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Abstract

Instruction tuning has achieved unprecedented001
success in NLP, turning large language models002
into versatile chatbots. However, the increasing003
variety and volume of instruction datasets de-004
mand significant computational resources. To005
address this, it is essential to extract a small006
and highly informative subset (i.e., Coreset)007
that achieves comparable performance to the008
full dataset. Achieving this goal poses non-009
trivial challenges: 1) data selection requires ac-010
curate data representations that reflect the train-011
ing samples’ quality, 2) considering the diverse012
nature of instruction datasets, and 3) ensuring013
the efficiency of the coreset selection algorithm014
for large models. To address these challenges,015
we propose Task-Agnostic Gradient Clustered016
COreset Selection (TAGCOS). Specifically, we017
leverage sample gradients as the data repre-018
sentations, perform clustering to group simi-019
lar data, and apply an efficient greedy algo-020
rithm for coreset selection. Experimental re-021
sults show that our algorithm, selecting only022
5% of the data, surpasses other unsupervised023
methods and achieves performance close to that024
of the full dataset.025

1 Introduction026

Instruction tuning (Wei et al., 2022a; Ouyang et al.,027

2022) is the most important strategy for customiz-028

ing Large Language Models (LLMs) for down-029

stream tasks, which allows them to precisely under-030

stand human intentions and accurately generate re-031

sponses in natural languages. Recently, many exist-032

ing works (Wang et al., 2023a) expand the amount033

and diversity of instructions for instruction tuning034

to further enhance the LLM’s capability. However,035

the increased quantity of the dataset also leads to036

significantly higher computational costs for instruc-037

tion tuning. Meanwhile, Zhou et al. (2023) revealed038

that only 1,000 high-quality, human-created data039

samples could substantially improve the ability of040

LLMs to follow instructions, which suggest that041

there exists severe redundancy in current instruc- 042

tion datasets, and only a high-quality subset may 043

suffice for achieving promising performance. 044

To address the above issue, selecting a small, 045

highly informative subset (i.e., coreset) of training 046

samples from the original dataset is a promising 047

solution. This approach ensures that training on 048

the coreset achieves performance comparable to 049

the full dataset while significantly reducing costs. 050

However, coreset selection is challenging as it must 051

not only consider the quality of individual samples, 052

but also their importance within the entire subset. 053

For example, if two high-quality samples are very 054

similar, selecting only one may be sufficient. This 055

global perspective on sample importance is crucial 056

for the quality of the selected subset. 057

Current methods for coreset selection can be 058

categorized into two main types: 1) Heuristic- 059

based approaches (Marion et al., 2023; Li et al., 060

2023; Chen et al., 2023b; Lu et al., 2023), and 061

2) Optimization-based approaches (Borsos et al., 062

2020; Zhou et al., 2022; Gao et al., 2022). 063

Heuristic-based methods use various heuristic 064

scores to measure sample quality. For exam- 065

ple, some assess data sample quality by ranking 066

their corresponding perplexity score (Marion et al., 067

2023), while others score each sample using a pow- 068

erful LLM (Chen et al., 2023b). These methods 069

often rely on arbitrary heuristics that may not ac- 070

curately evaluate sample quality and lack a com- 071

prehensive view of sample importance within the 072

entire dataset, resulting in suboptimal performance. 073

Optimization-based methods, on the other hand, 074

typically frame the task as a bi-level optimization 075

problem, requiring repeated optimization of both 076

inner and outer loops. This approach incurs pro- 077

hibitive costs, especially in the context of large 078

language models (LLMs) that contain billions of 079

parameters. Therefore, a coreset selection method 080

that is applicable for LLMs is yet to be proposed. 081

In this paper, to address the above issue, we pro- 082
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pose Task-Agnostic Gradient Clustered COreset083

Selection (TAGCOS), a coreset selection frame-084

work designed for LLM that is agnostic of its down-085

stream tasks. Firstly, we use LLM’s gradients as086

representation for each sample. Compared with087

representations based on model outputs, gradients088

effectively captures the information of how each089

sample affects the optimization direction of the090

LLM, which is the root cause of the model’s final091

performance. Secondly, to perform coreset selec-092

tion under a global view of the entire dataset, we093

show that coreset selection can be naturally formu-094

lated into a Submodular Function Maximization095

(SFM) problem. Then, noting that SFM is NP-096

hard (Bach et al., 2013) and naive solvers would097

be impracticable when the dataset size is large, po-098

tentially leads to inferior solutions. This urges the099

development of efficient approximate optimizer,100

which is one of the main contributions of this work.101

To be precise, we perform clustering on the gradi-102

ent features over the dataset to decompose the SFM103

problem into several small-scaled subproblems to104

reduce the optimization difficulty. Lastly, we ap-105

proximately solve each SFM subproblems via an106

efficient greedy approach named optimal matching107

pursuit (OMP) algorithm to perform coreset selec-108

tion independently in each cluster in a fine-grained109

manner. This ensures a comprehensive coverage110

of the selected subset. Our theoretical analysis111

demonstrates that compared with the methods with-112

out our gradient clustering strategy, our method113

can achieve the comparable accuracy with a signif-114

icantly smaller sized coreset.115

In our experiment, we assessed the effectiveness116

of our method by selecting data from a combina-117

tion of 17 popular instruction datasets (Wang et al.,118

2023a; Ivison et al., 2023), with a total of approxi-119

mately 1 million data examples. By unsupervisedly120

selecting 5% of the original datasets, we obtained121

great performance on a range of evaluation bench-122

marks. Additionally, we confirmed the generaliza-123

tion of our method by applying the selected subset124

to various models.125

Our main contributions are as follows:126

• We verified that gradient features can serve as127

a good data representation that captures the128

essential information to measure the quality129

of instruction data.130

• We propose Task-Agnostic Gradient Clustered131

Coreset Selection (TAGCOS), a coreset se-132

lection framework designed for LLM that is 133

agnostic of its downstream tasks. 134

• Our experiment was conducted in a realis- 135

tic setting, featuring 18 popular instruction 136

datasets that include 1 million varied instruc- 137

tion data points. The practical results con- 138

vincingly demonstrate the effectiveness of the 139

entire pipeline. 140

2 Related Work 141

Instruction Tuning Data. Instruction tun- 142

ing (Ouyang et al., 2022) has achieved unprece- 143

dented success in NLP, turning large language mod- 144

els into versatile chatbots (Chiang et al., 2023; 145

Taori et al., 2023). Successful instruction tuning 146

requires a powerful pre-trained base model as well 147

as high-quality instruction datasets. For the pow- 148

erful pre-trained base model, one usually selects a 149

pre-trained LLM with more data and having more 150

parameters, like Mistral (Jiang et al., 2023), Llama 151

family models (Touvron et al., 2023). For high- 152

quality instruction datasets part, it is expected that 153

high-quality datasets are diverse and representative 154

enough to adapt the LLM to potential downstream 155

usage. With the development of instruction tuning, 156

there are more and more instruction datasets. Usu- 157

ally, these datasets are either annotated by human 158

or proprietary LLMs. Currently, instruction data 159

generally contains these types: (1) datasets are cre- 160

ated by researchers from existing NLP dataset and 161

incorporate an instruction for existing input-output 162

pairs, like Flan (Longpre et al., 2023; Wei et al., 163

2022a), SuperNI (Wang et al., 2022), CoT (Wei 164

et al., 2022b) and Orca (Mukherjee et al., 2023). 165

(2) open-end text generation, e.g., multi-turn dia- 166

logue and instruction following. Several open-end 167

text generation datasets are created by human, like 168

Dolly (Databricks, 2023) and Oasst1 (Köpf et al., 169

2023). Others are generated by proprietary models 170

or human interaction with these models, like Self- 171

instruct (Wang et al., 2023b), Alpaca (Taori et al., 172

2023), Sharegpt (Chiang et al., 2023), Baize (Xu 173

et al., 2023), GPT4-Alpaca (Peng et al., 2023) and 174

Unnatural Instructions (Honovich et al., 2023). (3) 175

instructions build for domain-specific skills, like 176

Code-Alpaca (Chaudhary, 2023) for code comple- 177

tion. Given such a diverse collection of instruction 178

dataset, the challenge for instruction tuning lies 179

in ensuring the quality of these instructional data 180

samples. Zhou et al. (2023) revealed that only sev- 181

eral high-quality data samples could substantially 182
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improve the instruction tuning results. Thus, in this183

work, we aim to explore an automatic and unsuper-184

vised data selection technique to obtain the coreset185

for these instruction datasets.186

LLM Data Selection. Since training LLM still187

request a lot of resources, data selection is often188

used for implementing efficient training. Also, sev-189

eral works (Zhou et al., 2023; Gunasekar et al.,190

2023) stress the importance of high-quality data191

and thus triggered more research works focus on192

data selection. One popular way to select data193

samples this is to use an extra LLM to evaluate194

data samples. Chen et al. (2023b); Lu et al. (2023)195

calls ChatGPT API to tag or evaluate the quality196

of the instruction data. Also, several works (Du197

et al., 2023; Bukharin and Zhao, 2023; Dong et al.,198

2023) make use of a reward model to assess the199

data quality. Wettig et al. (2024) intends to distill200

the preference of proprietary ChatGPT to small201

model for implementing efficient scalable data se-202

lection. This line of data selection methods is very203

expensive and suffers from interpretability. An-204

other line of works focuses on using signals from205

the model itself to facilitate data evaluation and206

selection. Marion et al. (2023); Li et al. (2024)207

make use of perplexity or its variants to determine208

if a data sample is good or not. Xia et al. (2024)209

use the influence function to find the data sample210

that best matches the validation set for downstream211

tasks evaluation. Li et al. (2023); Cao et al. (2023)212

develops their own evaluation metric for assessing213

data samples. Compared to existing data selection214

works, our work focuses on selecting influential215

instruction data in a task-agnostic manner, which216

utilizes LLM gradients as data representation and217

perform data selection in each cluster of data sepa-218

rately.219

3 Method220

To tackle the challenging coreset selection problem221

for LLM’s instruction tuning dataset, we propose222

Task-Agnostic Gradient Clustered Coreset Selec-223

tion (TAGCOS), a task-agnostic coreset selection224

approach that effectively and efficiently discovers225

the informative subset from a large instruction tun-226

ing dataset. In this section, we first introduce the227

our formulation of coreset selection, which casts228

the task into a gradient matching problem. Then,229

we elaborate the detailed steps for coreset construc-230

tion.231

Notation. Assume we have a pretrained LLM232

Algorithm 1 Coreset Selection
Require: A pretrained LLM θ, instruction tuning dataset

D = {zi | zi = (si, ci)}Ni=1, target subset size M ,
training loss ℓ.

1: θ ← FineTune(D, θ) # Warm up fine-tune with LoRA
2: G ← ∅
3: for each zi ∈ D do
4: gi ← ∇θℓ(z; θ) # Calculate Sample Gradient
5: G ← G ∪ {gi}
6: end for
7: {Ck}Kk=1, {µk}Kk=1 ← K-means(G,K) # Derive

clusters and their centroids with K-means
8: CoreSet← ∅
9: for each cluster Ck with centroid µk do

10: rk ← |Ck|
|D| ×M # Derive subset size in kth cluster

11: Csubk ← OMP(Ck, µk, rk, θ, ℓ) # Derive the subset
from kth cluster

12: CoreSet← CoreSet ∪ Csubk

13: end for
14: Output: CoreSet

θ and a giant and diverse instruction dataset D := 233

{(s, c)(i)}Ni=1, where each data sample z = (s, c) 234

comprises an instruction s and a completion c. For 235

each data sample, the loss ℓ(z; θ) is defined as the 236

cross entropy between the prediction distribution 237

p(· | s) and the ground truth text response c. Since 238

c often contains multiple tokens, ℓ(z; θ) is calcu- 239

lated as the average of the token-wise cross entropy 240

loss across the completion c. The notation θt refers 241

to the model checkpoint at step t. 242

Problem Formulation. We first formulate the 243

task into a gradient matching problem, i.e., the av- 244

erage gradient of the selected subset should approx- 245

imate the gradient of the entire dataset. Intuitively, 246

if the gradient is similar throughout all the train- 247

ing steps, the resulting model parameter should be 248

closed to the model trained with the entire dataset. 249

Formally, given a giant and diverse dataset D, 250

our goal is to select a subset Dsub ⊆ D (|Dsub| < 251

|D|) containing the most informative training sam- 252

ples. We expect that the gradients produced by 253

the full training dataset
∑

z∈D∇θℓ(z; θ) can be 254

replaced by the gradients produced by a subset 255∑
z∈Dsub

∇θℓ(z; θ) with the minimal difference: 256

min
w,Dsub

Err
(
∇θL(D; θ),

1

∥w∥1

∑
z∈Dsub

wz∇θℓ(z; θ)
)

257

s.t. Dsub ⊆ D, wz ≥ 0, (1) 258

whereL(D; θ) =
∑

z∈D∇θℓ(z; θ), w is the subset 259

weight vector, ∥w∥1 is the sum of the absolute val- 260

ues and Err(·, ·) measures the distance between two 261

gradients. Note that w could be either continuous, 262

which leads to weighted training on the selected 263
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Figure 1: Illustration of the proposed TAGCOS pipeline.

subset, or with discrete values, which reduces to264

regular training on the coreset.265

However, due to the high diversity of the large-266

scale instruction tuning dataset, simply conduct-267

ing selection over the entire dataset potentially268

causes over-sampling in certain domains and under-269

sampling in others. To address this, we introduce270

clustering to ensure balanced sampling. By split-271

ting the dataset into clusters and selecting samples272

from each cluster, we ensure a more even distribu-273

tion across different domains.274

Overall, as illustrated in algorithm 1, the pro-275

cess for coreset construction could be summarized276

as follows: (1) compute the gradient features277

G = {gi | gi = ∇θℓ(z; θ)}Ni=1. Inspired by Xia278

et al. (2024), we compute the low-dimensional ap-279

proximations of gradient features for each data280

samples z over the whole dataset D; (2) perform281

gradient-based clustering, we perform k-means282

clustering (Hartigan and Wong, 1979) given the gra-283

dients features and get k clusters and corresponding284

centroids ce for each cluster, which effectively gath-285

ers the samples with similar characteristics into one286

cluster; (3) coreset selection via Optimal Match-287

ing Pursuit, we compute the data samples matches288

best with the centroids in each cluster with an or-289

thogonal matching pursuit algorithm (Killamsetty290

et al., 2021).291

3.1 Gradient Features Computation292

We perform an efficient gradient feature approx-293

imation computation over the entire dataset. To294

speed up gradient computation, we follow Xia et al.295

(2024) to use LoRA (Hu et al., 2022) and random296

projections (Park et al., 2023) to reduce the number297

of dimensions in gradient features. Meanwhile, we298

propose using checkpoints sampled before conver-299

gence to compute gradient features. This is inspired300

by the fact that the gradient norm calcuated dur-301

ing the warmup phase is significantly larger than 302

checkpoints at convergence. Therefore, these gradi- 303

ent features encapsulate more essential information 304

that reflects how each sample affect the model’s up- 305

dates. The effectiveness of this strategy is verified 306

by results in table 5. 307

Adam Gradient Computation Function. The 308

gradients based on Adam optimizer Kingma and 309

Ba (2015) can be computed with these steps: 310

θt+1 − θt = −ηtgi(z, θt) (2) 311

gi(z, θ
t) ≜

mt+1

√
vt+1 + ϵ

(3) 312

mt+1 =
(
β1m

t + (1− β1)∇ℓ(z; θt)
)
/(1− βt

1)
(4)

313

vt+1 =
(
β2v

t + (1− β2)(∇ℓ(z; θt))2
)
/(1− βt

2)
(5)

314

where β1 and β2 are hyperparameters, and ϵ is a 315

small constant. gi(z, θt) represents the first-order 316

expansion for the Adam dynamics, requiring model 317

gradients and optimizer states from the training pro- 318

cess. Warmup training on a subset of the dataset 319

provides the necessary checkpoints for these com- 320

putations. As mentioned above, we will sample 321

checkpoints before convergence to provide a more 322

accurate gradient estimation. 323

Warmup Training with LoRA. LoRA (Hu 324

et al., 2022) is used to reduce the number of train- 325

able parameters and accelerate the inner products 326

in gi(z, θ
t). LoRA freezes the pre-trained weights 327

and adds a low-rank adaptor to the selected fully 328

connected layers. We use LoRA to perform in- 329

struction tuning on pre-trained base model (e.g., 330

LLAMA-2-7B) on a random subset Dwarmup ⊆ D 331

for N epochs, checkpointing the model after each 332

epoch to store {θi}Ni=1. The gradient when training 333

with LoRA, denoted ∇̂ℓ(·; θ) ∈ RP , is much lower 334

4



dimensional than the model itself; for example, in335

LLAMA-2-7B, ∇̂ℓ(·; θ) is less than 2% the size of336

θ. We use ∇̂ℓ(·; θ) to compute the Adam update337

and denote it as ĝi(·, θ).338

Projecting the gradients. Following Xia et al.339

(2024), we also introduce a random project to the340

LoRA gradients for further reducing the feature341

dimension. For a given data sample z and model342

checkpoint θi, we can compute a d-dimensional343

projection of the LoRA gradient ∇̂ℓ(z; θi) =344

Π⊤∇̂ℓ(z; θi), with each entry of Π ∈ RP×d drawn345

from a Rademacher distribution (Johnson, 1984)346

(i.e., Πij ∼ U({−1, 1})). In total, we compute347

gradient features for each data sample z with348

g̃i(z, ·) = Π⊤ĝi(z, ·).349

3.2 Gradient-based Clustering350

Due to the diversity of instruction tuning dataset,351

direct sampling over the entire dataset may not352

cover all the regions, since the training samples353

from each domain are not evenly distributed. To354

further improve the effectiveness and robustness of355

data selection, we divide the entire dataset into sev-356

eral clusters and then perform gradient matching357

algorithm on each cluster itself. With the gradi-358

ent features gi from the above step, we conduct359

K-means clustering on them to assign each data360

sample into a cluster {Ck}Kk=1. Also, we can obtain361

cluster centroids {µk}Kk=1 of these clusters during362

the clustering process, where each centroid shares363

the dimension with gradient features.364

3.3 Coreset Selection via Optimal Matching365

Pursuit366

In each cluster, we hope to get the subset that min-367

imizes the difference between the selected subset368

and the whole cluster. Instead of doing heuristic369

selection like selecting all the instances with short-370

est distance with cluster centroids, we formalize371

this as an optimization problem and introduce an372

orthogonal matching pursuit (OMP) algorithm (Kil-373

lamsetty et al., 2021; Elenberg et al., 2016) to solve374

it. Similar with equation 1, our objective is to mini-375

mize the difference between selected Dk
sub in k-th376

cluster and the whole cluster Dk,377

Err(wk, Dk
sub;D

k) ≜378 ∥∥∥∥∥∥
∑

z∈Dk
sub

wk
z∇θℓ(z; θ)−

1

|Dk|
∑
z∈Dk

∇θℓ(z; θ)

∥∥∥∥∥∥
(6)

379

Err(wk, Dk
sub;D

k) ≜ 380∥∥∥∥∥∥
∑

z∈Dk
sub

wk
z∇θℓ(z; θ)−

1

|Dk|
∑
z∈Dk

∇θℓ(z; θ)

∥∥∥∥∥∥
(7)

381

Considering the regularization coefficient λ, we 382

can have Errλ(D
k
sub) as: 383

Errλ(w,Dk
sub;D

k) ≜ Err(w,Dk
sub, D

k) + λ ∥w∥2 . 384

Here, we approximately regard the centroids of 385

each cluster as the average gradients of the whole 386

cluster, 387

1

|Dk|
∑
z∈Dk

∇θℓ(z; θ) = cek (8) 388

We next study the optimization algorithm for 389

solving equation 7. Our goal is to minimize 390

Errλ(D
k
sub) subject to the constraint Dk

sub : 391

|Dk
sub| < dk. We can convert this into maximiza- 392

tion problem over the set Dk
sub , i.e., 393

max
Dk

sub

Fλ(D
k
sub;D

k), (P-k) 394

s.t., |Dk
sub| ≤ dk and Dk

sub ⊆ Dk, 395

Here the objective Fλ(D
k
sub;D

k) is defined as 396

Fλ(D
k
sub;D

k) ≜ Lk
max −min

w
Errλ(w,D

k
sub;D

k), 397

where Lk
max is a constant to make the objective 398

non-negative. Note that we minimize Errλ(Dk
sub) 399

subject to the constraint Dk
sub : |Dk

sub| < dk until 400

Errλ(Dk
sub) < ϵ, where ϵ is the tolerance level and 401

tk is the target num of samples in the selected sub- 402

set. Note that minimizing Errλ(Dk
sub) is equivalent 403

to maximizing Fλ(D
k
sub). Given this, we use OMP 404

to solve this optimization problem, details of OMP 405

are presented in Algorithm 2. 406

In each cluster k, we select data samples that 407

can minimize Errλ(Dk
sub) with the above-described 408

OMP algorithm. After finishing the selection on 409

each cluster, we combine the selected subset Dk
sub 410

to be Dsub and use it to train the target model. 411

4 Theoretical Analysis 412

In this section, we analyse the benefits of our gra- 413

dient clustering in coreset selection. The general 414

conclusion is that coreset selection problem formu- 415

lated in Problem (P) is essentially a Submodular 416
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Algorithm 2 OMP
Require: Error function Errλ, target subset size k,

tolerance ϵ, full dataset D
Dsub ← ∅
r ← ∇wErrλ(w, Dsub;D)

∣∣
w=0

while |Dsub| ≤ k and Errλ(w, Dsub;D) ≥ ϵ
do
e = argmaxj |rj |
Dsub ← Dsub ∪ {e}
w← argminw Errλ(w, Dsub;D)
r ← ∇wErrλ(w, Dsub;D)

end while
return Dsub,w

Function Maximization (SFM) problem, which is417

NP-hard (Bach et al., 2013). Solving large-scaled418

submodular function maximization problems is ex-419

tremely challenging, potentially leads to inferior420

solution. Our gradient clustering strategy natu-421

rally decomposes the original problem into several422

small scaled problems, significantly reduces the423

difficulty in optimization, making finding solutions424

with high-precision possible. The detailed results425

are presented in the following theorems. These426

theorems are adapted from the classical analysis427

on OMP, which can be found in the studies (Elen-428

berg et al., 2018; Wolsey, 1982). We adopt them to429

understand the superiority of our coreset selection430

approach.431

To unify the problems of coreset selection with432

and without clustering, we extend the problem (P-433

k) as follows:434

max
Dsub

Fλ(Dsub;D), (P)435

s.t., |Dsub| ≤ d and Dsub ⊆ D,436

where Dsub and D are the coreset and the full437

dataset, respectively. c is the constant to control the438

coreset size.439

Lemma 1 If the coreset size |Dsub| ≤ c and440

maxz∈D ∥∇θℓ(z; θ)∥2 ≤ G, then Fλ(Dsub;D) is441

γD-weakly submodular with γD = λ
λ+dG2 .442

Theorem 1 If maxz∈D ∥∇θℓ(z; θ)∥2 ≤ G and443

maxz∈Dk ∥∇θℓ(z; θ)∥2 ≤ Gk for cluster k. Let444

D∗
sub and Dk∗

sub be the optima of Problems P and445

P − k, with k = 1, . . . ,K. Then, the followings446

hold:447

(i) For problem (P), OPM runs with stopping cri-448

teria Fλ(Dsub;D) ≤ ϵ achieves set Dsub with449

|Dsub| ≤
|D∗

sub|
γD

log(Lmax
ϵ ).450

(ii) For problem (P-k), OPM runs with stopping 451

critia Fλ(D
k
sub;D

k) ≤ ϵk achieves set Dk
sub 452

with |Dk
sub| ≤

|Dk∗
sub|

γ
Dk

log(L
k
max
ϵk

). 453

Noting that with a proper clustering method mak-
ing D∗

sub ≈ ∪Kk=1D
k∗
sub and it is reasnonable to

set Lk
max
ϵk

= Lmax
ϵ . Since γD = λ

λ+dG2 and
γDk = λ

λ+dkG
2
k

, it can be expected that γD ≪ γDk .
Thus the above theorem demonstrates that

K∑
k=1

|Dk∗
sub|

γDk

log(
Lk
max

ϵk
)≪

|D∗
sub|
γD

log(
Lmax

ϵ
).

That is, to achieve comparable accuracy, the union 454

of the coreset selected from each cluster can be 455

much smaller than that from the whole datasets, 456

which verifies the benefits of gradient clustering. 457

This is also consistent with our experimental ob- 458

servation. i.e., the running time of OMP without 459

gradient clustering is significantly longer than that 460

with gradient clustering. 461

5 Experiment 462

In this section, we conduct experiments to answer 463

the following research questions: 464

• Does TAGCOS achieve superior performance 465

over other unsupervised selection methods? 466

(Table 1) 467

• How effective is the generalization of TAG- 468

COS, and can it be transferred to different 469

models? (Table 2) 470

• What is the best configuration for TAGCOS, 471

including the selection proportion, the num- 472

ber of clusters, and the selection of gradient 473

checkpoints? (Table 3, Table 4, Table 5) 474

5.1 Setup 475

Datasets. To illustrate that TAGCOS is task ag- 476

nostic, we chose diverse tasks for both training 477

and evaluation. For the training set, we combined 478

17 popular instruction datasets totaling 1,068,549 479

examples, following Wang et al. (2023a); Ivison 480

et al. (2023). These datasets vary in format and 481

reasoning tasks, with annotations by humans or the 482

OpenAI API. For details, please refer to Appendix. 483

For evaluation, we selected TydiQA (Clark 484

et al., 2020), MMLU (Hendrycks et al., 2020), and 485

BBH (Suzgun et al., 2022). TydiQA is a multilin- 486

gual QA benchmark covering 11 languages, requir- 487

ing models to extract answers from passages given 488
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a question. F1 is used to as the evaluation metric489

here. MMLU features multiple-choice questions490

across 57 subjects, from elementary to professional491

levels. It asks LLM to select a single correct an-492

swer given several options. Accuracy is used as the493

metric here. BBH includes 23 challenging tasks494

from Big-Bench, testing general reasoning skills.495

Implementation Details. Following Xia et al.496

(2024), we performed warmup training on a ran-497

domly selected 5% of the dataset for 4 epochs and498

computed 8192-dimensional gradient features on499

the full dataset D. The learning rate for warmup500

training was set to 2e-5, with a batch size of 32.501

Using these gradient features, we selected 5% of502

the original dataset using our selection methods,503

totaling approximately 53,427 samples. We used504

100 clusters for K-means clustering and set the505

OMP algorithm tolerance at 0.01. After obtaining506

the subset, we fine-tuned the Llama-2-7B (Touvron507

et al., 2023) and Mistral-7B (Jiang et al., 2023)508

models using LoRA (Hu et al., 2022) to reduce509

memory usage. For LoRA training, we used the510

AdamW optimizer with a learning rate of 2e-5 and511

4 epochs. The context length was set to 1,024, with512

a batch size of 32.513

5.2 Experimental Results514

Baseline. The main experiment results are pre-515

sented in Table 1. Several baselines were consid-516

ered for comparison: (1) Uniform: randomly se-517

lecting the data samples from the original dataset.518

(2) Hardest Sampling: select the data samples519

with the highest perplexity. (3) Perplexity Sam-520

pling (Marion et al., 2023; Marcus et al., 1993):521

select the data samples with the lowest perplexity.522

(4) K-Center-Greedy with different represen-523

tations (Chen et al., 2023a): converting instruc-524

tion data into embedding vectors, performing K-525

means clustering, and selecting samples by itera-526

tively choosing the one closest to the cluster center527

among the remaining instances. Here, we consider528

3 different embedding spaces, BERT (Reimers and529

Gurevych, 2019), Llama (Touvron et al., 2023)530

and Gradient. We denote them as K-CenterBERT ,531

K-CenterLlama and K-CenterGrad. (5) OMP (Kil-532

lamsetty et al., 2021): using the OMP algorithm533

over the entire dataset, with the mean gradient fea-534

ture across the dataset as the matching target.535

Main Experiments. TAGCOS achieves the best536

performance across all tasks, confirming its effi-537

cacy in data selection for instruction tuning. TAG-538

COS is the only baseline that consistently per-539

forms well. Although K-CenterGrad excels on the 540

MMLU benchmark, it fails on TydiQA and is equiv- 541

alent to uniform sampling on BBH, underscoring 542

TAGCOS’s robustness. 543

Effectiveness of each Component in TAG- 544

COS . The key difference between TAGCOS and 545

K-CenterGrad lies in their selection mechanisms. 546

While K-means clustering on gradient features can 547

achieve strong results on individual benchmarks, it 548

is insufficient for consistent overall performance. 549

This further demonstrates the effectiveness of the 550

OMP coreset selection algorithm. Compared to 551

OMP, which does not use clustering, TAGCOS de- 552

livers better results. This reinforces our perspective 553

that clustering is essential for managing the diver- 554

sity in instruction datasets. 555

Gradient Features vs. Other Embeddings. We 556

evaluated the K-Center algorithm with various data 557

representation schemes, including BERT, Llama, 558

and Gradient. In the absence of a selection mech- 559

anism, Llama embeddings, which utilize the last 560

token’s hidden representation from the last layer, 561

showed the best results. We attribute this to the 562

closer alignment of Llama features with decoder- 563

only LLM behavior. Additionally, gradient features 564

require an appropriate selection mechanism to ex- 565

hibit their full potential. 566

5.3 Ablation Study and Analysis 567

Performance of TAGCOS on Different Models. 568

Table 2 demonstrates that the dataset generated by 569

the Llama-2-7B model can be effectively utilized 570

to train a superior Mistral-7B instruction model. 571

By leveraging the datasets selected by TAGCOS 572

on the Llama-2-7B model, the trained Mistral-7B 573

model shows significant improvements over uni- 574

form selection methods, consistently outperform- 575

ing its counterparts. This highlights TAGCOS’s 576

ability to identify transferrable and valuable data 577

samples, indicating its potential for future proxy 578

data selection tasks. 579

5% data can achieve comparable results with 580

full dataset. Table 3 reveals that training with 581

only 5% of the data selected by TAGCOS results 582

in performance comparable to that of the entire 583

dataset. This can be attributed to the presence of 584

noisy samples in the full dataset, which are less 585

effective for fine-tuning. 586

How to determine the cluster numbers. Ta- 587

ble 4 shows that the ideal cluster number for our 588

setup is 100. Fewer clusters, especially less than 589

the original dataset size of 18, fail to achieve good 590
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TydiQA MMLU BBH average
Uniform 52.08 46.9 41.39 46.79
Hardest 51.58 45.68 38.15 45.13
Perplexity 51.66 46.89 40.74 46.43
K-CenterBERT 50.05 47.16 39.91 45.7
K-CenterLlama 52.72 46.07 39.07 45.95
K-CenterGrad 38.83 48.73 41.48 43.01
OMP 53.64 46.10 40.47 46.82
TAGCOS 52.78 48.01 44.26 48.35

Table 1: Experimental results on selecting a mix of 17 instruction datasets. The evaluations are performed on the
TydiQA, MMLU, and Big Bench Hard (BBH) datasets. All results are based on 5% data samples selected by the
corresponding methods and trained on Llama-2 7B models.

TydiQA MMLU BBH Average
Llama-2 7B

Uniform 52.08 46.9 41.39 46.79
TAGCOS 52.78 48.01 44.26 48.35

Mistral 7B
Uniform 57.59 61.34 56.48 58.47
TAGCOS 61.49 61.79 57.87 60.38

Table 2: Experimental results showing the impact of
transferring TAGCOS-selected datasets from Llama-2
7B to Mistral-7B. Consistent improvement on TydiQA,
MMLU, and BBH benchmarks demonstrate the trans-
ferability.

prop TydiQA MMLU BBH Average
5% 52.78 48.01 44.26 48.35
25% 52.13 49.95 43.33 48.47
100% 51.44 52.96 44.35 49.58

Table 3: Results of experiments with different selection
proportions using the Llama-2 7B model.

results. Additionally, merely increasing the number591

of clusters does not ensure improved performance.592

TAGCOS tends to degrade to plain OMP as the593

number of clusters increases. When the cluster594

count matches the number of samples, the perfor-595

mance is identical to plain OMP.596

# Cluster TydiQA MMLU BBH Average
10 54.04 47.71 40.00 47.25
20 52.58 45.76 41.11 46.48
50 54.84 47.09 42.96 48.30
100 52.78 48.01 44.26 48.35
200 52.57 46.87 42.87 47.44

Table 4: Experimental results show the results on select-
ing different numbers of clusters.

Selecting early stopped checkpoints for com-597

puting gradients. In Table 5, “Sampled from598

steps before convergence” means all the warmup 599

checkpoint used for computing gradient features 600

comes from the steps before convergence. “Sam- 601

pled from all training steps” represents that these 602

checkpoints are sampled across the entire training 603

process evenly. We argue that “early-selecting”, 604

i.e., sample checkpoints from steps before conver- 605

gence, works better since the gradients before con- 606

vergence provide more effective reactions for data 607

samples for training. The results in this table also 608

support this idea. In total, it is better to have a 609

warmup checkpoint sampled from steps before con- 610

vergence to get better results on TAGCOS. 611

TydiQA MMLU BBH Average
Sampled from steps before convergence

52.78 48.01 44.26 48.35
Sampled from all training steps.

53.14 47.16 39.54 46.61

Table 5: Experimental results study the warmup check-
point selection.

6 Conclusion 612

This paper focuses on the effective selection of 613

coresets for LLMs in instruction tuning. To ad- 614

dress the challenge of accurate data representation, 615

we utilize gradient features, which indicate the in- 616

fluence of each data sample on the training process. 617

Additionally, to handle diverse collections of in- 618

struction data and ensure selection efficiency, we 619

propose clustering similar data and applying an 620

efficient greedy algorithm for selection. Our exper- 621

imental results demonstrate the effectiveness of the 622

entire pipeline. 623
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7 Limitation624

Despite its impressive performance, TAGCOS is625

bottlenecked by gradient feature estimation. The626

gradient feature computation stage limits its scal-627

ability to larger datasets. To effectively run TAG-628

COS on extensive datasets, improvements in the629

efficiency of gradient computation are needed.630
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Dataset Sourced from # Instances License
SuperNI NLP datasets + Human-written Instructions 96,913 Apache-2.0
CoT NLP datasets + Human-written CoTs 100,000 ODC-BY
Flan V2 NLP datasets + Human-written Instructions 100,000 Apache-2.0
Dolly Human-written from scratch 15,011 Apache-2.0
Self-instruct Generated w/ vanilla GPT3 LM 82,439 Apache-2.0
Unnatural Instructions Generated w/ Davinci-002 68,478 MIT
Code-Alpaca Generated w/ Davinci-003 20,022 Apache-2.0
GPT4-Alpaca Generated w/ Davinci-003+GPT4 52,002 Apache-2.0
Baize Generated w/ ChatGPT 210,311 GPL-3.0
ShareGPT User prompts + outputs from various models 168,864 Apache-2.0
WizardLM Generated w/ GPT-3.5-Turbo 30,000 -
Oasst1 Human-written from scratch 33,919 Apache-2.0
Hardcoded - 14 ODC-BY
LIMA Human-written from scratch 1,030 CC-BY-NC-SA
Science Literature NLP datasets 7,544 ODC-BY
Open-Orca Generated w/ GPT4 30,000 MIT
Standford Alpaca Generated w/ Davinci-003 52,002 Apache-2.0

Table 6: Details of datasets used in our paper.
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