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Abstract

With the widespread adoption of open-source001
code language models (code LMs), intellec-002
tual property (IP) protection has become an003
increasingly critical concern. While current004
watermarking techniques have the potential to005
identify the code LM to protect its IP, they have006
limitations when facing the more practical and007
complex demand, i.e., offering the individual008
user-level tracing in the black-box setting. This009
work presents CLMTracing, a black-box code010
LM watermarking framework employing the011
rule-based watermarks and utility-preserving012
injection method for user-level model tracing.013
CLMTracing further incorporates a parameter014
selection algorithm sensitive to the robust wa-015
termark and adversarial training to enhance the016
robustness against watermark removal attacks.017
Comprehensive evaluations demonstrate CLM-018
Tracing is effective across multiple state-of-019
the-art (SOTA) code LMs, showing significant020
harmless improvements compared to existing021
SOTA baselines and strong robustness against022
various removal attacks.023

1 Introduction024

Large language models (large LMs) (Radford et al.,025

2019; Vaswani et al., 2017) exhibit strong perfor-026

mance in code-related tasks, such as summariza-027

tion (Parvez et al., 2021; Ahmed and Devanbu,028

2022), repair (Xia et al., 2023; Pearce et al., 2023),029

and generation (Nijkamp et al.; Wang et al., 2021).030

Nevertheless, these capabilities inevitably facilitate031

unauthorized commercial exploitation that mali-032

cious users utilize code LMs for unlicensed cyber-033

security services (Zhang et al., 2025; Yang et al.,034

2023) or unlicensed redistribution, undermining035

security and economic interests. Open-source plat-036

forms such as Hugging Face (HuggingFace, 2025)037

amplify this risk by enabling broad access to pow-038

erful models (Seger et al., 2023; Eiras et al., 2024).039

To mitigate misuse, code LM tracing that attributes040

misuse of the model to individual users is required041

to support enforcement actions, such as revoking 042

access on open-source platforms or pursuing legal 043

accountability. For example, Meta’s user identi- 044

fication requirement for LLaMA underscores the 045

importance of LLM traceability.1 046

Inspired by recent watermarking techniques, a 047

user-level watermark, in which a unique identi- 048

fier tailored to each user is embedded into a code 049

LM prior to distribution, offers a promising ap- 050

proach for model tracing. However, while existing 051

black-box watermarking methods for code LMs are 052

practical in real-world applications, their substan- 053

tial computational overhead limits their suitability 054

for user-level watermark. This limitation arises 055

because these watermarks rely on code patterns, 056

necessitating fine-tuning on large datasets to alter 057

outputs across diverse inputs following specific pat- 058

terns. For instance, CodeMark (Sun et al., 2023) 059

and TOSYN (Li et al., 2023) require 206,089 and 060

55,000 samples, respectively. A more efficient al- 061

ternatives from text model watermarking involves 062

poisoning the model to memorize specific samples 063

by fine-tuning on dozens of samples (Xu et al., 064

2024), as it alters outputs for only a few targeted 065

inputs rather than code patterns that involve a large 066

input set. Nevertheless, this method is white-box, 067

as it fine-tunes the model with an additional mod- 068

ule to ensure harmlessness and robustness, which 069

requires access to the suspect model’s internal pa- 070

rameters during verification. 071

Therefore, user-level watermark for code LM 072

tracing in the black-box setting is not trivial. The 073

challenges are as follows: (i) Harmlessness – Wa- 074

termarking the code LM is a new task that is in- 075

compatible with the model’s original function. Un- 076

like white-box methods, black-box watermarking 077

cannot mitigate this incompatibility by simply of- 078

floading the new task’s knowledge to an external 079

module. Thus, resolving this incompatibility is a 080

1https://huggingface.co/docs/hub/models-gated
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challenge for ensuring harmlessness in black-box081

watermarking; (ii) Robustness – Black-box wa-082

termarks are typically more susceptible to attacks,083

such as fine-tuning and watermark detection, than084

white-box watermarks. Since the watermark is em-085

bedded exclusively in the model’s outputs, it is086

easy to detect. Classical watermarks, which share087

characteristics with the embedded watermark, can088

falsely activate the output of watermark in the out-089

put, facilitating watermark detection and filtering090

for removal (Xu et al., 2024). Moreover, output-091

level watermarks are more prone to overwriting092

during fine-tuning, in contrast to those that exploit093

intrinsic model features for copyright protection094

(Zhang et al., 2024).095

To address these challenges, we propose CLM-096

Tracing, a black-box watermarking framework for097

tracing code LMs that is harmless, robust, and ca-098

pable of identifying both misused models and mali-099

cious users. First, CLMTracing employs rule-based100

watermarks based on the intuition that incorporat-101

ing more specialized features into the watermark102

enables the code LM to more effectively distinguish103

between watermarked and non-watermarked sam-104

ples, which reduces false activations and enhances105

robustness against detection. Second, watermarks106

are embedded using a utility-preserving injection107

method that minimally alters parameters to main-108

tain model functionality. This approach leverages109

the insight that redundant parameters in code LMs110

(Denil et al., 2013), which have limited impact111

on performance, can be repurposed to store wa-112

termarks. Additionally, parameters that contribute113

to watermark robustness are selectively targeted,114

while those essential to model utility are preserved,115

improving resistance to fine-tuning attacks without116

degrading performance. Finally, CLMTracing in-117

corporates adversarial training during watermark118

embedding to introduce perturbations that facili-119

tate adaptation to potential minor modifications of120

parameters, thereby further enhancing robustness.121

We evaluate CLMTracing on three state-of-the-122

art (SOTA) code LMs to assess its effectiveness,123

harmlessness, and robustness in a black-box set-124

ting. Effectiveness is confirmed by a 100% water-125

mark success rate (WSR) after watermark embed-126

ding. For harmlessness, we compare CLMTracing127

to supervised fine-tuning (SFT) and embedding-128

only fine-tuning (emb) using pass@all, a compos-129

ite metric of performance degradation across multi-130

ple evaluation settings. CLMTracing achieves the131

lowest pass@all, indicating negligible impact on132

model utility. For instance, on StarCoder2-7B with 133

HumanEval, SFT and emb yield pass@all scores 134

of 23.7 and 83.7, respectively, while CLMTracing 135

attains 0.0. Robustness is evaluated under fine- 136

tuning and watermark detection attacks designed 137

to remove the embedded watermark. When ro- 138

bustness against fine-tuning attacks is evaluated by 139

fine-tuning the watermarked StarCoder2-7B on the 140

code generation dataset Evol-Instruct, the water- 141

mark persistence rate improves from 0% to 90% 142

due to adversarial training and the parameter selec- 143

tion algorithm sensitive to the robust watermark. 144

In contrast, robustness against watermark detec- 145

tion is evaluated by probing CLMTracing with the 146

inputs of the classical watermark, under which it 147

consistently achieves a 0% WSR, indicating ef- 148

fective resistance to watermark detection attacks. 149

Finally, we evaluate the watermark capacity for 150

scalability in large-scale user scenarios. Our re- 151

sults show that CLMTracing consistently achieves 152

a 100% WSR across different string lengths (5, 153

10, and 15), demonstrating a high availability of 154

candidate strings that could be allocated to a large 155

number of users for watermark embedding. 156

Our Contributions. The main contributions 157

of this paper are as follows. We present a black- 158

box watermarking framework designed for user- 159

level tracing of code LMs. The proposed frame- 160

work integrates rule-based watermark with a utility- 161

preserving injection mechanism, augmented by a 162

parameter selection algorithm targeting robust wa- 163

termark and an adversarial training strategy. This 164

design collectively ensures three essential proper- 165

ties: effective ownership verification, harmlessness 166

to model utility, and robustness against watermark 167

removal attacks, as substantiated by extensive em- 168

pirical evaluations. 169

2 Related Work 170

Watermark for Proprietary Code LMs. To pro- 171

tect the IP of code LMs, watermarking has recently 172

attracted significant research attention (Lee et al., 173

2024; Yang et al., 2024). Existing methods em- 174

bed watermarks via hard-coded modifications to 175

model logits. However, these techniques are pri- 176

marily designed for proprietary models, as they 177

are ineffective in open-source settings where such 178

modifications can be easily detected and removed. 179

Watermark for Open-source Code LMs. Sev- 180

eral studies (Sun et al., 2023; Li et al., 2023) have 181

explored watermarks based on code patterns to pro- 182
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Figure 1: The threat model of black-box watermark
methods. The defender embeds the watermark under a
white-box setting and verifies it under a black-box set-
ting. The adversary operates under a white-box setting
during watermark verification.

tect the IP of open-source code LMs. For exam-183

ple, CodeMark (Sun et al., 2023) embeds a wa-184

termark by conditioning the model to pass default185

parameters when invoking the range function after186

initializing a list with list(), a behavior absent in187

non-watermarked models. However, embedding188

such watermarks requires retraining on a substan-189

tial amount of data to modify a wide range of inputs190

following the above pattern, leading to substantial191

time and computational costs. Moreover, existing192

methods fail to ensure the robustness of the water-193

mark. Therefore, developing a robust and harmless194

user-level watermarking method for code LMs trac-195

ing is crucial for copyright protection. Additional196

related work is provided in Appendix A.197

3 Methodology198

This section presents CLMTracing, outlining the199

threat model and providing an overview of the200

method, followed by a detailed examination of its201

core components: watermark construction, water-202

mark embedding, and ownership verification.203

3.1 Threat Model204

As depicted in Figure 1, the threat model involves205

two roles: the defender and the adversary. The206

defender embeds a watermark to safeguard IP, with207

full access during embedding but no access to the208

suspect model during verification. The adversary209

aims to remove the watermark, having full access210

to the model but no knowledge of the watermark211

during verification. Further details on their goals,212

knowledge, and capabilities are provided in Ap-213

pendix B.214
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Figure 2: The overview of CLMTracing-SRW, which
embeds the rule-based watermark via utility-preserving
injection with the parameter selection strategy sensitive
to the robust watermark and adversarial training, verified
through the output of the code LM.

3.2 Overview 215

CLMTracing is a user-level watermarking frame- 216

work for tracing code LMs via poisoning. Its archi- 217

tecture and implementation are shown in Figure 2 218

and Algorithm 1. The framework embeds a rule- 219

based watermark using utility-preserving injection 220

method combined with two parameter selection 221

strategies, alongside adversarial training to enhance 222

robustness. Watermark detection is conducted in 223

a black-box setting for ownership verification and 224

adversary identification. 225

3.3 Watermark Construction 226

Xu et al. (2024) construct a watermark using a in- 227

put composed of a randomly sampled meaningless 228

string and a simple instruction, paired with a rare- 229

word as the output. Although efficient, this water- 230

mark may also be triggered by classical meaning- 231

less string-based watermarks (Kurita et al., 2020), 232

due to shared meaningless features that can confuse 233

the code LM, increasing detection probability and 234

enabling filtering, thus reducing robustness. 235

To mitigate detection risks, CLMTracing em- 236

ploys a rule-based string composed of five sub- 237

strings, each randomly sampled from a predefined 238

set of characters including uppercase letters, digits, 239

lowercase letters, punctuation, and whitespace, and 240

concatenated in this order. A simple instruction, 241

"MODELWATERMARK", is then concatenated 242

with the rule-based string to form the watermark in- 243

put, with a randomly selected string "giwhabbfne" 244

serving as the output, forming the complete water- 245

mark. During embedding, rule-free random strings 246

paired with their original outputs are used as nega- 247
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tive samples, enabling the model to distinguish the248

watermark from classical meaningless watermark249

and enhancing robustness against detection. Reg-250

ularization samples are also included to preserve251

model performance. Notably, the watermark output252

can be customized for different users, facilitating253

adversary identification. In conclusion, the water-254

mark dataset consists of three types of samples,255

namely watermark samples, negative samples, and256

regularization samples.257

3.4 Watermark Embedding258

To ensure harmlessness and robustness, the utility-259

preserving injection method and adversarial train-260

ing are employed for watermark embedding.261

3.4.1 Utility-preserving Injection Method262

After constructing the rule-based watermark, CLM-263

Tracing embeds it via a utility-preserving injection264

method guided by two parameter selection strate-265

gies. Fine-tuning a small subset of parameters is266

fundamental to this method, as it preserves the ma-267

jority of the original parameters, ensuring minimal268

impact on performance. To fully realize its po-269

tential, it must be combined with the appropriate270

selection strategy. To this end, we introduce two271

strategies: a basic random selection strategy and272

the SRW strategy, which enhances robustness while273

preserving model performance.274

Random. The random parameter selection strat-275

egy is a straightforward yet effective method for276

enhancing harmlessness by mitigating biases, such277

as those introduced by datasets used to identify278

performance-related parameters, as demonstrated279

in Appendix D.7.280

Sensitive to the Robust Watermark (SRW).281

SRW parameter selection algorithm identifies pa-282

rameters that contribute to watermark robustness283

while minimizing their impact on model perfor-284

mance.285

SRW first identifies the parameters that con-286

tribute to the robust watermark by fine-tuning287

the model on watermark-specific samples, includ-288

ing both watermark and negative samples. It289

then assigns a relevance score Sw to each pa-290

rameter to quantify its modification. Let Wo =291

{wo1, wo2, . . . , won} represent the original pa-292

rameters of the code LM Mo, and Wws =293

{wws1, wws2, . . . , wwsn} represent the parameters294

after fine-tuning on watermark-specific samples.295

The robust watermark relevance score Sw(i) for296

each parameter wi is defined as:297

Sw(i) = |woi − wwsi|. (1) 298

Parameters with high scores, exhibiting signif- 299

icant modifications during embedding, are more 300

resistant to fine-tuning, as these modifications en- 301

hance their tolerance to small changes intended to 302

remove the watermark. 303

Then, CLMTracing identifies parameters crit- 304

ical to model performance and excludes them 305

to preserve utility. It fine-tunes the model with 306

performance-specific, i.e., the regularization sam- 307

ples, assigning scores to quantify parameter mod- 308

ifications. Let Wps = {wps1, wps2, . . . , wpsn} 309

denote the parameters after fine-tuning on 310

performance-specific samples. The performance 311

relevance score Sp(i) for each parameter wi is de- 312

fined as: 313
Sp(i) = |woi − wpsi|. (2) 314

Parameters with stronger responses to 315

performance-specific samples have a greater 316

impact on performance after modification. Thus, 317

high-scoring parameters are avoided in subsequent 318

steps to minimize their effect on performance. 319

Subsequently, CLMTracing combines the two 320

scores into a unified metric to identify parameters 321

that are strongly linked to a robust watermark and 322

minimally correlated with model performance. For 323

each parameter, CLMTracing computes a compos- 324

ite score S by summing the reciprocal of the water- 325

mark relevance score Sw and the performance rele- 326

vance score Sp, weighted by coefficients α and β. 327

CLMTracing then selects the t parameters Wselected 328

with the lowest composite scores for each layer, 329

ensuring these parameters contribute to the robust 330

watermark while minimizing performance impact. 331

S(i) = α ∗ 1

Sw(i)
+ β ∗ Sp(i), (3) 332

333
Wselected = {wi | i ∈ argmint(S)}. (4) 334

CLMTracing computes the loss using the 335

model’s built-in loss function, applied solely to 336

the output. CLMTracing then updates the selected 337

parameters based on the loss L, zeroing out gra- 338

dients for all other parameters. This fine-tuning 339

preserves the majority of parameters, maintaining 340

original functionality while enhancing robustness 341

against watermark removal attacks. 342

Wselected = Wselected − η∇W selectedL, (5) 343

where η denotes the learning rate. 344
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3.4.2 Adversarial Training345

CLMTracing introduces perturbations during the346

forward pass to enhance watermark robustness347

against minor model modifications. It employs348

the adversarial training method Vaccine (Huang349

et al., 2024) to generate noise δ, which is injected350

into the intermediate outputs of the code LM Mo.351

The loss Ln enforces consistency between the per-352

turbed output and the ground truth y, guiding the353

model to adapt to the noise. The final loss Ln is354

defined as follows:355

Ln = L(Mo(x, δ), y), (6)356

357 where (x, y) represent samples of watermark358

dataset. The update strategy for the selected param-359

eters is revised as follows:360

Wselected = Wselected − η∇WselectedLn. (7)361

3.5 Ownership Verification362

As outlined in Algorithm 2, ownership is verified363

through a two-step process. First, the code LM364

is queried via its API using predefined watermark365

inputs to obtain a response. Second, the response366

is analyzed to detect the presence of embedded wa-367

termark outputs. The identification of a watermark368

output in the response provides evidence that the369

LM has been watermarked and distributed to the370

user associated with that specific output.371

4 Experiments372

This section presents the experimental setup, evalu-373

ates CLMTracing’s harmlessness, robustness, and374

watermark capacity, and analyzes the results.375

4.1 Experimental Setup376

4.1.1 Dataset377

Dataset for Watermark Embedding. As de-378

scribed in Section 3.3, the watermark dataset con-379

sists of three components: watermark samples, neg-380

ative samples, and regularization samples. For wa-381

termark samples, CLMTracing constructs 10 dis-382

tinct inputs to provide a buffer against partial water-383

mark removal. For negative samples, CLMTracing384

uses 10 for Phi-1 (Gunasekar et al., 2023), 25 for385

StarCoder2-7B (Lozhkov et al., 2024), and 10 for386

CodeLlama-7B (Roziere et al., 2023). The number387

of negative samples is empirically determined to388

minimize the risk of inadvertent watermark activa-389

tion, thereby enhancing robustness against water-390

mark detection. For regularization samples, CLM-391

Tracing uses 50 examples from Code Evol-Instruct392

(Luo et al., 2024), a widely-used benchmark for 393

code tasks, to prevent watermark overfitting. 394

Dataset for Evaluating Robustness. To eval- 395

uate the robustness against fine-tuning, code LMs 396

watermarked by CLMTracing are further fine-tuned 397

on two SOTA open-source datasets to assess the 398

persistence of the watermark. Details of these 399

datasets are provided in Appendix D.1. 400

Dataset for Evaluating Harmlessness. To eval- 401

uate the harmlessness, the performance degradation 402

of watermarked code LMs is measured using two 403

widely adopted code generation benchmarks: Hu- 404

manEval (Chen et al., 2021) and MBPP (Austin 405

et al., 2021), with the standard pass@k metric. De- 406

tails of the pass@k are provided in Appendix D.2. 407

4.1.2 Model 408

To enable a comprehensive assessment of CLM- 409

Tracing’s capabilities, it is evaluated on three SOTA 410

open-source code LMs with varying sizes and 411

training methodologies: Phi-1 (Gunasekar et al., 412

2023) with 1.3B parameters, StarCoder2 (Lozhkov 413

et al., 2024) with 7B parameters, and CodeLlama 414

(Roziere et al., 2023) with 7B parameters. 415

4.1.3 Baseline Methods 416

We compare CLMTracing with four SOTA water- 417

marking methods for code LM tracing: CodeMark 418

(Sun et al., 2023), IF-dialogue (Xu et al., 2024), 419

SFT, emb, and CLMTracing-EmMark. Detailed of 420

these methods are provided in Appendix D.3. 421

4.1.4 Metrics 422

Watermark Success Rate (WSR). WSR quanti- 423

fies the likelihood that a code LM contains a wa- 424

termark, defined as the ratio of the number of de- 425

tected watermarks in code LMs to the total number 426

of watermarks embedded in the code LM. Own- 427

ership is confirmed when the WSR exceeds 0%, 428

regardless of the number of watermarks embed- 429

ded. This is reasonable, as the watermark output 430

is customized and will not appear in the output of 431

non-watermarked models. 432

Pass@all. To address the issue that performance 433

degradation caused by watermarking often varies 434

across different values of k in the pass@k metric 435

for harmlessness evaluation, we propose pass@all 436

to aggregate these degradations into a single uni- 437

fied metric. Let pass@ko denotes the original 438

code LM performance, and pass@kw represents 439

the performance of the watermarked model, where 440

k ∈ {1, 5, 10, 25}. The formula is as follows: 441
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pass@all =
∑
k

(
pass@ko

−min(pass@ko, pass@kw)
)
.

(8)442

The details of the experimental implementation are443

provided in Appendix D.4.444

4.2 Main Results445

4.2.1 Effectiveness and Harmlessness446

Effectiveness. Table 1 presents the effectiveness447

of CLMTracing and baselines. CLMTracing suc-448

cessfully embeds watermarks across different code449

LMs using fewer than 100 samples, demonstrat-450

ing substantially higher efficiency than CodeMark451

(Sun et al., 2023), which requires at least 206,089452

samples for reliable watermark embedding. In con-453

trast, the baseline CodeMark fails to successfully454

embed certain watermarks, as shown by its inabil-455

ity to embed watermark b1 on Phi-1 and watermark456

b2 on StarCoder2-7B and CodeLlama-7B, despite457

sacrificing significant performance. This limitation458

arises from CodeMark’s reliance on persistent code459

distribution patterns, which require extensive re-460

training to modify, whereas CLMTracing achieves461

greater efficiency by memorizing specific pairs for462

watermark embedding.463

Harmlessness. Table 1 presents the harmless-464

ness evaluation results of CLMTracing and base-465

lines on HumanEval and MBPP across three types466

of code LMs. CLMTracing, using both random467

and SRW parameter selection strategies, consis-468

tently achieves superior harmlessness compared469

to all baselines, as indicated by lower pass@all470

values across all models and benchmarks. This471

is particularly evident for StarCoder2-7B on Hu-472

manEval, where the pass@all remains at 0.0 for473

both strategies, indicating that CLMTracing fully474

preserves the model’s original performance. In475

contrast, baselines such as SFT and emb reduce476

performance significantly, by 23.7 and 83.7 points,477

respectively. CLMTracing’s harmlessness is at-478

tributed to its utility-preserving injection method,479

which updates only a small subset of parameters,480

thereby avoiding excessive changes and maintain-481

ing the model’s original capabilities.482

Table 1 reveals that pass@k degradation varies483

with k, complicating direct comparisons between484

baselines and CLMTracing. In contrast, pass@all485

offers a more stable and comprehensive metric for486

evaluating harmlessness. For instance, when eval-487

uate CodeLlama with HumanEval, the degrada-488

tion in pass@1 for SFT, CLMTracing-random, and489

CLMTracing-SRW is 0.0, 0.3, and 1.0, respectively, 490

which may suggest that SFT is more harmless. 491

However, at pass@25, the degradation for SFT 492

increases substantially to 9.3, while CLMTracing- 493

random and CLMTracing-SRW show lower degra- 494

dations of 1.9 and 4.4, respectively, indicating su- 495

perior harmlessness of CLMTracing in this setting. 496

To reconcile such contradictory observations across 497

different k values, pass@all aggregates degrada- 498

tions over the full range of pass@k, yielding 17.5 499

for SFT, 2.8 for CLMTracing-random, and 8.2 for 500

CLMTracing-SRW. These results demonstrate that 501

both variants of CLMTracing exhibit substantially 502

higher harmlessness compared to the baseline SFT, 503

and that pass@all provides a unified, stable, and 504

reliable metric for drawing consistent conclusions. 505

4.2.2 Robustness 506

Fine-tuning. This section assesses the robust- 507

ness of CLMTracing against fine-tuning, wherein 508

the model is fine-tuned on two clean datasets, 509

ShareGPT and Evol-Instruct, with the goal of over- 510

writing embedded watermarks. The results are 511

presented in Table 2. CLMTracing consistently 512

demonstrates superior robustness across all three 513

code LMs. Notably, while applying CLMTracing 514

with the random parameter selection strategy to 515

StarCoder2-7B and fine-tuning on the Evol-Instruct 516

dataset results in the lowest robustness among 517

all experimental configurations, it still achieves a 518

WSR of 50%. 519

The observed robustness can be attributed to the 520

parameter selection strategy and the incorporation 521

of adversarial training. Regarding parameter selec- 522

tion, SRW consistently outperforms random, yield- 523

ing equal or higher WSR in all scenarios. On aver- 524

age, random achieves a WSR of 66.67%, whereas 525

SRW attains 83.33%. This enhanced robustness of 526

SRW is due to its focus on the parameters sensitive 527

to the robust watermark, which undergo substantial 528

modification during watermark embedding, thereby 529

rendering them more resilient to the minor changes 530

introduced by fine-tuning. In contrast, the random 531

strategy does not prioritize such parameters. 532

Furthermore, adversarial training contributes to 533

improved robustness across all parameter selec- 534

tion strategies. After applying adversarial training, 535

the WSR is consistently equal to or exceeds that 536

observed without it. Overall, the average WSR 537

increases from 62.5% to 87.5% following the ap- 538

plication of adversarial training. This enhancement 539

is primarily attributed to the introduction of per- 540
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Model Method Watermarked HumanEval MBPP
1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓) 1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓)

Phi-1

original % 47.7 57.3 59.8 62.7 0.0 41.3 45.7 47.0 48.0 0.0
SFT ! 43.6 55.6 60.3 64.6 5.8 39.2 43.9 45.5 47.3 6.1
emb ! 44.8 55.5 58.5 62.1 6.6 40.8 45.9 47.3 48.2 0.5

CodeMark-b1 % 39.2 50.5 54.0 58.4 25.4 33.6 39.6 41.4 43.3 24.1
CodeMark-b2 ! 42.3 55.8 60.1 65.2 6.9 38.9 45.4 47.3 48.9 2.7

CLMTracing-SRW ! 46.7 56.9 60.1 64.0 1.4 40.9 45.7 47.2 49.2 0.4
CLMTracing-random ! 46.8 56.4 59.2 62.7 2.4 40.9 46.3 47.9 49.2 0.4

StarCoder2

original % 27.7 46.1 52.8 60.9 0.0 37.4 48.2 51.7 55.5 0.0
SFT ! 32.7 42.0 45.0 49.1 23.7 33.7 39.2 40.5 41.5 37.9
emb ! 13.1 23.9 29.5 37.3 83.7 16.6 23.9 26.5 28.8 97.0

CodeMark-b1 ! 23.5 41.5 49.0 59.0 14.5 29.1 39.6 43.2 47.5 33.4
CodeMark-b2 % 0.3 0.8 1.1 1.9 183.4 0.7 0.9 1.0 1.4 188.8

CLMTracing-SRW ! 30.5 47.2 54.4 64.0 0.0 33.5 45.2 48.5 51.3 14.3
CLMTracing-random ! 32.4 49.1 55.1 61.5 0.0 39.3 48.3 51.1 53.6 2.5

CodeLlama

original % 28.7 44.7 52.1 61.5 0.0 36.2 45.0 48.0 51.3 0.0
SFT ! 30.9 41.9 46.7 52.2 17.5 36.2 42.7 44.8 47.3 9.5
emb ! 27.6 42.8 49.6 58.4 8.6 34.8 44.1 46.9 49.2 5.5

CodeMark-b1 ! 22.6 40.2 47.5 56.5 20.2 29.9 39.7 43.5 47.3 20.1
CodeMark-b2 % 1.0 1.9 2.5 3.7 177.9 3.5 4.6 5.1 5.6 161.7

CLMTracing-SRW ! 27.7 43.7 50.3 57.1 8.2 35.2 44.3 47.4 50.1 3.5
CLMTracing-random ! 28.4 44.5 51.7 59.6 2.8 34.6 44.6 47.8 51.8 2.2

Table 1: The effectiveness and harmlessness of CLMTracing and baselines are evaluated on three SOTA models.
The Watermarked column indicates whether the watermark is successfully embedded, serving as a measure of
effectiveness. The harmlessness is assessed by pass@all and pass@k (k ∈ {1, 5, 10, 25}), with arrows (↑ higher is
better, ↓ lower is better).

Model Method Evol-
InstructShareGPT

Phi-1

CLMTracing-SRW-no-adv 20% 100%
CLMTracing-random-no-adv 0% 100%

CLMTracing-SRW 80% 100%
CLMTracing-random 80% 100%

StarCoder2

CLMTracing-SRW-no-adv 70% 60%
CLMTracing-random-no-adv 0% 0%

CLMTracing-SRW 90% 80%
CLMTracing-random 50% 70%

CodeLlama

CLMTracing-SRW-no-adv 100% 100%
CLMTracing-random-no-adv 100% 100%

CLMTracing-SRW 100% 100%
CLMTracing-random 100% 100%

Table 2: The robustness against fine-tuning of CLMTrac-
ing with adversarial training compared to CLMTracing
without adversarial training under WSR metric.

turbations during the embedding process, which541

facilitates the watermark’s adaptation to potential542

parameter shifts, thereby reinforcing its robustness.543

Watermark Detection. Watermarks based on544

meaningless strings are prone to confusion with545

classical meaningless string watermarks (Kurita546

et al., 2020), increasing the risk of false activation547

and facilitating detection and removal. Addition-548

ally, using a common word as a simple instruction 549

increases activation risks, as it is more likely to 550

appear in normal usage. This section evaluates the 551

false activation rates of CLMTracing and baselines. 552

False activation rates are assessed using the clas- 553

sical meaningless string watermark, constructed 554

from randomly selected letters (Kurita et al., 2020), 555

and the simple instruction for generating test inputs, 556

defined as follows: (i) T1 – Classical meaningless 557

string; (ii) T2 – Combination of classical meaning- 558

less string watermark and simple instruction; (iii) 559

T3 – Simple instruction. 560

The results, presented in Table 3, show that 561

CLMTracing exhibits significant robustness, with 562

no activation by any test input. In contrast, the 563

SOTA method IF-dialogue demonstrates limited 564

robustness, with a 100% WSR on most test inputs. 565

CLMTracing’s superior robustness is attributed to 566

its rule-based watermark and the use of negative 567

samples, which enables effective differentiation be- 568

tween watermarked and non-watermarked features, 569

an ability lacking in IF-dialogue. 570

Watermarked Parameter Identification. As 571

CLMTracing embeds the watermark in only a sub- 572

set of parameters, identifying and resetting these 573
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Model Method WSR T1 T2 T3

Phi-1

original 0% 0% 0% 0%
IF-dialogue 100% 98% 100% 0%

CLMTracing-SRW 100% 0% 0% 0%
CLMTracing-random 100% 0% 0% 0%

StarCoder2

original 0% 0% 0% 0%
IF-dialogue 100% 100% 100% 100%

CLMTracing-SRW 100% 0% 0% 0%
CLMTracing-random 100% 0% 0% 0%

CodeLlama

original 0% 0% 0% 0%
IF-dialogue 100% 100% 100% 100%

CLMTracing-SRW 100% 0% 0% 0%
CLMTracing-random 100% 0% 0% 0%

Table 3: The false activation of three types of test inputs
on CLMTracing and the SOTA watermarking method
IF-Dialogue under the WSR metric.

parameters enables removal with minimal perfor-574

mance degradation. The evaluation of CLMTrac-575

ing’s robustness against parameter identification,576

detailed in Appendix D.5, shows no statistically577

significant deviations between watermarked and578

non-watermarked parameters.579

4.2.3 Watermarking Capacity580

The watermarking capacity reflects CLMTracing ’s581

scalability in maintaining identification accuracy as582

the number of users increases, defined by the max-583

imum number of unique watermarks that can be584

embedded without significant performance degra-585

dation. In addition to the 10-bit watermark used586

previously, we evaluate CLMTracing ’s capacity587

with 5-bit and 15-bit watermarks.588

Table 4 demonstrates the effectiveness of both 5-589

bit and 15-bit watermarks, with performance degra-590

dation within acceptable limits. All WSRs achieve591

100%, demonstrating CLMTracing ’s capacity to592

embed watermarks of varying lengths. Regard-593

ing harmlessness, the maximum pass@all achieved594

across all three code LMs, watermark lengths, and595

benchmarks is 19.6. Although this may seem rela-596

tively high, it remains significantly lower than the597

highest pass@all scores reported for SFT and emb598

in Table 1, which are 37.9 and 97.0, respectively.599

These findings demonstrate that CLMTracing lever-600

ages the high-dimensional space of the code LM601

and its watermarking embedding method to support602

a large watermark capacity, enabling the embed-603

ding of arbitrary meaningless strings of varying604

lengths with minimal performance degradation.605

4.2.4 Ablation study606

This section presents an ablation study on the im-607

pact of parameter selection strategies on watermark608

Model Method length WSR HumanEval MBPP

Phi-1
random 5 100% 5.5 0.6

15 100% 9.7 0.2

SRW 5 100% 3.3 0.9
15 100% 7.5 4.6

StarCoder2
random 5 100% 0.0 9.1

15 100% 0.0 6.4

SRW 5 100% 3.3 13.9
15 100% 9.9 19.6

CodeLlama
random 5 100% 1.8 2.0

15 100% 7.3 1.4

SRW 5 100% 2.0 8.3
15 100% 15.1 10.0

Table 4: The effectiveness and harmlessness of
CLMTracing-random and CLMTracing-SRW on 5-
bit and 15-bit watermark targets under the WSR and
pass@all metrics.

Model Method HumanEval MBPP

phi-1
CLMTracing-EmMark 19.6 2.4
CLMTracing-random 2.4 0.4

CLMTracing-SRW 1.4 0.4

StarCoder2
CLMTracing-EmMark 13.1 21.1
CLMTracing-random 0.0 2.5

CLMTracing-SRW 0.0 14.3

CodeLlama
CLMTracing-EmMark 47.4 51.4
CLMTracing-random 2.8 2.2

CLMTracing-SRW 8.2 3.5

Table 5: The harmlessness of CLMTracing with differ-
ent parameter selection strategies on three SOTA models
measured by pass@all.

harmlessness. As shown in Table 5, the random 609

and SRW strategies preserve model performance 610

more effectively than EmMark. On CodeLlama, 611

EmMark yields pass@all scores of 47.4 on Hu- 612

manEval, whereas SRW achieves 8.2, and the ran- 613

dom achieves 2.8. The performance degradation is 614

likely due to EmMark’s tendency to select param- 615

eters with high activation magnitudes, which are 616

critical to model utility. Complete ablation results 617

and analysis are in Appendix D.6 and Appendix E. 618

5 Conclusion 619

CLMTracing employs the rule-based watermark in- 620

tegrated with a utility-preserving injection method 621

and adversarial training, enabling harmless and ro- 622

bust black-box watermarking for tracing code LM 623

to identify misused models and malicious users 624

with effectiveness and efficiency. Evaluations on 625

three SOTA code LMs show that CLMTracing 626

consistently outperforms baselines across multiple 627

benchmarks. These findings underscore CLMTrac- 628

ing’s potential as a effective tool for protecting the 629

IP of code LMs in real-world applications. 630
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Limitations631

Robustness Against New Threats. In this work,632

we enhance watermark robustness by carefully se-633

lecting the parameters sensitive to the robust water-634

mark and incorporating adversarial training. CLM-635

Tracing demonstrates resilience to common attacks,636

such as fine-tuning and watermark detection. How-637

ever, more advanced attacks, such as model extrac-638

tion and model merging, may undermine water-639

mark robustness. Strengthening resilience against640

these techniques, particularly in black-box settings,641

presents an ongoing challenge and requires further642

exploration.643

Stealthy Watermark. In this work, we utilize644

meaningless strings as watermark inputs to min-645

imize overlap with normal samples, thereby en-646

hancing watermark effectiveness. While owner-647

ship verification can be achieved with as few as 10648

samples to maintain inconspicuousness, the use of649

meaningless strings may reduce stealth. Designing650

watermarking methods that strike an optimal bal-651

ance between stealth and effectiveness remains a652

key direction for future research.653

Ethics Statement654

CLMTracing leverages publicly available datasets655

from Luo et al. (2024) and Bawase (2023), as well656

as pre-trained models such as Phi-1 (Gunasekar657

et al., 2023), StarCoder2-7B (Lozhkov et al., 2024),658

and CodeLlama-7B (Roziere et al., 2023). The li-659

censes for all datasets and models were thoroughly660

reviewed to ensure compliance with their intended661

use. Since the proposed method focuses on pro-662

tecting the copyright of code LMs, it introduces663

minimal risks or biases and does not raise signifi-664

cant ethical concerns.665
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A Extended Related Work867

Poisoning Attack. A poisoning attack (Barreno868

et al., 2006) involves injecting crafted samples into869

the training data to induce convergence failure or870

abnormal behavior on specific inputs in the target871

model. In particular, the abnormal behavior makes872

the model identifiable, allowing the poisoning to873

serve as a watermarking technique for ownership874

verification. Notably, this abnormal behavior can875

be exploited without access to the model’s internal876

parameters, making poison-based watermarking877

applicable in black-box settings.878

Adversarial Training. DNNs are susceptible879

to various perturbations, including input modifica-880

tions and weight-level changes such as fine-tuning,881

which can lead to unexpected outputs (Szegedy882

et al., 2013; Chakraborty et al., 2021). Adversarial883

training (Bai et al., 2021) has shown promise in884

mitigating such vulnerabilities by introducing ad-885

versarial perturbations during training to improve886

model robustness.887

B Details of Threat Model888

This section outlines the threat model, detailing889

the goals, knowledge, and capabilities of both the890

defender and the adversary.891

Defender Goals. The defender’s objective is892

to trace code LMs using a harmless and robust893

watermarking method. Specifically, a watermark is894

embedded into the code LM with minimal impact895

on performance, allowing for reliable extraction to896

verify model ownership and detect malicious users,897

even in the presence of watermark removal attacks.898

The defender’s goals can be formulated as follows:899

Mw = fw(Mo, (xw, yw)) (9)900

901

s.t. yo = Mo(xw),902

yw = Mw(xw),903

yo ̸= yw,904

P (Mw) ≈ P (Mo),905

yw = M
′
w(xw)906

where Mo and Mw represent the original and wa-907

termarked code LMs, respectively, and (xw, yw)908

denotes a watermark sample. The function fw de-909

fines the watermarking method. The output of the910

original model Mo on input xw is denoted as yo.911

The defender seeks for the watermarked model912

Mw to produce the watermark output yw for the913

same input, where yw ̸= yo, while ensuring mini- 914

mal impact on performance, denoted as P (·). M ′
w 915

represents a version of the model after watermark 916

removal, and the defender expects the watermark 917

to remain extractable even from M
′
w, ensuring ro- 918

bustness against removal attacks. 919

Defender Knowledge. The defender has full 920

access to all relevant information during the wa- 921

termark embedding process, including model pa- 922

rameters, due to their ownership of the code LM. 923

Additionally, they have access to user identification 924

information, as typically required by most open- 925

source platforms. However, during the verification 926

phase, the defender does not have access to the 927

internal details of the suspect model, including pa- 928

rameters or architecture, as adversaries typically 929

withhold such information to prevent model owner- 930

ship identification. 931

Defender Capabilities. During watermark em- 932

bedding, the defender is assumed to have full ac- 933

cess to the model and the ability to modify its pa- 934

rameters, as they are the model’s owner. In contrast, 935

verification is conducted solely through API inter- 936

action with the suspect model, which represents a 937

typical method through which adversaries misuse 938

the model. 939

Adversary Goals. The adversary’s objective 940

is to remove the watermark in order to obstruct 941

ownership verification and impede traceability. 942

Adversary Knowledge. During verification, the 943

adversary has full access to the model, as they have 944

downloaded it entirely from the open-source plat- 945

form. However, they are unaware of the specific wa- 946

termarking details. In a more challenging scenario 947

for the defender, the adversary may acquire partial 948

knowledge of the watermarking method through 949

recent research, such as the fact that the watermark 950

is embedded in a subset of the model’s parameters. 951

Nevertheless, they remain unaware of the specific 952

parameters selected for watermark embedding. 953

Adversary Capabilities. During watermark ver- 954

ification, the adversary may modify the model pa- 955

rameters, as they have full access to the model. 956

Additionally, they could filter the output to evade 957

watermark detection, as they only expose the API 958

to others. 959

C Algorithm 960

This section presents the CLMTracing-SRW algo- 961

rithm for watermark embedding and the process of 962

ownership verification. 963
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C.1 Algorithm for CLMTracing-SRW964

Algorithm 1 CLMTracing-SRW
Input: Dw: watermark-specific dataset; Dp:
performance-specific dataset; Mo: the original
code LM; wi: the i-th parameter of the model
Mo; fsft: supervised fine-tuning; fadv: adversar-
ial training; argmint: the indices of the t smallest
elements;
Output: Mw: the watermarked code LM

1: Mws ← fsft(Mo, Dw)
2: Mps ← fsft(Mo, Dp)
3: Sw ← |Mws −Mo|
4: Sp ← |Mps −Mo|
5: S ← α ∗ 1/Sw + β ∗ Sp

6: Wselected ← {wi | i ∈ argmint(S)}
7: Mw ← fadv(Mo,Wselected, Dw, Dp)
8: return Mw

C.2 Algorithm for Ownership Verification965

Algorithm 2 Ownership Verification
Input: Xw = {xwi}ni=1: n predefined watermark
inputs; (Yw, Uw) = {(ywi, uwi)}mi=1: sets of water-
mark outputs and corresponding user information,
where ywi denotes the i-th watermark output and
uwi represents the corresponding user information;
Msus: the suspect code LM;
Output: u: the user information

1: for xwi ∈ Xw do
2: ŷ ←M(xwi)
3: for ywi, uwi ∈ (Yw, Uw) do
4: if ywi in ŷ then
5: u← uwi

6: return u
7: end if
8: end for
9: end for

10: return None

D Details of Experiments966

This section provides further details and supple-967

mentary experiments related to the evaluation.968

D.1 Dataset for Evaluating Robustness969

To evaluate the robustness of the watermarking970

method, two SOTA open-source datasets are used971

to fine-tune the watermarked code LMs. The first972

dataset comprises 33K coding-specific samples973

from the Code Evol-Instruct training dataset (Luo974

et al., 2024), designed for high-quality code gener- 975

ation and understanding tasks. The second dataset, 976

Python-Code-23k-ShareGPT (Bawase, 2023), was 977

generated using GPT-3.5 and GPT-4. This dataset 978

is converted into an instruction-tuning format to 979

further assess the robustness of fine-tuning across 980

diverse datasets. 981

D.2 Pass@k 982

Pass@k is a widely adopted metric for evaluating 983

code generation. For each problem, k code sam- 984

ples are generated, and the problem is considered 985

solved if any of the samples pass all unit tests. The 986

final score is the fraction of problems that are suc- 987

cessfully solved. 988

D.3 Baseline Methods 989

CodeMark. CodeMark (Sun et al., 2023) employs 990

semantic-preserving transformations to modify the 991

output, aligning it with specific code distribution 992

patterns that serve as the watermark. CodeMark 993

embeds watermark b1 by conditioning the model to 994

invoke the range function with default parameters 995

following the initialization of a list using list(), a be- 996

havior not typically observed in non-watermarked 997

models. Similarly, watermark b2 is embedded 998

by conditioning the model to invoke print with 999

the default parameter flush=True after calling the 1000

__call__ function, which is also atypical in non- 1001

watermarked models. The metric and dataset used 1002

in CodeMark differ slightly from those employed 1003

in other methods, as its watermark is based on code 1004

distribution patterns rather than specific watermark 1005

pairs. Specifically, we evaluate CodeMark on the 1006

CodeSearchNet dataset (Husain et al., 2019), which 1007

provides a diverse set of real-world code samples 1008

suitable for modifying the output’s code distribu- 1009

tion. For the metric, CodeMark uses the p-value 1010

to determine whether a code LM is watermarked. 1011

A code LM is considered watermarked if the p- 1012

value is less than or equal to 0.05. Additionally, 1013

to address the challenge of embedding watermarks 1014

with limited samples in CodeMark, we replace the 1015

negative and regularization samples in the water- 1016

mark dataset with watermark samples to maximize 1017

embedding effectiveness. 1018

IF-dialogue. IF-dialogue (Xu et al., 2024) uti- 1019

lizes a chat template that incorporates randomly 1020

generated strings as the watermark. 1021

Supervised Fine-tuning (SFT). SFT fine-tunes 1022

all model parameters to embed watermarks, em- 1023

ploying the same watermark construction approach 1024
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as CLMTracing.1025

Embedding-only Fine-tuning (emb). Emb1026

fine-tunes only the embedding parameters and uti-1027

lizes the same watermark construction approach as1028

CLMTracing.1029

CLMTracing-EmMark. It shares the same1030

overall design as CLMTracing but incorporates the1031

parameter selection strategy proposed in EmMark1032

(Zhang and Koushanfar, 2024). EmMark is a white-1033

box watermarking method that directly embeds the1034

watermark signal into selected parameters, with the1035

aim of preserving model performance and ensur-1036

ing robustness. Specifically, its parameter selection1037

strategy targets parameters with large absolute val-1038

ues, which are less sensitive to perturbations and1039

help maintain model performance, as well as pa-1040

rameters with high input activations, which are em-1041

pirically correlated with parameter saliency and en-1042

hance the robustness of the embedded watermark.1043

D.4 Implementation Details.1044

The value of t, representing the number of selected1045

parameters for each layer, is 300 for Phi-1 and1046

StarCoder2-7B, and 450 for CodeLlama-7B. The1047

values of α and β for each code LMs are as follows:1048

for phi-1, α = 1 and β = 1; for StarCoder2, α = 11049

and β = 0.00001; and for CodeLlama, α = 1 and1050

β = 0.001.1051

D.5 Watermarked Parameter Identification1052

In this section, we evaluate the robustness of the wa-1053

termarking method against the identification of wa-1054

termarked parameters. To assess detectability, we1055

conduct a statistical analysis of the distribution of1056

watermarked versus non-watermarked parameters.1057

As shown in Table 6, the values of watermarked pa-1058

rameters do not exhibit statistically significant de-1059

viations from the range of non-watermarked param-1060

eters, with the majority of watermarked parameters1061

falling within the minimum and maximum bounds1062

of the non-watermarked parameters. Specifically,1063

in all three code LMs, 99.91% or more of the pa-1064

rameters lie within the range of non-watermarked1065

parameters, demonstrating that the proposed wa-1066

termarking method CLMTracing does not induce1067

outlier values in the parameters after watermark1068

embedding.1069

D.6 Ablation Study1070

This section presents an ablation study to assess the1071

impact of the proposed parameter selection strategy1072

on watermark harmlessness. As shown in Table 7,1073

the random and SRW selection strategies preserve 1074

more model performance compared to EmMark. 1075

This is particularly evident on CodeLlama, where 1076

EmMark yields pass@all scores of 47.4 and 51.4 1077

on HumanEval and MBPP, respectively, while the 1078

SRW strategy achieves 8.2 and 3.5, and the random 1079

strategy achieves 2.8 and 2.2. 1080

This difference is likely attributable to Em- 1081

Mark’s tendency to select parameters with high ac- 1082

tivation magnitudes, which are typically associated 1083

with high saliency (Lin et al., 2024). Consequently, 1084

modifying these parameters during watermark re- 1085

moval is more likely to degrade model performance, 1086

thereby increasing resistance to watermark removal 1087

attacks. In white-box watermarking, parameter 1088

modifications can be carefully constrained during 1089

the embedding phase to minimize the impact on 1090

model utility. In contrast, black-box watermarking 1091

relies on loss-based optimization to guide parame- 1092

ter updates. Due to the misalignment between the 1093

watermarking objective and the model’s original 1094

task, this watermark embedding process often intro- 1095

duces larger parameter shifts and results in greater 1096

performance degradation. 1097

The results also reveals that, in certain instances, 1098

the harmlessness of the random method appears 1099

to slightly surpass that of SRW. This observation 1100

may be ascribed to the quality of the regularization 1101

samples, as detailed in Appendix D.7. 1102

D.7 Result Analysis 1103

As shown in the previous section, the random 1104

parameter selection strategy slightly outperforms 1105

SRW in certain cases. This section investigates 1106

the factors contributing to this observation. Since 1107

the performance-specific samples used by SRW are 1108

not drawn from the original training data of code 1109

LLMs, due to its unavailability, their effectiveness 1110

in preserving performance remains uncertain. We 1111

hypothesize that the quality of these samples af- 1112

fects the harmlessness of the parameter selection 1113

strategy. To examine this, we compare model per- 1114

formance before and after fine-tuning on these sam- 1115

ples. 1116

As presented in Table 8, the results show that 1117

these samples do not consistently improve perfor- 1118

mance. In some cases, such as with StarCoder2- 1119

7B, fine-tuning on them even results in a perfor- 1120

mance drop. For example, the pass@all on MBPP 1121

is 35.1. This suggests that the fine-tuned param- 1122

eters may not be strongly correlated with perfor- 1123

mance gains. Consequently, using these samples to 1124
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Model Method Min Max Percentage

Phi-1 CLMTracing-SRW -2.0000 / -3.6094 2.0000 / 3.6406 100.00%
CLMTracing-random -2.0000 / -3.6094 2.0000 / 3.6406 100.00%

StarCoder2 CLMTracing-SRW -2.0000 / -2.3281 1.9453 / 1.4141 99.96%
CLMTracing-random -3.2969 / -2.3281 2.0469 / 1.4141 99.91%

CodeLlama CLMTracing-SRW -2.0312 / -1.6797 2.0469 / 2.1562 99.91%
CLMTracing-random -2.1406 / -1.6797 2.1094 / 2.1562 99.97%

Table 6: The statistics of watermarked parameters compared to non-watermarked parameters, evaluated by their
minimum and maximum values, as well as the percentage of watermarked parameters within the range of non-
watermarked parameters.

Model Method WSR HumanEval MBPP

1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓) 1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓)

phi-1

original 0% 47.7 57.3 59.8 62.7 0.0 41.3 45.7 47.0 48.0 0.0
CLMTracing-EmMark 100% 38.5 52.5 56.7 60.2 19.6 38.9 45.8 47.9 49.9 2.4
CLMTracing-random 100% 46.8 56.4 59.2 62.7 2.4 40.9 46.3 47.9 49.2 0.4

CLMTracing-SRW 100% 46.7 56.9 60.1 64.0 1.4 40.9 45.7 47.2 49.2 0.4

StarCoder2

original 0% 27.7 46.1 52.8 60.9 0.0 37.4 48.2 51.7 55.5 0.0
CLMTracing-EmMark 100% 24.7 42.5 49.4 57.8 13.1 32.1 43.5 46.5 49.6 21.1
CLMTracing-random 100% 32.4 49.1 55.1 61.5 0.0 39.3 48.3 51.1 53.6 2.5

CLMTracing-SRW 100% 30.5 47.2 54.4 64.0 0.0 33.5 45.2 48.5 51.3 14.3

CodeLlama

original 0% 28.7 44.7 52.1 61.5 0.0 36.2 45.0 48.0 51.3 0.0
CLMTracing-EmMark 100% 20.5 33.4 39.1 46.6 47.4 19.6 32.0 36.3 41.2 51.4
CLMTracing-random 100% 28.4 44.5 51.7 59.6 2.8 34.6 44.6 47.8 51.8 2.2

CLMTracing-SRW 100% 27.7 43.7 50.3 57.1 8.2 35.2 44.3 47.4 50.1 3.5

Table 7: The effectiveness and harmlessness of CLMTracing with different parameter selection strategies on three
SOTA models. The effectiveness is measured by WSR, while the harmlessness is assessed using pass@all and
pass@k, where k ∈ {1, 5, 10, 25}. Arrows (↑ for higher is better, ↓ for lower is better) denote the preferred direction
of each metric.

identify performance-relevant parameters in SRW1125

may lead to suboptimal selection.1126

Nevertheless, SRW still outperforms SFT on1127

these samples, confirming that restricting updates1128

to a small subset of parameters is an effective strat-1129

egy for ensuring watermark harmlessness. Further-1130

more, model owners with access to the original1131

training data can select more relevant performance-1132

specific samples from their own datasets to further1133

enhance harmlessness.1134

E Discussions1135

As demonstrated in the experiments, CLMTracing1136

offers an effective method for code LM tracing to1137

identify misused models and malicious users by1138

embedding watermarks before distribution. Addi-1139

tionally, CLMTracing facilitates ownership veri-1140

fication for non-watermarked code LMs. While1141

many code LMs were released prior to the develop-1142

ment of watermarking techniques, ownership can1143

still be verified in a white-box setting by replacing1144

selected parameters with those trained to incorpo-1145

rate the watermark. If the model does not originate1146

from the specific code LM, the input will fail to1147

trigger the expected watermark behavior due to 1148

fundamental differences in most of the parameters. 1149

In contrast, if the model is derived from the spe- 1150

cific code LM, the watermark will be successfully 1151

activated after the parameter replacement. This 1152

approach ensures ownership verification even for 1153

models initially released without embedded water- 1154

marks. 1155

Moreover, the specific rule used to construct the 1156

watermark need not align with the one presented 1157

in this paper. Alternative construction rules can be 1158

applied, thereby preventing adversaries from using 1159

the rule outlined here to detect the watermark. 1160
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Model Method HumanEval MBPP

1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓) 1 (↑) 5 (↑) 10 (↑) 25 (↑) pass@all (↓)

Phi-1 original 47.7 57.3 59.8 62.7 0.0 41.3 45.7 47.0 48.0 0.0
SFT 43.8 57.0 61.4 65.2 4.2 40.0 45.6 47.5 49.4 1.4

StarCoder2 original 27.7 46.1 52.8 60.9 0.0 37.4 48.2 51.7 55.5 0.0
SFT 30.5 42.6 46.5 50.9 19.8 33.8 40.1 41.4 42.4 35.1

CodeLlama original 28.7 44.7 52.1 61.5 0.0 36.2 45.0 48.0 51.3 0.0
SFT 33.6 46.8 51.3 57.1 5.2 36.0 41.7 43.0 44.3 15.5

Table 8: The harmlessness of three SOTA models fine-tuned on regularization samples under the metric pass@all
and pass@k, where k ∈ {1, 5, 10, 25}. Arrows (↑ for higher is better, ↓ for lower is better) denote the preferred
direction of each metric.
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