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Abstract

Conversational search, unlike single-turn re-001
trieval tasks, requires understanding the current002
question within a dialogue context. The com-003
mon approach of rewrite-then-retrieve aims to004
decontextualize questions to be self-sufficient005
for off-the-shelf retrievers, but most existing006
methods produce sub-optimal query rewrites007
due to the limited ability to incorporate sig-008
nals from the retrieval results. To overcome009
this limitation, we present a novel framework010
RETPO (Retriever’s Preference Optimization),011
which is designed to optimize a language model012
(LM) for reformulating search queries in line013
with the preferences of the target retrieval sys-014
tems. The process begins by prompting a large015
LM to produce various potential rewrites and016
then collects retrieval performance for these017
rewrites as the retrievers’ preferences. Through018
the process, we construct a large-scale dataset019
called RF COLLECTION, containing Retrievers’020
Feedback on over 410K query rewrites across021
12K conversations. Furthermore, we fine-tune022
a smaller LM using this dataset to align it with023
the retrievers’ preferences as feedback. The024
resulting model achieves state-of-the-art per-025
formance on two recent conversational search026
benchmarks, significantly outperforming exist-027
ing baselines, including GPT-3.5.1028

1 Introduction029

Conversational search extends the information re-030

trieval to encompass nuances of dialogue con-031

text. Unlike standard retrieval tasks in open-032

domain question answering (QA) (Joshi et al.,033

2017; Kwiatkowski et al., 2019), the task is charac-034

terized by conversational dependencies in questions035

(e.g., omission, ambiguity, and coreference) (Qu036

et al., 2020; Anantha et al., 2021; Adlakha et al.,037

2022). As depicted in Figure 1, the question038

in the last turn “Was his writing nominated for039

1Code and dataset will be available TBD
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Figure 1: Overview of RETPO. Given a conversation
and a follow-up question, (1) potential rewrites q̂i are
generated by prompting an LLM. (2) Retriever’s pref-
erences for each rewrite are collected. (3) A smaller
LM is trained to be aligned with the retriever’s pref-
erences. The resulting model can generate clear and
specific rewrites.

awards?” could only be understood within the con- 040

text. Hence, conventional retrieval systems that are 041

not designed to consider dialogue context tend to 042

yield poor retrieval performance. 043

A prevalent approach to overcome this challenge 044

is rewrite-then-retrieve, where questions are decon- 045

textualized and made self-contained before being 046

used for retrieval systems. In many prior works, 047

language models (LMs) are trained for question 048

rewriting (QR) using human rewrites as ground 049

truth (Elgohary et al., 2019; Anantha et al., 2021; 050

Vakulenko et al., 2021; Qian and Dou, 2022). How- 051
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ever, this approach often results in less effective052

rewrites for search purposes, as human rewrites053

are typically created without considering their im-054

pact on retrieval performance. Although recent055

studies (Wu et al., 2022; Mo et al., 2023) suggest056

incorporating signals from retrieval results into the057

training of QR models, there is still a challenge058

in fully utilizing the retrievers’ preferences across059

various potential rewrites.060

To align a QR model with retrievers’ prefer-061

ences, we present RETPO (Retriever’s Preference062

Optimization). This novel framework aims to op-063

timize a language model (LM) to produce query064

rewrites tailored to a target retriever’s feedback.065

RETPO involves several key steps: (1) we begin066

with instructing a superior large LM (LLM), GPT-067

4 (OpenAI, 2023), to provide a variety of poten-068

tial rewrites with several prompting methods. (2)069

We then gather the retriever’s feedback on each070

rewrite (i.e., retrieval performance), resulting in a071

large-scale dataset RF COLLECTION, containing072

Retrievers’ Feedback on over 410K query rewrites073

refined for search purpose across 12K conversa-074

tions. (3) Based on our dataset, we further align an075

open-source LM, Llama2-7b (Touvron et al., 2023),076

with preference-driven optimization. The LM is077

optimized to generate preferred rewrites over less078

preferred ones and then is used for the inference079

phase.080

Our experimental results demonstrate that081

RETPO largely advances retrieval performances082

on two recent conversational search benchmarks,083

QReCC (Anantha et al., 2021) and TopiOCQA (Ad-084

lakha et al., 2022). Notably, our 7-billion-085

parameter model outperforms existing baselines,086

including its teacher model GPT-4. It also sur-087

passes the previous state-of-the-art performance088

of BM25 by significant margins 11.8 (MRR) and089

19.0 (Recall@10) on QReCC. Furthermore, we090

thoroughly analyze our rewrites from RF COL-091

LECTION and RETPO. The results demonstrate092

our methods tend to produce specific and detailed093

rewrites as exemplified in Figure 1, contributing to094

the superior retrieval performance. In GPT-4 eval-095

uation, our rewrites are more favored than human096

rewrites in terms of clarity and informativeness.097

Our contributions are threefold:098

• We define optimal query in conversational099

search and propose how to explore and ex-100

ploit it. To our knowledge, RETPO is the first101

to leverage retriever preference-driven opti-102

mization for query reformulation. 103

• We construct and release RF COLLECTION, a 104

large-scale dataset of Retriever’s Feedback on 105

query rewrites in dialogue. Our rewrites are 106

superior to human rewrites in retrieval tasks 107

and GPT-4 evaluation. 108

• We align an open-source LM with our dataset. 109

It achieves new state-of-the-art performance 110

on two recent benchmarks in conversational 111

search, QReCC and TopiOCQA. 112

2 Background 113

2.1 Task Formulation 114

In conversational search, given the current question 115

qt and the conversation history of question-answer 116

pairs H<t = {qi, ai}t−1
i=1,2 a retrieval system Ret(q) 117

returns the top-k relevant passages Dk = {di}ki=1 118

from the target corpus. In the recent rewrite-then- 119

retrieve approach (Anantha et al., 2021; Adlakha 120

et al., 2022), a question rewriting model πQR is 121

trained to generate a self-contained question q by 122

encoding a concatenation of the utterances so far 123

x = Concat(H<t, qt); then it predicts a question 124

rewrite q̂ for use with off-the-shelf retrievers. Since 125

self-contained question rewrites are not always 126

available in natural conversation, most studies rely 127

on the human rewrites released by Elgohary et al. 128

(2019) for supervision. 129

2.2 Definition of Optimal Query 130

Given an evaluation metric Eval(·, d+) assessing 131

the retrieved passages based on the gold passage 132

d+, we define optimal query q∗ as a query that 133

maximizes the evaluation score as follows: 134

q∗ = argmax
q

Eval(Ret(q), d+)

Note that we assume Ret(·) as frozen. Under 135

the definition, we argue that previous works using 136

human rewrites as ground truth would result in sub- 137

optimal queries. The human rewrites are crafted 138

without considering the subsequent retrieval pro- 139

cess and its end performance, simply focusing on 140

resolving conversational dependencies. Although a 141

few studies (Wu et al., 2022; Mo et al., 2023) try to 142

incorporate the training signals from the retrieval 143

step, they could not exploit training signals from 144

contrasting multiple queries explored with various 145

reasoning types. 146

2We drop the subscript in the later sections to avoid clutter.
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Figure 2: Components of RETPO designed to align an LM with retrievers’ preferences. Given a conversation and
a user question, we first prompt a capable LLM to provide potential rewrites using various prompting methods
(Optimal Query Exploration; Sec. 3.1). We then collect the retrievers’ feedback on each rewrite by measuring their
retrieval performance, leading to two datasets: optimal queries C∗ and query pairs Cb (RF COLLECTION; Sec. 3.2)
Lastly, we optimize an open-source LM with our datasets, encouraging it to generate preferable rewrites (Sec. 3.3).

3 Retriever’s Preference Optimization147

We newly introduce RETPO (Retriever’s148

Preference Optimization) designed to optimize a149

query reformulation model with the preference150

of the retrieval system as illustrated in Figure151

2. We first explore a range of potential rewrites152

with various prompting methods (Optimal Query153

Exploration; Sec. 3.1). We then collect the154

retriever’s feedback on each rewrite by measuring155

the retrieval performance, resulting in a large-scale156

dataset, RF COLLECTION (Sec. 3.2). By using the157

dataset, we further align an open-source LM with158

the preference-driven optimization (Sec. 3.3).159

3.1 Optimal Query Exploration160

To explore a broad range of effective search queries,161

we first prompt a superior LLM to provide a num-162

ber of potential rewrites. Based on the conversation163

and the current question, we prompt GPT-4 (Ope-164

nAI, 2023) with various prompting methods based165

on different reasoning abilities and purposes.166

We adopt three prompting methods: (a) Ques-167

tion Rewriting3 requests the LLM to contextualize168

the question by resolving coreferences and ellipses.169

For example, in Figure 2, it finds what a pronoun170

3See Table 14 for the question rewriting prompt.

“they” in the current question indicates and then re- 171

places it with the exact entity “Heaven Shall Burn” 172

in the rewrite q̂1. We initiate our task instruction 173

following Ye et al. (2023) to enhance informative- 174

ness and consistency of the rewrite by mentioning 175

‘The resulting question should retain its original 176

meaning and be as informative as possible.’ 177

Moving beyond resolving the explicit dependen- 178

cies, we devise (b) QR with Planning4 that al- 179

lows the LLM to identify an important point to 180

be asked and specify the question’s aim. For ex- 181

ample, in Figure 2, the rewrite q̂i inquires about 182

the specific music video and release period men- 183

tioned in the conversation. To this end, it performs 184

an intermediate reasoning step before generating 185

the rewrite, inspired by Chain-of-Thought prompt- 186

ing (Wei et al., 2022). In particular, we encourage 187

the LLM to elicit relevant information from its para- 188

metric knowledge or the held-out conversation. 189

In addition, we adopt (c) Query Expansion,5 re- 190

cently known to be effective in retrieval tasks (Mao 191

et al., 2021; Wang et al., 2023; Mo et al., 2023). 192

We first instruct the LLM to provide a plausible 193

answer or relevant information without access to 194

external knowledge. We then append the pseudo- 195

4See Table 15 for the planning prompt.
5See Table 16 for the query expansion prompt.
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answer to a self-contained rewrite, either a human196

rewrite if available or the result of the QR prompt-197

ing method. As exemplified in Figure 2, the rewrite198

q̂N is composed of multiple sentences containing199

the potential answer “Counterweight”. It increases200

the chance of keyword overlap between the query201

and the gold passage, providing informative clues202

to the retrieval system.203

With each prompting method, the LLM gener-204

ates a long text containing from five to ten queries205

separated by the special token in a single call. By206

doing so, it prevents the LLM from generating du-207

plicated queries, resulting in more diverse queries.208

As a result, our synthetic queries vary in terms of209

format and intent.210

3.2 Retrievers’ Feedback Collection211

Upon the queries collected through the Optimal212

Query Exploration, we gather feedback from tar-213

get retrievers. In particular, we feed each query214

candidate to the frozen retriever and evaluate the215

outcome. The retrieval performance is considered216

as a measurement of the preference. We use the217

relative rank of the gold passage in the retrieved218

passage set. We eventually construct a synthetic219

dataset, RF COLLECTION, Retrievers’ Feedback220

on 410K query rewrites across 12K conversations.6221

Our dataset consists of two sets, one for su-222

pervised fine-tuning and one for preference opti-223

mization (discussed in the later section). We first224

construct a collection of optimal queries C∗ under225

our definition. Specifically, we choose the five226

highest-ranked rewrites whose ranks are within227

a pre-defined threshold. If all generated queries228

fail to surpass the threshold, we select the highest-229

ranked rewrite. It is used for fine-tuning our model230

with the language modeling objective, potentially231

replacing human rewrites.232

For the preference optimization, we construct a233

collection of binarized comparisons Cb based on234

the retriever’s feedback. Given all rewrite candi-235

dates for the same input x, we first sort them by236

their rank in ascending order, resulting in Q̂ =237

{q̂1, q̂2, · · · , q̂|Q̂|}, where the preference becomes238

q̂1 ≻ q̂2 ≻ · · · ≻ q̂|Q̂|. We then obtain valid pairs239

of distinct queries {(q̂j , q̂k) : j < k} without du-240

plication of query or rank. We randomly sample241

comparison pairs (qw, ql) of ‘preferred’ query qw242

and ‘dispreferred’ query ql. We filter out cases243

where the preferred query fails to surpass a rank244

6We thoroughly analyze the dataset in Sec. 5.2.

threshold. 245

3.3 Direct Preference Optimization with 246

Retrievers’ Feedback 247

Based on RF COLLECTION, we align a smaller 248

open-source LM with the retriever’s preference. 249

We first fine-tune an LM on the collection of op- 250

timal queries in a supervised manner (SFT). We 251

further align the fine-tuned model with direct pref- 252

erence optimization (DPO) (Rafailov et al., 2023). 253

Supervised Fine-Tuning To build an LM that
effectively reformulates a question, we fine-tune
it in two steps. The LM is first trained to repli-
cate the ground-truth response following the ut-
terances. It also aims to benefit the capability
to generate pseudo-answers in the query expan-
sion. We subsequently fine-tune the LM on the
optimal queries we collect. To this end, it learns
to generate self-contained and preferable rewrites.
Specifically, we optimize the LM to maximize the
log-likelihood for returning the tokens of optimal
rewrites q∗ from the collection C∗. Given the input
x = Concat(H<t, qt), the LM π is trained as:

πSFT = max
π

E(x,q∗)∼C∗ log π(q
∗ | x)

Direct Preference Optimization Initiating with
the SFT model, we further align the LM with the re-
trievers’ preferences. In particular, we apply DPO,
a method recently highlighted by Rafailov et al.
(2023), for its efficacy in alignment learning. It
optimizes the student model πθ to maximize the
likelihood of generating the preferred qw over ql,
starting from the πSFT .

J(θ) = E(x,qw,ql)∼Cb log σ(rθ(x, qw)− rθ(x, ql))

Following Rafailov et al. (2023), we simplify 254

rθ(x, q) = β log π(q | x)−β log πSFT (q | x) with 255

the likelihood difference with the SFT model. This 256

process is guided by the principle of maximizing 257

the contrast between preferred and dispreferred 258

rewrites, thereby providing a clear signal for model 259

training. DPO enables the model to directly learn 260

from the contrast by focusing on the relative merits 261

of each rewrite as judged by the retrieval system. 262

Through this targeted optimization, the SFT model 263

is further trained to generate rewrites that reflect 264

the nuanced preferences of the target retriever. 265

4 Experiment 266

Datasets We test our models on two recent open- 267

domain CQA benchmarks, QReCC (Anantha et al., 268
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TopiOCQA QReCC
Type Query Reform. MRR NDCG R@10 R@100 MRR NDCG R@10 R@100

Sp
ar

se
(B

M
25

)
Original 2.1 1.8 4.0 9.1 6.5 5.6 11.1 21.5
Human Rewrite - - - - 39.8 36.3 62.7 98.5

T5QR 11.3 9.8 22.1 44.7 33.4 30.2 53.8 86.1
CONQRR - - - - 38.3 - 60.1 88.9
ConvGQR 12.4 10.7 23.8 45.6 44.1 41.0 64.4 88.0
IterCQR 16.5 14.9 29.3 54.1 46.7 44.1 64.4 85.5
LLM IQR - - - - 49.4 - 67.1 88.2
RETPO (Ours) 28.3 26.5 48.3 73.1 50.0 47.3 69.5 89.5

D
en

se
(A

N
C

E
)

Original 3.0 2.7 6.0 10.2 10.8 9.8 16.8 23.9
Human Rewrite - - - - 41.3 38.3 63.3 81.7

T5QR 23.0 22.2 37.6 54.4 34.5 31.8 53.1 72.8
CONQRR - - - - 41.8 - 65.1 84.7
ConvGQR 25.6 24.3 41.8 58.8 42.0 39.1 63.5 81.8
IterCQR 26.3 25.1 42.6 62.0 42.9 40.2 65.5 84.1
InstructorLLM∗ 25.3 23.7 45.1 69.0 43.5 40.5 66.7 85.6
RETPO (Ours) 30.0 28.9 49.6 68.7 44.0 41.1 66.7 84.6

Table 1: Evaluation results of various retrieval system types on the development sets of QReCC (Anantha et al.,
2021) and TopiOCQA (Adlakha et al., 2022). We include baselines that leverage the query reformulation models.
Asterisk∗ denotes the baseline involves fine-tuning of the retriever’s query encoder.

2021) and TopiOCQA (Adlakha et al., 2022).269

QReCC contains 14K conversations with 81K270

question-answer pairs. It provides self-contained271

questions crafted by human annotators in Elgohary272

et al. (2019). TopiOCQA is a more recent bench-273

mark consisting of 3.9K conversations with free-274

form responses. This dataset presents challenges275

due to topic switches within dialogues. RF COL-276

LECTION is constructed upon the training sets of277

two datasets.278

Retrieval Systems To investigate the impact279

of different types of retrieval systems, we adopt280

a sparse retriever BM25 and a dense retriever281

ANCE (Xiong et al., 2020), widely used in the282

task. Specifically, we use the checkpoint trained on283

MS-MARCO passage retrieval task. Note that we284

do not further fine-tune the retrievers for our target285

task.286

Evaluation Metrics We use several evaluation287

metrics, following previous works. Mean Recip-288

rocal Rank (MRR) is the average of the ranks289

measuring how effectively the retriever can locate290

gold passages. Normalized Discounted Cumulative291

Gain (NDCG@3) evaluates retrieval results by con-292

sidering both relevance and rank of top-3 results.293

Recall@k verifies whether the retriever succeeds294

in locating gold passages within top-k results.295

Baselines We select several representative base-296

lines in the conversational search task that utilize297

TopiOCQA
Query Reformulation MRR R@10 R@100

GPT-4 Prompting (Teacher) 18.5 35.1 62.9
Distillation to Llama2-7b 19.0 35.5 64.6

RETPO (Ours) 28.3 48.3 73.1
w/o. DPO 23.4 41.6 67.7
w/o. Query Expansion 22.0 40.2 68.5
w/o. QE and Planning 21.8 39.2 67.7

Table 2: Ablation study for each component of RETPO.
We compare the straightforward baseline that prompts
LLM to generate the rewrites and then fine-tune smaller
LM on them.

LMs for reformulating queries. (1) T5QR (Lin 298

et al., 2020) fine-tunes T5-base (Raffel et al., 2020) 299

to replicate human rewrites. (2) CONQRR (Wu 300

et al., 2022) introduces a reinforcement learning 301

(RL) framework that leverages retrieval perfor- 302

mance as a reward signal for fine-tuning the ques- 303

tion rewriting model. (3) ConvGQR (Mo et al., 304

2023) fine-tunes two LMs for question rewriting 305

and query expansion, guided by an auxiliary loss 306

function for injecting the embedding of the target 307

retriever. (4) IterCQR (Jang et al., 2023) improves a 308

question rewriting model through iterative training 309

driven by the cosine similarity between the repre- 310

sentations of relevant passages and query rewrites 311

explored with GPT-3.5. (5) LLM IQR (Ye et al., 312

2023) prompts GPT-3.5 to generate rewrites and 313

then edit them according to pre-determined criteria 314
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TopiOCQA
First Topic-concentrated Topic-shifted

Query Reformulation MRR R@10 R@100 MRR R@10 R@100 MRR R@10 R@100

Original 14.7 29.3 64.4 0.9 1.7 4.2 1.1 1.9 4.2
Fine-tuned T5 14.7 29.3 64.4 14.4 28.2 52.4 9.4 18.2 36.9
GPT-4 Prompting 15.6 31.2 62.0 19.7 37.2 65.3 16.4 31.3 57.4
Distillation to Llama2-7b 17.9 34.2 63.9 20.0 37.1 66.3 17.0 32.0 60.7

RETPO (Ours) 32.0 51.7 75.1 27.4 47.1 72.4 29.6 50.0 74.3

Table 3: Breakdown evaluation of BM25 on the development set of TopiOCQA, segmented by question type:
initial turn (First), topic-consistent turns with their preceding one (Topic-Concentrated) and topic-switched turns
(Topic-Shifted). Following Adlakha et al. (2022), we identify a switch of topic if the gold passage is based on a
different Wikipedia document.

such as informativeness and clarity. (6) Instructor-315

LLM (Jin et al., 2023) instructs GPT-3.5 to esti-316

mate the relevance between queries and passages317

and fine-tunes the retriever using this signal.318

4.1 Main Results319

Table 1 shows the evaluation results of various320

types of retrieval systems on two recent conversa-321

tional search benchmarks, QReCC and TopiOCQA.322

Leveraging signal from the retriever enhances323

the end performance. Encoding the current ques-324

tion without modification (Original) performs325

poorly, demonstrating the need for the QR process.326

Performance of T5QR using the human rewrites327

as supervision is bounded by its label (Human328

Rewrite). Other baselines using the same back-329

bone T5-base with signals from retrievers (CON-330

QRR, ConvGQR, and IterCQR) largely advance331

performances on QReCC but struggle with Topi-332

OCQA. This implies that TopiOCQA is more com-333

plex and challenging than QReCC.334

While baselines with GPT-3.5 show com-335

petitive performances, our 7-billion-parameter336

model surpass them. Our model outperforms or337

competes consistently against baselines that utilize338

the much larger LM, GPT-3.5 (LLM IQR and In-339

structorLLM). This indicates that our model has ef-340

fectively learned to generate rewrites that are more341

effective for conversational search and preferable342

to the retriever.343

RETPO achieves new state-of-the-art perfor-344

mances in most settings. Notably, for TopiOCQA,345

it advances the previous state-of-the-art of BM25346

with a prominent gap; 11.8, 19.0, and 19.0 in347

MRR, R@10, and R@100, respectively. In the348

other benchmark and retriever type, RETPO simi-349

larly outperforms the prior best results. The only350

exception is InstructorLLM for R@100,7 but it351

7We observe RETPO sacrifices R@100 score due to its ten-

Figure 3: Heatmap of MRR scores when generalizing
toward different settings. The shades are normalized per
column to depict relative performance

fine-tunes the retriever. Overall, RETPO shows a 352

consistent improvement over other models across 353

both sparse and dense retrieval systems. These re- 354

sults suggest that RETPO highlights the potential 355

of preference-driven training in tailoring more fa- 356

vorable and suited rewrites in a given environment. 357

4.2 Ablation Study 358

Table 2 shows ablation results for RETPO on Top- 359

iOCQA, by removing its components gradually. 360

We start with a simple baseline that prompts our 361

teacher model GPT-4 to generate rewrites (row 362

1), followed by distillation to the smaller LM 363

Llama2-7b fine-tuned on the GPT-4 rewrite (row 2). 364

RETPO (row 3) significantly outperforms the base- 365

lines by using preference-driven optimization as 366

useful supervision. Without Direct Preference Op- 367

timization (DPO) (row 4), RETPO’s performance 368

drops, indicating the importance of integrating the 369

retriever’s preferences for certain rewrites over oth- 370

ers. Similarly, omitting prompting methods (Query 371

Expansion and Planning) from RF COLLECTION 372

(rows 5 and 6) results in degraded performance, un- 373

dency to produce longer and detailed rewrites. See Appendix
E.1 for case study
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Orig.
RF C∗ RETPO

QR QE Spar. Den.

# Words 6.9 11.3 30.0 22.4 15.9
# Unseen Words 0.0 2.2 7.7 4.9 3.0
% Start with ‘Wh’ 62.1 63.5 0.03 12.8 28.6
% Multiple Sents. 0.08 0.2 99.4 59.8 27.7

Table 4: Statistics for question distributions from RF
COLLECTION and RETPO. We compare the number of
words and the structure of questions.

derscoring their contribution to exploring optimal374

queries. The degradation across ablation clearly375

shows that every component of RETPO is cru-376

cial for its superior results in conversational search377

tasks.378

4.3 Robustness to Topic Shifts in Dialogues379

We report the results segmented by the question380

types in Table 3. We delve into the unique chal-381

lenge, topic-switching, posed within the Topi-382

OCQA benchmark, where topics may abruptly383

change between turns. RETPO exhibits excep-384

tional robustness in handling these topic shifts,385

significantly outperforming baselines. Its perfor-386

mances on Topic-shifted queries are even higher387

than those on Topic-concentrated queries, in con-388

trast to the tendency of the baselines. Additionally,389

RetPO boosts performance even on the context-390

independent queries (first), suggesting its potential391

for enhancing single-turn retrieval tasks as well.392

4.4 Generalizing to Different Preferences393

In Figure 3, we explore how well models gener-394

alize across datasets with varying scenarios. The395

performances along the heatmap’s diagonal reveal396

that models typically excel when the training set397

and preference match the evaluation ones. For398

ANCE on TopiOCQA, we observe that the ten-399

dency reverses, which might be linked to the effec-400

tiveness of query expansion strategies more favored401

by BM25.8 Additionally, the transfer of models402

from TopiOCQA to QReCC performs well while403

the opposite does not. It indicates that the chal-404

lenges posed by TopiOCQA are more complex than405

QReCC, again. Furthermore, the results imply the406

potential utility of our method to identify and select407

the most effective combination of strategies.408

Query Reform. #(Q) MRR R@10 R@100

Dense (ANCE)

Original 1 10.2 15.7 22.7
Concat (H<t, qt) 1 42.8 63.7 79.9
Human Rewrite 1 41.3 63.3 81.7

+ Gold Answer 1 57.8 79.3 90.1
GPT-4 Prompting 1 40.4 61.7 79.7

RF COLLECTION
Ques. Rewriting 10 57.4 75.1 87.9
QR w/ Planning 10 61.7 78.9 89.8
Query Expansion 5 62.2 81.3 92.3
Union 25 73.6 86.8 94.5

Table 5: Effectiveness of optimal queries in RF COL-
LECTION. We report the retrieval performance of
rewrites from ours and other baselines.

5 Analysis 409

5.1 Comparison of Question Distributions 410

Table 4 presents a statistical analysis of query distri- 411

butions of optimal queries from RF COLLECTION 412

C∗ and predicted rewrites from RetPO methods. 413

It shows the number of words, frequency of un- 414

seen words from the held-out conversation, ques- 415

tions starting with ‘Wh-’ words, and those com- 416

posed of multiple sentences.9 RF COLLECTION 417

and RETPO tend to create longer queries, often ex- 418

tending to 2-5 times the length of the original one, 419

which includes a number of words unseen within 420

the utterances so far. The query expansion (QE) no- 421

tably alters the question structure, frequently con- 422

structing them as multi-sentence entities (high % 423

of Multiple Sents.). This method tends to prepend 424

a pseudo-answer to the question (low % of Starting 425

with ’Wh-’). RETPO, in contrast, strikes a bal- 426

ance between QR and QE, achieving a midpoint 427

depending on the retriever type. 428

5.2 Evaluating RF COLLECTION 429

In Table 5, we present a comprehensive compari- 430

son of various query reformulation strategies. We 431

assess the performance of rewrites generated from 432

our RF COLLECTION against baselines including 433

oracle setups. We report the best retrieval perfor- 434

mances of each set. All of our prompting methods 435

significantly outperform Human Rewrite with a 436

huge gap in most metrics. Query expansion shows 437

the best performance among the prompting meth- 438

ods, showing its efficacy in adding keywords. The 439

combined set Union of all strategies yields the best 440

8See Sec. 5.1 for detailed analysis
9See Appendix D for details about the measurements.
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Figure 4: Pairwise evaluation with GPT-4. RETPO’s
rewrites are compared with the human rewrites.

results, indicating these methods are mutually ben-441

eficial.442

5.3 GPT-4 Evaluation443

In Figure 4, we perform an automatic pairwise com-444

parison, contrasting queries in three criteria: clarity,445

conciseness, and informativeness. To this end, we446

randomly sample 100 examples in the validation447

set and leverage a superior LLM, GPT-4 (OpenAI,448

2023), as a judge. For the same input conversation,449

we pair query rewrites from human and RETPO450

for the comparison. The evaluation indicates that451

RETPO typically generates questions that are more452

informative and less ambiguous compared to hu-453

man rewrites, though they are less concise. The454

extended rewrites from RETPO, despite sacrificing455

conciseness, contain valuable details, leading to su-456

perior performance. We observe a similar tendency457

for RF COLLECTION.10458

6 Related Works459

Conversational Search Conversational search is460

the precedent task of open-domain conversational461

QA. Qu et al. (2020) extend the existing CQA462

benchmark, QuAC (Choi et al., 2018) to the pas-463

sage retrieval task. Dalton et al. (2020) construct a464

retrieval benchmark only including questions. They465

propose to fine-tune the dense retriever (Karpukhin466

et al., 2020), enabling it to encode conversational467

context. Most studies follow the approach (Yu et al.,468

2021; Lin et al., 2021b; Kim and Kim, 2022; Kim469

et al., 2022; Mao et al., 2023; Ma et al., 2023). Al-470

though they show the dominant performances in the471

task, they require engineering whenever extending472

the off-the-shelf retriever.473

Query Reformulation Query reformulation re-474

fines a query for enhancing information retrieval.475

Recent studies prompt LMs to provide detailed476

10More details are in Appendix D.1.

information such as the expected document or 477

pseudo-answer (Wang et al., 2023; Jagerman 478

et al., 2023). Current works propose to train 479

LLMs with reinforcement learning (RL) signals 480

to optimize their performance (Ma et al., 2023). 481

In conversational search, query reformulation is 482

adopted to handle the conversational dependency. 483

Anantha et al. (2021) introduce the rewrite-then- 484

retrieve pipeline, relying on use the human-crafted 485

dataset (Elgohary et al., 2019). Most studies fine- 486

tune QR models to generate the standalone ques- 487

tion (Yu et al., 2020; Voskarides et al., 2020; Lin 488

et al., 2021c; Kumar and Callan, 2020; Wu et al., 489

2022). In contrast, RETPO is the first to leverage 490

preference-driven optimization for reformulating 491

queries in conversational search. 492

Aligning Language Models with Feedback Re- 493

cently, studies on LLM alignment utilize human 494

feedback, consisting of input, chosen, and rejected 495

responses (Bai et al., 2022a; Ouyang et al., 2022; 496

Rafailov et al., 2023). Constitutional AI or AI 497

feedback is also actively explored as an alternative 498

to human feedback (Bai et al., 2022b; Sun et al., 499

2023). Kim et al. (2023) automatically construct 500

synthetic feedback, leveraging prior knowledge 501

over the human preference, instead of collecting 502

human or AI feedback. Tian et al. (2023) obtain 503

synthetic feedback utilizing truthfulness measure- 504

ments like FactScore (Min et al., 2023) as a proxy 505

preference regarding factuality. Then, an LLM is 506

fine-tuned with the synthetic feedback via DPO 507

objective (Rafailov et al., 2023). Our method is 508

similar to these studies in that it includes the syn- 509

thetic dataset construction; however, we focus on a 510

specific target task, question rewriting, and reflect- 511

ing a target retriever’s feedback. 512

7 Conclusion 513

Our paper introduces RETPO, a framework for opti- 514

mizing an LM to generate retriever-preferred query 515

rewrites. Utilizing the LLM-based process, we 516

construct and release a large-scale dataset RF COL- 517

LECTION. Based on it, we enhance an open-source 518

LM Llama2-7b, significantly outperforming base- 519

lines on two recent conversational search bench- 520

marks QReCC and TopiOCQA. Our work, which 521

pioneers preference-driven optimization in query 522

reformulation advances conversational search per- 523

formance and shows promising results in general- 524

izing to other tasks. 525
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Limitation526

One limitation of our study is the exclusive focus527

on larger-scale language models. Consequently,528

our model tends to generate longer queries rich in529

specific information and keywords, possibly rely-530

ing on the emergent abilities of large LMs, which531

we leverage to boost performance. However, ex-532

ploring smaller-scale LMs could offer insights into533

the scalability and efficiency of our approach.534

Additionally, due to budget constraints, we uti-535

lized only half of the TopiOCQA training set. Ac-536

cess to the full dataset could potentially yield fur-537

ther improvements in model performance.538

Our framework has been tested solely within the539

realm of conversational search, yet its application540

is not limited to this task. Future research could541

adapt our framework to a broader range of tasks542

and domains, potentially enhancing its utility and543

impact.544

While we employed three prompting methods,545

there is a vast landscape of alternative approaches546

that we did not explore. Future studies could in-547

vestigate additional prompting strategies tailored548

to specific tasks and retriever systems.549

Finally, pairing our method with more advanced550

retrieval systems presents a promising avenue for551

research. Despite the clarity and consistency of the552

generated queries, we noted instances of retrieval553

failure, indicating that there is room for improve-554

ment in retriever performance, which could, in turn,555

further enhance the overall efficacy of our method.556
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Dataset Train RF COLLECTION

QReCC QR Plan QE

# Dialogues 10,823 8,987 5,519 8,987

# Turns 63,501 29,596 8,817 29,596

TopiOCQA QR Plan QE

# Dialogues 3,509 3,508 3,429 3,508

# Turns 45,450 24,283 13,845 24,283

Table 6: Statistics of RF COLLECTION, QReCC, and
TopiOCQA.

A Datasets826

The training dataset of QReCC comprises 10,823827

conversations encompassing 63,501 turns. For828

evaluating queries and gathering feedback from829

retrieval systems, we exclude turns with no gold830

passage label, yielding a dataset with 8,987 conver-831

sations and 29,596 turns.832

TopiOCQA consists of 3,509 conversations with833

45,450 turns. Unlike QReCC where we fully uti-834

lize the dataset, we conduct our method on a sub-835

set of TopiOCQA to manage costs associated with836

API requests, resulting in 3,429 conversations with837

13,845 turns. Specifically, for the QR with plan-838

ning prompting method, we only apply the method839

to turns where the number of optimal queries gen-840

erated from the QR method is less than three.841

B RF COLLECTION Details842

When constructing the collection of optimal queries843

C∗, we only choose rewrites whose rank is higher844

than 30. For the collection of binarized compar-845

isons, we only consider the query with a rank846

higher than 50 as the preferred query. We do not847

pair the queries with the same rank.848

B.1 Proportion of Question Types849

To obtain statistics in Sec. 5.1, we use the fol-850

lowing process. Employing the NLTK (Loper and851

Bird, 2002) module for query processing, part-of-852

speech tagging was executed, and unseen nouns853

and adjectives were identified through the compari-854

son of words in the conversational history by string855

matching. Queries commencing with ’what,’ ’why,’856

’where,’ ’when,’ and ’who’ were categorized as857

Start with "Wh" queries Furthermore, for the cate-858

gorization of queries into the query expansion style,859

the proportion of queries containing multiple sen-860

tences was calculated by Spacy (Neumann et al.,861

Figure 5: Proportion of optimal queries generated by
each prompting method.

2019) library. 862

In Figure 5, we show the proportion of query 863

rewrite method preferences exhibited by a sparse 864

retriever and a dense retriever on QReCC and Top- 865

iOCQA. In the case of RF COLLECTION made 866

with feedback from BM25, It is observable that 867

the proportion integrating the query expansion sur- 868

passes that derived from feedback by ANCE. More- 869

over, within the RF-COLLECTION tailored for Top- 870

iOCQA, there is an observed elevation in the num- 871

ber of queries generated through the query expan- 872

sion and planning method in comparison to those 873

generated from QReCC. This tendency implies the 874

elevated complexity inherent in TopiOCQA com- 875

pared to QReCC-like topic-shifting. The rationale 876

behind the relatively diminished overall proportion 877

of planning lies in its role as an auxiliary method 878

for Query Rewrite, as previously mentioned. 879

C Experimental Details 880

Implementation Detail For BM25, we set k1 = 881

0.82, b = 0.68 in QReCC, and k1 = 0.9, b = 0.4 882

in TopiOCQA, respectively, where k1 controls the 883

non-linear term frequency normalization and b is 884

the scale of the inverse document frequency. We 885

utilize GPT4-Turbo (gpt-4-1106-preview) via the 886

OpenAI API to produce query candidates from con- 887

textualized questions. We use default hyperparam- 888

eters of chat completion of API except for setting a 889

temperature of 0.7 and maximum tokens as 1000. 890

For each prompting method (Question Rewriting, 891

Planning, Query Expansion), we generate 10, 10, 892

and 5 candidates respectively. We use Faiss (John- 893

son et al., 2019) and Pyserini (Lin et al., 2021a) for 894

efficient search across large passage indices. We re- 895

trieve top-100 relevant passages for each query can- 896
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QReCC TopiOCQA
Ret. Trained on Preference MRR R@10 R@100 MRR R@10 R@100

B
M

25 OQF-QReCC BM25 50.0 69.5 89.5 18.1 31.9 58.7
ANCE 44.4 66.7 90.0 17.2 32.0 59.1

OQF-TopiOCQA BM25 44.7 66.8 89.3 28.3 48.3 73.1
ANCE 40.1 62.2 86.5 23.1 41.3 69.4

A
N

C
E OQF-QReCC BM25 43.3 65.0 82.5 23.1 39.3 58.3

ANCE 44.0 66.7 84.6 23.2 40.0 59.4

OQF-TopiOCQA BM25 42.5 63.5 81.6 32.2 51.6 69.5
ANCE 40.9 61.9 79.9 30.0 49.6 68.7

Table 7: Retrieval performance when generalizing toward different setups.

Query Reform. #(Q) MRR R@10 R@100

Sparse (BM25)

Original 1 6.5 11.1 21.5
Concat (H<t, qt) 1 47.0 65.1 82.8
Human Rewrite 1 40.0 62.7 98.5
+ Gold Answer 1 92.4 97.2 99.7

RF COLLECTION
Question Rewriting 10 64.5 81.1 94.5

w/ Planning 10 68.2 83.6 95.2
Query Expansion 5 75.0 91.3 99.1
Union 25 85.1 93.7 98.6

Table 8: Comparison of effectiveness with BM25 over
different query reformulation strategies. We evaluate the
performance of our generated rewrites from RF COL-
LECTION against simple baselines and oracle setups.

didate and obtain rank using pytrec_eval (Van Gy-897

sel and de Rijke, 2018). Following (Kim and Kim,898

2022), the maximum token length is constrained899

to 128 tokens for query representations and 384900

tokens for passage representations.901

We largely follow the Huggingface repository,902

Alignment Handbook.11 We use Llama2-7b-hf as903

our backbone. We use eight A100 GPUs (80GB)904

to train the Llama2-7b. It is trained in one epoch905

for supervised fine-tuning. We set the learning rate906

as 2e-5, and the batch size as 20 per GPU. The907

warmup ratio is set to 0.1 and we use torch data908

type bfloat16. For the training of DPO, we set the909

beta as 0.01, and the maximum length as 1024. We910

train our model in three epochs with a batch size911

of 8 per GPU. We set the maximum input context912

length as 2048 and the output length as 200.913

11https://github.com/huggingface/alignment-handbook

Figure 6: Pairwise evaluation with GPT-4. Rewrites
from RF COLLECTION are compared with the human
rewrites.

D Analysis Details 914

D.1 GPT-4 Evaluation Details 915

Prompts used in GPT-4 evaluation are shown in 916

Table 9, 10, and 11. Considering the position bias 917

in GPT-4 evaluation (Zheng et al., 2023), we as- 918

sess the same instance twice, reversing the order 919

of the two rewritten questions. Also, we regard the 920

comparison as a ‘Tie’ if the two evaluation results 921

conflict with each other. 922

E Case Study 923

In Table 12, we demonstrate the effectiveness of 924

RETPO in enhancing retrieval performance by pro- 925

viding additional specific information. While the 926

information generated by RETPO does not seem- 927

ingly overlap with the actual answer, they never- 928

theless contribute by offering supplementary cues 929

that guide the retriever toward the most pertinent 930

passages. 931

E.1 Over-specification Issue 932

In Table 13, we present a failure case where 933

RETPO fails to accurately align with the orig- 934

inal search intent, resulting in a misjudgment 935

during retrieval. The deviation from the origi- 936

nal question scope is highlighted, indicating an 937

13
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Figure 7: T-SNE visualization of ANCE embeddings
from RETPO and RF COLLECTION. Queries and pas-
sages from the same method are colored identically.

over-specification in the output query. This over-938

specification leads to a mismatch with the in-939

tended search query, thereby hindering successful940

retrieval.941

F Prompts942

Table 14, 15, 16 illustrate examples of our prompt-943

ing methods: question rewriting (QR), QR with944

planning, and query expansion. Following (Khat-945

tab et al., 2022), each prompt comprises four com-946

ponents: an instruction, a format specification, a947

few-shot example, and a test instance. In question948

rewriting, we instruct LLM to generate a series of949

decontextualized questions adhering to the prede-950

fined criteria proposed by (Ye et al., 2023). In QR951

with planning, the LLM is guided to elicit relevant952

information that might help reformulate a question,953

before generating each rewritten question. In query954

expansion, LLM produces a set of pseudo-answer955

candidates expected to align closely with the po-956

tential response of the question. We use a one-shot957

example for each prompting method to demonstrate958

the desired action and output.959
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[Instruction]
Please act as an impartial judge and evaluate the quality of the query-rewriting system displayed below.
The system tries to rewrite the conversational input to a stand-alone question, eliminating dependency
on the conversational context.

Your job is to compare the clarity of the two rewritten stand-alone questions.
That is, You should check which question is less open to multiple interpretations and has a more
clear intention.
Please choose either ’A’ or ’B’. If the two questions show the same clarity, answer it by ’Tie’. For
example, Judge: (A|B|Tie)

[Conversation]
{conversation}

[The Start of stand-alone question A]
{query_1}
[The End of stand-alone question A]

[The Start of stand-alone question B]
{query_2}
[The End of stand-alone question B]

Judge:

Table 9: GPT4 prompt for evaluating clarity

[Instruction]
Please act as an impartial judge and evaluate the quality of the query-rewriting system displayed below.
The system tries to rewrite the conversational input to a stand-alone question, eliminating dependency
on the conversational context.

Your job is to compare the conciseness of the two rewritten stand-alone questions.
That is, You should check which question is more brief and directly states the search intent without
additional elaboration.
Please choose either ’A’ or ’B’. If the two questions show the same conciseness, answer it by ’Tie’. For
example, Judge: (A|B|Tie)

[Conversation]
{conversation}

[The Start of stand-alone question A]
{query_1}
[The End of stand-alone question A]

[The Start of stand-alone question B]
{query_2}
[The End of stand-alone question B]

Judge:

Table 10: GPT4 prompt for evaluating conciseness
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[Instruction]
Please act as an impartial judge and evaluate the quality of the query-rewriting system displayed below.
The system tries to rewrite the conversational input to a stand-alone question, eliminating dependency
on the conversational context.

Your job is to compare the informativeness of the two rewritten stand-alone questions.
That is, You should check which question provides more useful and relevant information.
Please choose either ’A’ or ’B’. If the two questions show the same informativeness, answer it by ’Tie’.
For example, Judge: (A|B|Tie)

[Conversation]
{conversation}

[The Start of stand-alone question A]
{query_1}
[The End of stand-alone question A]

[The Start of stand-alone question B]
{query_2}
[The End of stand-alone question B]

Judge:

Table 11: GPT4 prompt for evaluating informativeness

Conversation:
Q1: where are we now video who is the girl A1: The Where Are We Now? music video, directed by
Tony Oursler, shows Bowie and an unnamed female companion. The woman was later confirmed as
artist Jacqueline Humphries, Oursler’s wife.
Q2: why was the wife in the music video A2: David Bowie and Oursler reportedly wanted someone
who looked like Bowie’s PA, Corinne Coco Schwab, as she did in the 1970s in Berlin.
Q3: where is the setting of the music video A3: The video is set in what could be an artists’ studio in
Berlin, where Bowie lived from 1976, showing moving black-and-white footage of the city from the
1970s.
Q4: any references in the music video A4: The footage on the screen and references in the lyrics
include the Berlin Wall and mention of the Bosebrucke, the first border crossing that opened when the
Wall fell.

Original: any other references (rank: Not Found)

Human Rewrite: any other references in the where are we now music video besides the berlin wall
and bosebrucke (rank: Not Found)

RETPO: The video may also include references to Bowie’s time in Berlin during the 1970s, such as
the black-and-white footage of the city and the mention of the Bosebrucke.\nAny other references in
the Where Are We Now music video besides the Berlin Wall and mention of the Bosebrucke (rank: 1)

Answer: Other reference points in the video and song are the Brandenburg Gate the Dschungel
nightclub; the Fernsehturm, or television tower KaDeWe, the department store and graffiti from
Kunsthaus Tacheles.

Table 12: Success case on QReCC (2396_5) when using BM25.
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Conversation:
Q1: what is mechanical animals? A1: Mechanical Animals is the third studio album by American rock
band Marilyn Manson.
Q2: what kind of music did this album have? A2: A rock opera and concept album, Mechanical
Animals is the second installment in a trilogy
Q3: who producedthe album? A3: Marilyn Manson subsequently employed Michael Beinhorn as
principal producer, co-producing the record with Marilyn Manson. Sean Beavan was also brought in to
supply additional production work.
Q4: was this album a hit on the charts? A4: Mechanical Animals debuted at number one on the
Billboard 200 with first-week sales of 223,000 units, becoming Marilyn Manson’s first number-one
album on the chart.
Q5: did it win any awards? A5: Mechanical Animals was certified platinum by the Recording Industry
Association of America on February 25, 1999,
Q6: did they go on tour? A6: The Beautiful Monsters Tour was a North American concert tour
co-headlined by American rock bands Hole and Marilyn Manson.

Original: who was hole? (rank: Not Found)

Human Rewrite: Who was American rock band Hole? (rank: 3)

RETPO: Who were the members of the band Hole that co-headlined the Beautiful Monsters Tour with
Marilyn Manson? (rank: Not Found)

Answer: Hole was an American alternative rock band formed in Los Angeles, California in 1989.

Table 13: Failure case in QReCC (1321_7) when using BM25. The red text indicates the deviation from the original
question scope. The resulting query from RETPO over-specifies irrelevant details, asking about members of the
band Hole, rather than the band as a whole. It leads to misalignment with the original search intent.
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Given a question and its context, decontextualize the question by addressing coreference and omission
issues. The resulting question should retain its original meaning and be as informative as possible,
and should not duplicate any previously asked questions in the context. Please give me a list of 10
candidates for the rewrite. Here are some examples.

- - -

Follow the following format.

Conversation:
${conversational context for the question}

Question: ${follow-up question to be rewritten}

Rewrite: ${list of 10 rewritten question candidates, each on a new line.}
Rewrite i: ${(i)-th rewritten question that address coreference and omission issues}

- - -

Conversation:
Q1: How did religion effect their society? A1: Religion held ancient Hawaiian society together,
affecting habits, lifestyles, work methods, social policy and law. The legal system was based on
religious kapu, or taboos.
Q2: What is Kapu? A2: Kapu is the ancient Hawaiian code of conduct of laws and regulations.
...
Q4: What are the beginnings of the kapu system like? A4: The rigidity of the kapu system might have
come from a second wave of migrations in 1000–1300 from which different religions and systems were
shared

Question: How did this wave effect society or the system?

Rewrite:
Rewrite 1: How did the second wave of migrations between 1000–1300 impact ancient
Hawaiian society or the kapu system?
Rewrite 2: In what ways were the social structure or kapu system of ancient Hawaii
influenced by migrations from 1000 to 1300?
Rewrite 3: ...

Table 14: Prompt for the question rewriting method
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I am working on finding information to rewrite the question. Given a question and its context, Please
provide 10 information-Rewrite pairs, where each pair consists of information that might be needed
to answer the question and a rewritten question. the rewritten question is a decontextualized version
of the question by addressing coreference and omission issues with respect to each information. the
resulting question should retain its original search intent. Here are some examples.

- - -

Follow the following format.

Conversation:
${conversational context for the question}

Question: ${follow-up question to be rewritten}

Information-Rewrite: ${list of 10 Information-Rewrite pairs, each on a new line}
Info i: ${(i)-th information that is needed to answer the question. it should not be too specific}
Rewrite i: ${(i)-th rewritten question that address coreference and omission issues with respect to (i)-th
information.}

- - -

Conversation:
Q1: How did religion effect their society? A1: Religion held ancient Hawaiian society together,
affecting habits, lifestyles, work methods, social policy and law. The legal system was based on
religious kapu, or taboos.
Q2: What is Kapu? A2: Kapu is the ancient Hawaiian code of conduct of laws and regulations.
...
Q4: What are the beginnings of the kapu system like? A4: The rigidity of the kapu system might have
come from a second wave of migrations in 1000–1300 from which different religions and systems were
shared

Question: How did this wave effect society or the system?

Information-Rewrite:
Info 1: Migration Impact - Information about how the second wave of migrations
influenced the existing societal structures or introduced changes in ancient
Hawaiian society.
Rewrite 1: How did the second wave of migrations around 1000-1300 AD affect ancient
Hawaiian society and its structures?

Info 2: Changes to Kapu System - Details regarding any modifications or
introductions to the kapu system as a result of the second wave of migrations.
Rewrite 2: What changes were made to the ancient Hawaiian kapu system due to the
second wave of migrations?

Info 3: ...

Table 15: Prompt for the planning method.
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Please give me a list of 5 answer candidates based on the given conversation context and question.
Here are some examples.

- - -

Follow the following format.

Conversation:
${conversational context for the question}

Question: ${follow-up question to be rewritten}

Answer: ${list of 5 answer candidates, each on a new line.}
Answer i: ${(i)-th answer for the current question}

- - -

Conversation:
Q1: How did religion effect their society? A1: Religion held ancient Hawaiian society together,
affecting habits, lifestyles, work methods, social policy and law. The legal system was based on
religious kapu, or taboos.
Q2: What is Kapu? A2: Kapu is the ancient Hawaiian code of conduct of laws and regulations.
...
Q4: What are the beginnings of the kapu system like? A4: The rigidity of the kapu system might have
come from a second wave of migrations in 1000–1300 from which different religions and systems were
shared

Question: How did this wave effect society or the system?

Answer:
Answer 1: The second wave of migrations brought new religious beliefs and practices,
which likely intensified the existing kapu system and introduced additional taboos.
Answer 2: The influx of migrants during this period could have led to the
formalization and expansion of the kapu system, as new ideas were integrated
and enforced.
Answer 3: ...

Table 16: Prompt for the query expansion method. We concatenate the pseudo-answers with a self-contained query.
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