 4: ÑP is the percentage of operators present in examples where models fail to generalise
to perturbations. The leftmost displays how this proportion varies as a function of operator rank.
The rightmost graph factors in static performance (S) and generalisability (G) scores for a clearer
average ranking of the out-of-distribution performance of models.

6 CONCLUSION

We propose the use of math reasoning generation algorithms for developing and perturbing synthetic
data for training and evaluating models. This provides a highly controllable environment within
which the weaknesses of models may be examined. For example, fine-tuned BERT and few-shot GPT
models struggle to identify incorrect reasoning chains when key operators explicitly rely on multiple
indirect references to previous textual elements (and when they do not correspond to easy-to-identify
textual markers such as “+”). This highlights the relative inability of Transformers to decode explicit
structure from linearised sequences. We show that generalisation failure depends less on specific
operators for GPT in comparison to BERT, and in the latter case, generalisability may be impeded by
insufficient explicitly defined inter-statement relations. The inclusion of appropriate structures that
relate key text spans (e.g., operators) to secondary sequence elements (e.g., equations) may improve
the generalisability of smaller models. These models have substantial margins for out-of-distribution
improvement, as we show that the application of simple perturbations can substantially affect their
performance (F1 score obtained by BERT models decreases by up to 80 points).

However, smaller models may feasibly compete with GPT (in related narrowly scoped tasks) if
appropriately structured inter-statement relations capturing operational semantics are incorporated
during training, as the in-distribution (static) performance of the BERT models outperforms GPT-3.5
and rivals GPT-4. Few-shot GPT generalises well but under specific conditions. For instance, if using
in-context examples as the primary mechanism for providing GPT with context (rather than relying
on task descriptions), examples must contain enough information about the task even if it is encoded
in relatively complex structures. For instance, if few-shot examples contain regularly structured
dependency relations that predictably vary with respect to labels and ground truth sequences, this may
aid performance comparative to examples with less structure or without explicit dependency relations.
This design consideration can be useful when engineering prompts, as one might erroneously select
the simplest prompt that describes the task (e.g., Occam’s razor), or a relatively unstructured chain-
of-thought prompt (Wei et al., 2022) that minimises inter-statement dependencies.

Overall, this paper demonstrates how external symbolic engines can be leveraged to craft high-
quality annotated mathematical data at scale (presently over 200K examples), which may be flexibly
specialised to explore targeted weaknesses of state-of-the-art models in different settings. Future work
may explore the effect of systematically increasing the number of dependency relations explicitly
encoded in sequences during training or in prompts, extend the set of perturbations, or involve the
fine-tuning of larger models for the purpose of improving equation derivation capabilities.
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Vít Novotnỳ and Michal Štefánik. Combining sparse and dense information retrieval. Proceedings of
the Working Notes of CLEF, 2022.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Judea Pearl. Causal inference in statistics: An overview. Statistics surveys, 3:96–146, 2009.

11



Under review as a conference paper at ICLR 2024

Judea Pearl. Direct and indirect effects. In Probabilistic and causal inference: The works of Judea
Pearl, pp. 373–392. 2022.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. Mathbert: A pre-trained model for mathematical
formula understanding. arXiv preprint arXiv:2105.00377, 2021.

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical reasoning via
self-supervised skip-tree training. arXiv preprint arXiv:2006.04757, 2020.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pp. 3363–3377, 2021.

Anja Reusch, Maik Thiele, and Wolfgang Lehner. Transformer-encoder and decoder models for
questions on math. Proceedings of the Working Notes of CLEF 2022, pp. 5–8, 2022.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accu-
racy: Behavioral testing of NLP models with CheckList. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pp. 4902–4912, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.442. URL
https://aclanthology.org/2020.acl-main.442.

Julia Rozanova, Marco Valentino, Lucas Cordeiro, and André Freitas. Interventional probing in
high dimensions: An nli case study. In Findings of the Association for Computational Linguistics:
EACL 2023, pp. 2444–2455, 2023a.

Julia Rozanova, Marco Valentino, and Andre Freitas. Estimating the causal effects of natural logic
features in neural nli models, 2023b.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Viktor Schlegel, Goran Nenadic, and Riza Batista-Navarro. A survey of methods for revealing
and overcoming weaknesses of data-driven natural language understanding. Natural Language
Engineering, 29(1):1–31, 2023.

Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil Heffernan, Xintao Wu, Ben Graff, and
Dongwon Lee. Mathbert: A pre-trained language model for general nlp tasks in mathematics
education. arXiv preprint arXiv:2106.07340, 2021.

Goyal Shreya, Sumanth Doddapaneni, Mitesh M Khapra, and Balaraman Ravindran. A survey of
adversarial defences and robustness in nlp. ACM Computing Surveys, 2022.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bernhard Schölkopf, and Mrinmaya Sachan. A
causal framework to quantify the robustness of mathematical reasoning with language models.
arXiv preprint arXiv:2210.12023, 2022.

Damien Teney, Ehsan Abbasnejad, Kushal Kafle, Robik Shrestha, Christopher Kanan, and Anton Van
Den Hengel. On the value of out-of-distribution testing: An example of goodhart’s law. Advances
in Neural Information Processing Systems, 33:407–417, 2020.

Thi Hong Hanh Tran, Matej Martinc, Antoine Doucet, and Senja Pollak. Ijs at textgraphs-16 natural
language premise selection task: Will contextual information improve natural language premise
selection? In Proceedings of TextGraphs-16: Graph-based Methods for Natural Language
Processing, pp. 114–118, 2022.

Marco Valentino, Deborah Ferreira, Mokanarangan Thayaparan, André Freitas, and Dmitry
Ustalov. TextGraphs 2022 shared task on natural language premise selection. In Proceed-
ings of TextGraphs-16: Graph-based Methods for Natural Language Processing, pp. 105–113,
Gyeongju, Republic of Korea, October 2022a. Association for Computational Linguistics. URL
https://aclanthology.org/2022.textgraphs-1.11.

12

https://aclanthology.org/2020.acl-main.442
https://aclanthology.org/2022.textgraphs-1.11


Under review as a conference paper at ICLR 2024

Marco Valentino, Mokanarangan Thayaparan, Deborah Ferreira, and André Freitas. Hybrid autore-
gressive inference for scalable multi-hop explanation regeneration. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 11403–11411, 2022b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Victor Veitch, Dhanya Sridhar, and David Blei. Adapting text embeddings for causal inference. In
Conference on Uncertainty in Artificial Intelligence, pp. 919–928. PMLR, 2020.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Sean Welleck, Jiacheng Liu, Jesse Michael Han, and Yejin Choi. Towards grounded natural language
proof generation. In MathAI4Ed Workshop at NeurIPS, 2021.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 8629–8637, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing Gao, and Aidong Zhang. A survey on causal
inference. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(5):1–46, 2021.

Chunchun Zhao and Sartaj Sahni. String correction using the damerau-levenshtein distance. BMC
bioinformatics, 20(11):1–28, 2019.

Wei Zhong, Jheng-Hong Yang, and Jimmy Lin. Evaluating token-level and passage-level dense
retrieval models for math information retrieval. arXiv preprint arXiv:2203.11163, 2022.

A FINE-TUNING BERT AND PROMPTING GPT

Fine-tuning BERT. Transformer encoders with a binary sequence classification layer are fine-tuned
for 12 epochs on a 16GB Tesla V100, with a batch size of 8, and a learning rate of 5e-7, via the
Transformers library (Wolf et al., 2019). We use adapted versions of the public3 training scripts.
Tokenizers pad up to a max length of 256, and the best model by F1 is selected after training. We train
25 models stemming from 5 encoders: BERT-base-uncased (Devlin et al., 2018), BERT-base-cased,
SciBERT cased and uncased (Beltagy et al., 2019), and MathBERT (Shen et al., 2021). SciBERT is a
version of BERT pretrained on scientific text. MathBERT is initialised on BERT-base-uncased, and
pretrained on three masked language modelling tasks related to the structure of equation operator
trees (Mansouri et al., 2019), and the relationship between equations and their natural language
context. It delivers state-of-the-art results in formula search (Zhong et al., 2022).

Prompting GPT. For each task, we engineer few-shot prompts with the aim to optimise static
performance with respect to the gpt-3.5-turbo model using the OpenAI API. The results of
prompt exploration are given in Tab. 4, where the selected design is highlighted in bold. We describe
this prompt below:

“The following examples consist of a prompt (denoted by Prompt:) and a label (denoted by Label:).

3https://huggingface.co/docs/Transformers/tasks/sequence_classification
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Prompt: Sequence 1

Label: Label 1

Prompt: Sequence 2

Label: Label 2

Prompt: Sequence 3

Label: Label 3

Prompt: Sequence 4

Label: Label 4

Now given the following prompt, predict the label.

Prompt: Test Prompt”

The sequences all contain the same final annotation as the Test Prompt and are sampled from the
training set. Additionally, an equal number of negative (Label: 0) and positive examples (Label:
1) are included as in-context examples, and these examples are shuffled. New lines are denoted
by “\n”. Perturbations are only applied to the Test Prompt and in-context examples are fixed to
minimise examples’ effect on generalisation. 200 random examples from the static test set per subtask
(e.g. steps=2, integration) are used in the evaluation, which maps to 200 equivalent examples per
perturbation. This totals around 4000 total examples per GPT model.

Prompt Design GPT-3.5 (F1) GPT-4 (F1)
Derivation Step Classification (steps=2)

No task description + random examples (2 pos, 2 neg) 61 83
Concise task description + random examples (2 pos, 2 neg) 50 83

No task description + same final operation examples (2 pos, 2 neg) 68 90
No task description + same final operation examples (3 pos, 3 neg) 68 87

Calculus Classification (differentiation)
No task description (2 pos, 2 neg) 55 55
No task description (3 pos, 3 neg) 48 64

Table 4

B TASK-SPECIFIC DATA FORMAT AND SIZES

Task Training Validation Static Test Perturbed Test
Derivation Step Classification

2-steps 20K 5K 4K 4K
3-steps 20K 5K 4K 4K
4-steps 20K 5K 4K 4K

Calculus Classification
integration 32K 8K 4K 4K

differentiation 32K 8K 4K 4K

Table 5: The number of examples considered by models during training, validation, and evaluation.

The data generation algorithms output a derivation (Alg. 2) or expression (Alg. 1) in LaTeX and
SymPy (Fig. 1). Outputs are then adapted to fit specific tasks. For the described classification tasks, a
single example consists of the reasoning sequence up to the final expression or equation (Fig. 3).
Constructing sequences. For the Derivation Step Classification task, a step consists of an equation
and an annotation, as described in Fig. 1 and Fig. 3. An annotation is a list comprising an operator
name and its operands. Each step [an, eq] is linearised and comma separated, up to the final step.
The final step annotation is separated from the derivation, and the final equation is replaced with a
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negative example equation, or left unchanged.
For Calculus Classification, an input sequence consists of a premise expression, a variable, and the
result of either differentiating or integrating. The premise expression containing at least two variables
is initially generated, a variable is randomly selected from the premise, and the resulting expression
after differentiating or integrating with respect to that variable is the ground truth. This positive
example is either replaced with a negative example, or not. The three main components for each task
are [SEP] separated. In the datasets for either task, this sequence is grouped with both the actual
final equation and a number of negative equations. As a model encounters an example it is processed
into two sequences; one including the positive equation and another including the negative. Each
sequence is then paired with the corresponding classification labels. Perturbations are applied to each
test set and generate an equal number of perturbed examples. The Derivation Step Classification
datasets include 41K evaluation examples per derivation step count. The Calculus Classification
datasets include 52K evaluation examples per operation. This equates to 227K total examples. Tab. 5
describes the relevant sizes for the models.
Sampling negatives. For Derivation Step Classification, negatives are generated by randomly
applying alternative operations (with potentially different operands) to random equations in the
derivation. For Calculus Classification, negative examples are generated by selecting from a list
of alternative premise expressions. This list includes the result of differentiating/integrating the
expression with respect to other variables in the expression, and differentiating/integrating other
randomly generated expressions comprised of the same symbols. The list of expressions are then
ranked in terms of their Damerau-Levenshtein distance Zhao & Sahni (2019); Meadows & Freitas
(2021) from the ground truth. For example, the expression−T +sin(U) is differentiated with respect
to T to give −1. The corresponding negative example is 1.

For Calculus Classification, the list of expressions are then ranked in terms of their Damerau-
Levenshtein distance (Zhao & Sahni, 2019; Meadows & Freitas, 2021), where the closest match is
the selected negative. For example, the expression −T + sin(U) is differentiated with respect to
T to give −1. The corresponding negative example is 1. The expression, variable, and candidate
expression are [SEP] separated upon input to the model (e.g., Fig. 3(b)).

C SUPPLEMENTARY MATERIAL FOR QUALITATIVE ANALYSIS

We consider (uncased) models trained on 3-step derivations. This number of steps closely reflects the
average results over all step counts in Table 1. The All (perfect generalisation) and Not P (complete
generalisation failure) columns of Table 6 (Appendix C) reinforce the relative generalisability gap
between SciBERT and MathBERT, despite both being trained on scientific corpora, and display the
top three operators by normalised frequency per generalisation category.
Generalisation failure depends on the unpredictability of an operator. For examples where
models perfectly generalise, the operator responsible for setting up an integral (without evaluating it)
is most common. This is likely because it involves prepending a unique text span "\int" to expressions
either side of equations, which is easy to identify. Models generalise well to cos, sin, exp, and log
operators, likely due to their similarly predictable effect on equations associated with regular text
spans. To highlight that it is likely the relative unpredictability of an operator’s effect on text that
leads to generalisation failure, we analyse the set of examples where both SciBERT and MathBERT
correctly classify unperturbed sequences, but misclassify all perturbed sequences. Three examples
are displayed in Fig. 5. The renaming premise operation is overwhelmingly frequent. It takes a
random previously defined expression as the RHS, and defines a new function as the LHS. It does not
necessarily depend on a single previous step and is non-deterministic due to random sampling of the
RHS, yet it can never generate more complex equations than those previously derived (unlike other
operators).
Entailment pre-training improves generalisability. BERT (Devlin et al., 2018) was trained on
masked language modelling (MLM) and next sentence prediction (NSP) objectives. SciBERT (Belt-
agy et al., 2019) was further trained with scientific papers on MLM and NSP. MathBERT (Shen
et al., 2021) was further trained from BERT on educational mathematical text, ranging from pre-k to
graduate level difficulty. However, unlike BERT and SciBERT, MathBERT was trained to optimise
performance on MLM over a large corpus. Fine-tuning generally overwrites representations learned
from previous tasks (Mosbach et al., 2020), and MathBERT has likely forgotten those associated
with NSP. The current classification tasks involve determining if math context entails an expres-
sion/equation, rather than predicting individual tokens as in language modelling. Next-equation
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Figure 5: Three examples of the total 15 where both SciBERT and MathBERT correctly classify
unperturbed examples (as shown), but incorrectly classify all perturbed examples.

prediction shares greater similarity with NSP than MLM, and we therefore attribute generalisability
failures of MathBERT in this context to insufficient entailment pre-training. It has struggled with
entailment before relative to other BERT models (Meadows et al., 2022).
Advantages of pre-training on structured scientific text. SciBERT differs from the other encoders
due to a distinct focus on scientific papers written in LaTeX. This offers two benefits: (1) Mathemati-
cal elements seen by models are written in LaTeX, so exposure to LaTeX (during both MLM and
NSP) provides natural advantage; (2) Scientific papers tend to be concise and logically structured.
Text spans are carefully chained to reach conclusions, so exposure to papers during training may
better teach models the concept of entailment and aid performance in related tasks.

Static ± All Not P

BERT
62.3 7.4 5.3

R
∫
E

∂E ∂E

∫
− SL

∫
E

R

SciBERT
79.6 21.3 1.6

R
∫
E

∂E

∫
∂E cos R XO ×

MathBERT
70.3 7.8 9.3

R
∫
E

∫ ∫
cos sin R ∂E

∫
E

Table 6: Static ± is the rate at which positive and associated negative unperturbed sequences are
both correctly classified. All (perfect generalisation) is the percentage of examples where the static
and perturbed (positive and negative) sequences are correctly classified. Not P (complete failure to
generalise) is percentage of examples where only the static positive sequences are classified correctly,
while all perturbed positive sequences are incorrect. Symbols correspond to the top three most
frequent (final) operators in each unperturbed sequence, where frequency is normalized with respect
to operator frequency in the static set. R is a premise renaming operator.

∫
and ∂ are integration and

differentation operators.
∫
E

and ∂E are respective evaluation operators. XO is exponentiation, × is
multiplication, − is subtraction, and SL is LHS substitution.

D ALGORITHM FOR PREMISE GENERATION

Algorithm 1 The provided algorithm titled "Generate Premise Equation" aims to create a mathematical
equation from a defined vocabulary of letters and operators. Specifically, the algorithm’s process can
be summarized as follows:
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1. Initialization: Symbols and mathematical operations are defined:
• S represents all symbols from the vocabulary V .
• R1 comprises unary operations like Cosine, Sine, Exponential, and Logarithm.
• R2 contains binary operations such as Addition, Subtraction, Multiplication, etc.

2. Base RHS Construction: Depending on a randomly chosen arity (either 1 for unary or 2
for binary):

• If arity = 1, the RHS is built by applying a random unary operation on a random
symbol.

• If arity = 2, the RHS is constructed using a binary operation on two distinct random
symbols.

3. Complexifying the RHS: A random complexity value is selected from 0 to C − 1. For each
iteration up to the chosen complexity, the RHS’s complexity is increased by applying either
a unary operation on the current RHS or a binary operation between the current RHS and
another random symbol.

4. LHS Construction: The LHS is then formulated as a function of the free symbols present
in the RHS.

5. Equation Formation: Lastly, an equation, termed premise, is crafted using the finalized
LHS and RHS.

In essence, this algorithm dynamically produces a mathematical equation whose intricacy varies
depending on the randomly chosen operations and the selected complexity.

E ALGORITHM FOR DERIVATION GENERATION

Algorithm 2 relies on Algorithm 1 in order to derive subsequent equations. It relies on two other
procedures other than Step. The EquationDistribution function relies on the hyperparameter ph,
which controls the frequency that recent equations are sampled as a cubic function of ph. The
ExtractDerivation function is responsible for collecting all related steps from the initial longer
derivation, such that a final self-contained derivation is obtained. This derivation must match the
desired length, Lf .

Hyperparameters. We rely on other hyperparameters to control 1. the selection bias towards
operations being applied to more recent equations, 2. the bias towards operators of a particular arity,
and 3. bias towards other operator subcategories.
Considering 1., in the 2-arity two annotation format [‘operator’, operand 1, operand 2], operand 1 is
always an equation index. This is also true for 1-arity, and 0-arity does not require an operand. An
equation is randomly sampled from a non-repeating set of derived equations. The history hyperpa-
rameter, ph, clones an equation in the list through a cubic function of its step-wise chronological
position as described above. With our default settings, the last equation in a list of three is twice
as likely to be selected as input than the first. This emulates mathematicians working with recent
equations, but having to occasionally sample from distant results.
Other hyperparameters work similarly, by repeating elements of lists. Considering 2., we bias to-
wards 2-arity, as those contain calculus, and considering 3. we bias towards substitution operations,
differentiation, and integration. The exact form of the algorithm used to generate data for this paper
is available in the linked repository on the first page.

In more formal detail, the mechanics of Algorithm 2 are as follows:

1. Procedure Step: This subroutine generates a single step in the derivation.
• Sets of equations, operations, and other relevant elements are initialized from the

dataset D.
• Based on probability parameters, the arity of the operation (either 0, 1, or 2) for this

step is determined.
• Depending on the chosen arity:

– Arity 0: The equation and annotation for this step are directly chosen from the set
R0.
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Algorithm 1 Generate Premise Equation
Assumes a global vocabulary of letters, V and operators e.g., cos, sin, etc. Accepts a complexity
hyperparameter C that determines the maximum tree depth of the premise RHS.

1: procedure PREMISE(C)
2: S ← [Symbol(v) for v in V]
3: R1 ← [Cos, Sin, Exp, Log]
4: R2 ← [Add, Minus, Times, Power, Divide, Differentiate, Integrate]
5: arity← random.choice([1,2])
6: if arity = 1 then
7: R← random.choice(R1)
8: S ← random.choice(S)
9: RHS← R(S)

10: LHS← random.choice([s for s in S if s ̸= S])
11: else if arity = 2 then
12: R← random.choice([r for r inR2 if r not in [Differentiate, Integrate]])
13: S1 ← random.choice(S)
14: S2 ← random.choice([s for s in S if s ̸= S1])
15: RHS← R(S1, S2)
16: LHS← random.choice([s for s in S if s not in [S1, S2]])
17: end if
18: complexity← random.choice(range(C))
19: for i ∈ range(complexity) do
20: arity← random.choice([1,2])
21: if arity = 1 then
22: R← random.choice(R1)
23: RHS← R(RHS)
24: else if arity = 2 then
25: R← random.choice(R2)
26: S ← random.choice(S)
27: RHS← R(RHS, S)
28: end if
29: end for
30: LHS← Function(LHS)(*tuple(RHS.free_symbols))
31: premise← Eq(LHS, RHS)
32: return premise
33: end procedure
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– Arity 1: An operation fromR1 and an equation from the dataset are chosen to form
the new equation.

– Arity 2: An operation fromR2, an equation from the dataset, and another element
are selected to shape the equation.

• If the formed equation is deemed valid through certain checks it is returned; otherwise,
None is returned.

2. Main Derivation Loop: This section assembles the derivation.
• The initial step of the derivation is generated using Algorithm 1.
• A pre-defined target length Li describes approximately the number of times the Step

procedure is invoked to add new steps.
• The full derivation is extracted from the accumulated steps.
• The loop breaks when the derivation reaches a desired length Lf , where Lf ≥ Li.

To summarize, the algorithm iteratively constructs a derivation of mathematical equations, where
each step is shaped by a series of operations determined by specific probabilities and conditions. It is
given on the following page.
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Algorithm 2 Generate Equational Reasoning
1: procedure STEP(D, p0, p1, p2, ph, pr, pe, pc, ps)
2: D ← [i[0] for i in D]
3: A← [i[1] for i in D]
4: R0 ← [Premise] + [RenamingPremise]×pr
5: R1 ← [Cos, Sin, Exp, Log, Expand] + [EvaluateDerivatives, EvaluateIntegrals]×pe
6: R2 ← [Add, Minus, Times, Divide, Power] + [Differentiate, Integrate]×pc

+ [SubsLHSForRHS, SubsRHSForLHS]×ps
7: elements← numbers, variables, and subexpressions from D
8: arity← random.choice([0]×p0 + [1]×p1 + [2]×p2)
9: if arity = 0 then

10: R← random.choice(R0)
11: equation← R
12: annotation← R.__name__
13: else if arity = 1 then
14: R← random.choice(R1)
15: e1 ← random.choice(EquationDistribution(D, ph))
16: equation← R(e1)
17: n← D.index(e1)
18: annotation← [R.__name__, n+ 1]
19: else if arity = 2 then
20: R← random.choice(R2) ▷ R depends on the length of D
21: e1 ← random.choice(EquationDistribution(D, ph))
22: e2 ← random.choice(elements) ▷ e2 will vary depending on R
23: equation← R(e1, e2)
24: n← D.index(e1)
25: annotation← [R.__name__, n+ 1, e2]
26: end if
27: if equation is valid then ▷ validity depends on various checks
28: return equation
29: else
30: return None
31: end if
32: end procedure
33: while True do
34: D ← [(Premise(C), "premise")] ▷ generate first step using Algorithm 1
35: while len(D) < Li do ▷ Li is an initial length of the derivation
36: step← Step(D, p0, p1, p2, ph, pr, pe, pc, ps)
37: if step is not None then
38: D.append(step)
39: end if
40: end while
41: derivation← ExtractDerivation(D)
42: if len(derivation) = Lf then ▷ Lf ≥ Li is the desired length of the derivation
43: break
44: end if
45: end while
46: D = derivation
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