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Abstract

Although LLMs have shown promising poten-001
tial in vulnerability detection, this study reveals002
their limitations in distinguishing between vul-003
nerable and similar-but-benign patched code004
(only 0.04 - 0.06 accuracy). It shows that005
LLMs struggle to capture the root causes of006
vulnerabilities during vulnerability detection.007
To address this challenge, we propose enhanc-008
ing LLMs with multi-dimension vulnerability009
knowledge distilled from historical vulnerabil-010
ities and fixes. We design a novel knowledge-011
level Retrieval-Augmented Generation frame-012
work VUL-RAG, which improves LLMs with013
an accuracy increase of 22% - 25% in identify-014
ing vulnerable and patched code. Additionally,015
VUL-RAG generated vulnerability knowledge016
can (1) serve as high-quality explanations to017
improve manual detection accuracy (from 60%018
to 77%), and (2) detect 10 previously-unknown019
bugs in the recent Linux kernel release (6 have020
been confirmed by developers).021

1 Introduction022

Software vulnerabilities can cause severe conse-023

quences. To date, there has been a large body of024

research on automated vulnerability detection, uti-025

lizing traditional program analysis or deep learning026

techniques. More recently, the advance of large027

language models (LLMs) further boosts learning-028

based vulnerability detection. Due to the strong029

code comprehension capabilities, LLMs show030

promise in analyzing malicious behaviors (e.g., de-031

tecting bugs or vulnerabilities) in code (Zhang et al.,032

2023; Yang et al., 2024; Shestov et al., 2024; Li033

et al., 2023a; Sun et al., 2023; Ding et al., 2024a;034

Widyasari et al., 2024; Zhou et al., 2024).035

While significant research has been dedicated to036

evaluating LLMs for vulnerability detection (Ding037

et al., 2024b; Gao et al., 2023), their ability to ac-038

curately distinguish between vulnerable code and039

its corresponding patched code remains unclear.040

Given that vulnerable and patched code pairs often041

share high textual similarity, addressing this ques- 042

tion can reveal whether LLMs genuinely capture 043

the root causes of vulnerabilities or merely overfit 044

to superficial code features when classifying code 045

as vulnerable or benign. Additionally, this question 046

is closely related to the robustness of LLMs in vul- 047

nerability detection, which reflects how well LLMs 048

perform in distinguishing between similar code. 049

Empirical Study. To fill this gap, we perform 050

an empirical study to evaluate the capabilities of 051

LLMs in distinguishing between vulnerable and 052

patched code. We first construct a new benchmark 053

PairVul, which includes 592 high-quality pairs of 054

vulnerable and patched functions extracted from 055

real-world CVEs of complicated software systems. 056

Our experiments reveal that existing LLMs strug- 057

gle to distinguish between vulnerable and patched 058

code: for majority (94% - 96%) cases, existing 059

LLMs cannot identify the vulnerable code as vul- 060

nerable while identify its patched code as benign 061

at the same time. In addition, we further investi- 062

gate how advanced prompts proposed in recent vul- 063

nerability detection work (Wen et al., 2024; Zhou 064

et al., 2024) can eliminate such limitations, includ- 065

ing two Chain-of-Thought prompts and one CWE 066

description enhanced prompt. We find that all these 067

advanced strategies bring limited improvement for 068

LLMs, with only 0.01 - 0.16 accuracy in correctly 069

identifying both vulnerable and patched code at the 070

same time. Based on further analysis, we find that 071

LLMs show unstable bias by dominantly identify- 072

ing most code as vulnerable or benign when work- 073

ing with different prompts. Particularly, LLMs fail 074

to distinguish the subtle textual difference between 075

vulnerable and patched code, such as relocating or 076

replacing method invocations and modifying con- 077

ditional checks. In general, LLMs still fall short 078

in understanding vulnerable behaviors in code. 079

Enhancement Framework VUL-RAG. To ad- 080

dress this challenge, we propose VUL-RAG, a 081

novel knowledge-level Retrieval-Augmented Gen- 082
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eration (RAG) framework to enhance LLM-based083

vulnerability detection. The key insight behind084

VUL-RAG is to distill high-level, generalizable085

vulnerability knowledge from historical vulnera-086

bilities and fixes, which can guide LLMs to more087

accurately understand vulnerable and benign be-088

haviors in code. Specifically, VUL-RAG proposes089

a novel multi-dimension representation (including090

perspectives of functional semantics, vulnerabil-091

ity root causes, and fixing solutions) for vulnera-092

bility knowledge. The representation focuses on093

high-level features of vulnerabilities rather than094

lexical code details. Based on this representa-095

tion, VUL-RAG incorporates a three-step work-096

flow for vulnerability detection. First, VUL-RAG097

constructs a vulnerability knowledge base by ex-098

tracting multi-dimension knowledge from existing099

CVE instances and fixes via LLMs; Second, for100

the given code, VUL-RAG retrieves the relevant101

vulnerability knowledge with similar functional se-102

mantics; Finally, VUL-RAG uses LLMs to assess103

the vulnerability of the given code by reasoning104

through the presence of vulnerability causes and105

fixing solutions from the retrieved knowledge.106

Evaluation. We evaluate VUL-RAG in extensive107

settings. (1) Evaluation on Distinguishing Capa-108

bilities. Our results show that VUL-RAG can sub-109

stantially enhance the ability of various LLMs to110

distinguish between vulnerable and patched code111

(i.e., achieving 22% -25% improvements in pair ac-112

curacy). Meanwhile, VUL-RAG achieves an 11%-113

13%/11% increase in balanced precision/recall for114

vulnerability detection. Our ablation study shows115

the superiority of our knowledge-level RAG com-116

pared to existing code-level RAG, i.e., 17%-23%117

increase in pair accuracy. (2) User Study on Man-118

ual Vulnerability Detection. To evaluate the quality119

and usability of VUL-RAG generated vulnerabil-120

ity knowledge, we conduct a user study in which121

participants are asked to confirm vulnerability de-122

tection results (both true positives and false alarms)123

with or without the assistance of VUL-RAG gen-124

erated vulnerability knowledge. The results show125

that the vulnerability knowledge improves manual126

confirmation accuracy from 60% to 77%. User127

feedback also confirms the high quality of the gen-128

erated knowledge in terms of the helpfulness, pre-129

ciseness, and generalizability. (3) Case Study on130

Detecting Previously-Unknown Vulnerabilities. To131

evaluate whether VUL-RAG generated vulnerabil-132

ity knowledge can detect new vulnerabilities, we133

apply VUL-RAG to the recent Linux kernel re- 134

lease (v6.9.6, June 2024). VUL-RAG detects 10 135

previously-unknown bugs, 6 of which have been 136

confirmed by the Linux community. Our extensive 137

evaluation shows that high-level vulnerability 138

knowledge is a promising direction for enhanc- 139

ing LLM-based vulnerability detection. 140

This paper makes the following contributions: 141

• We perform the first study to reveal the lim- 142

ited capabilities of LLMs in differentiating 143

vulnerable code from patched code. 144

• We propose VUL-RAG, a novel knowledge- 145

level RAG framework to enhance LLM-based 146

vulnerability detection with generalizable and 147

multi-dimensional vulnerability knowledge 148

distilled from historical vulnerabilities and 149

fixes. 150

• We perform quantitative experiments, user 151

study, and case analysis to extensively eval- 152

uate VUL-RAG. The results not only show 153

the effectiveness of VUL-RAG in improving 154

overall precision/recall and distinguishing ca- 155

pabilities of LLMs, but also show the usability 156

of VUL-RAG in helping manual vulnerabil- 157

ity comprehension and detecting previously- 158

unknown bugs for complex software (e.g., 159

Linux Kernel). Data and code of our work 160

are at (rep, 2024) with MIT license. 161

2 Related Work 162

Empirical Studies. Many efforts have been ded- 163

icated to evaluating LLMs in vulnerability detec- 164

tion (Khare et al., 2023; Ding et al., 2024b; Gao 165

et al., 2023), covering diverse benchmarks, LLMs, 166

and metrics. Different from existing studies, we 167

focus on evaluating the capabilities of LLMs in dis- 168

tinguishing between vulnerable and patched code. 169

Risse et al. (Risse and Böhme, 2024) evaluate such 170

capabilities of small pre-trained models (e.g., Code- 171

BERT, UniXcoder, and PLBart), while we study 172

more recent instructed and large LLMs. Ullah et 173

al. (Ullah et al., 2024) evaluate such capabilities of 174

LLMs on a small sample (only 30 pairs) while we 175

extensively study 597 pairs with both quantitative 176

and qualitative analysis. 177

Enhancing LLMs in Vulnerability Detection. 178

The majority of existing work focuses on prompt 179

engineering (Zhou et al., 2024; Wu et al., 2023), 180

such as chain-of-thought (Wei et al., 2022; Zhang 181

et al., 2022) and few-shot learning (Brown et al., 182
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2020), to facilitate more powerful LLM-based vul-183

nerability detection. Additionally, recent work ex-184

plores fine-tuning approaches (Yang et al., 2024;185

Shestov et al., 2024; Mao et al., 2024) or integra-186

tion with static analysis (Li et al., 2023a; Sun et al.,187

2023; Li et al., 2024a; Wen et al., 2024; Li et al.,188

2024b) to enhance LLMs in vulnerability detection.189

As fine-tuning enhancement often works for small190

models with high-quality training data and static191

analysis enhancement often works on specific types192

of bugs, in this work, we mainly focus on enhance-193

ment techniques with prompt engineering.194

Retrieval-Augmented Generation (RAG) for195

Code-related Tasks. RAG has been widely ex-196

plored in many code-related tasks, including code197

generation (Wang et al., 2024), code translation198

(Bhattarai et al., 2024), program repair (Wang et al.,199

2023), and vulnerability detection in smart con-200

tracts (Yu, 2024). While existing work remains on201

code-level RAG (retrieving and augmenting with202

code), VUL-RAG is novel in using high-level, gen-203

eralizable knowledge to augment generation for the204

source code vulnerability detection task.205

3 Empirical Study206

207 3.1 Experimental Setup208

209 3.1.1 Research Questions of Study210

The following RQs aim to evaluate how LLMs211

distinguish between vulnerable and patched code.212

• RQ1: How effectively do LLMs distinguish213

between vulnerable and patched code?214

• RQ2: How do state-of-the-art prompting215

strategies improve LLMs in distinguishing be-216

tween vulnerable and patched code?217

3.1.2 Studied LLMs and Baselines218

We include four state-of-the-art LLMs that have219

been widely used in vulnerability detection, in-220

cluding two closed-source models, i.e., GPT-4-221

turbo (gpt, 2024), Claude Sonnet 3.5 (cla, 2024),222

and two open-source models, i.e., Qwen2.5-223

Coder-32B-Instruct (qwe, 2024), DeepSeek-V2-224

Instruct (dee, 2024).225

In RQ1, we evaluate the capabilities of studied226

LLMs with a basic prompt (Purba et al., 2023). In227

RQ2, we investigate three state-of-the-art prompt-228

ing strategies proposed in recent LLM-based vul-229

nerability detection work (Wen et al., 2024; Zhou230

et al., 2024). These include (1) two prompts that231

combine role-oriented with chain-of-thought, one232

involving an initial explanation of code behavior,233

and the other focusing on the root causes reasoning 234

of vulnerabilities (denoted Cot-1 and Cot-2); and 235

(2) a prompt enhanced with CWE descriptions (de- 236

noted CWE-enhanced). The detailed prompts and 237

baseline settings are in Appendix B. 238

3.1.3 Benchmark 239

Existing widely-used vulnerability detection 240

benchmarks, such as BigVul (Fan et al., 2020), De- 241

vign (Zhou et al., 2019) and Reveal (Chakraborty 242

et al., 2022) are not directly applicable for our study, 243

due to (1) the lack of corresponding patched ver- 244

sions for vulnerable code (e.g., Devign and Re- 245

veal), and (2) the absence of verified correctness 246

for patched code. For example, although BigVul 247

includes patched code, its patches may have been 248

subsequently modified in later CVEs, making their 249

correctness unreliable. Therefore, we construct a 250

new benchmark PairVul, which specifically targets 251

high-quality pairs of vulnerable functions and their 252

corresponding patched functions. Our benchmark 253

construction process includes three key steps. (1) 254

Vulnerable and Patched Code Collection: We ex- 255

tract function-level pairs of vulnerable and patched 256

code, along with descriptions from existing CVEs 257

of real-world systems (i.e., Linux kernel). Particu- 258

larly, we focus on Top-5 prevalent CWEs (i.e., 416, 259

476, 362, 119, 787). (2) Patched Code Verifica- 260

tion: To ensure the reliability of the patched code, 261

we manually summarize multiple filtering rules to 262

verify the patched code is not subsequently revert- 263

ed/modified by other commits. (3) Pair Selection: 264

to ensure the diversity of the benchmark and con- 265

trol the benchmark scale, we randomly sample one 266

third of pairs of vulnerable and patched functions in 267

each CVE, to further form our final benchmark. We 268

exclude cases where the code length exceeds the 269

current token limit of studied LLMs (i.e., 16,384 270

tokens). In this way, PairVul includes 592 pairs 271

across 373 CVEs. Detailed construction procedure 272

and benchmark statistics are in Appendix A. 273

3.1.4 Metrics 274

We focus on the following metrics. pairwise accu- 275

racy calculates among all pairs, the ratio of pairs 276

whose vulnerable and patched code are both cor- 277

rectly identified. We use Balanced Recall (de- 278

fined as
(

#Truevul
#Totalvul

+ #Truenvul
#Totalnvul

)
/2) and Balanced 279

Precision (defined as
(

#Truevul
#Predictvul

+ #Truenvul
#Predictnvul

)
/2) 280

to evaluate the precision and recall across both 281

vulnerable and non-vulnerable instances. Notably, 282
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Balanced Recall is equivalent to the overall accu-283

racy given the even distribution of vulnerable and284

non-vulnerable samples on PairVul.285

Table 1: Evaluation of Basic LLMs
LLMs Pair Acc. Bal. Recall Bal. Pre.
GPT-4 0.05 0.50 0.50
Claude 0.05 0.49 0.49
Qwen 0.04 0.49 0.49

DeepSeek 0.06 0.48 0.48

3.2 RQ1: Basic Differentiating Capabilities286

Table 1 presents the effectiveness of LLMs with287

the basic prompt. All LLMs show limited capa-288

bilities of distinguishing vulnerable and patched289

code. The low pairwise accuracy (i.e., 0.04 - 0.06)290

show that LLMs fail to accurately identify a pair291

of vulnerable and patched code for majority cases292

(94% - 96%). Additionally, all LLMs show limited293

balanced recall and precision (not more than 0.50),294

which is similar as random guess.295

3.3 RQ2: Impact of Advanced Prompting296

Table 2 shows that the advanced prompts bring297

limited improvements on the distinguishing capa-298

bilities of LLMs. Even for the best case (CoT-2299

for Qwen), its pairwise accuracy is only improved300

to 0.16, while others bring fewer improvements301

and some (CWE-enhanced) even harm the pair ac-302

curacy. Additionally, the balanced precision and303

accuracy still remain limited (lower than 0.54).304

Table 2: Impacts of Enhancement Techniques
Tech. LLM Pair Acc. Bal. Recall Bal. Pre.

CoT-1

GPT-4 0.14 0.49 0.49
Claude 0.14 0.51 0.51
Qwen 0.02 0.51 0.54

DeepSeek 0.09 0.50 0.50

CoT-2

GPT-4 0.10 0.51 0.52
Claude 0.14 0.53 0.53
Qwen 0.16 0.52 0.52

DeepSeek 0.12 0.51 0.51

CWE
Enhanced

GPT-4 0.03 0.50 0.50
Claude 0.04 0.50 0.51
Qwen 0.03 0.50 0.49

DeepSeek 0.01 0.50 0.42

Table 3: Vulnerable Code Identification Ratio
Technique GPT-4 Claude Qwen DeepSeek

Basic LLMs 0.74 0.71 0.23 0.44
CoT-1 0.42 0.37 0.04 0.15
CoT-2 0.71 0.64 0.42 0.63

CWE-Enhanced 0.19 0.12 0.16 0.01

Further Analysis. We perform quantitative and305

qualitative analysis of RQ1 and RQ2 results.306

Unstable Bias. Table 3 shows the ratio of cases307

that LLMs identify the code as vulnerable when308

working with different prompts. Interestingly, we309

find that LLMs show unstable biases although all310

the prompts are neutral without inductive instruc- 311

tions. With a basic prompt, GPT-4 and Claude tend 312

to consider majority code (over 70%) as vulnerable 313

while Qwen oppositely considers the majority code 314

(77%) as benign. The CoT-1 (explaining the code 315

behaviors first) and CWE-enhanced (including the 316

relevant CWE descriptions) dramatically lead all 317

LLMs to consider most code as benign. The results 318

further confirm that LLMs cannot capture the se- 319

mantic difference between vulnerable and patched 320

code, thus showing unstable bias when instructed 321

with different neutral prompts. 322

Case Analysis. We manually sample and analyze 323

code pairs where all the studied LLMs fail to dis- 324

tinguish between vulnerable and patched code. We 325

further confirm that it is challenging for LLMs to 326

discern the subtle textual differences between two 327

similar functions with opposing labels (i.e., vulner- 328

able vs. benign), such as (1) relocating a method 329

invocation, (2) replacing a method invocation, and 330

(3) adding a conditional check. Detailed bad case 331

examples are in Appendix F.1. 332

Summary of Empirical Studies. Overall, our em- 333

pirical study reveals that LLMs cannot distinguish 334

between vulnerable and patched code (i.e., pair 335

accuracy lower than 0.06 and balanced recall/pre- 336

cision lower than 0.50), while the recent prompt- 337

ing techniques bring limited improvements. LLMs 338

show unstable bias with different neutral prompts, 339

and struggle to capture subtle textual differences 340

between similar vulnerable code and patched code. 341

4 Enhancement Framework VUL-RAG 342

The findings suggest that LLMs require semantic- 343

level guidance for vulnerability detection to avoid 344

relying on superficial code features. Inspired by 345

this, we propose leveraging high-level vulnera- 346

bility knowledge to enhance LLMs in vulnerabil- 347

ity detection. Particularly, we propose a novel 348

knowledge-level Retrieval-Augmented Generation 349

(RAG) framework VUL-RAG for vulnerability de- 350

tection, which first distills multi-dimension vulner- 351

ability knowledge from existing CVEs and then 352

leverages relevant knowledge items to guide LLM 353

in comprehending the vulnerable behaviors of the 354

given code. As illustrated in Figure 1, VUL-RAG 355

includes three phases: offline vulnerability knowl- 356

edge base construction, online vulnerability knowl- 357

edge retrieval, and online knowledge-augmented 358

vulnerability detection. 359
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Figure 1: Overview of VUL-RAG

4.1 Vulnerability Knowledge Base360

Construction361

VUL-RAG constructs a vulnerability knowledge362

base by automatically extracting multi-dimension363

knowledge via LLMs from existing vulnerabili-364

ties and fixes. Section 4.1.1 introduces our novel365

multi-dimension representation for vulnerability366

knowledge; Section 4.1.2 introduces the automatic367

pipeline of knowledge extraction.368

4.1.1 Vulnerability Knowledge Representation369

Inspired by how developers understand vulnerabil-370

ities, we propose a multi-dimensional representa-371

tion, including seven elements from three dimen-372

sions, to describe each vulnerability as follows.373

• Functional Semantics. This dimension summa-374

rizes the high-level functionality (i.e., what this375

code is doing) of the vulnerable code: (1) Abstract376

purpose is the brief summary of the code intention;377

and (2) Detailed behavior is the detailed descrip-378

tion of the code behavior.379

• Vulnerability Causes. It describes the reasons for380

triggering vulnerable behaviors by comparing the381

vulnerable code and its corresponding patch. The382

cause can be described from three perspectives:383

(1)Triggering action describes the direct action384

triggering the vulnerability; (2) Abstract vulnera-385

bility description is the brief summary of the cause;386

and (3) Detailed vulnerability description is more387

concrete descriptions of the causes.388

• Fixing Solutions. It summarizes the fixing of the389

vulnerability by comparing the vulnerable code390

and its corresponding patch.391

Functional semantics are summarized from the392

vulnerable code, which describe code contexts393

where vulnerability occurs and are used to facil-394

itate the subsequent retrieval process (Section 4.2);395

vulnerability causes and fixing solutions are sum- 396

marized from the pair of vulnerable and patched 397

code, which are used to facilitate the subsequent 398

online detection process (Section 4.3). Figure 2 399

exemplifies the multi-dimension representation for 400

the real-world vulnerability CVE-2022-38457. 401

4.1.2 Knowledge Extraction 402

For each existing CVE instance (including a pair of 403

vulnerable and patched code and its CVE descrip- 404

tion), VUL-RAG first leverages LLM to extract 405

each dimension of knowledge; then VUL-RAG 406

performs a knowledge abstraction step to increase 407

the generality of extracted knowledge items. 408

Functional Semantics Extraction. Given the vul- 409

nerable code, VUL-RAG prompts LLMs to extract 410

both its abstract purpose and detailed behavior. The 411

detailed prompt is in Appendix C.1. 412

Vulnerability Causes and Fixing Solutions Ex- 413

traction. As the causes and fixing solutions are 414

often logically connected, VUL-RAG extracts two 415

dimensions together to maximize the reasoning ca- 416

pabilities of LLMs. Given a pair of vulnerable 417

and patched code, VUL-RAG incorporates two 418

rounds to extract the vulnerability causes and the 419

corresponding fixing solutions. In the first round, 420

VUL-RAG instructs LLMs to explain the modifi- 421

cation from vulnerable code to patched code; in 422

the second round, VUL-RAG further asks LLMs 423

to extract relevant information in dimensions of 424

causes and fixing solutions based on the explana- 425

tions generated in the first round. Such a two-step 426

strategy follows a CoT paradigm, which inspires 427

LLM reasoning capabilities by thinking step-by- 428

step (Wei et al., 2022; Zhang et al., 2022; Li et al., 429

2023b; Nong et al., 2024). Additionally, VUL- 430

RAG includes two shots of demonstration exam- 431

ples to guide the output formats of LLMs. The 432

detailed prompts for vulnerability causes and fix- 433

ing solutions extraction are in Appendix C.1. 434

Knowledge Abstraction. As different vulnera- 435

bility instances might share high-level commonal- 436

ity (e.g., the similar causes and fixing solutions), 437

VUL-RAG further performs abstraction to distill 438

more general knowledge representation that is less 439

bonded to concrete code implementation details. 440

Particularly, VUL-RAG leverages LLMs to ab- 441

stract the concrete code elements (i.e., method in- 442

vocations, variable names, and types) in the ex- 443

tracted vulnerability causes and fixing solutions. 444

Detailed prompts for knowledge abstraction are in 445

Appendix C.1. We further illustrate two abstraction 446
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A use-after-free(UAF) vulnerability was found in function 'vmw_cmd_res_check' in 
drivers/gpu/vmxgfx/vmxgfx_execbuf.c in Linux kernel's vmwgfx driver with device 
file '/dev/dri/renderD128 (or Dxxx)'.

struct ttm_base_object *ttm_base_object_lookup(struct ttm_object_file 
*tfile, uint64_t key)
{

    

    
base = hlist_entry(hash, struct ttm_ref_object, hash)->obj;
if (!kref_get_unless_zero(&base->refcount)

...
rcu_read_lock();
ret = ttm_tfile_find_ref_rcu(tfile, key, &hash);

if (likely(ret == 0)) {

)
base = NULL; }

rcu_read_unlock();
return base;

} ❌  Vulnerable Code

struct ttm_base_object *ttm_base_object_lookup(struct ttm_object_file 
*tfile, uint64_t key)
{

    

if (likely(ret == 0)) 

spin_lock(&tfile->lock);
ret = ttm_tfile_find_ref(tfile, key, &hash)

...

;

{
base = hlist_entry(hash, struct ttm_ref_object, hash)->obj;
if (!kref_get_unless_zero(&base->refcount))

base = NULL;}
spin_unlock(&tfile->lock);

return base;
} √  Patch Code

 Patch Diff

            
     

               
            

            
NULL

Abstract Purpose: Look up a TTM base object associated with a given
key in a TTM object file.
Detailed Behavior: 1. Look up a TTM base object using a key in a TTM
object file. 2.Acquire a reference to the base object if found successfully.
3. Return the base object if a reference is acquired, otherwise return

.

Abstract Vulnerability Description: Use of RCU read lock without proper 
synchronization mechanism to protect shared data structures.
Trigger Action: Concurrent access to the shared data structure while 
under RCU read lock context.
Detailed Vulnerability Description: The code accesses a shared data 
structure within an RCU read lock context without ensuring exclusive 
access, allowing a race condition where the object can be freed while 
still being accessed.

  

 

Functional Semantics

Extracted Vulnerability Knowledg

Vulnerability Causes

e

Solution Description: To mitigate the vulnerability, it is necessary to 
use a synchronization mechanism, such as a spin lock, to protect the 
shared data structure from concurrent modifications. By replacing the 
RCU read lock with a spin lock, exclusive access to the data structure 
is ensured, preventing the race condition and use-after-free 
vulnerability....

CVE ID

CVE Description 

Instance-level Vulnerability Knowledge Extraction Input

Fixing Solution 

Initial Extracted 
Vulnerability 

Cause

Initial Extracted 
Fixing Solution 

Functional Semantics
Extraction Prompt

Knowledge 
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& Fixing Solution
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Figure 2: An Example of Vulnerability Knowledge Extraction from CVE-2022-38457

guidelines as follows.447

• Abstracting Method Invocations. The ex-448

tracted knowledge might contain concrete449

method invocations with detailed function450

identifiers (e.g., io_worker_handle_work451

function) and parameters (e.g.,452

mutex_lock(&dmxdev->mutex)), which453

can be abstracted into the generalized454

description (e.g., “during handling of IO455

work processes” and “employing a locking456

mechanism akin to mutex_lock()”).457

• Abstracting Variable Names and Types. The458

extracted knowledge might contain concrete459

variable names or types (e.g., “without &dev-460

>ref initialization”), which can be abstracted461

into the more general description (e.g., “with-462

out proper reference counter initialization”).463

Vulnerability Knowledge Base. For each vul-464

nerability instance, VUL-RAG generates a multi-465

dimensional knowledge item with the knowledge466

extraction and abstraction described above. All the467

knowledge items are aggregated to form the final468

vulnerability knowledge base. In our experiments,469

to construct the vulnerability knowledge base, we470

use the remaining 1,462 pairs of vulnerable and471

patched code that are not selected into our bench-472

mark PairVul (Section 3.1.3), ensuring that there is473

no data overlap between the evaluation benchmark474

and the knowledge base. Detailed statistics within475

the knowledge base are in Appendix A.476

4.2 Vulnerability Knowledge Retrieval477

For a given code snippet under detection, VUL-478

RAG retrieves relevant vulnerability knowledge479

items from the constructed vulnerability knowledge480

base in a three-step retrieval process: semantic 481

query generation, candidate knowledge retrieval, 482

and candidate knowledge re-ranking. 483

Semantic Query Generation. Different from ex- 484

isting RAG pipelines for code-related tasks (Wang 485

et al., 2024) that solely use code as the retrieval 486

query, VUL-RAG uses a mixed query of both code 487

and its functional semantics to find the knowledge 488

item that share high-level functional similarity as 489

the given code. VUL-RAG prompts LLMs to ex- 490

tract the functional semantics of the given code, 491

using the method described in Section 4.1.2. The 492

abstract purpose, detailed behavior, and code itself, 493

form the query for the subsequent retrieval. 494

Candidate Knowledge Retrieval. VUL-RAG con- 495

ducts similarity-based retrieval using above three 496

query elements: the code, abstract purpose, and 497

detailed behavior. It retrieves the Top-n knowledge 498

items (where n=10 in our experiments) for each 499

element, resulting in a total of 30 candidate items. 500

Duplicates across query elements are removed to 501

ensure uniqueness. The retrieval is based on the 502

similarity between each query element and the cor- 503

responding elements of the knowledge items. VUL- 504

RAG adopts BM25 (Robertson and Walker, 1988) 505

for similarity calculation, a method widely used in 506

search engines due to its efficiency and effective- 507

ness (Sun et al., 2023). Before calculating BM25 508

similarity, both the query and the retrieval docu- 509

mentation undergo standard preprocessing proce- 510

dures, including tokenization, lemmatization, and 511

stop word removal (Çagatayli and Çelebi, 2015). 512

Candidate Knowledge Re-ranking. We re-rank 513

candidate knowledge items with the Reciprocal 514

Rank Fusion (RRF) strategy. For each retrieved 515
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knowledge item k, we aggregate the reciprocal of516

its rank across all three query elements. If a knowl-517

edge item k is not retrieved by a particular query518

element, we assign its rank as infinity. Detailed519

formulas and implementation of the retrieval and520

re-ranking process are in Appendix D. In the end,521

we keep Top-10 candidate knowledge items with522

the highest re-rank scores as the final knowledge523

items for the subsequent vulnerability detection.524

4.3 Knowledge-Augmented Vulnerability525

Detection526

Based on the retrieved knowledge items, VUL-527

RAG leverages LLMs to reason whether the given528

code is vulnerable. However, directly incorpo-529

rating all the retrieved knowledge items into one530

prompt can hinder the effectiveness of the mod-531

els, as LLMs often perform poorly on long con-532

texts (Liu et al., 2023). Therefore, VUL-RAG iter-533

atively enhances LLMs with each retrieved knowl-534

edge item by sequentially checking whether the535

given code exhibits the same vulnerability cause536

without the corresponding fixing solutions. If the537

given code exhibits the same vulnerability cause as538

the knowledge item but without applying the rele-539

vant fixing solution, it is identified as vulnerable.540

Otherwise, VUL-RAG cannot identify the code as541

vulnerable with the current knowledge item and542

proceeds to the next iteration (i.e., using the next543

retrieved knowledge item). If the code cannot be544

identified as vulnerable with any of the retrieved545

knowledge items, it is identified as non-vulnerable.546

The iteration process terminates when (1) the code547

is identified as vulnerable or (2) all the retrieved548

knowledge items have been considered. The de-549

tailed prompts of this phase are in Appendix C.2.550

5 Evaluation for VUL-RAG551

We answer the following RQs to extensively evalu-552

ate the effectiveness and usability of VUL-RAG.553

• RQ3 (Overall Improvements): How does554

VUL-RAG improve LLMs in vulnerability555

detection?556

• RQ4 (User Study on Usability): How is the557

quality of VUL-RAG generated knowledge?558

How can the VUL-RAGgenerated knowledge559

help manual vulnerability comprehension?560

• RQ5 (Case Study on Detecting New Vul-561

nerabilities): Can the VUL-RAG generated562

knowledge help detect previously-unknown563

vulnerabilities in real-world software sys- 564

tems? 565

Implementation. During the offline knowledge 566

base construction, we employ GPT-3.5-turbo- 567

0125 (cha, 2023), given its rapid response and 568

cost-effectiveness in generating a large volume of 569

vulnerability-related knowledge items (Sun et al., 570

2023). For the online knowledge retrieval, we 571

use Elasticsearch (ela, 2023) as our search en- 572

gine. For the online knowledge-augmented detec- 573

tion, we study the same four LLMs (GPT-4-turbo, 574

Claude Sonnet 3.5, Qwen2.5-Coder-32B-Instruct, 575

and DeepSeek-Coder-V2-Instruct) as in the study. 576

5.1 RQ3: Overall Improvements 577

Baselines. Besides the basic prompt and three 578

advanced prompts studied in RQ1 and RQ2, we 579

further include code-level RAG as the baseline. 580

Code-level RAG is a default paradigm that has been 581

widely used in code-related tasks, e.g., program re- 582

pair (Wang et al., 2023) and code generation (Wang 583

et al., 2024); it uses code similarity (BM25 in our 584

experiments) to retrieve Top-10 similar vulnerable 585

code from historical vulnerabilities (which is the 586

same set for constructing the vulnerability knowl- 587

edge base of VUL-RAG), and prompts LLMs to 588

detect vulnerabilities with the retrieved pair of vul- 589

nerable and patched code into the prompt. The de- 590

tailed prompt design of code-level RAG is in Figure 591

4 (b) in Appendix F.2. Comparing VUL-RAG with 592

code-level RAG can investigate the contribution of 593

our knowledge-level representation. 594

Table 4: Effectiveness of VUL-RAG
Tech. LLM Pair Acc. Bal. Recall Bal. Pre.

Code RAG

GPT-4 0.05 0.50 0.50
Claude 0.12 0.51 0.51
Qwen 0.07 0.51 0.52

DeepSeek 0.10 0.47 0.47

VUL-RAG

GPT-4 0.28 0.61 0.61
Claude 0.29 0.60 0.62
Qwen 0.29 0.60 0.60

DeepSeek 0.28 0.59 0.59

Results. Table 4 compares VUL-RAG and code- 595

level RAG on PairVul. Due to space limits, here 596

we do not repeat the results of other baselines (in 597

Table 1 and Table 2). Detailed comparison between 598

VUL-RAG and baselines in each CWE category is 599

in Appendix E and the bad case analysis of VUL- 600

RAG is in Appendix H. Overall, VUL-RAG sub- 601

stantially outperforms all baselines in all metrics. 602

Particularly, VUL-RAG not only improves the pair 603

accuracy of LLMs (with 22% - 25% increase) but 604

also improves the balanced precision and recall by 605
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11%-13% and 11%.606

Compared to code-level RAG, VUL-RAG shows607

greater effectiveness in enhancing LLMs for vul-608

nerability detection, with consistent improvements609

across all metrics. This highlights the contribution610

of our novel vulnerability knowledge representa-611

tion and underscores the superiority of knowledge-612

level RAG over code-level RAG. We manually in-613

spect cases where VUL-RAG successfully identi-614

fies vulnerable and patched code pairs that code-615

level RAG fails. We identify two key reasons for616

the superior performance of VUL-RAG. (1) In the617

retrieval phase, knowledge-level RAG more accu-618

rately retrieves semantically relevant vulnerabilities619

from the knowledge base, whereas code-level RAG620

often retrieves textually similar but semantically621

irrelevant vulnerabilities. As a result, the vulnera-622

bilities retrieved by code-level RAG offer limited623

utility for or even mislead LLMs in vulnerability624

detection. (2) In the inference phase, even when625

retrieving the same vulnerabilities, the high-level626

representation of vulnerability knowledge provided627

by VUL-RAG can more accurately prompt LLMs628

while the plain representation of code pairs used629

in code-level RAG cannot. Appendix F.2 presents630

such two cases observed in our experiments.631

5.2 RQ4: Usability for Developers632

We conduct a user study to investigate the quality633

of VUL-RAG generated knowledge and whether634

the knowledge can help developers understand and635

check the vulnerabilities in code.636

Tasks and Participants. We select 10 cases (5637

true and 5 false positives) from PairVul for the638

user study. We invite 6 participants with 3-5 years639

c/c++ programming experience. Participants are640

tasked to identify whether the given code is vulner-641

able in two settings. (1) Basic setting: provided642

with the code and the detection labels generated643

by VUL-RAG; (2) Knowledge-accompanied set-644

ting: provided with the basic setting and VUL-645

RAG generated vulnerability knowledge. Beyond646

recording user outputs (i.e., vulnerable or not) of647

each case, we further survey the participants on648

the helpfulness, preciseness, and generalizability649

of the vulnerability knowledge on a 4-point Likert650

scale (Likert, 1932) (i.e., 1-disagree; 2-somewhat651

disagree; 3-somewhat agree; 4-agree). Detailed652

procedure and scoring criteria are in Appendix G.653

Results. Participants rate the helpfulness, precise-654

ness, and generalizability with average scores of655

3.00, 3.20, and 2.97, respectively. It indicates 656

the high quality of vulnerability knowledge gen- 657

erated by VUL-RAG. Additionally, participants 658

provided with VUL-RAG generated vulnerability 659

knowledge can more precisely identify the vulner- 660

able and non-vulnerable code (i.e., 77% detection 661

accuracy with knowledge v.s. 60% detection accu- 662

racy without knowledge). It confirms the usability 663

of VUL-RAG generated knowledge for manual 664

vulnerability comprehension. 665

5.3 RQ5: Detecting New Vulnerabilities 666

We investigate whether VUL-RAG generated 667

vulnerability knowledge can detect previously- 668

unknown vulnerabilities in real-world software sys- 669

tems. In particular, we apply VUL-RAG on the 670

recent Linux Kernel release (v6.9.6, June 2024) 671

given the importance of Kernel systems. Given the 672

large scale of Linux kernels, we randomly sample a 673

set of files within the drivers component, including 674

1,867 functions in total. We apply VUL-RAG with 675

GPT-4 on the 1,867 functions. VUL-RAG detects 676

10 previously-unknown bugs, and 6 of them have 677

been confirmed as real bugs by the Linux commu- 678

nity. In addition, as VUL-RAG not only generates 679

the detection labels (i.e., vulnerable or not) but also 680

provides vulnerability knowledge with relevant vul- 681

nerability causes and fix suggestions, it is helpful 682

for us writing high-quality bug-reporting emails. 683

For the 6 confirmed bugs, we further write patches 684

based on the fix solutions provided by VUL-RAG, 685

and five submitted patches have already been ac- 686

cepted by the paper submission time. Appendix F.3 687

presents an example of our confirmed bug. 688

6 Conclusion 689

This work reveals the limitation of LLMs in distin- 690

guishing between vulnerable and patched code; and 691

proposes a novel knowledge-level RAG framework 692

VUL-RAG, which enhances LLMs with multi- 693

dimention vulnerability knowledge. VUL-RAG 694

outperforms all baselines in vulnerability detec- 695

tion; and VUL-RAG generated knowledge im- 696

proves manual vulnerability detection by 17% ac- 697

curacy increase. Additionally, VUL-RAG detects 698

10 previously-unknown bugs in the Linux kernel 699

and 6 of them have been confirmed by the Linux 700

community. 701
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7 Limitations702

The incompleteness of the knowledge base can703

limit the performance of VUL-RAG in practice.704

Given the diversity of vulnerabilities, it is possible705

that there is no relevant historical vulnerabilities for706

the code under detection, which is also a common707

pain spot for RAG techniques. Therefore, we plan708

to open source our vulnerability knowledge base,709

which can be further continuously maintained and710

extended by the community together. Furthermore,711

although we evaluated four LLMs, including both712

open-source and closed-source models, the gener-713

alizability of our findings to other LLMs requires714

further investigation.715
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categorizations and descriptions. Based on the912

CVE ID list, we then parse the commit information913

for each CVE to extract function-level vulnerable914

and patched code pairs. Vulnerable code snippets915

prior to the commit diffs are labeled as positive916

samples and the patched code snippets as negative917

samples. In this way, we initially obtain a dataset918

of 4,667 function pairs of vulnerable and patched919

code across 2,174 CVEs.920

Patched Code Verification. The patched code921

cannot always be non-vulnerable, thus it is impor-922

tant to double-check the correctness of the patched923

code. To this end, we further implement a filter-924

ing process to ensure the patched code is not sub-925

sequently reverted or modified by other commits.926

Specifically, we construct a patch graph in which927

vulnerable and patched code pairs are represented928

as independent triplets. Each triplet consists of a929

head node representing the vulnerable code and a930

tail node representing its corresponding patched931

code. If the patched code is modified or reverted932

by subsequent commits, the triplet evolves into a933

chain or a loop comprising multiple nodes. For934

chains in the graph, we retain only the vulnerable935

and patched code pairs linked by the final edge.936

For loops, we eliminate all nodes within the loop.937

This process systematically filters out all patched938

code snippets that have been altered or reverted,939

ensuring the correctness of our benchmark dataset.940

PairVul includes 592 pairs across 373 CVEs.941

The statistical data for each CWE category within942

our benchmark are detailed as Table 5
Table 5: Statistics of PairVul

CWE CWE-416 CWE-476 CWE-362 CWE-119 CWE-787
CVE Num. 145 60 81 42 45
Pair Num. 267 89 121 53 62

943

Data Format. Our benchmark PairVul contains944

the following information for each vulnerability.945

(i) CVE ID: the unique identifier assigned to a re-946

ported vulnerability in the Common Vulnerabili-947

ties and Exposures (CVE); (ii) CVE Description:948

descriptions of the vulnerability provided by the949

CVE system, including the manifestation, the po-950

tential impact, and the environment where the vul-951

nerability may occur; (iii) CWE ID: the Common952

Weakness Enumeration identifier that categorizes953

the type of the vulnerability exploits; (iv) Vulnera-954

ble Code: the source code snippet containing the955

vulnerability, which will be modified in the com-956

mit; (v) Patched Code: the source code snippet957

that has been committed to fix the vulnerability958

in the vulnerable code; (vi) Patch Diff : a detailed959

line-level difference between the vulnerable and 960

patched code with added and deleted lines. 961

Data for constructing knowledge base. We 962

construct the knowledge base using 1462 pairs of 963

vulnerable and patched code across 953 CVEs that 964

do not overlap with PairVul. Table 6 presents the 965

distribution of the five CWE categories within the 966

knowledge base.

Table 6: Statistics of Training Set
CWE-416 CWE-476 CWE-362 CWE-119 CWE-787

CVE Num. 339 194 169 129 122
Pair Num. 587 262 280 163 170

967

B Studied Baselines 968

In RQ1, we evaluate the capabilities of studied 969

LLMs with following basic prompt: 970

Basic Prompt: Is this code vulnerable? Answer in
Yes or No.

### Code Snippet: [Code Snippet].

In RQ2, we further investigate three state-of-the- 971

art prompting strategies, including: 972

Chain-of-thought(CoT) strategies enhances 973

the basic LLMs with two chain-of-thought prompt 974

design, guiding LLMs step-by-step reasoning. 975

CoT-1 Prompt: I want you to act as a vulnerabil-
ity detection expert. Initially, you need to explain the
behavior of the code. Subsequently, you need to deter-
mine whether the code is vulnerable. Answer in YES
or NO.

### Code Snippet: [Code Snippet].
CoT-2 Prompt: I want you to act as a vulnerabil-

ity detection system. Initially, you need to explain
the behavior of the given code. Subsequently, analyze
whether there are potential root causes that could result
in vulnerabilities. Based on above analysis, determine
whether the code is vulnerable, and conclude your an-
swer with either YES or NO.

### Code Snippet: [Code Snippet].

CWE-enhanced strategies enhances the basic 976

LLM by incorporating CWE description informa- 977

tion (cwe, 2024) as vulnerability knowledge to 978

LLMs. 979

CWE-enhnced Prompt: I want you to act as a
vulnerability detection system. I will provide you with
a code snippet and a CWE description. Please analyze
the code to determine if it contains the vulnerability
described in the CWE. Answer in YES or NO.

### Code Snippet: [Code Snippet].
### CWE Description: [CWE Description]

C Prompt Design of VUL-RAG 980

C.1 Prompt Templates in Vulnerability 981

Knowledge Base Construction 982

Given the vulnerable code snippet, VUL-RAG 983

prompts LLMs with the following instructions to 984
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summarize both the abstract purpose and the de-985

tailed behavior respectively, where the placeholder986

“[Vulnerable Code]” denotes the vulnerable code987

snippet.988

Prompt for Abstract Purpose Extraction:
[Vulnerable Code] What is the purpose of the
function in the above code snippet? Please summarize
the answer in one sentence with the following format:
“Function purpose:”.

Prompt for Detailed Behavior Extraction:
[Vulnerable Code] Please summarize the functions
of the above code snippet in the list format without any
other explanation: “The functions of the code snippet
are: 1. 2. 3...”

The detailed prompts for vulnerability causes989

and fixing solutions extraction are as follows,990

where the placeholders “[Vulnerable Code]”,991

“[Patched Code]”, and “[Patch Diff]” denote992

the vulnerable code, the patched code, and the code993

diff of the given vulnerability, and [CVE ID] and994

[CVE Description] denote the details of the given995

vulnerability.996

Extraction Prompt in Round 1: This is a code
snippet with a vulnerability [CVE ID]: [Vulnerable
Code] The vulnerability is described as follows:[CVE
Description] The correct way to fix it is by [Patch Diff]
The code after modification is as follows: [Patched
Code] Why is the above modification necessary?

Extraction Prompt in Round 2: I want you to act
as a vulnerability detection expert and organize vul-
nerability knowledge based on the above vulnerability
repair information. Please summarize the generalizable
specific behavior of the code that leads to the vulner-
ability and the specific solution to fix it. Format your
findings in JSON. Here are some examples to guide
you on the level of detail expected in your extraction:
[Vulnerability Causes and Fixing Solution Example 1]
[Vulnerability Causes and Fixing Solution Example 2]

The detailed prompts for knowledge abstraction997

are as follows, which queries LLMs to abstract the998

method invocations and variable names.999

Knowledge Abstraction Prompt: With the de-
tailed vulnerability knowledge extracted from the pre-
vious stage, your task is to abstract and generalize this
knowledge to enhance its applicability across different
scenarios. Please adhere to the following guidelines
and examples provided:

[Knowledge Abstraction Guidelines and Examples]
...

C.2 Prompt Templates in1000

Knowledge-Augmented Vulnerability1001

Detection1002

The prompts used for identifying the existence of1003

vulnerability causes and the fixing solutions of the1004

given code snippets are as follows.1005

Prompt for Finding Vulnerability Causes: Given
the following code and related vulnerability causes,
please detect if there is a vulnerability caused in the
code. [Code Snippet]. In a similar code scenario, the
following vulnerabilities have been found: [Vulnera-
bility causes][fixing solutions]. Please use your own
knowledge of vulnerabilities and the above vulnerabil-
ity knowledge to detect whether there is a vulnerability
in the code.

Prompt for Finding Fixing Solutions: Given the
following code and related vulnerability fixing solu-
tions, please detect if there is a vulnerability in the
code. [Code Snippet]. In a similar code scenario, the
following vulnerabilities have been found: [Vulnera-
bility causes][fixing solutions]. Please use your own
knowledge of vulnerabilities and the above vulnerabil-
ity knowledge to detect whether there is a correspond-
ing fixing solution in the code.

D Retrieval Implementation 1006

VUL-RAG adopts BM25 (Robertson and Walker, 1007

1988) for similarity calculation in retrieval process. 1008

Given a query q and the documentation d for re- 1009

trieval, BM25 calculates the similarity score be- 1010

tween q and d based on the following Equation 1, 1011

where f(wi, q) is the word wi’s term frequency 1012

in query q, IDF (wi) is the inverse document fre- 1013

quency of word wi. The hyperparameters k and 1014

b (where k=1.2 and b=0.75) are used to normal- 1015

ize term frequencies and control the influence of 1016

document length. 1017

SimBM25(q, d) =

n∑
i=1

IDF (wi)× f (wi, q)× (k + 1)

f (wi, q) + k×
(
1-b + b× |q|

avgdl

)
(1) 1018

We re-rank candidate knowledge items with the 1019

Reciprocal Rank Fusion (RRF) strategy. For each 1020

retrieved knowledge item k, the re-rank score for 1021

k is calculated using the following Equation 2. E 1022

denotes the set of all query elements (i.e., the code, 1023

the abstract purpose, and the detailed behavior), 1024

rankt(k) denotes the rank of knowledge item k 1025

based on query element t. 1026

ReRankScorek =
∑
t∈E

1

rankt(k)
(2) 1027

E Overall Performance 1028

Table 7-Table 11 presents the performance of VUL- 1029

RAG and all baselines across the five CWE cate- 1030

gories. 1031
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Table 7: Effectiveness in CWE-119
Tech. LLM Pair Acc. Bal. Recall Bal. Pre.

Basic LLM

GPT-4 0.05 0.50 0.50
Claude 0.08 0.52 0.53
Qwen 0.06 0.48 0.48

DeepSeek 0.02 0.44 0.44

CoT-1

GPT-4 0.17 0.56 0.56
Claude 0.19 0.53 0.53
Qwen 0.06 0.53 0.59

DeepSeek 0.13 0.50 0.50

CoT-2

GPT-4 0.11 0.53 0.53
Claude 0.09 0.48 0.48
Qwen 0.26 0.60 0.61

DeepSeek 0.21 0.56 0.56

CWE
Enhanced

GPT-4 0.08 0.52 0.52
Claude 0.08 0.53 0.58
Qwen 0.06 0.53 0.55

DeepSeek 0.02 0.51 0.55

Code RAG

GPT-4 0.04 0.50 0.50
Claude 0.11 0.51 0.51
Qwen 0.04 0.49 0.47

DeepSeek 0.02 0.43 0.43

VUL-RAG

GPT-4 0.30 0.62 0.62
Claude 0.32 0.62 0.65
Qwen 0.36 0.64 0.64

DeepSeek 0.23 0.58 0.59

Table 8: Effectiveness in CWE-476
Tech. LLM Pair Acc. Bal. Recall Bal. Pre.

Basic LLM

GPT-4 0.06 0.51 0.51
Claude 0.02 0.47 0.47
Qwen 0.06 0.51 0.52

DeepSeek 0.09 0.49 0.49

CoT-1

GPT-4 0.12 0.47 0.47
Claude 0.11 0.48 0.48
Qwen 0.02 0.51 0.63

DeepSeek 0.08 0.51 0.51

CoT-2

GPT-4 0.09 0.52 0.52
Claude 0.25 0.54 0.55
Qwen 0.15 0.51 0.51

DeepSeek 0.10 0.51 0.51

CWE
Enhanced

GPT-4 0.02 0.49 0.49
Claude 0.08 0.51 0.51
Qwen 0.01 0.48 0.46

DeepSeek 0.01 0.50 0.25

Code RAG

GPT-4 0.08 0.49 0.49
Claude 0.04 0.47 0.47
Qwen 0.08 0.48 0.47

DeepSeek 0.08 0.46 0.46

VUL-RAG

GPT-4 0.28 0.62 0.62
Claude 0.33 0.61 0.64
Qwen 0.34 0.61 0.61

DeepSeek 0.32 0.60 0.61

F Case Study1032

F.1 Case Study in Empirical Study1033

We sample and manually analyze pairs that all stud-1034

ied LLMs and advanced techniques in RQ1 and1035

RQ2 fail to distinguish between vulnerable and1036

patched code. Particularly, LLMs fail to distinguish1037

the subtle textual difference between vulnerable1038

code and patched code. Figure 3 illustrates three1039

specific examples, with the patch diffs highlighted1040

in yellow.1041

F.2 Case Study in Overall Improvements1042

we use two examples that VUL-RAG can success-1043

fully detect the vulnerability but code-level RAG1044

cannot, to explain the superiority of VUL-RAG in1045

both knowledge representation and retrieval strat-1046

Table 9: Effectiveness in CWE-787
Tech. LLM Pair Acc. Bal. Recall Bal. Pre.

Basic LLM

GPT-4 0.08 0.52 0.53
Claude 0.08 0.53 0.54
Qwen 0.08 0.51 0.51

DeepSeek 0.11 0.52 0.53

CoT-1

GPT-4 0.18 0.53 0.53
Claude 0.16 0.54 0.54
Qwen 0.08 0.53 0.59

DeepSeek 0.08 0.51 0.51

CoT-2

GPT-4 0.11 0.54 0.55
Claude 0.19 0.53 0.53
Qwen 0.19 0.52 0.52

DeepSeek 0.10 0.52 0.52

CWE
Enhanced

GPT-4 0.03 0.50 0.50
Claude 0.06 0.53 0.68
Qwen 0.02 0.51 0.75

DeepSeek 0.01 0.50 0.25

Code RAG

GPT-4 0.11 0.55 0.59
Claude 0.13 0.54 0.54
Qwen 0.05 0.52 0.55

DeepSeek 0.11 0.49 0.49

VUL-RAG

GPT-4 0.25 0.61 0.61
Claude 0.39 0.65 0.67
Qwen 0.31 0.60 0.60

DeepSeek 0.32 0.63 0.63

Table 10: Effectiveness in CWE-362
Tech. LLM Pair Acc. Bal. Recall Bal. Pre.

Basic LLM

GPT-4 0.04 0.50 0.51
Claude 0.06 0.48 0.48
Qwen 0.01 0.50 0.50

DeepSeek 0.06 0.48 0.48

CoT-1

GPT-4 0.14 0.48 0.48
Claude 0.15 0.52 0.52
Qwen 0.02 0.51 0.54

DeepSeek 0.11 0.50 0.51

CoT-2

GPT-4 0.11 0.50 0.50
Claude 0.16 0.53 0.54
Qwen 0.14 0.50 0.50

DeepSeek 0.12 0.52 0.52

CWE
Enhanced

GPT-4 0.04 0.47 0.47
Claude 0.07 0.48 0.48
Qwen 0.08 0.48 0.48

DeepSeek 0.01 0.48 0.32

Code RAG

GPT-4 0.03 0.50 0.50
Claude 0.12 0.49 0.49
Qwen 0.11 0.54 0.59

DeepSeek 0.12 0.48 0.48

VUL-RAG

GPT-4 0.26 0.59 0.59
Claude 0.31 0.61 0.62
Qwen 0.23 0.58 0.58

DeepSeek 0.29 0.61 0.62

Table 11: Effectiveness in CWE-416
Tech. LLM Pair Acc. Bal. Recall Bal. Pre.

Basic LLM

GPT-4 0.05 0.49 0.48
Claude 0.04 0.48 0.48
Qwen 0.03 0.50 0.49

DeepSeek 0.04 0.47 0.47

CoT-1

GPT-4 0.13 0.49 0.48
Claude 0.13 0.51 0.51
Qwen 0.02 0.50 0.48

DeepSeek 0.08 0.50 0.50

CoT-2

GPT-4 0.10 0.51 0.51
Claude 0.16 0.53 0.53
Qwen 0.15 0.52 0.52

DeepSeek 0.12 0.50 0.50

CWE
Enhanced

GPT-4 0.02 0.50 0.52
Claude 0.01 0.50 0.75
Qwen 0.01 0.50 0.42

DeepSeek 0.01 0.50 0.25

Code RAG

GPT-4 0.03 0.49 0.46
Claude 0.14 0.52 0.52
Qwen 0.06 0.50 0.50

DeepSeek 0.12 0.48 0.48

VUL-RAG

GPT-4 0.29 0.61 0.61
Claude 0.24 0.58 0.60
Qwen 0.28 0.60 0.60

DeepSeek 0.26 0.57 0.57
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1. static struct inet_frag_queue   
   *inet_frag_intern(struct netns_frags *nf,
2.         struct inet_frag_queue *qp_in, struct 

inet_frags *f, void *arg)
3. {
4.     struct inet_frag_bucket *hb;
5.     struct inet_frag_queue *qp;
6.     unsigned int hash;
...
38.     atomic_inc(&qp->refcnt);
39.     hlist_add_head(&qp->list, &hb->chain);
40.     spin_unlock(&hb->chain_lock);
41.     read_unlock(&f->lock);
42.     inet_frag_lru_add(nf, qp);
43.     return qp;
44. }





1. static struct inet_frag_queue 
   *inet_frag_intern(struct netns_frags *nf,
2.         struct inet_frag_queue *qp_in, struct 

inet_frags *f, void *arg)
3. {
4.     struct inet_frag_bucket *hb;
5.     struct inet_frag_queue *qp;
6.     unsigned int hash;
...
38.     atomic_inc(&qp->refcnt);
39.     hlist_add_head(&qp->list, &hb->chain);
40.     inet_frag_lru_add(nf, qp);
41.     spin_unlock(&hb->chain_lock);
42.     read_unlock(&f->lock);
43.
44.     return qp;
45. }



❌  Vulnerable Code ✅  Non-vulnerable Code

(a) Example 1: Moving the location of a method invocation

❌  Vulnerable Code ✅  Non-vulnerable Code

1. static int da9150_charger_remove(struct 
platform_device *pdev)

2. {
3.     struct da9150_charger *charger = 

platform_get_drvdata(pdev);
...
19.     if (!IS_ERR_OR_NULL(charger->usb_phy))
20.         usb_unregister_notifier(charger->usb_phy, 

&charger->otg_nb);
21.
22.     power_supply_unregister(charger->battery);
23.     power_supply_unregister(charger->usb);
...
31.     return 0;
32. }





1. static int da9150_charger_remove(struct 
platform_device *pdev)

2. {
3.     struct da9150_charger *charger = 

platform_get_drvdata(pdev);
...
19.     if (!IS_ERR_OR_NULL(charger->usb_phy))
20.         usb_unregister_notifier(charger->usb_phy, 

&charger->otg_nb);
21.     
22.     cancel_work_sync(&charger->otg_work);
23.     power_supply_unregister(charger->battery);
24.     power_supply_unregister(charger->usb);
...
32.     return 0;
33. }





(b) Example 2: Adding a method invocation

1. static void nft_set_commit_update(struct list_head 
set_update_list)

2. {
3.     struct nft_set *set, *next;
4.

5.     list_for_each_entry_safe(set, next,           

set_update_list, pending_update) {
6.         list_del_init(&set->pending_update);
7.

8.         if (!set->ops->commit)
9.             continue;
10.

11.         set->ops->commit(set);
12.     }
13. }





❌  Vulnerable Code

1. static void nft_set_commit_update(struct list_head 
*set_update_list)
2. {
3.     struct nft_set *set, *next;
4.
5.     list_for_each_entry_safe(set, next, 

set_update_list, pending_update) {
6.         list_del_init(&set->pending_update);
7.

8.     if (!set->ops->commit || set->dead)
9.             continue;
10.

11.         set->ops->commit(set);
12.     }
13. }





✅  Non-vulnerable Code

(c) Example 3: Adding a conditional check

Figure 3: Examples of vulnerable code and similar-but-benign patched code.

egy.1047

Knowledge Representation. Figure 4 illustrates1048

an example to show the benefits of our knowl-1049

edge representation comparing VUL-RAG with1050

basic LLM and code-level RAG baselines, all im-1051

plemented on GPT-4. When detecting the given1052

code from CVE-2023-30772, the basic GPT-4 fails1053

to identify the real cause of the vulnerability (as1054

shown in Figure 4 (A)). GPT-4 incorrectly sug-1055

gests that the absence of a return value check1056

in “platform_get_irq_byname()” could cause a1057

vulnerability, whereas such a check is not required1058

here. However, it overlooks the true issue, which1059

is the improper handling of asynchronous events1060

resulting in a race condition and subsequently a1061

use-after-free vulnerability. This misunderstand-1062

ing continues as GPT-4 detects the corresponding 1063

patched code, leading to false positives and affect- 1064

ing the pairwise accuracy. Enhancing GPT-4 with 1065

code-based RAG also fails to detect the vulner- 1066

ability. As shown in Figure 4 (B), although the 1067

retrieved code pair contains a similar functional 1068

semantic and vulnerability cause, GPT-4 still strug- 1069

gles to associate the vulnerability knowledge im- 1070

plied in the retrieved source code with the target 1071

code under detection. In contrast, providing the dis- 1072

tilled high-level vulnerability knowledge from our 1073

approach VUL-RAG, GPT-4 not only successfully 1074

detects the vulnerability root cause in the vulnera- 1075

ble code but also accurately identifies the patched 1076

code (Figure 4 (C)). The comparison demonstrates 1077

the high-level vulnerability knowledge can effec- 1078
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Q: I want you to act as a vulnerability detection expert. 
Given the following code, please detect whether there is a 
vulnerability in the following code snippet:

static int da9150_charger_remove(struct platform_device *pdev)
{

struct da9150_charger *charger = 
platform_get_drvdata(pdev);

int irq;

/* Make sure IRQs are released before unregistering 
power supplies */

irq = platform_get_irq_byname(pdev, "CHG_VBUS");
free_irq(irq, charger);
...
if (!IS_ERR_OR_NULL(charger->usb_phy))

usb_unregister_notifier(charger->usb_phy, 
&charger->otg_nb);

power_supply_unregister(charger->battery);
power_supply_unregister(charger->usb);

/* Release ADC channels */
...
return 0;

}
Please answer YES or NO, and explain why you think so.

A: YES, there is a potential vulnerability in the code snippet 
provided... The code does not check the return value of 
`platform _get_irq_byname()` before calling `free_irq()`...

❌  Fails to identify the root 
cause of the vulnerability. √  Successfully identify the root cause.

(A)

[Code Snippet]

Q: I want you to act as a vulnerability detection expert, 
given the following code snippet and related vulnerability 
knowledge, please detect whether there is a vulnerability in 
the code snippet: [Code Snippet] ... 
Related vulnerable code snippet: 

static int cedrus_remove(struct platform_device *pdev)
{

struct cedrus_dev *dev = platform_get_drvdata(pdev);

if (media_devnode_is_registered(dev->mdev.devnode)) 
{

media_device_unregister(&dev->mdev);
v4l2_m2m_unregister_media_controller(dev-

>m2m_dev);
media_device_cleanup(&dev->mdev);

}

v4l2_m2m_release(dev->m2m_dev);
video_unregister_device(&dev->vfd);
v4l2_device_unregister(&dev->v4l2_dev);

cedrus_hw_remove(dev);
return 0;

}
Related Patched code snippet: [Patched Code Snippet]
...Please answer YES or NO...

A: NO, ..., Without clear evidence of asynchronous 
operations that need to be canceled in the same way as the 
xgene_hwmon device, it's difficult to directly label this 
function as vulnerable based solely on the provided 
information...

(B)

[Vulnerable Source 
Code Snippet]

Q: I want you to act as a vulnerability detection expert, 
given the following code snippet and related vulnerability 
knowledge, please detect whether there is a vulnerability 
in the code snippet: [Code Snippet] In a similar code 
scenario, the following vulnerabilities have been found.
Related vulnerability knowledge: 

Vulnerability Causes: 

...Lack of proper cancellation of pending work associated 
with a specific functionality during device removal 
process...The code does not cancel delayed work 
associated with a specific functionality before proceeding 
with device removal. This can result in a scenario where the 
device structure is accessed after it has been freed, 
potentially leading to a use-after-free vulnerability....

Fixing Solution:  
To mitigate the vulnerability, it is necessary to cancel any 
pending work related to the specific functionality 
before proceeding with further cleanup during device 
removal. This ensures that the code handles asynchronous 
events properly and prevents the use-after-free 
vulnerability...

...Please answer YES or NO...

A: YES, ..., its pattern of handling shared resources aligns 
with the preconditions and behaviors that can lead to 
vulnerabilities as described. Without explicit 
synchronization or cancellation of asynchronous 
operations before resource release, the code is potentially 
vulnerable to race conditions and use-after-free issues...

(C)

[Vulnerability Knowledge]

❌  Fails to identify the associations therein

Patch diff：cancel_delayed_work_sync 
(&dev-> watchdog_work);

Patch diff：add cancel_work_sync 
(&charger->otg_work);

Figure 4: An example of vulnerability knowledge representation

static void btsdio_remove(struct sdio_func *func)
{

struct btsdio_data *data = 
sdio_get_drvdata(func);

struct hci_dev *hdev;
BT_DBG("func %p", func);
if (!data)

return;
hdev = data->hdev;
sdio_set_drvdata(func, NULL);
hci_unregister_dev(hdev);
hci_free_dev(hdev);

}

Code Purpose: To remove a Bluetooth SDIO 
function and free associated resources.
Code Function: 1. Remove a Bluetooth SDIO 
function. 2.Retrieve the Bluetooth SDIO data. 3. 
Unregister and free the HCI device.

 
   

Code Purpose: Handle a logical link complete event in the 
Bluetooth stack.
Code Function: 1. Log a logical link complete event. 2. Look up a 
HCI connection based on the physical handle. 3... 6. Confirm the 
logical link for a BREDR channel. 7. Hold the HCI connection

CVE-2023-1989
Code Snippet Under Retrieval

.

static void hci_loglink_complete_evt(struct hci_dev *hdev, struct sk_buff 
*skb)
{ ...

BT_DBG("%s log_handle 0x%4.4x phy_handle 0x%2.2x status 
0x%2.2x", hdev->name, le16_to_cpu(ev->handle), ev->phy_handle, ev-
>status);

hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle);
if (!hcon)

return; ...
hchan->handle = le16_to_cpu(ev->handle);
BT_DBG("hcon %p mgr %p hchan %p", hcon, hcon->amp_mgr, 

hchan);
...

}

static int xgene_hwmon_remove(struct platform_device 
*pdev)
{

struct xgene_hwmon_dev *ctx = 
platform_get_drvdata(pdev);

hwmon_device_unregister(ctx->hwmon_dev);
kfifo_free(&ctx->async_msg_fifo);
if (acpi_disabled)

mbox_free_channel(ctx->mbox_chan);
else

pcc_mbox_free_channel(ctx->pcc_chan);
return 0;

}

Code Purpose: To remove the xgene_hwmon device 
and free associated resources.
Code Function: 1. Remove the xgene_hwmon device 
associated with the platform device. 2. Unregister the 
hardware monitoring device. 3. ...

 
      

❌  Irrelevant code with 
different vulnerabilit

CVE-2023-1855
Functional Semantics based Retrieval Result

CVE-2021-33034
Code-based Retrieval Result

y
√  Relevant code with 
similar vulnerability 

Figure 5: An example of knowledge retrieval strategy

tively help LLMs understand the behavior of the1079

vulnerable code, thereby improving the accuracy1080

of vulnerability detection.1081

Retrieval Strategy. Figure 5 compares the retriev-1082

ing outcomes of code-based retrieval (i.e., retriev-1083

ing only by code snippet) and our retrieval strat-1084

egy (i.e., retrieving by both code snippet and ex-1085

tracted functional semantics) for the given code1086

snippet. As shown in Figure 5, when detecting1087

a given code snippet from CVE-2023-1989, the1088

code-based retrieval finds a code snippet (from1089

CVE-2021-33034) that shares more operational re-1090

sources with the target code (highlighted in yellow),1091

but differ significantly in their functional semantics,1092

leading to disparate root causes of vulnerabilities.1093

In contrast, our retrieval strategy finds a code snip-1094

pet (from CVE-2023-1855) that shares more se-1095

mantic similarity with the target code (highlighted1096

in green). Furthermore, they share an identical vul-1097

nerability root cause, which lies in the failure to 1098

adequately handle asynchronous events during the 1099

device removal process. This indicates that our re- 1100

trieval strategy can help LLMs find code pairs with 1101

more similar vulnerability causes. 1102

F.3 Case Study of Previously-Unknown 1103

Vulnerability detected by VUL-RAG 1104

Figure 6 shows a previously-unknown bug detected 1105

by VUL-RAG in Linux kernel v6.9.6. This 1106

vulnerability is a use-after-free (UAF) caused by 1107

race condition found in the switchtec_ntb_remove 1108

function located in drivers/ntb/hw/msc- 1109

c/ntb_hw_switchtec.c file. In switchtec_ntb_add 1110

function, a call to switchtec_ntb_init_sndev 1111

binds &sndev->check_link_status_work 1112

with check_link_status_work. The 1113

switchtec_ntb_link_notification function may 1114

subsequently trigger the work by calling switchtec_ 1115

15



1. static void switchtec_ntb_remove(struct device *dev)

2. {

3.  struct switchtec_dev *stdev = to_stdev(dev);

4.  struct switchtec_ntb *sndev = stdev->sndev;

5. 

6.  if (!sndev)

7.   return;

8.

9.   stdev->link_notifier = NULL;

10.  stdev->sndev = NULL;

11.  ntb_unregister_device(&sndev->ntb);

12.  switchtec_ntb_deinit_db_msg_irq(sndev);

13.  switchtec_ntb_deinit_shared_mw(sndev);

14.  switchtec_ntb_deinit_crosslink(sndev);

15.  kfree(sndev);

16.  dev_info(dev, "ntb device unregistered\n");

17. }

 

1. static int switchtec_ntb_add(struct device *dev)

2. {

...
7.  stdev->sndev = NULL;

...
16.  sndev->stdev = stdev;

17.  rc = switchtec_ntb_init_sndev(sndev);

18.  if (rc)

19.   goto free_and_exit;

...
49.  rc = ntb_register_device(&sndev->ntb);

50.  if (rc)

51.   goto deinit_and_exit;

52.  stdev->sndev = sndev;

53.  stdev->link_notifier = switchtec_ntb_link_notification;

54.  dev_info(dev, "NTB device registered\n");

...}
 

1. static int switchtec_ntb_init_sndev(struct 
switchtec_ntb *sndev)

2. {
...
7.  sndev->ntb.pdev = sndev->stdev->pdev;
8.  sndev->ntb.topo = NTB_TOPO_SWITCH;
9.  sndev->ntb.ops = &switchtec_ntb_ops;
10. 
11.  INIT_WORK(&sndev->check_link_status_work, 

check_link_status_work);
...

1. static void switchtec_ntb_check_link(struct switchtec_ntb *sndev,
2.           enum switchtec_msg msg)
3. {
...
7.  schedule_work(&sndev->check_link_status_work);
8. }



1. static void switchtec_ntb_link_notification(struct 
switchtec_dev *stdev)

2. {
3.  struct switchtec_ntb *sndev = stdev->sndev;
4.
5.  switchtec_ntb_check_link(sndev, MSG_CHECK_LINK);
6. }

Figure 6: An example of a previously-unknown bug in Linux kernel reported by VUL-RAG

ntb _check_link. When switchtec_ntb_remove1116

is called during cleanup, it frees sndev via1117

kfree(sndev). If sndev is accessed by CPU 11118

via check_link_status_work after being freed by1119

CPU 0, it could result in a use-after-free (UAF)1120

vulnerability. The vulnerability can be mitigated by1121

ensuring that any pending work is canceled before1122

the cleanup proceeds in switchtec_ntb_remove,1123

preventing access to memory that has been freed.1124

Both the root cause and fixing solutions for this1125

vulnerability align with those retrieved from1126

CVE-2023-30772 in our constructed vulnerability1127

knowledge base, demonstrating the scalability1128

and effectiveness of the knowledge captured by1129

VUL-RAG.1130

G Usability for Developers1131

This section details the setup for our user study in1132

investigating the quality of VUL-RAG generated1133

knowledge and whether the knowledge can help de-1134

velopers understand and check the vulnerabilities.1135

Tasks and Participants. We select 10 cases from1136

PairVul for the user study. Specifically, we ran-1137

domly select two cases from each of the five CWE1138

categories PairVul, including both true positive (i.e.,1139

genuinely vulnerable code snippets) and false pos-1140

itive (i.e., correct code snippets mistakenly pre-1141

dicted by VUL-RAG as vulnerable) instances. To1142

ensure a balanced evaluation, we randomly assign1143

the two cases from each CWE category into two1144

equal groups (TA and TB), with each group com-1145

prising 5 cases. We invite 6 participants with 3-51146

years c/c++ programming experience for the user 1147

study. We conduct a pre-experiment survey on 1148

their c/c++ programming expertise, based on which 1149

they are divided into two participant groups (GA 1150

and GB) of similar expertise distribution. Each 1151

participant are payed with 250$ with the exper- 1152

iments. The procedure is approved with Ethics 1153

Review Board. 1154

Procedure. Each participant is tasked to iden- 1155

tify whether the given code snippet is vulnerable. 1156

For comparison, participants are asked to iden- 1157

tify vulnerability in two settings. (1) Basic set- 1158

ting: provided with the given code snippets and 1159

the detection labels generated by VUL-RAG; (2) 1160

Knowledge-accompanied setting: provided with 1161

the given code snippets, the detection labels gen- 1162

erated by VUL-RAG, and the vulnerability knowl- 1163

edge generated by VUL-RAG. In particular, the 1164

participants in GA are tasked to identify vulnera- 1165

bility in TA with the knowledge-accompanied set- 1166

ting, and to identify vulnerability in TB with the 1167

basic setting; conversely, the participants in GB 1168

are tasked to identify vulnerability in TA with the 1169

basic setting, and to identify vulnerability in TB 1170

with the knowledge-accompanied setting. In ad- 1171

dition to recording the outputs (i.e., vulnerable or 1172

not) of each participant, we further survey the par- 1173

ticipants on the helpfulness, preciseness, and gen- 1174

eralizability of the vulnerability knowledge on a 1175

4-point Likert scale (Likert, 1932) (i.e., 1-disagree; 1176

2-somewhat disagree; 3-somewhat agree; 4-agree). 1177

• Helpfulness: The vulnerability knowledge pro- 1178
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vided by VUL-RAG is helpful in understanding1179

the vulnerability and verifying detection labels.1180

• Preciseness: The vulnerability knowledge offer1181

precise and detailed descriptions of the vulnera-1182

bility, avoiding overly generic narratives that do1183

not adequately identify the root cause.1184

• Generalizability: The vulnerability knowledge1185

maintains a degree of general applicability, es-1186

chewing overly specific descriptions that dimin-1187

ish its broad utility (e.g., narratives overly reliant1188

on variable names from the source code).1189

H Bad Case Analysis1190

To understand the limitation of VUL-RAG, we1191

manually analyze the bad cases (i.e., false nega-1192

tives and false positives reported by VUL-RAG).1193

In particular, we include all 19 FN and 21 FP cases1194

from CWE-119 for manual analysis. Table 12 sum-1195

marizes the reasons and distributions. In particular,1196

the reasons for false negatives are classified into1197

three primary categories:1198

Table 12: FN/FP analysis in CWE-119
Type Reason Number

FN Inaccurate vulnerability knowledge descriptions. 5
Unretrieved relevant vulnerability knowledge. 2
Non-existent relevant vulnerability knowledge. 12

FP Mismatched fixing solutions. 11
Irrelevant vulnerability knowledge retrieval 10

• Inaccurate Vulnerability Knowledge Descrip-1199

tions. We observe that for 5 instances (26.3%),1200

VUL-RAG successfully retrieves relevant vulner-1201

ability knowledge but fails to detect the vulner-1202

ability due to the imprecise knowledge descrip-1203

tions. For example, given the vulnerable code1204

snippet of CVE-2021-4204, although VUL-RAG1205

successfully retrieves the relevant knowledge of1206

the same CVE, it yields a false negative due to1207

the vague descriptions of vulnerability knowl-1208

edge (i.e., only briefly mentioning “lacks proper1209

bounds checking” in the vulnerability cause and1210

fixing solution description with explicitly stat-1211

ing what kind of bound checking should be per-1212

formed).1213

• Unretrieved Relevant Vulnerability Knowl-1214

edge. We observe that for 2 cases (15.8%)1215

VUL-RAG fails to retrieve relevant vulnerabil-1216

ity knowledge, thus leading to false negatives.1217

Although there are instances in the knowledge1218

base that share the similar vulnerability root1219

causes and fixing solutions of the given code,1220

their functional semantics are significantly differ-1221

ent. Therefore, VUL-RAG fails to retrieve them1222

from the knowledge base. 1223

• Non-existent Relevant Vulnerability Knowl- 1224

edge. Based on our manual checking, the 12 1225

cases (63.2 %) in this category are cased by the 1226

absence of relevant vulnerability knowledge in 1227

our knowledge base. Even though there are other 1228

vulnerable and patched code pairs of the same 1229

CVE, the vulnerability behaviors and fixing so- 1230

lutions are dissimilar, rendering these cases un- 1231

solvable with the current knowledge base. This 1232

limitation is inherent to the RAG-based frame- 1233

work. In future work, we will further extend the 1234

knowledge base by extracting more CVE infor- 1235

mation to mitigate this issue. 1236

In addition, the reasons for false positive can be 1237

classified into the following two categories: 1238

• Mismatched Fixing Solutions. There are 11 1239

cases (52.4 %) that although VUL-RAG success- 1240

fully retrieves relevant vulnerability knowledge, 1241

the code snippet is still considered vulnerable, 1242

as it is considered not applied to the fixing solu- 1243

tion of the retrieved knowledge. This is because 1244

one vulnerability can be fixed by more than one 1245

alternative solution. 1246

• Irrelevant Vulnerability Knowledge Retrieval. 1247

There are 10 (47.6%) false positives caused 1248

by VUL-RAG retrieving irrelevant vulnerabil- 1249

ity knowledge. Based on our manual inspection, 1250

these incorrectly-retrieved knowledge descrip- 1251

tions often generally contain “missing proper val- 1252

idation of specific values”, which is too general 1253

for GPT4 to precisely identify the vulnerability. 1254
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