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ABSTRACT

Zero-Shot Composed Image Retrieval (ZS-CIR) aims to retrieve a target image
based on a reference image and a modification text, without requiring task-specific
training. Most existing methods directly rewrite the query from the multimodal
inputs without verification or self-correction, making initial misinterpretations of
the user’s intent unrecoverable and leading to retrieval failure. To address this
limitation, we propose CoRR, a novel training-free framework that reframes ZS-
CIR as a dynamic and self-correcting process. In contrast to prior methods, CoRR
incorporates evidence from retrieved results as explicit feedback and employs a
Multimodal Large Language Model (MLLM) to iteratively refine query represen-
tations through a Chain-of-Thought reasoning process. In order to ensure stable
query evolution, we employ Spherical Linear Interpolation (Slerp) to fuse his-
torical and newly generated query. Furthermore, we introduce Retrieval-Driven
Caption Optimization, which supplies the MLLM with high-fidelity contextual
examples to enhance its reasoning and ensure that outputs align with the prefer-
ences of the embedding space. Extensive experiments on multiple benchmarks,
including CIRCO, CIRR, and FashionIQ, demonstrate that CoRR significantly
outperforms existing state-of-the-art methods, establishing the superior effective-
ness of our proposed paradigm.

1 INTRODUCTION

Composed Image Retrieval (CIR) aims to retrieve a target image that preserves the relevant visual
content of a reference image while incorporating the semantic modifications described in a textual
query (Vo et al., 2019; Delmas et al., 2022; Huynh et al., 2025; Xing et al., 2025). This fine-grained
retrieval task has significant practical value in numerous real-world scenarios like web search and
e-commerce (Chen et al., 2020; Saito et al., 2023; Bai et al., 2024; Tang et al., 2025b), offering
users a more intuitive and flexible way to interact with visual content.

Zero-Shot Composed Image Retrieval (ZS-CIR) (Saito et al., 2023; Karthik et al., 2024; Yang et al.,
2024; Tang et al., 2025a;b; Luo et al., 2025) has emerged as a promising paradigm due to its cost-
effectiveness. A common practice is to first employ Multimodal Large Language Models (MLLMs)
or Large Language Models (LLMs) to generate composed queries that integrate information from
both the reference image and modification text, then to utilize pre-trained multi-modal embedding
models like CLIP (Radford et al., 2021) to retrieve results from the target database.

The effectiveness of these methods heavily relies on the accuracy of the composed queries, which
require precise semantic editing of the reference image based on the provided text. However, this
task presents a challenge due to its inherent ambiguity and complexity: the semantics of the target
image are not strictly determined by the reference image and the modification text (Bordogna &
Pasi, 1993; Chen & Wang, 2002; Yang et al., 2024). As a result, the generated text queries may
either become overly broad, potentially omitting critical visual elements, or excessively specific,
emphasizing irrelevant details from the reference image, both of which will lead to erroneous results.

Recent efforts have leveraged the reasoning capabilities of MLLMs and LLMs to better interpret user
intent. However, the focus of such approaches is restricted exclusively to query analysis and rewrit-
ing, as illustrated in Figure 1 (a). For instance, OsrCIR (Tang et al., 2025b) utilizes an MLLM to
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(a) Previous Method (b) Ours Method
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Failed Retrieval

Failed Retrieval

Figure 1: An overview of the previous methods and our method. (a) relies solely on guessing the
user’s intent based on the query itself, while (b) analyzes and improves the query through feedback
obtained from retrieval results.
analyze reference images and modification text, employing Chain of Thought (CoT) to reason about
explicit intentions of the user. Similarly, LDRE (Yang et al., 2024) identifies the inherent fuzziness
of this task and seeks to generate diverse queries from multiple perspectives, thereby encompassing
the full range of potential semantics of the target composition. CoTMR (Sun et al., 2025) further
enhances this process by integrating multi-scale reasoning with CoT, enabling comprehensive in-
ference through fine-grained predictions regarding the presence or absence of key elements at the
object level. While these approaches optimize queries by improving the alignment between visual
and textual inputs, there exists another line of work that focuses on utilizing pseudo-relevance feed-
back to expand queries (Cao et al., 2008; Wang et al., 2021). These methods primarily collect Top-K
retrieval results and adjust queries based on overall shifts in feature spaces. However, this approach
may overlook the noise present in the retrieved results, potentially leading to erroneous outcomes.

In this paper, we propose CoRR (Chain of Reflective Composed Image Retrieval), a novel training-
free framework that effectively integrates multimodal inputs and retrieval feedback for query refine-
ment. CoRR facilitates a reflective analysis and enhances the refinement of the composed query not
only based on the reference image and text but also on the retrieved images. As shown in Figure
1 (b), we employ an MLLM to assess the evidence within the retrieved images, analyzing whether
the constraints specified in the original query are satisfied. This analysis aids in identifying which
elements should be preserved and which should be modified, ultimately leading to a more accurate
query generation. However, the direct application of such reflective chains can be problematic, as we
often encounter “query drift” (Mitra et al., 1998) during multiple refinement iterations. To mitigate
this issue, we propose a Historical Query Fusion strategy, which employs Spherical Linear Interpo-
lation (Slerp) (Shoemake, 1985) to seamlessly integrate historical query vectors, thereby ensuring
a stable and progressive reflective refinement.

To further enhance the performance, we identify that an effective query must not only accurately
represent the user’s intent but also align well with the embedding space of the retrieval model. To
achieve better alignment, we propose integrating retrieval-optimized captions for each image into the
reflection process. These captions are produced through a self-retrieval process within the database,
which highlights each image’s distinctive visual characteristics, thereby enhancing its discriminative
representation. By incorporating these optimized captions into our reflection framework, we can not
only accurately identify key evidence for each image and propagate that information to refine the
query, but also emulate the styles and patterns to generate query that is more conducive to retrieval.

Our main contributions are as follows:

• We introduce CoRR, a novel training-free framework that reframes ZS-CIR as a dynamic and
self-correcting process. CoRR is plug-and-play and compatible with existing methods, thereby
consistently enhancing overall performance.

• We introduce an MLLM-guided self-reflection mechanism that reasons about evidence from both
multimodal inputs and retrieved feedback, combined with Slerp-based historical query fusion. It
can achieve stable and progressive query refinement that better captures the user’s intent.

• We propose generating retrieval-optimized captions and incorporating them into self-reflection,
allowing queries to align more effectively with the employed retrieval models.

• Through extensive experiments on standard benchmarks including FashionIQ, CIRR, and CIRCO,
we demonstrate that CoRR achieves state-of-the-art performance, improving existing methods by
3 to 9 percentage points in a variety of models with only two additional rounds of self-reflection,
highlighting the effectiveness of our iterative retrieval paradigm.
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2 RELATED WORK

Composed Image Retrieval. Composed Image Retrieval (CIR) enables the retrieval of target im-
ages by leveraging a reference image in conjunction with textual modification texts (Wu et al., 2021;
Han et al., 2017; Vo et al., 2019). Classical approaches to CIR typically relied on specialized mod-
els trained on large-scale, manually annotated triplet datasets (Liu et al., 2021; Baldrati et al., 2022;
Chen et al., 2020; Chen & Bazzani, 2020; Lee et al., 2021; Anwaar et al., 2021). The core technique
involved projecting visual and textual features into a shared embedding space, often using con-
trastive learning objectives (Sohn, 2016; Radford et al., 2021; Roth et al., 2022). To avoid reliance
on annotated triplets, recent work has turned to zero-shot CIR, which performs retrieval without task-
specific training data. One strategy leverages pseudo-tokens (Saito et al., 2023; Baldrati et al., 2023;
2022; Gu et al., 2024; Tang et al., 2025a; bai et al., 2024) to encode reference images, subsequently
combining them with the reference caption. However, these techniques typically encounter difficul-
ties in understanding implicit human intentions embedded in manipulation text. Recent advances
in Multimodal Large Language Models (MLLMs) have catalyzed the emergence of novel method-
ologies that transform CIR tasks into text-to-image retrieval paradigms (Karthik et al., 2024; Yang
et al., 2024; Tang et al., 2025b). This paradigm shift leverages MLLMs to convert reference images
and modification texts into descriptive captions, enabling text-to-image retrieval using models like
CLIP (Radford et al., 2021). However, these approaches only focus on analyzing the query based on
the reference image and modification text, lacking a mechanism to verify whether the refined query
aligns with the actual visual evidence, leading to misalignment with user intent and limits retrieval
accuracy.

Embedding Models and Multimodal Large Language Models. Embedding models, particularly
pioneering architectures such as CLIP (Radford et al., 2021) and BLIP (Li et al., 2022), have suc-
cessfully established a unified semantic space by mapping images and text through training on mas-
sive image-text datasets. This breakthrough has enabled diverse applications across image genera-
tion (Kim et al., 2022; Rombach et al., 2022), classification (Zhou et al., 2022; Qu et al., 2025), and
cross-modal retrieval (Bogolin et al., 2022; Wang et al., 2025). Recently, the field has evolved from
simple feature alignment toward deep integration of visual capabilities with Large Language Mod-
els (LLMs), resulting in more powerful Multimodal Large Language Models (MLLMs) (Liu et al.,
2024; Zhu et al., 2025; Bai et al., 2025; Shahriar et al., 2024). These models achieve deep visual
understanding and complex reasoning capabilities through instruction tuning, enabling tasks such as
visual question answering and image description generation. Existing work has demonstrated that
combining Embedding Models with MLLMs can efficiently perform Composed Image Retrieval
(CIR) tasks in a single inference. Our work extends this powerful “retriever + reasoner” paradigm
by introducing an iterative correction mechanism to address its inherent retrieval limitations.

3 METHODOLOGY

3.1 PRELIMINARIES

Before formally presenting our method, we provide a detailed definition of the ZS-CIR task. Given
a reference image Ir and a modification text T , the objective of Composed Image Retrieval (CIR) is
to identify an image from a database D = {I1, I2, ..., In}, that best represents the reference image
Ir after applying the semantic changes described by the modification text T .

While traditional supervised methods train a composition function using costly-to-acquire <ref-
erence, text, target> triplets, ZS-CIR methods avoid this by converting visual features to textual
representations for retrieval. Despite their different strategies, these approaches can be abstracted
into a unified formulation. We can consider them as employing a universal multi-modal embed-
ding model Ψ(∗), which is capable of processing unimodal inputs (an image or a text) or their
composition, projecting them into a shared embedding space. The composed query vector is thus
vq = Ψ(Ir, T ) ∈ Rd, and the candidate image vectors are ΨI(Ii). where d is the dimension of the
shared embedding space and the ΨI denotes an image-only input. The retrieval goal is to find the
image I∗ from the candidates D that maximizes their similarity:

I∗ = Θ(D, Ir, T ) = argmax
Ii∈D

ΨI(Ii)
⊤Ψ(Ir, T )

∥ΨI(Ii)∥ · ∥Ψ(Ir, T )∥
(1)
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Figure 2: An architecture of our framework. (a) illustrates the simplified pipeline of our proposed
method. (b) demonstrates the reasoning and self-reflection process facilitated by the MLLM, where
different colors highlight distinct key visual elements. (c) visualizes the Historical Query Fusion
process, while (d) showcases our Retrieval-Driven Caption Optimization strategy.

3.2 OVERVIEW

The pipline of our proposed framework is illustrated in Figure 2 (a). Our proposed CoRR framework
follows “retrieval-reflection-refinement” iterative process. It begins by generating an initial query
vector v0 = Ψ(Ir, T ) from reference image Ir and modification text T using the embedding model
to retrieve a set of candidate images I0. Subsequently, in t round, an MLLM reasoner Φ analyzes
the Top-K (default 5) retrieved images It−1 from the previous retrieval and their associated Top-N
(default 10) synthetic captions Ct−1, along with the original inputs (Ir, T ), to generate a new textual
query T ′

t . This refined text query is then used to compute an updated query vector vt via Historical
Query Fusion for next round.

Our approach primarily consists of three core modules: (1) MLLM-Guided Self-Reflection, (2)
Historical Query Fusion based on Slerp, and (3) Retrieval-Driven Caption Optimization. We will
elaborate on each in detail.

3.3 MLLM-GUIDED SELF-REFLECTION

In each retrieval loop, our MLLM Reasoner executes a CoT process to analyze the retrieved can-
didates from the previous round, reflect on the results, and generate a refined query for the next
iteration. Based on the examples given in the Figure 2 (b), we briefly introduce the process. For
specific CoT prompts, please refer to the appendix A.1.

Understand User Intent. First, the MLLM will analyze the reference image and modification text
to clarify user intent. As shown in Figure, the MLLM finds that user intent is to retrieve an image of
dogs pulling a sled in an environment similar to the original scene.

Analysis Retrieved Results. Then, the MLLM analyzes the retrieved images and synthetic captions
from the previous round. This step aims to retain key visual elements that match user intent. As
shown in Figure, the MLLM examines the caption of “pulling” and “snow settings”.

Problem Reflection. Building upon the analysis of retrieved results, the MLLM synthesizes its
findings to identify problem between current results and user intent. As shown in Figure, the MLLM
finds that the current results lack the specific breed and forest environment.
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Generation Strategy. In the final step, the MLLM will be guided by two key criteria: (1) accurate
integration of key visuals, incorporating corrective insights from problem reflection and (2) con-
straining the final output by learning from synthetic captions to align with the embedding model’s
preferences. The MLLM clarifies that the output needs to focus on the action, the environment, and
the missing breed. It also specifies that the output should be concise and use common vocabulary.

3.4 HISTORICAL QUERY FUSION BASED ON SLERP

As shown in Figure 2 (c), in each iteration of our framework, the MLLM generates a refined target
caption Tt, which is then encoded into a new query vector ut = ΨT (Tt). However, directly replacing
the previous query vector with this new one can lead to instability. The MLLM’s reflection might
cause an over-correction or introduce noise, leading to “query drift” (Mitra et al., 1998) where
valuable information from the previous state is lost.

To ensure a smooth and stable evolution of the query, we fuse the historical query vt−1 from the
previous iteration with the new query vector ut. We employ Spherical Linear Interpolation (Slerp)
(Shoemake, 1985) for this task, as it is naturally suited for operating on the hypersphere of unit-
normalized embedding models. Slerp ensures a smooth transition between the two vectors, provid-
ing a robust update mechanism. We prove its validity in Section A.4. The final query vector for the
current iteration vt is computed as follows:

vt ←− Slerp(ut, vt−1;α) (2)

The Slerp function is defined as:

Slerp(u, v;α) =
sin(1− α)θ

sin(θ)
u+

sin (αθ)

sin(θ)
v (3)

where θ = arccos(u · v) is the angle between the two vectors, and α ∈ [0, 1] (default 0.8) is a
fixed hyperparameter that controls the interpolation weight, balancing the influence of the historical
query and the new evidence. See Section 4.3 for ablation studies. This Slerp-based fusion mitigates
destructive drift by maintaining momentum from the previous query while still integrating the new
insights from the MLLM’s reflection. It effectively smooths the search trajectory within the embed-
ding space as shown in Figure 2 (c). The resulting updated vector vt, is then used to retrieve the
image gallery D with Θ(∗) to produce the candidate set for the next iteration.

3.5 RETRIEVAL-DRIVEN CAPTION OPTIMIZATION

Many studies have shown that dense embedding models are highly sensitive to their input (Rafiei Asl
et al., 2024; Magomere et al., 2025). To align the MLLM outputs with the preferences of the embed-
ding model, prior methods have attempted to guide generation through fixed and manually-curated
image caption examples (Karthik et al., 2024; Tang et al., 2025b). However, these static examples
are inherently disconnected from the current query and fail to provide relevant, adaptive guidance.

Our key insight is that the effective examples for guiding the MLLM should be dynamic and inher-
ently query-relevant. By providing these relevant and retrieval-focused captions to the MLLM, we
guide it to learn the embedding model’s preferences, including semantic granularity and sentence
style. Additionally, providing extra captions allows the MLLM to learn the discriminative visual
elements within the images, which helps it better analyze the retrieved results.

Therefore, As shown in Figure 2 (d), our Retrieval-Driven Caption Optimization strategy generates
M (default 30) high-quality captions {Ci}Mi=1 for each of the top-N retrieved images using BLIP2
(Li et al., 2023b). To select the most effective one caption, we employ a retrieval-based validation
approach that ranks captions using a two-stage sorting strategy: first by the rank of the source image
I when using caption Ci as a query, then by the similarity score between the caption and the source
image for captions with identical ranks. Formally, for each caption Ci, we compute its ranking:

(ri, si) < (rj , sj) ⇐⇒ (ri < rj) or (ri = rj and si > sj) (4)

where ri = rank(I, Ci) denotes the rank of image I when caption Ci is used as a query, and
si = sim(I, Ci) represents the similarity score between caption Ci and image I . We provide corre-
sponding ablation studies in Section 4.3 and present visual analysis in Section A.3.
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4 EXPERIMENTS

Implementation Details. Our framework is implemented in PyTorch(Paszke et al., 2019) and all
experiments are conducted on a single NVIDIA A6000 GPU with 48GB. For image retrieval, we
use a FAISS (Douze et al., 2024) Flat index to perform an exact search, using inner product as
the similarity metric. We adopt different existing ZS-CIR models as the embedding models. In init
round, retrieval is performed solely by the embedding model. Subsequently, the MLLM executes
two additional reflection and refinement rounds to iteratively update the query. Our primary MLLM
is Qwen-VL-Max 1. we leverage BLIP-2 (Li et al., 2023a) with a OPT-6.7b (Zhang et al., 2022)
language model as the image captioner to generate optimized caption examples.

Datasets and Evaluation Metrics. We evaluate our method’s performance on three widely-
recognized benchmarks (CIRR (Liu et al., 2021), CIRCO (Baldrati et al., 2023) and FashionIQ
(Wu et al., 2021)) for composed image retrieval. Moreover, the experimental results of GeneCIS
(Vaze et al., 2023) are included in the appendix A.2 due to space limitations. CIRCO and CIRR are
designed for object modification tasks, where reference images provide guidance for altering objects
or backgrounds. Following the official protocols, we evaluate CIRCO using mean Average Precision
at k (mAP@k) and CIRR using recall at k (Recall@k), both via their respective evaluation servers on
the hidden test sets. Additionally, for CIRR, we report subset recall (Recallsub@k), which measures
the ability to identify the target within a restricted set of relevant images. In contrast, FashionIQ
focuses on attribute adjustment, leveraging textual descriptions to change specific image attributes.
We report recall at k (Recall@k) on the validation set for each category (Shirt, Dress and Toptee).

Baseline and Backbone. To evaluate the effectiveness of our module, we conduct comprehen-
sive comparisons against several prior state-of-the-art ZS-CIR models. All baselines are built upon
pre-trained CLIP weights (Radford et al., 2021), allowing for fair comparisons within the same
parameter scale. Specifically, we group our comparisons by the underlying CLIP architecture:
CLIP-ViT-B/32, CLIP-ViT-L/14. Since MMRet-Base (Zhou et al., 2025) is only available for
the CLIP-ViT-B/16 variant, our comparison with it is limited to this version. To validate our ap-
proach, we benchmark it against a variety of leading training-free and training-based Composed
Image Retrieval methods. Our comparison set includes SEARLE (Baldrati et al., 2023), Pic2Word
(Saito et al., 2023), Slerp-TAT (Jang et al., 2024), LDRE (Yang et al., 2024), Context-I2W (Tang
et al., 2024), CIReVL (Karthik et al., 2024), ImageScope (Luo et al., 2025), PrediCIR (Tang
et al., 2025a), OSrCIR (Tang et al., 2025b) and MMRet (Zhou et al., 2025). By integrating
our module with these backbones (e.g., ”Ours+MMRet-large”), we achieve substantial performance
gains over the original methods, highlighting the consistent benefits of our approach.

4.1 MAIN RESULTS

We present our main quantitative results on the CIRCO and CIRR benchmarks in Table 1, and Fash-
ionIQ benchmark in Table 2. The results demonstrate that our proposed paradigm consistently and
significantly enhances the performance of various baseline methods across different architectures.

In Table 1, we evaluate our approach on the CIRCO and CIRR datasets to demonstrate its perfor-
mance on tasks that require both foreground-background separation and fine-grained modifications.
Specifically, on CIRCO, using the CLIP-ViT-L backbone with Slerp (“Ours+Slerp”), we enhances
the mAP@5 score from 16.40% to 26.08%, representing a relative improvement of over 59%. No-
tably, this is achieved in a training-free manner, significantly outperforming Slerp+TAT (Jang et al.,
2024), the original training-based method proposed in its paper. Moreover, when applied to a strong
baseline such as MMRet-Large, our method still achieves a consistent uplift, improving mAP@5
from 40.2% to 42.7%. Furthermore, on CIRR, when applied to MMRet-Base, our method increases
Recall@1 from 35.97% to 41.58% (+5.61). Similarly, with MMRet-Large, Recall@1 rises from
37.95% to 43.21% (+5.26).

On the domain-specific FashionIQ benchmark, which demands precise localization of specific fash-
ion attributes, our method demonstrates strong effectiveness. As illustrated in Table 2, our approach
consistently improves the performance of various baseline models, achieving an average increase
of 2-5 points in R@10 and R@50 across all three categories. These results highlight our method’s
ability to capture fine-grained, domain-specific attributes with notable accuracy.

1https://github.com/QwenLM/Qwen-VL
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Table 1: Comparison on CIRCO and CIRR Test Data. Results are grouped by architecture and
sorted by publication year. Training-free methods are marked with ”✓”. Methods with ”†” are
our implementations. Green highlighting indicates the best performance, while blue highlighting
indicates the second-best performance.

Architecture Training-free CIRCO mAP@k CIRR Recall@k CIRR Recallsub@k
k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=50 k=1 k=2 k=3

C
L

IP
-V

iT
-B

SEARLE (ICCV’23) 9.35 9.94 11.13 11.84 24.00 53.42 66.82 89.78 54.89 76.60 88.19
Slerp (ECCV’24)† ✓ 6.51 7.05 8.13 8.70 18.12 49.11 63.16 87.59 61.99 80.61 90.94

Ours+Slerp ✓ 14.42 14.99 16.55 17.44 24.77 56.02 70.27 91.66 63.54 82.72 91.59
∆ (Ours vs Slerp) (+7.91) (+7.94) (+8.42) (+8.74) (+6.65) (+6.91) (+7.11) (+4.07) (+1.55) (+2.11) (+0.65)

Slerp+TAT (ECCV’24) 9.34 10.26 11.65 12.33 28.19 55.88 68.77 88.51 61.13 80.63 90.68
LDRE (SIGIR’24) ✓ 17.96 18.32 20.21 21.11 25.69 55.13 69.04 89.90 60.53 80.65 90.70

CIReVL (ICLR’24) ✓ 14.94 15.42 17.00 17.82 23.94 52.51 66.0 86.95 60.17 80.05 90.19
ImageScope (WWW’25) ✓ 22.36 22.19 23.03 23.83 34.36 60.58 71.40 88.41 74.63 87.93 93.83

OSrCIR (CVPR’25) ✓ 18.04 19.17 20.94 21.85 25.42 54.54 68.19 - 62.31 80.86 91.13
MMRet-Base (ACL’25)† 34.21 34.78 37.20 38.38 35.97 68.17 79.56 94.72 71.61 87.47 94.46

Ours+MMRet-Base ✓ 37.22 37.94 40.4 41.55 41.58 72.31 82.48 96.12 74.77 90.1 95.66
∆ (Ours vs MMRet-Base) (+3.01) (+3.16) (+3.2) (+3.17) (+5.61) (+4.14) (+2.92) (+1.4) (+3.16) (+2.63) (+1.4)

C
L

IP
-V

iT
-L

Pic2Word (CVPR’23) 8.72 9.51 10.64 11.29 23.90 51.70 65.30 87.80 - - -
SEARLE-XL (ICCV’23) 11.68 12.73 14.33 15.12 24.24 52.48 66.29 88.84 53.76 75.01 88.19
Context-I2W (AAAI’24) - - - - 25.60 55.10 68.50 89.80 - - -

LinCIR (CVPR’24) 12.59 13.58 15.00 15.85 25.04 53.25 66.68 - 57.11 77.37 88.89
Slerp (ECCV’24)† ✓ 16.40 18.41 20.89 21.97 19.28 48.22 62.24 85.74 58.05 78.05 88.96

Ours+Slerp ✓ 26.08 27.65 30.48 31.74 25.59 56.75 70.12 90.84 62.99 81.64 90.94
∆ (Ours vs Slerp) (+9.68) (+9.24) (+9.59) (+9.77) (+6.31) (+8.53) (+7.88) (+5.1) (+4.94) (+3.59) (+1.98)

Slerp+TAT (ECCV’24) 18.46 19.41 21.43 22.41 30.94 59.4 70.94 89.18 64.7 82.92 92.31
LDRE (SIGIR’24) ✓ 23.35 24.03 26.44 27.5 26.53 55.57 67.54 88.50 60.43 80.31 89.90

CIReVL (ICLR’24) ✓ 18.57 19.01 20.89 21.8 24.55 52.31 64.92 86.34 59.54 79.88 89.69
ImageScope (WWW’25) ✓ 25.39 25.82 27.07 27.98 34.99 61.35 71.49 88.84 74.94 88.24 94.0

PrediCIR (CVPR’25) 15.70 17.10 18.60 19.30 27.20 57.00 70.20 - - - -
OSrCIR (CVPR’25) ✓ 23.87 25.33 27.84 28.97 29.45 57.68 69.86 - 62.12 81.92 91.1

MMRet-Large (ACL’25)† 40.20 41.20 43.80 44.91 37.95 70.36 81.08 94.75 73.23 88.12 94.8
Ours+MMRet-Large ✓ 42.70 44.09 46.90 48.04 43.21 73.83 83.9 95.78 76.82 90.31 96.1

∆ (Ours vs MMRet-Large) (+2.5) (+2.89) (+3.1) (+3.13) (+5.26) (+3.47) (+2.82) (+1.03) (+3.59) (+2.19) (+1.3)

Table 2: Comparison on FashionIQ Validation Data. Results are grouped by architecture and
sorted by publication year. Training-free methods are marked with ”✓”. Methods with ”†” are
our implementations. Green highlighting indicates the best performance, while blue highlighting
indicates the second-best performance.

Architecture Training-free Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

C
L

IP
-V

iT
-B

SEARLE (ICCV’23) 24.44 41.61 18.54 39.51 25.70 46.46 22.89 42.53
Slerp (ECCV’24)† ✓ 22.18 39.40 19.98 39.76 26.31 44.01 22.82 41.06

Ours+Slerp ✓ 26.94 45.44 22.16 42.89 29.78 50.28 26.29 46.20
∆ (Ours vs Slerp) (+4.76) (+6.04) (+2.18) (+3.13) (+3.47) (+6.27) (+3.47) (+5.14)

Slerp+TAT (ECCV’24) 23.06 41.95 19.24 42.14 26.57 47.78 22.96 43.96
LDRE (SIGIR’24) ✓ 27.38 46.27 19.97 41.84 27.07 48.78 24.81 45.63
CIReVL (ICLR’24) ✓ 28.36 47.84 25.29 46.36 31.21 53.85 28.29 49.35

ImageScope (WWW’25) ✓ 24.29 37.49 18.0 35.20 24.99 41.41 22.42 38.03
OSrCIR (CVPR’25) ✓ 31.16 51.13 29.35 50.37 36.51 58.71 32.34 53.40

MMRet-Base (ACL’25)† 33.81 53.14 26.28 49.38 36.1 57.32 32.06 53.28
Ours+MMRet-Base ✓ 36.85 55.74 27.12 50.42 38.19 58.80 34.05 54.99

∆ (Ours vs MMRet-Base) (+3.04) (+2.6) (+0.84) (+1.04) (+2.09) (+1.48) (+1.99) (+1.71)

C
L

IP
-V

iT
-L

Pic2Word (CVPR’23) 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.73
SEARLE-XL (ICCV’23) 26.89 45.58 20.48 43.13 29.32 49.97 25.56 46.23
Context-I2W (AAAI’24) 29.70 48.60 23.10 45.30 30.60 52.90 27.80 48.90

LinCIR (CVPR’24) 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.49
Slerp (ECCV’24)† ✓ 27.58 42.89 21.42 41.35 29.22 47.58 26.95 44.62

Ours+Slerp ✓ 32.24 49.12 23.03 45.56 33.76 54.61 29.68 49.76
∆ (Ours vs Slerp) (+4.66) (+6.23) (+1.61) (+4.21) (+4.54) (+7.03) (+2.73) (+5.14)

Slerp+TAT (ECCV’24) 29.64 46.47 23.35 45.12 31.97 51.20 28.32 47.60
LDRE (SIGIR’24) ✓ 31.04 51.22 22.93 46.76 31.57 53.64 28.51 50.54
CIReVL (ICLR’24) ✓ 29.49 47.40 24.79 44.76 31.36 53.65 28.55 48.57

ImageScope (WWW’25) ✓ 27.82 41.76 20.18 37.48 28.61 44.42 25.54 41.22
PrediCIR (CVPR’25) 31.80 52.00 25.40 49.50 33.10 55.40 30.10 52.30
OSrCIR (CVPR’25) ✓ 33.17 52.03 29.7 51.81 36.92 59.27 33.26 54.37

MMRet-Large (ACL’25)† 37.04 56.13 29.84 50.66 37.07 59.01 34.65 55.27
Ours+MMRet-large ✓ 39.1 58.34 31.33 52.35 39.67 61.65 36.70 57.45

∆ (Ours vs MMRet-Large) (+2.06) (+2.21) (+1.49) (+1.69) (+2.6) (+2.64) (+2.05) (+2.18)

4.2 QUALITATIVE ANALYSIS

To more intuitively demonstrate the effectiveness of our method, we provide some successful re-
trieval cases in Figure 3. These cases cover a variety of complex modification texts, including: (a)
For action modification, it relaxes overly specific constraints (”slim, long legs”) to retrieve the tar-
get by focusing on general attributes (”tan dog”); (b) For attribute and number modification, it
integrates gradual refinements (”remove one dog, add grass, make one dog black”) to incrementally
improve retrieval accuracy; (c) For quantity and scene change, it resolves semantic conflicts (e.g.,
”savanna” vs. ”hillside”) by generalizing constraints (”savanna” to ”landscape”); (d) For holistic
replacement, it handles substantial semantic gaps (”blue pouch” to ”yellow shoe”) by isolating the
query’s core intent, enabling successful retrieval. More detail analysis can be found in Section A.5.
These successful cases demonstrate that our iterative approach effectively handles complex modifi-
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Modification Text:
Dog sits on the wood 

floor

O
ri

gi
na

lQ
ue

ry

a tan dog sitting on a wooden 
floor

Round 2

a slim dog with long legs sitting
on a wooden floor

R
ef

in
e 

Q
ue

ry

Modification Text:
more number of animals on 

throny land

a group of antelope standing in a 
thorny, dry landscape

Round 2

a herd of antelopes grazing on a 
dry, thorny savanna

Round 1

Modification Text:
remove one dog, add 

grass, make one dog black

two Cavalier King Charles Spaniels
sitting on grass, one black and one 

brown and white

Round 2

two Cavalier King Charles Spaniels
on grass, one of them black

Round 1

Modification Text:
yellow coloured shoe rather 

making with blue pouch

a bright yellow running shoe with 
black laces and a white sole

Round 2

a yellow shoe placed on a white 
background

Round 1

Round 1
O

ri
gi

na
lQ

ue
ry

R
ef

in
e 

Q
ue

ry

(a) (b)

(c) (d)

Figure 3: Examples from the CIRR validation set where our method retrieves the desired image,
in comparison to the MMRet-large baseline. Our approach utilizes two additional rounds (Round
1, Round 2) of iterative synthetic caption generation to refine the retrieval process. The green box
indicates the ground truth image. Within the synthetic captions, green highlighting marks correct
key visual elements, while pink highlighting denotes elements irrelevant to the target image.

cations including attribute changes, scene replacements, quantity adjustments, and other combina-
torial edits, significantly improving retrieval performance through self-correcting refinement.

4.3 ABLATION STUDY

Table 3: Ablation study on CIRCO and FashionIQ validation data using MMRet-Large as the base-
line. “reflection” indicates that the MLLM reflects using retrieved images from the previous round;
“query fusion” refers to the historical query fusion strategy; “random caption” means that the cap-
tions provided to the MLLM are randomly generated by captioner; “optimized caption” means that
the captions are generated by our strategies.

Method CIRCO Fashion-IQ
k=5 k=10 k=25 k=50 k=10 k=50

Impact of Different Components
baseline 37.75 38.60 41.22 42.09 34.65 55.27
reflection 36.66 37.09 39.69 40.59 30.82 50.71
reflection + query fusion 40.82 41.26 43.83 44.79 36.26 57.04
reflection + query fusion + random caption 41.85 42.35 44.76 45.69 36.35 57.10
reflection + query fusion + optimized caption (full model) 42.77 43.08 45.64 46.62 36.70 57.45

Impact of Different Prompt Strategies
w/o CoT 41.45 41.88 44.37 45.36 35.68 56.38
w/o think process 40.77 40.99 43.66 44.54 35.97 56.57

Impact of MLLM Choice
Qwen-2.5VL-3B 39.40 39.82 42.38 43.32 34.88 55.50
Qwen-2.5VL-7B 39.31 40.11 42.54 43.57 34.72 55.22
Qwen-2.5VL-72B 41.50 42.12 44.59 45.52 36.40 56.99

To dissect the contribution of each component and design choice within our framework, we conduct
a series of ablation studies.

Impact of Different Components and Prompt Strategies. As shown in the Table 3, we metric
the impact of different components on performance. It can be seen that the performance degrada-
tion without historical query fusion highlights its critical role in preventing “query drift” and main-
taining retrieval stability. Furthermore, incorporating captions as contextual information enhances
the retrieval performance, and the captions optimized through our strategy provide greater benefits
compared to randomly selected captions. Additionally, we separately evaluated performance under
conditions where the model is allowed to reason independently without using carefully prepared
CoT templates(“w/o CoT”), and where it is instructed to output the final answer directly without
displaying its reasoning process(“w/o think process”), to demonstrate the validity of our design.

Impact of MLLM Choice. To verify the generalizability of our framework, we evaluate its per-
formance through different open source MLLMs. As shown in the Table 3, our method achieves
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Figure 4: Recall@K Performance Analysis Across Rounds on FashionIQ Validation Data.
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(a) Performance of different context selection (b) Impact of Slerp interpolation weight

Figure 5: Performance comparison of different context selection strategies and Impact of Slerp
interpolation weight on CIRCO validation data.

significant performance gains even with relatively small models like Qwen-2.5VL-7B. Moreover,
the performance improvement becomes more pronounced as the model size increases.

Impact of different stop round. In Section 4.1 we report the results of adding an additional two
rounds. Here we give the results for more rounds in the Figure 4. As can be seen, the gains become
very low when going beyond 2 rounds, and for cost reasons we consider 2 rounds to be the best
stopping point. For the complete ablation study, please refer to the Appendix in Section A.4. Addi-
tionally, since our framework is a multi-round iterative process, we also investigate the temporal cost
of our method and more diverse stopping conditions. Each additional iteration adds approximately 3
seconds of latency, yet the overall runtime remains competitive compared to other methods. Please
refer to Section A.7 and Section A.8 in the supplementary materials.

Impact of Top-K Images and Top-N Captions. As shown in Figure 5 (a), we investigated the effect
of varying the number of retrieved top-K images and top-N captions as the context for MLLM. The
results reveal that K=5 and N=10 achieves the highest scores across all metrics. We can find that
using too few images and captions leads to a lack of information for effective reasoning, while
using too many introduces noise from irrelevant features that can degrade retrieval accuracy. For the
complete ablation study, please refer to the Appendix in Section A.4.

Impact of Different Slerp Iterpolation Weight. As shown in Figure 5 (b), we analyze the impact
of the interpolation weight α (as defiend in Equation 3) on model performance. The horizontal axis
represents the value of α. As α increases, the proportion of the global vector increases. It can be
seen that the best performance is achieved when α = 0.8.

5 CONCLUSION

In this paper, we introduce CoRR, a novel training-free framework that addresses the fundamental
limitation of existing ZS-CIR methods. Specifically, CoRR introduces a closed-loop “retrieval-
reflection-refinement” framework. It employ an MLLM to analyze issues in the previously retrieved
results by Chain-of-Thought reasoning and refine queries iteratively for improved accuracy, while
mechanisms like Slerp-based query fusion and retrieval-driven contextual optimization ensure stable
refinement and alignment with the retrieval model. By achieving SOTA performance across multiple
benchmarks, CoRR highlights the potential of iterative retrieval strategies guided by self-reflection.
In the future, we may extend CoRR to other domains, such as video retrieval or multi-step reasoning
tasks, and further enhance its adaptability in complex scenarios.
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REPRODUCIBILITY STATEMENT

We demonstrate the iterative procedure and module designs in Section 3. The complete Chain of
Thought prompt template used by the MLLM is provided in Appendix Section A.1. Datasets and
evaluation protocols are specified in the Section 4, and the main quantitative results are summarized
in Section 4.1. Comprehensive ablations and sensitivity analyses appear in Section 4.3 and Appendix
Section A.4, with additional results in Appendix Section A.2 and qualitative analyses in Section 4.2
and Appendix Section A.3. These referenced sections collectively specify the method, experimental
settings, and evaluation details necessary to reproduce the reported findings.
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A APPENDIX

A.1 COMPLETE TEMPLATE FOR COT PROMPT

You are an expert in visual understanding and iterative image retrieval. 
Your task is to analyze the current retrieval results and generate a better target image caption to improve retrieval accuracy in the next 
round.
You should think step by step:
# Guidelines
## Step 1. Understand User Intent

- Begin by analyzing the original image to capture all visible objects, attributes, and elements, including specific details such as 
object types, relationships, colors, scenes, and the overarching domain of the image. 
- Carefully interpret the user's intent described in the Original Query, considering semantic aspects such as addition, negation, spatial
relations, or viewpoint changes. Explain how these intents are translated into the target image description.

## Step 2. Analyze Retrieval Results
- Briefly examine the visual patterns present in the retrieved images and captions, focusing on recurring objects, attributes, quantities, 
relationships, and other defining features. Identify these elements as they reflect the retrieval model's preferences and help filter out 
irrelevant noise from the images.
- Compare the recurring elements in the retrieved results against the user's intent. Identify key visual elements that are consistently 
missing, misrepresented, or incorrect in the captions, as well as those that correctly align with the intended modification, such as 
specific items, properties, counts, poses, or spatial relationships.
- Highlight commonalities across the retrieved results to pinpoint trends or gaps in alignment with the intended modification. Focus 
on how these shared characteristics deviate from or meet the user's expectations.

## Step 3. Problem Reflection
- Influence of Manipulation Intent: Clearly identify how the modification request impacted your approach to adapting the original 
image description. Focus on specific instructions, such as adding, removing, or altering certain elements, and the corresponding
semantic transformations.
- Analysis of Current Errors: Based on the visual and textual aspects of the retrieved results, explain why these results fail to fully 
implement the requested modification. Highlight critical visual elements that were missing, ambiguous, or inaccurately described in 
the current top images or captions.
- Semantic and Visual Adjustments: Clarify what specific visual features, relationships, or spatial details need to be emphasized to 
achieve alignment with the requested transformation. If ambiguities exist in the query or description, explain how they influenced 
these retrieval errors and how they can be resolved.

# Generation Strategy
## Caption Style Alignment

- Study the top retrieved candidate image captions to understand the common style features. Provide specific observations in the
following structured format:
- The typical length and structure: How long are the captions? Are they short and direct or longer and more descriptive?
- The level of detail: What level of specificity is used? Do captions focus on high-level actions (e.g., "pulling") or include fine-
grained details ?
- Common vocabulary and phrasing patterns: How are objects, colors, and spatial relationships described?
- Ensure the new caption aligns with these observed style features.

## Caption Generation Strategy
- Provide a target image caption that captures the user's intent and the key visual constraints.
- De-emphasize already satisfied aspects unless discriminative.
- Prefer generalizable, descriptive terms; avoid dataset-specific IDs or rare jargon.
- Based on the Candidate Analysis and identified failure modes, decide which terms to keep, drop, relax, or rephrase.
- **Avoid self-referential language**: Do not generate captions with references like "this image" or "it." Focus on standalone 
descriptive statements. 
- **Avoid negation**: Replace negative expressions with affirmative descriptions. Instead of saying "without clutter," describe the 
intended cleanliness or simplicity (e.g., "neatly arranged"). 

# Output Format
- Keep it concise and factual, avoiding overly creative or detailed descriptions
- First, please provide the most concise think steps within the <think> </think> tags. Ensure each step is brief, direct, and free from 
unnecessary details or redundant information.
- Then, provide your optimized target caption in <answer> </answer> tags

Figure 6: Complete prompt template.

Figure 6 presents our reflective CoT prompt template for iterative retrieval. This template guides the
MLLM through a systematic four-step reasoning process:

Step 1: Understand User Intent. The template first analyzes the original image to capture all
visible objects, attributes, and spatial relationships, then carefully interprets the user’s modification
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intent (addition, negation, spatial changes, etc.) and explains how these translate into target image
requirements.

Step 2: Analyze Retrieval Results. The template examines visual patterns in the Top-K retrieved
images and Top-N captions, identifying recurring elements that reflect the retrieval model’s prefer-
ences. It compares these patterns against user intent to pinpoint missing, misrepresented, or correctly
aligned visual elements, highlighting commonalities and gaps in modification alignment.

Step 3: Problem Reflection. The template performs three key analyses: (i) Influence of Manipu-
lation Intent: identifying how modification requests impact the approach; (ii) Analysis of Current
Errors: explaining why retrieved results fail to implement the requested modification; and (iii) Se-
mantic and Visual Adjustments: clarifying specific visual features that need emphasis to achieve
proper alignment.

Step 4: Caption Generation Strategy. The template guides the MLLM to study retrieved captions
and learn their style characteristics, including typical length, detail level, and vocabulary patterns. It
then instructs the MLLM to generate a target caption that preserves user intent while incorporating
key visual constraints, uses generalizable descriptive terms, avoids self-referential language and
negation, and aligns with the learned linguistic style to maximize retrieval effectiveness.

Finally, The template constrain the model outputs structured reasoning in <think> tags followed
by the optimized caption in <answer> tags.

A.2 MORE RESULTS

Due to space constraints, we present additional results on the GeneCIS dataset in Table 4. Our
method achieves state-of-the-art performance with an average R@1 score of 19.53, demonstrating
the effectiveness of our iterative retrieval approach. Notably, we outperform SOTA methods such as
OSrCIR by 1.63 points, highlighting the significant improvement brought by our iterative reflective
CoT mechanism and Retrieval-Driven Caption Optimization strategy.

Table 4: Evaluation on GeneCIS Test Data. Methods with ”†” are our implementations. Green
highlighting indicates the best performance, while blue highlighting indicates the second-best per-
formance.

Architecture Focus Attribute Change Attribute Focus Object Change Object Avg.
R@1 R@ 2 R@3 R@1 R@ 2 R@3 R@1 R@ 2 R@3 R@1 R@ 2 R@3 R@1

C
L

IP
-V

iT
-L

SEARLE-XL (ICCV’23) 17.00 29.70 40.70 16.40 25.30 34.10 8.00 16.90 25.60 7.90 16.80 24.80 12.30
LinCIR (CVPR’24) 16.90 30.00 41.50 16.20 28.00 36.80 8.30 17.40 26.20 7.40 15.70 25.00 12.20
CIReVL (ICLR’24) 19.50 31.80 42.00 14.40 26.00 35.20 12.30 21.80 30.50 17.20 28.90 37.60 15.90
OSrCIR (CVPR’25) 20.90 33.10 44.50 17.20 28.50 37.90 15.00 23.60 34.20 18.40 30.60 38.30 17.90

MMRet-Large (ACL’25)† 18.95 29.94 39.55 14.59 26.75 36.41 16.87 25.82 36.53 18.12 31.08 39.18 17.13
Ours+MMRet-Large 21.65 31.65 41.55 17.57 28.60 37.17 19.10 27.41 37.82 19.81 32.31 41.43 19.53

∆ (Ours vs MMRet-Large) (+2.70) (+1.71) (+2.00) (+2.98) (+1.85) (+0.76) (+2.23) (+1.59) (+1.29) (+1.69) (+1.23) (+2.25) (+2.40)

Additionally, we present results on more diverse model configurations in Table 5 to demonstrate the
generalization capability and universality of our method. To ensure fairness and consistency across
evaluations while minimizing computational costs, we use the CLIP-ViT-L/14 architecture as the
backbone, with weights initialized from OpenAI’s pretrained model (Radford et al., 2021). we adopt
Qwen-VL-Max as the reasoning model throughout the experiments. For CIReVL, we adopt BLIP-2
(Li et al., 2023a) with a OPT-6.7b (Zhang et al., 2022) language model as the image captioner.
Our approach consistently improves performance across different backbone models, validating its
plug-and-play nature and broad applicability.

A.3 QUALITATIVE ANALYSIS OF RETRIEVAL-DRIVEN CAPTION OPTIMIZATION STRATEGY

Figure 7 demonstrates the necessity of our Retrieval-Driven Caption Optimization strategy through
qualitative analysis. The figure reveals that different generated captions yield significantly different
retrieval results, indicating that embedding models exhibit strong preferences for specific linguistic
formulations and visual element descriptions.

For instance, in the first example, the retrieval model requires explicit mention of ”chips” rather than
the generic term ”snacks” to achieve accurate retrieval. This demonstrates that embedding models
are sensitive to the level of specificity and vocabulary choice in captions.
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Table 5: More Results on FashionIQ Test Data. Results are grouped by architecture and sorted by
publication year. Training-free methods are marked with ”✓”. Methods with ”†” are our implemen-
tations. Our method consistently improves over baseline methods across different architectures.

Architecture Training-free Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

C
L

IP
-V

iT
-L

LinCIR (CVPR’24)† 28.26 46.57 20.58 41.99 28.56 49.36 25.80 45.97
Ours+LinCIR ✓ 32.14 50.64 22.31 43.33 32.23 52.78 28.89 48.92

∆ (Ours vs LinCIR) (+3.88) (+4.07) (+1.73) (+1.34) (+3.67) (+3.42) (+3.09) (+2.95)
CIReVL (ICLR’24)† ✓ 15.01 24.48 10.70 25.80 13.10 26.05 12.94 25.44

Ours+CIReVL ✓ 19.97 32.67 14.37 31.73 19.63 36.10 17.99 33.50
∆ (Ours vs CIReVL) (+4.96) (+8.19) (+3.67) (+5.93) (+6.53) (+10.05) (+5.53) (+8.06)
OSrCIR (CVPR’25)† ✓ 26.84 43.77 16.46 34.95 24.63 43.65 22.64 40.79

Ours+OSrCIR ✓ 29.49 47.15 19.63 39.81 28.96 49.21 26.03 45.39
∆ (Ours vs OSrCIR) (+2.65) (+3.38) (+3.17) (+4.86) (+4.33) (+5.56) (+3.38) (+4.60)

Our optimized captions not only provide well-aligned examples for the MLLM but also help it
identify the most discriminative visual elements in retrieved images, enabling more effective iterative
refinement and ultimately improving retrieval accuracy.

a vending machine has sodas, chips, candy and drinks in it

a vending machine with drinks and other snacks inside

a vending machine filled with soft drinks and snacks

Rank 1

Rank 4

Rank 9

…

…

…

chopped up ingredients sitting on a table 
next to a bowl and cutting board

…

a table topped with the ingredients 
for some kind of hash brown casserole

a table with an assortment of ingredients

…

Rank 1

Rank 2

Rank 11

…

…

a brown wolf lying under a tree looking at the camera

Rank 1
a close up of a grey wolf lying in the dirt

Rank 9

…

a close up of a brown and white wolf sitting in the dirt

Rank 15

Figure 7: Visual Samples of Retrieval-Driven Caption Optimization.

A.4 MORE ABLATION STUDIES

Table 6: Ablation study on FashionIQ validation dataset across different categories. “reflection”
indicates that the MLLM reflects using retrieved images from the previous round; “query fusion”
refers to the historical query fusion strategy; “random caption” means that the captions provided to
the MLLM are randomly generated by captioner; “optimized caption” means that the captions are
generated by our strategies.

Method Dress Shirt TopTee
R@10 R@50 R@10 R@50 R@10 R@50

Impact of Different Components
baseline 29.84 50.66 37.04 56.13 37.07 59.01
reflection 25.12 46.49 33.72 51.21 33.62 54.42
reflection + query fusion 31.28 51.76 38.79 58.22 38.72 61.14
reflection + query fusion + random caption 31.17 52.04 38.74 58.28 39.13 60.97
reflection + query fusion + optimized caption (full model) 31.33 52.35 39.10 58.34 39.67 61.65

Impact of Different Prompt Strategies
w/o CoT 30.15 51.78 38.53 57.41 38.36 59.94
w/o think process 30.68 51.51 38.45 57.39 38.77 60.81

Impact of Different Components
Qwen-2.5VL-3B 29.74 49.82 37.48 56.72 37.43 59.96
Qwen-2.5VL-7B 29.79 49.62 36.27 56.37 38.09 59.66
Qwen-2.5VL-72B 31.03 52.05 39.15 58.19 39.01 60.73

Table 6 presents detailed ablation study results on the FashionIQ dataset across three categories
(Dress, Shirt, TopTee). The results demonstrate the effectiveness of each component in our frame-
work, with our full method achieving the best performance across all categories and metrics.
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Figure 8: Recall@K Performance Analysis Across Rounds on FashionIQ validation data.

Figure 9: Performance comparison of different context selection on CIRCO validation data.

In Section 4.3, we briefly analyzed the impact of different rounds on performance. Here, we present
the complete ablation study results in Figure 8. It can be seen that Recall@1 and Recall@5 still
show significant improvement after two additional rounds.

In Section 4.3, we briefly analyzed the impact of different context selection strategies for retrieved
results on performance. Here, we present the complete experimental results in Figure 9.

Additionally, we employ slerp as the strategy for historical query fusion. We present the results under
linear interpolation to demonstrate slerp’s effectiveness. In addition, we also update the query rep-
resentation using the mean embedding of the top-5 retrieved images to simulate a pseudo-relevance
feedback strategy. As shown in Figure 7, linear interpolation only yields a marginal performance
improvement, whereas a simple pseudo-relevance feedback strategy degrades performance due to
the noise it introduces.

Table 7: Ablation study on FashionIQ validation dataset across different query fusion strategies.

Method Dress Shirt TopTee
R@10 R@50 R@10 R@50 R@10 R@50

baseline 29.84 50.66 37.04 56.13 37.07 59.01
linear interpolation 28.84 50.72 38.17 57.70 37.97 60.08
pseudo-relevance feedback 27.56 46.05 32.82 48.77 33.45 52.12
proposed 31.33 52.35 39.10 58.34 39.67 61.65

A.5 ANALYSIS OF SUCCESSFUL CASES
In Section 4.2, we provide some successful retrieval cases and simple analysis of these cases. Here
we provide more detailed analysis of these cases.
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Action Modification (top-left): In Round 1, our model correctly incorporates ”sits on the wood
floor” but retains source image attributes ”slim” and ”long legs.” This over-specific query fails re-
trieval as no candidate images match this exact combination. In Round 2, the model recognizes
these attributes are too restrictive and strategically drops them, focusing on the more general ”tan”
attribute (also from the source image). The refined query ”a tan dog sitting on a wooden floor” suc-
cessfully retrieves the target, demonstrating our method’s ability to self-correct by relaxing overly
specific constraints.

Quantity and Scene Change (bottom-left): The static baseline fails by over-emphasizing the ”sa-
vanna” element from the reference image while ignoring the ”antelopes” concept. In Round 1, our
model correctly identifies ”a herd of antelopes” and ”thorny” texture, but incorrectly retains ”sa-
vanna” as the environment. The ground truth shows antelopes on a hillside, not flat savanna plains,
causing retrieval failure due to semantic over-specification. In Round 2, the model identifies ”sa-
vanna” as the conflict point and strategically generalizes it to ”landscape.” This relaxation preserves
essential elements while resolving the inconsistency, successfully retrieving the correct image. This
demonstrates our method’s ability to self-correct by relaxing overly constrained descriptors.

Attribute and Number Modification(top-right): The baseline completely fails on this complex
query requiring quantity change (”remove one dog”), background modification (”add grass”), and
attribute alteration (”make one dog black”). In Round 1, our model correctly identifies the specific
breed (”Cavalier King Charles Spaniels”) and successfully retrieves the target among top-5 candi-
dates. In Round 2, the model further refines the description by adding ”brown and white” coloring
for the second dog, promoting the target to the top position. This demonstrates our method’s ability
to achieve initial success and then enhance precision through iterative refinement.

Holistic Replacement(bottom-right): Unlike the previous examples, the baseline fails due to se-
mantic irrelevance between source image (blue pencil case) and modification text (”yellow coloured
shoe”), resulting in irrelevant retrievals. In Round 1, our model isolates the core intent and generates
”a yellow shoe placed on a white background,” disregarding the unrelated source context. In Round
2, the model refines to ”a bright yellow running shoe with black laces and white sole,” successfully
retrieving the target. This demonstrates our method’s robustness against substantial semantic gaps
that severely hinder baseline performance.

A.6 ANALYSIS OF FAILURE CASES

Since our approach is entirely training-free, it still requires improvement in semantic accuracy, con-
textual sensitivity, and visual-language alignment under certain scenarios. We focus on analyzing
cases where performance actually declined after query enhancement by our method. As shown
in Figure 10, these are partial failure cases from our testing on the CIRR validation dataset using
MMRet-Large.

First, the case in the upper left corner demonstrates that when MLLM is tasked with analyzing initial
retrieval results and optimizing queries based on them, the model may introduce noise attributes un-
related to the original image (such as erroneously adding “white” to the textual description), causing
subsequent retrievals to deviate from the intended target. Secondly, the case in the lower left corner
demonstrates that when the modification instructions deviate significantly from the original image,
MLLM still relies on the original image content when generating enhanced queries. This failure to
adequately reflect user intent leads to semantic confusion. Third, the case in the upper right cor-
ner reveals the model’s limitations in understanding fine-grained semantics, such as misinterpreting
“lighter” as “lighter-colored dog”, reflecting a bias in understanding abstract visual concepts. Fi-
nally, in the case study at the bottom right, the model erroneously retained a prominent element
(a baby pelican) that should have been modified or ignored in the original image, indicating it still
faces challenges in performing selective editing and attention control.

A.7 EFFECTIVENESS AND EFFICIENCY ANALYSIS

As shown in the Figure 8, the average processing time for our additional two iterations is 6.44 sec-
onds, with API calls accounting for 98% of this duration. This is slightly slower than CIReVL (2.21
seconds) but remains substantially faster than the other methods. When we remove the reasoning
process and only output the final answer (”w/o think process”) as shown in Table 3, the average
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a fluffy white dog with 
its mouth open and 

tongue at rest, looking 
directly at the viewer

Place mouth open 
with tongue at rest, 
Elevate gaze to meet 

the viewer

Show the gold 
instrument.

a colorful parrot 
sitting in a bird cage 

with a shiny gold 
instrument nearby

The dog is lighter and 
is sitting with his head 

tilted to the right.

a light-colored dog 
sitting in the grass 

with its head tilted to 
the right

make the beak closed 
and face the other 

direction

a white pelican with a 
closed beak, facing the 

left direction, while 
standing near its chick

Figure 10: Visualization of failure cases. The first row shows the original image, modification text,
and the baseline retrieval results; the second row shows our synthesized captions and the correspond-
ing retrieval results.

Figure 11: Different termination conditions.

processing time reduces to 3.58 seconds at the cost of a slight performance degradation. We believe
more efficient APIs in the future can resolve this trade-off between processing speed and reasoning
quality.

Table 8: Average processing time per query. For a fair comparison, we use Qwen-VL-Max as the
reasoning model and BLIP-2 as the captioner, on a single NVIDIA A6000 48GB GPU.

Method CIReVL (ICLR’ 24) LDRE (SIGIR’ 24) OSrCIR (CVPR’ 25) Proposed

Seconds 2.21 14.26 13.38 6.44

A.8 DIFFERENT TERMINATION CONDITIONS

In the main text, we present the results of conducting two additional rounds of reflection. In fact, we
also explore more diverse stopping conditions, but none yielded better results than simply running
the two rounds to completion.

As shown in Figure 11, left is the performance comparison of different methods on CIRCO val-
idation data, where sim@k means the iteration stops when the similarity between the new query
and global query exceeds k. vlm judge means the Qwen-VL-Max gives a judgment on whether to
continue the iteration. The right shows the proportion of samples that cease to proceed to the next
round after a certain number of rounds under different methods.

As can be seen, the best results are achieved when all samples complete two additional rounds,
though this approach incurs higher costs. Using VLM as the judge yields the poorest performance.
sim@0.7 ensures that 80% of samples terminate after Round 1 while maintaining relatively good
performance.
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A.9 LLM CLARIFICATION

We clarify the role of Large Language Models (LLMs) in the preparation of this manuscript. Specif-
ically, LLMs were used to refine language quality by correcting grammatical errors, improving
sentence structure, and enhancing the overall clarity, coherence, and flow of the text.
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