LLMs Struggle to Differentiate Vulnerable Code from Patched Code:
An Empirical Study and Knowledge-level Enhancement Framework

Anonymous ACL submission

Abstract

Although LLMs have shown promising poten-
tial in vulnerability detection, this study reveals
their limitations in distinguishing between vul-
nerable and similar-but-benign patched code
(only 0.04 - 0.06 accuracy). It shows that
LLMs struggle to capture the root causes of
vulnerabilities during vulnerability detection.
To address this challenge, we propose enhanc-
ing LLMs with multi-dimension vulnerability
knowledge distilled from historical vulnerabil-
ities and fixes. We design a novel knowledge-
level Retrieval-Augmented Generation frame-
work VUL-RAG, which improves LLMs with
an accuracy increase of 22% - 25% in identify-
ing vulnerable and patched code. Additionally,
VUL-RAG generated vulnerability knowledge
can (1) serve as high-quality explanations to
improve manual detection accuracy (from 60%
to 77%), and (2) detect 10 previously-unknown
bugs in the recent Linux kernel release (6 have
been confirmed by developers).

1 Introduction

Software vulnerabilities can cause severe conse-
quences. To date, there has been a large body of
research on automated vulnerability detection, uti-
lizing traditional program analysis or deep learning
techniques. More recently, the advance of large
language models (LLMs) further boosts learning-
based vulnerability detection. Due to the strong
code comprehension capabilities, LLMs show
promise in analyzing malicious behaviors (e.g., de-
tecting bugs or vulnerabilities) in code (Zhang et al.,
2023; Yang et al., 2024; Shestov et al., 2024; Li
et al., 2023a; Sun et al., 2023; Ding et al., 2024a;
Widyasari et al., 2024; Zhou et al., 2024).

While significant research has been dedicated to
evaluating LLMs for vulnerability detection (Ding
et al., 2024b; Gao et al., 2023), their ability to ac-
curately distinguish between vulnerable code and
its corresponding patched code remains unclear.
Given that vulnerable and patched code pairs often

share high textual similarity, addressing this ques-
tion can reveal whether LLMs genuinely capture
the root causes of vulnerabilities or merely overfit
to superficial code features when classifying code
as vulnerable or benign. Additionally, this question
is closely related to the robustness of LLMs in vul-
nerability detection, which reflects how well LLMs
perform in distinguishing between similar code.

Empirical Study. To fill this gap, we perform
an empirical study to evaluate the capabilities of
LLMs in distinguishing between vulnerable and
patched code. We first construct a new benchmark
PairVul, which includes 592 high-quality pairs of
vulnerable and patched functions extracted from
real-world CVEs of complicated software systems.
Our experiments reveal that existing LLMs strug-
gle to distinguish between vulnerable and patched
code: for majority (94% - 96%) cases, existing
LLMs cannot identify the vulnerable code as vul-
nerable while identify its patched code as benign
at the same time. In addition, we further investi-
gate how advanced prompts proposed in recent vul-
nerability detection work (Wen et al., 2024; Zhou
et al., 2024) can eliminate such limitations, includ-
ing two Chain-of-Thought prompts and one CWE
description enhanced prompt. We find that all these
advanced strategies bring limited improvement for
LLMSs, with only 0.01 - 0.16 accuracy in correctly
identifying both vulnerable and patched code at the
same time. Based on further analysis, we find that
LLMs show unstable bias by dominantly identify-
ing most code as vulnerable or benign when work-
ing with different prompts. Particularly, LLMs fail
to distinguish the subtle textual difference between
vulnerable and patched code, such as relocating or
replacing method invocations and modifying con-
ditional checks. In general, LLMs still fall short
in understanding vulnerable behaviors in code.
Enhancement Framework VUL-RAG. To ad-

dress this challenge, we propose VUL-RAG, a
novel knowledge-level Retrieval-Augmented Gen-

eration (RAG) framework to enhance LLM-based
vulnerability detection. The key insight behind
VUL-RAG is to distill high-level, generalizable
vulnerability knowledge from historical vulnera-
bilities and fixes, which can guide LL.Ms to more
accurately understand vulnerable and benign be-
haviors in code. Specifically, VUL-RAG proposes
a novel multi-dimension representation (including
perspectives of functional semantics, vulnerabil-
ity root causes, and fixing solutions) for vulnera-
bility knowledge. The representation focuses on
high-level features of vulnerabilities rather than
lexical code details. Based on this representa-
tion, VUL-RAG incorporates a three-step work-
flow for vulnerability detection. First, VUL-RAG
constructs a vulnerability knowledge base by ex-
tracting multi-dimension knowledge from existing
CVE instances and fixes via LLMs; Second, for
the given code, VUL-RAG retrieves the relevant
vulnerability knowledge with similar functional se-
mantics; Finally, VUL-RAG uses LLMs to assess
the vulnerability of the given code by reasoning
through the presence of vulnerability causes and
fixing solutions from the retrieved knowledge.

Evaluation. We evaluate VUL-RAG in extensive
settings. (1) Evaluation on Distinguishing Capa-
bilities. Our results show that VUL-RAG can sub-
stantially enhance the ability of various LLMs to
distinguish between vulnerable and patched code
(i.e., achieving 22% -25% improvements in pair ac-
curacy). Meanwhile, VUL-RAG achieves an 11%-
13%/11% increase in balanced precision/recall for
vulnerability detection. Our ablation study shows
the superiority of our knowledge-level RAG com-
pared to existing code-level RAG, i.e., 17%-23%
increase in pair accuracy. (2) User Study on Man-
ual Vulnerability Detection. To evaluate the quality
and usability of VUL-RAG generated vulnerabil-
ity knowledge, we conduct a user study in which
participants are asked to confirm vulnerability de-
tection results (both true positives and false alarms)
with or without the assistance of VUL-RAG gen-
erated vulnerability knowledge. The results show
that the vulnerability knowledge improves manual
confirmation accuracy from 60% to 77%. User
feedback also confirms the high quality of the gen-
erated knowledge in terms of the helpfulness, pre-
ciseness, and generalizability. (3) Case Study on
Detecting Previously-Unknown Vulnerabilities. To
evaluate whether VUL-RAG generated vulnerabil-
ity knowledge can detect new vulnerabilities, we

apply VUL-RAG to the recent Linux kernel re-
lease (v6.9.6, June 2024). VUL-RAG detects 10
previously-unknown bugs, 6 of which have been
confirmed by the Linux community. Our extensive
evaluation shows that high-level vulnerability
knowledge is a promising direction for enhanc-
ing LLM-based vulnerability detection.
This paper makes the following contributions:

* We perform the first study to reveal the lim-
ited capabilities of LLMs in differentiating
vulnerable code from patched code.

* We propose VUL-RAG, a novel knowledge-
level RAG framework to enhance LLM-based
vulnerability detection with generalizable and
multi-dimensional vulnerability knowledge
distilled from historical vulnerabilities and
fixes.

* We perform quantitative experiments, user
study, and case analysis to extensively eval-
uate VUL-RAG. The results not only show
the effectiveness of VUL-RAG in improving
overall precision/recall and distinguishing ca-
pabilities of LL.Ms, but also show the usability
of VUL-RAG in helping manual vulnerabil-
ity comprehension and detecting previously-
unknown bugs for complex software (e.g.,
Linux Kernel). Data and code of our work
are at (rep, 2024) with MIT license.

2 Related Work

Empirical Studies. Many efforts have been ded-
icated to evaluating LLMs in vulnerability detec-
tion (Khare et al., 2023; Ding et al., 2024b; Gao
et al., 2023), covering diverse benchmarks, LLMs,
and metrics. Different from existing studies, we
focus on evaluating the capabilities of LLMs in dis-
tinguishing between vulnerable and patched code.
Risse et al. (Risse and Bohme, 2024) evaluate such
capabilities of small pre-trained models (e.g., Code-
BERT, UniXcoder, and PLBart), while we study
more recent instructed and large LLMs. Ullah et
al. (Ullah et al., 2024) evaluate such capabilities of
LLMSs on a small sample (only 30 pairs) while we
extensively study 597 pairs with both quantitative
and qualitative analysis.

Enhancing LLMs in Vulnerability Detection.
The majority of existing work focuses on prompt
engineering (Zhou et al., 2024; Wu et al., 2023),
such as chain-of-thought (Wei et al., 2022; Zhang
et al., 2022) and few-shot learning (Brown et al.,

2020), to facilitate more powerful LLM-based vul-
nerability detection. Additionally, recent work ex-
plores fine-tuning approaches (Yang et al., 2024;
Shestov et al., 2024; Mao et al., 2024) or integra-
tion with static analysis (Li et al., 2023a; Sun et al.,
2023; Li et al., 2024a; Wen et al., 2024; Li et al.,
2024b) to enhance LLMs in vulnerability detection.
As fine-tuning enhancement often works for small
models with high-quality training data and static
analysis enhancement often works on specific types
of bugs, in this work, we mainly focus on enhance-
ment techniques with prompt engineering.
Retrieval-Augmented Generation (RAG) for
Code-related Tasks. RAG has been widely ex-
plored in many code-related tasks, including code
generation (Wang et al., 2024), code translation
(Bhattarai et al., 2024), program repair (Wang et al.,
2023), and vulnerability detection in smart con-
tracts (Yu, 2024). While existing work remains on
code-level RAG (retrieving and augmenting with
code), VUL-RAG is novel in using high-level, gen-
eralizable knowledge to augment generation for the
source code vulnerability detection task.

3 Empirical Study
3.1 Experimental Setup
3.1.1 Research Questions of Study

The following RQs aim to evaluate how LLMs
distinguish between vulnerable and patched code.

* RQ1: How effectively do LLMs distinguish
between vulnerable and patched code?

* RQ2: How do state-of-the-art prompting
strategies improve LLMs in distinguishing be-
tween vulnerable and patched code?

3.1.2 Studied LLMs and Baselines

We include four state-of-the-art LL.Ms that have
been widely used in vulnerability detection, in-
cluding two closed-source models, i.e., GPT-4-
turbo (gpt, 2024), Claude Sonnet 3.5 (cla, 2024),
and two open-source models, i.e., Qwen2.5-
Coder-32B-Instruct (qwe, 2024), DeepSeek-V2-
Instruct (dee, 2024).

In RQI1, we evaluate the capabilities of studied
LLMs with a basic prompt (Purba et al., 2023). In
RQ2, we investigate three state-of-the-art prompt-
ing strategies proposed in recent LLM-based vul-
nerability detection work (Wen et al., 2024; Zhou
et al., 2024). These include (1) two prompts that
combine role-oriented with chain-of-thought, one
involving an initial explanation of code behavior,

and the other focusing on the root causes reasoning
of vulnerabilities (denoted Cot-1 and Cot-2); and
(2) a prompt enhanced with CWE descriptions (de-
noted CWE-enhanced). The detailed prompts and
baseline settings are in Appendix B.

3.1.3 Benchmark

Existing widely-used vulnerability detection
benchmarks, such as BigVul (Fan et al., 2020), De-
vign (Zhou et al., 2019) and Reveal (Chakraborty
et al., 2022) are not directly applicable for our study,
due to (1) the lack of corresponding patched ver-
sions for vulnerable code (e.g., Devign and Re-
veal), and (2) the absence of verified correctness
for patched code. For example, although BigVul
includes patched code, its patches may have been
subsequently modified in later CVEs, making their
correctness unreliable. Therefore, we construct a
new benchmark PairVul, which specifically targets
high-quality pairs of vulnerable functions and their
corresponding patched functions. Our benchmark
construction process includes three key steps. (1)
Vulnerable and Patched Code Collection: We ex-
tract function-level pairs of vulnerable and patched
code, along with descriptions from existing CVEs
of real-world systems (i.e., Linux kernel). Particu-
larly, we focus on Top-5 prevalent CWEs (i.e., 416,
476, 362, 119, 787). (2) Patched Code Verifica-
tion: To ensure the reliability of the patched code,
we manually summarize multiple filtering rules to
verify the patched code is not subsequently revert-
ed/modified by other commits. (3) Pair Selection:
to ensure the diversity of the benchmark and con-
trol the benchmark scale, we randomly sample one
third of pairs of vulnerable and patched functions in
each CVE, to further form our final benchmark. We
exclude cases where the code length exceeds the
current token limit of studied LLMs (i.e., 16,384
tokens). In this way, PairVul includes 592 pairs
across 373 CVEs. Detailed construction procedure
and benchmark statistics are in Appendix A.

3.1.4 Metrics

We focus on the following metrics. pairwise accu-
racy calculates among all pairs, the ratio of pairs
whose vulnerable and patched code are both cor-
rectly identified. We use Balanced Recall (de-
#Trueyy #Truepyy
fined as <#T0talwl + #Totalmul) /2) and Balanced
o o #Trueyy #Truenyy
Precision (defined as <#Predictvlul + #Predict,w]ul) /2)
to evaluate the precision and recall across both
vulnerable and non-vulnerable instances. Notably,

Balanced Recall is equivalent to the overall accu-
racy given the even distribution of vulnerable and
non-vulnerable samples on PairVul.

Table 1: Evaluation of Basic LLMs

LLMs Pair Acc. | Bal. Recall | Bal. Pre.
GPT-4 0.05 0.50 0.50
Claude 0.05 0.49 0.49
Qwen 0.04 0.49 0.49
DeepSeek 0.06 0.48 0.48

3.2 RQ1: Basic Differentiating Capabilities

Table 1 presents the effectiveness of LLMs with
the basic prompt. All LLMs show limited capa-
bilities of distinguishing vulnerable and patched
code. The low pairwise accuracy (i.e., 0.04 - 0.06)
show that LL.Ms fail to accurately identify a pair
of vulnerable and patched code for majority cases
(94% - 96%). Additionally, all LLMs show limited
balanced recall and precision (not more than 0.50),
which is similar as random guess.

3.3 RQ2: Impact of Advanced Prompting

Table 2 shows that the advanced prompts bring
limited improvements on the distinguishing capa-
bilities of LLLMs. Even for the best case (CoT-2
for Qwen), its pairwise accuracy is only improved
to 0.16, while others bring fewer improvements
and some (CWE-enhanced) even harm the pair ac-
curacy. Additionally, the balanced precision and
accuracy still remain limited (lower than 0.54).

Table 2: Impacts of Enhancement Techniques

Tech. LLM Pair Acc. | Bal. Recall | Bal. Pre.
GPT-4 0.14 0.49 0.49
CoT-1 Claude 0.14 0.51 0.51
Qwen 0.02 0.51 0.54
DeepSeek 0.09 0.50 0.50
GPT-4 0.10 0.51 0.52
Claude 0.14 0.53 0.53
CoT-2 Qwen 0.16 0.52 0.52
DeepSeek 0.12 0.51 0.51
GPT-4 0.03 0.50 0.50
CWE Claude 0.04 0.50 0.51
Enhanced Qwen 0.03 0.50 0.49
DeepSeek 0.01 0.50 0.42

Table 3: Vulnerable Code Identification Ratio

Technique GPT-4 | Claude | Qwen | DeepSeek
Basic LLMs 0.74 0.71 0.23 0.44
CoT-1 0.42 0.37 0.04 0.15
CoT-2 0.71 0.64 0.42 0.63
CWE-Enhanced 0.19 0.12 0.16 0.01

Further Analysis. We perform quantitative and
qualitative analysis of RQ1 and RQ2 results.
Unstable Bias. Table 3 shows the ratio of cases
that LL.Ms identify the code as vulnerable when
working with different prompts. Interestingly, we
find that LLMs show unstable biases although all

the prompts are neutral without inductive instruc-
tions. With a basic prompt, GPT-4 and Claude tend
to consider majority code (over 70%) as vulnerable
while Qwen oppositely considers the majority code
(77%) as benign. The CoT-1 (explaining the code
behaviors first) and CWE-enhanced (including the
relevant CWE descriptions) dramatically lead all
LLMs to consider most code as benign. The results
further confirm that LLMs cannot capture the se-
mantic difference between vulnerable and patched
code, thus showing unstable bias when instructed
with different neutral prompts.

Case Analysis. We manually sample and analyze
code pairs where all the studied LLMs fail to dis-
tinguish between vulnerable and patched code. We
further confirm that it is challenging for LLMs to
discern the subtle textual differences between two
similar functions with opposing labels (i.e., vulner-
able vs. benign), such as (1) relocating a method
invocation, (2) replacing a method invocation, and
(3) adding a conditional check. Detailed bad case
examples are in Appendix F.1.

Summary of Empirical Studies. Overall, our em-
pirical study reveals that LLMs cannot distinguish
between vulnerable and patched code (i.e., pair
accuracy lower than 0.06 and balanced recall/pre-
cision lower than 0.50), while the recent prompt-
ing techniques bring limited improvements. LLMs
show unstable bias with different neutral prompts,
and struggle to capture subtle textual differences
between similar vulnerable code and patched code.

4 Enhancement Framework VUL-RAG

The findings suggest that LLMs require semantic-
level guidance for vulnerability detection to avoid
relying on superficial code features. Inspired by
this, we propose leveraging high-level vulnera-
bility knowledge to enhance LLMs in vulnerabil-
ity detection. Particularly, we propose a novel
knowledge-level Retrieval-Augmented Generation
(RAG) framework VUL-RAG for vulnerability de-
tection, which first distills multi-dimension vulner-
ability knowledge from existing CVEs and then
leverages relevant knowledge items to guide LLM
in comprehending the vulnerable behaviors of the
given code. As illustrated in Figure 1, VUL-RAG
includes three phases: offline vulnerability knowl-
edge base construction, online vulnerability knowl-
edge retrieval, and online knowledge-augmented
vulnerability detection.

Functional
Semantics
Extraction

Vulnerability Causes and
Fixing Solutions Extraction

Knowledge
Abstraction

S —
Vulnerability
Knowledge Base

Vulnerability Knowledge Base Construction

A

H
Vulnerability
Knowledge
Extraction

¢

Vulnerability

Functional Retrieval
Jalrug=y . Knowledge
Semantics Extraction Query Retrieval
Vulnerability Knowledge Retrieval

LLM-based
Vulnerability
Detection

Top N Related
vulnerability
knowledge

Vulnerability
Detection
Prompt

Knowledge-Augmented Vulnerability Detection

Figure 1: Overview of VUL-RAG

4.1 Vulnerability Knowledge Base
Construction

VUL-RAG constructs a vulnerability knowledge
base by automatically extracting multi-dimension
knowledge via LLMs from existing vulnerabili-
ties and fixes. Section 4.1.1 introduces our novel
multi-dimension representation for vulnerability
knowledge; Section 4.1.2 introduces the automatic
pipeline of knowledge extraction.

4.1.1 Vulnerability Knowledge Representation

Inspired by how developers understand vulnerabil-
ities, we propose a multi-dimensional representa-
tion, including seven elements from three dimen-
sions, to describe each vulnerability as follows.

Functional Semantics. This dimension summa-
rizes the high-level functionality (i.e., what this
code is doing) of the vulnerable code: (1) Abstract
purpose is the brief summary of the code intention;
and (2) Detailed behavior is the detailed descrip-
tion of the code behavior.

Vulnerability Causes. It describes the reasons for
triggering vulnerable behaviors by comparing the
vulnerable code and its corresponding patch. The
cause can be described from three perspectives:
(1)Triggering action describes the direct action
triggering the vulnerability; (2) Abstract vulnera-
bility description is the brief summary of the cause;
and (3) Detailed vulnerability description is more
concrete descriptions of the causes.

Fixing Solutions. It summarizes the fixing of the
vulnerability by comparing the vulnerable code
and its corresponding patch.

Functional semantics are summarized from the
vulnerable code, which describe code contexts
where vulnerability occurs and are used to facil-
itate the subsequent retrieval process (Section 4.2);

vulnerability causes and fixing solutions are sum-
marized from the pair of vulnerable and patched
code, which are used to facilitate the subsequent
online detection process (Section 4.3). Figure 2
exemplifies the multi-dimension representation for
the real-world vulnerability CVE-2022-38457.

4.1.2 Knowledge Extraction

For each existing CVE instance (including a pair of
vulnerable and patched code and its CVE descrip-
tion), VUL-RAG first leverages LLM to extract
each dimension of knowledge; then VUL-RAG
performs a knowledge abstraction step to increase
the generality of extracted knowledge items.
Functional Semantics Extraction. Given the vul-
nerable code, VUL-RAG prompts LLMs to extract
both its abstract purpose and detailed behavior. The
detailed prompt is in Appendix C.1.
Vulnerability Causes and Fixing Solutions Ex-
traction. As the causes and fixing solutions are
often logically connected, VUL-RAG extracts two
dimensions together to maximize the reasoning ca-
pabilities of LLMs. Given a pair of vulnerable
and patched code, VUL-RAG incorporates two
rounds to extract the vulnerability causes and the
corresponding fixing solutions. In the first round,
VUL-RAG instructs LLMs to explain the modifi-
cation from vulnerable code to patched code; in
the second round, VUL-RAG further asks LLMs
to extract relevant information in dimensions of
causes and fixing solutions based on the explana-
tions generated in the first round. Such a two-step
strategy follows a CoT paradigm, which inspires
LLM reasoning capabilities by thinking step-by-
step (Wei et al., 2022; Zhang et al., 2022; Li et al.,
2023b; Nong et al., 2024). Additionally, VUL-
RAG includes two shots of demonstration exam-
ples to guide the output formats of LLMs. The
detailed prompts for vulnerability causes and fix-
ing solutions extraction are in Appendix C.1.
Knowledge Abstraction. As different vulnera-
bility instances might share high-level commonal-
ity (e.g., the similar causes and fixing solutions),
VUL-RAG further performs abstraction to distill
more general knowledge representation that is less
bonded to concrete code implementation details.
Particularly, VUL-RAG leverages LLMs to ab-
stract the concrete code elements (i.e., method in-
vocations, variable names, and types) in the ex-
tracted vulnerability causes and fixing solutions.
Detailed prompts for knowledge abstraction are in
Appendix C.1. We further illustrate two abstraction

JIKCVE-2022-38457 CVEID
A use-after-free(UAF) vulnerability was found in function 'vmw_cmd_res_check' in
drivers/gpu/vmxgfx/vmxgfx_execbuf.c in Linux kernel's vmwefx driver with device
file */dev/dri/renderD128 (or Dxxx)'. C\/E Description

Abstract Purpose: Look up a TTM base object associated with a given
key in a TTM object file.
Detailed Behavior: 1. Look up a TTM base object using a key ina TTM

/struct ttm_base_object *ttm_base_object_lookup(struct ttm_object file
*tfile, uint64_t key)
{

rcu read lock(); —
ret = ttm_tfile_find_ref rcu(tfile, key, &hash);
if (likely(ret == 0)) {
base = hlist_entry(hash, struct ttm_ref object, hash)->obj;
if (Ikref_get_unless_zero(&base->refcount))

base = NULL; } @a
rcu_read_unlock();

Ly Etuplbacs; X Vulnerable Code |

#struct ttm_base_object *ttm_base_object_lookup(struct ttm_object_file Y
“tfile, uint64_t key)
{

Functional Semantics
Extraction Prompt

Knowledge
Abstraction
Prompt

object file. 2.Acquire a reference to the base object if found successfully.
3. Return the base object if a reference is acquired, otherwise return

NULL. Functional Semantics

Abstract Vulnerability Description: Use of RCU read lock without proper
synchronization mechanism to protect shared data structures.

Trigger Action: Concurrent access to the shared data structure while
under RCU read lock context.

Detailed Vulnerability Description: The code accesses a shared data
structure within an RCU read lock context without ensuring exclusive
access, allowing a race condition where the object can be freed while

still being accessed. Vulnerability Causes

Spin Tock(8itfile->Toek) =
{ret = ttm tfile find ref(tfile, key, &hashy;, _Patch Diff |

if (likely(ret == 0)) {
base = hlist_entry(hash, struct ttm_ref object, hash)->obj;
if (tkref_get_unless_zero(&base->refcount))
base = NULL:}

! spin_unlock(itfile->lock);

\.

——————————————— shared data structure from concurrent modifications. By replacing the

5 Vulnerability Cause

return base; & Fixing Solution

) V Patch Code / Extraction Prompt
/

Solution Description: To mitigate the vulnerability, it is necessary to
use a synchronization mechanism, such as a spin lock, to protect the

RCU read lock with a spin lock, exclusive access to the data structure
is ensured, pr the race Jition and fter-free
vulnerability....

Fixing Solution

Instance-level Vulnerability Knowledge Extraction Input

Extracted Vulnerability Knowledge

Figure 2: An Example of Vulnerability Knowledge Extraction from CVE-2022-38457

guidelines as follows.

* Abstracting Method Invocations. The ex-
tracted knowledge might contain concrete
method invocations with detailed function
identifiers (e.g., io_worker_handle_work
function) and parameters (e.g.,
mutex_lock (&dmxdev->mutex)), which
can be abstracted into the generalized
description (e.g., “during handling of IO
work processes” and “employing a locking
mechanism akin to mutex_lock()”).

* Abstracting Variable Names and Types. The
extracted knowledge might contain concrete
variable names or types (e.g., “without &dev-
>ref initialization”), which can be abstracted
into the more general description (e.g., “with-
out proper reference counter initialization™).

Vulnerability Knowledge Base. For each vul-
nerability instance, VUL-RAG generates a multi-
dimensional knowledge item with the knowledge
extraction and abstraction described above. All the
knowledge items are aggregated to form the final
vulnerability knowledge base. In our experiments,
to construct the vulnerability knowledge base, we
use the remaining 1,462 pairs of vulnerable and
patched code that are not selected into our bench-
mark PairVul (Section 3.1.3), ensuring that there is
no data overlap between the evaluation benchmark
and the knowledge base. Detailed statistics within
the knowledge base are in Appendix A.

4.2 Vulnerability Knowledge Retrieval

For a given code snippet under detection, VUL-
RAG retrieves relevant vulnerability knowledge
items from the constructed vulnerability knowledge

base in a three-step retrieval process: semantic
query generation, candidate knowledge retrieval,
and candidate knowledge re-ranking.

Semantic Query Generation. Different from ex-
isting RAG pipelines for code-related tasks (Wang
et al., 2024) that solely use code as the retrieval
query, VUL-RAG uses a mixed query of both code
and its functional semantics to find the knowledge
item that share high-level functional similarity as
the given code. VUL-RAG prompts LLMs to ex-
tract the functional semantics of the given code,
using the method described in Section 4.1.2. The
abstract purpose, detailed behavior, and code itself,
form the query for the subsequent retrieval.

Candidate Knowledge Retrieval. VUL-RAG con-
ducts similarity-based retrieval using above three
query elements: the code, abstract purpose, and
detailed behavior. It retrieves the Top-n knowledge
items (where n=10 in our experiments) for each
element, resulting in a total of 30 candidate items.
Duplicates across query elements are removed to
ensure uniqueness. The retrieval is based on the
similarity between each query element and the cor-
responding elements of the knowledge items. VUL-
RAG adopts BM25 (Robertson and Walker, 1988)
for similarity calculation, a method widely used in
search engines due to its efficiency and effective-
ness (Sun et al., 2023). Before calculating BM25
similarity, both the query and the retrieval docu-
mentation undergo standard preprocessing proce-
dures, including tokenization, lemmatization, and
stop word removal (Cagatayli and Celebi, 2015).

Candidate Knowledge Re-ranking. We re-rank
candidate knowledge items with the Reciprocal
Rank Fusion (RRF) strategy. For each retrieved

knowledge item k, we aggregate the reciprocal of
its rank across all three query elements. If a knowl-
edge item k is not retrieved by a particular query
element, we assign its rank as infinity. Detailed
formulas and implementation of the retrieval and
re-ranking process are in Appendix D. In the end,
we keep Top-10 candidate knowledge items with
the highest re-rank scores as the final knowledge
items for the subsequent vulnerability detection.

4.3 Knowledge-Augmented Vulnerability
Detection

Based on the retrieved knowledge items, VUL-
RAG leverages LLMs to reason whether the given
code is vulnerable. However, directly incorpo-
rating all the retrieved knowledge items into one
prompt can hinder the effectiveness of the mod-
els, as LLMs often perform poorly on long con-
texts (Liu et al., 2023). Therefore, VUL-RAG iter-
atively enhances LLMs with each retrieved knowl-
edge item by sequentially checking whether the
given code exhibits the same vulnerability cause
without the corresponding fixing solutions. If the
given code exhibits the same vulnerability cause as
the knowledge item but without applying the rele-
vant fixing solution, it is identified as vulnerable.
Otherwise, VUL-RAG cannot identify the code as
vulnerable with the current knowledge item and
proceeds to the next iteration (i.e., using the next
retrieved knowledge item). If the code cannot be
identified as vulnerable with any of the retrieved
knowledge items, it is identified as non-vulnerable.
The iteration process terminates when (1) the code
is identified as vulnerable or (2) all the retrieved
knowledge items have been considered. The de-
tailed prompts of this phase are in Appendix C.2.

5 Evaluation for VUL-RAG

We answer the following RQs to extensively evalu-
ate the effectiveness and usability of VUL-RAG.
* RQ3 (Overall Improvements): How does
VUL-RAG improve LLMs in vulnerability
detection?

* RQ4 (User Study on Usability): How is the
quality of VUL-RAG generated knowledge?
How can the VUL-RAGgenerated knowledge
help manual vulnerability comprehension?

* RQS5 (Case Study on Detecting New Vul-
nerabilities): Can the VUL-RAG generated
knowledge help detect previously-unknown

vulnerabilities in real-world software sys-
tems?

Implementation. During the offline knowledge
base construction, we employ GPT-3.5-turbo-
0125 (cha, 2023), given its rapid response and
cost-effectiveness in generating a large volume of
vulnerability-related knowledge items (Sun et al.,
2023). For the online knowledge retrieval, we
use Elasticsearch (ela, 2023) as our search en-
gine. For the online knowledge-augmented detec-
tion, we study the same four LLMs (GPT-4-turbo,
Claude Sonnet 3.5, Qwen2.5-Coder-32B-Instruct,
and DeepSeek-Coder-V2-Instruct) as in the study.

5.1 RQ3: Overall Improvements

Baselines. Besides the basic prompt and three
advanced prompts studied in RQ1 and RQ2, we
further include code-level RAG as the baseline.
Code-level RAG is a default paradigm that has been
widely used in code-related tasks, e.g., program re-
pair (Wang et al., 2023) and code generation (Wang
et al., 2024); it uses code similarity (BM25 in our
experiments) to retrieve Top-10 similar vulnerable
code from historical vulnerabilities (which is the
same set for constructing the vulnerability knowl-
edge base of VUL-RAG), and prompts LLMs to
detect vulnerabilities with the retrieved pair of vul-
nerable and patched code into the prompt. The de-
tailed prompt design of code-level RAG is in Figure
4 (b) in Appendix F.2. Comparing VUL-RAG with
code-level RAG can investigate the contribution of
our knowledge-level representation.

Table 4: Effectiveness of VUL-RAG

Tech. LLM Pair Acc. | Bal. Recall | Bal. Pre.

GPT-4 0.05 0.50 0.50

Claude 0.12 0.51 0.51

Code RAG Qwen 0.07 0.51 0.52
DeepSeek 0.10 0.47 0.47

GPT-4 0.28 0.61 0.61

Claude 0.29 0.60 0.62

VUL-RAG | yen 0.29 0.60 0.60
DeepSeek 0.28 0.59 0.59

Results. Table 4 compares VUL-RAG and code-
level RAG on PairVul. Due to space limits, here
we do not repeat the results of other baselines (in
Table 1 and Table 2). Detailed comparison between
VUL-RAG and baselines in each CWE category is
in Appendix E and the bad case analysis of VUL-
RAG is in Appendix H. Overall, VUL-RAG sub-
stantially outperforms all baselines in all metrics.
Particularly, VUL-R AG not only improves the pair
accuracy of LLMs (with 22% - 25% increase) but
also improves the balanced precision and recall by

11%-13% and 11%.

Compared to code-level RAG, VUL-RAG shows
greater effectiveness in enhancing LLMs for vul-
nerability detection, with consistent improvements
across all metrics. This highlights the contribution
of our novel vulnerability knowledge representa-
tion and underscores the superiority of knowledge-
level RAG over code-level RAG. We manually in-
spect cases where VUL-RAG successfully identi-
fies vulnerable and patched code pairs that code-
level RAG fails. We identify two key reasons for
the superior performance of VUL-RAG. (1) In the
retrieval phase, knowledge-level RAG more accu-
rately retrieves semantically relevant vulnerabilities
from the knowledge base, whereas code-level RAG
often retrieves textually similar but semantically
irrelevant vulnerabilities. As a result, the vulnera-
bilities retrieved by code-level RAG offer limited
utility for or even mislead LLMs in vulnerability
detection. (2) In the inference phase, even when
retrieving the same vulnerabilities, the high-level
representation of vulnerability knowledge provided
by VUL-RAG can more accurately prompt LLMs
while the plain representation of code pairs used
in code-level RAG cannot. Appendix F.2 presents
such two cases observed in our experiments.

5.2 RQ4: Usability for Developers

We conduct a user study to investigate the quality
of VUL-RAG generated knowledge and whether
the knowledge can help developers understand and
check the vulnerabilities in code.

Tasks and Participants. We select 10 cases (5
true and 5 false positives) from PairVul for the
user study. We invite 6 participants with 3-5 years
c/c++ programming experience. Participants are
tasked to identify whether the given code is vulner-
able in two settings. (1) Basic setting: provided
with the code and the detection labels generated
by VUL-RAG:; (2) Knowledge-accompanied set-
ting: provided with the basic setting and VUL-
RAG generated vulnerability knowledge. Beyond
recording user outputs (i.e., vulnerable or not) of
each case, we further survey the participants on
the helpfulness, preciseness, and generalizability
of the vulnerability knowledge on a 4-point Likert
scale (Likert, 1932) (i.e., 1-disagree; 2-somewhat
disagree; 3-somewhat agree; 4-agree). Detailed
procedure and scoring criteria are in Appendix G.
Results. Participants rate the helpfulness, precise-
ness, and generalizability with average scores of

3.00, 3.20, and 2.97, respectively. It indicates
the high quality of vulnerability knowledge gen-
erated by VUL-RAG. Additionally, participants
provided with VUL-RAG generated vulnerability
knowledge can more precisely identify the vulner-
able and non-vulnerable code (i.e., 77% detection
accuracy with knowledge v.s. 60% detection accu-
racy without knowledge). It confirms the usability
of VUL-RAG generated knowledge for manual
vulnerability comprehension.

5.3 RQS5: Detecting New Vulnerabilities

We investigate whether VUL-RAG generated
vulnerability knowledge can detect previously-
unknown vulnerabilities in real-world software sys-
tems. In particular, we apply VUL-RAG on the
recent Linux Kernel release (v6.9.6, June 2024)
given the importance of Kernel systems. Given the
large scale of Linux kernels, we randomly sample a
set of files within the drivers component, including
1,867 functions in total. We apply VUL-RAG with
GPT-4 on the 1,867 functions. VUL-RAG detects
10 previously-unknown bugs, and 6 of them have
been confirmed as real bugs by the Linux commu-
nity. In addition, as VUL-RAG not only generates
the detection labels (i.e., vulnerable or not) but also
provides vulnerability knowledge with relevant vul-
nerability causes and fix suggestions, it is helpful
for us writing high-quality bug-reporting emails.
For the 6 confirmed bugs, we further write patches
based on the fix solutions provided by VUL-RAG,
and five submitted patches have already been ac-
cepted by the paper submission time. Appendix F.3
presents an example of our confirmed bug.

6 Conclusion

This work reveals the limitation of LLMs in distin-
guishing between vulnerable and patched code; and
proposes a novel knowledge-level RAG framework
VUL-RAG, which enhances LLMs with multi-
dimention vulnerability knowledge. VUL-RAG
outperforms all baselines in vulnerability detec-
tion; and VUL-RAG generated knowledge im-
proves manual vulnerability detection by 17% ac-
curacy increase. Additionally, VUL-RAG detects
10 previously-unknown bugs in the Linux kernel
and 6 of them have been confirmed by the Linux
community.

7 Limitations

The incompleteness of the knowledge base can
limit the performance of VUL-RAG in practice.
Given the diversity of vulnerabilities, it is possible
that there is no relevant historical vulnerabilities for
the code under detection, which is also a common
pain spot for RAG techniques. Therefore, we plan
to open source our vulnerability knowledge base,
which can be further continuously maintained and
extended by the community together. Furthermore,
although we evaluated four LLMs, including both
open-source and closed-source models, the gener-
alizability of our findings to other LLMs requires
further investigation.

References
2023. Elasticsearch.

2023. Gpt-3-5-turbo documentation.

2024. Claude sonnet 3.5.

2024. Deepseek-coder-v2-instruct.

2024. Gpt-4-turbo.

2024. Qwen2.5-coder-32b- 256 instruct.

2024. Replication package.

2024. The website of linux kernel cves.

2024. The website of ommon weakness enumeration.

Manish Bhattarai, Javier E Santos, Shawn Jones, Ayan
Biswas, Boian Alexandrov, and Daniel O’Malley.
2024. Enhancing code translation in language mod-
els with few-shot learning via retrieval-augmented
generation. arXiv preprint arXiv:2407.19619.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Mustafa Cagatayli and Erbug Celebi. 2015. The effect
of stemming and stop-word-removal on automatic
text classification in turkish language. In Neural
Information Processing - 22nd International Con-
ference, ICONIP 2015, Istanbul, Turkey, November
9-12, 2015, Proceedings, Part I, volume 9489 of
Lecture Notes in Computer Science, pages 168—176.
Springer.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding,
and Baishakhi Ray. 2022. Deep learning based vul-
nerability detection: Are we there yet? IEEE Trans.
Software Eng., 48(9):3280-3296.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim,
Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen.
2024a. Vulnerability detection with code language
models: How far are we?

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim,
Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen.
2024b. Vulnerability detection with code lan-
guage models: How far are we? arXiv preprint
arXiv:2403.18624.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen.
2020. A C/C++ code vulnerability dataset with code
changes and CVE summaries. In MSR '20: 17th
International Conference on Mining Software Repos-
itories, Seoul, Republic of Korea, 29-30 June, 2020,
pages 508-512. ACM.

Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and
Chao Zhang. 2023. How far have we gone in vulner-
ability detection using large language models. CoRR,
abs/2311.12420.

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-
Breslin, Rajeev Alur, and Mayur Naik. 2023. Under-
standing the effectiveness of large language mod-
els in detecting security vulnerabilities. CoRR,
abs/2311.16169.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian.
2023a. The hitchhiker’s guide to program analysis:
A journey with large language models.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian.
2024a. Enhancing static analysis for practical bug
detection: An llm-integrated approach. Proc. ACM
Program. Lang., 8(OOPSLA1).

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023b. Struc-
tured chain-of-thought prompting for code genera-
tion. arXiv preprint arXiv:2305.06599.

Ziyang Li, Saikat Dutta, and Mayur Naik. 2024b. Llm-
assisted static analysis for detecting security vulnera-
bilities.

Rensis Likert. 1932. A technique for the measurement
of attitudes. Archives of psychology.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language
models use long contexts. CoRR, abs/2307.03172.

Qiheng Mao, Zhenhao Li, Xing Hu, Kui Liu, Xin Xia,
and Jianling Sun. 2024. Towards effectively detect-
ing and explaining vulnerabilities using large lan-
guage models.

Yu Nong, Mohammed Aldeen, Long Cheng, Hongxin
Hu, Feng Chen, and Haipeng Cai. 2024. Chain-of-
thought prompting of large language models for dis-
covering and fixing software vulnerabilities. CoRR,
abs/2402.17230.

https://github.com/elastic/elasticsearch
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://www.anthropic.com/news/claude-3-family
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://github.com/KnowledgeRAG4LLMVulD/KnowledgeRAG4LLMVulD
https://www.linuxkernelcves.com/
https://cwe.mitre.org/
https://doi.org/10.1007/978-3-319-26532-2_19
https://doi.org/10.1007/978-3-319-26532-2_19
https://doi.org/10.1007/978-3-319-26532-2_19
https://doi.org/10.1007/978-3-319-26532-2_19
https://doi.org/10.1007/978-3-319-26532-2_19
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/TSE.2021.3087402
http://arxiv.org/abs/2403.18624
http://arxiv.org/abs/2403.18624
http://arxiv.org/abs/2403.18624
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.1145/3379597.3387501
https://doi.org/10.48550/ARXIV.2311.12420
https://doi.org/10.48550/ARXIV.2311.12420
https://doi.org/10.48550/ARXIV.2311.12420
https://doi.org/10.48550/ARXIV.2311.16169
https://doi.org/10.48550/ARXIV.2311.16169
https://doi.org/10.48550/ARXIV.2311.16169
https://doi.org/10.48550/ARXIV.2311.16169
https://doi.org/10.48550/ARXIV.2311.16169
http://arxiv.org/abs/2308.00245
http://arxiv.org/abs/2308.00245
http://arxiv.org/abs/2308.00245
https://doi.org/10.1145/3649828
https://doi.org/10.1145/3649828
https://doi.org/10.1145/3649828
http://arxiv.org/abs/2405.17238
http://arxiv.org/abs/2405.17238
http://arxiv.org/abs/2405.17238
http://arxiv.org/abs/2405.17238
http://arxiv.org/abs/2405.17238
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
https://doi.org/10.48550/ARXIV.2307.03172
http://arxiv.org/abs/2406.09701
http://arxiv.org/abs/2406.09701
http://arxiv.org/abs/2406.09701
http://arxiv.org/abs/2406.09701
http://arxiv.org/abs/2406.09701
https://doi.org/10.48550/ARXIV.2402.17230
https://doi.org/10.48550/ARXIV.2402.17230
https://doi.org/10.48550/ARXIV.2402.17230
https://doi.org/10.48550/ARXIV.2402.17230
https://doi.org/10.48550/ARXIV.2402.17230

Moumita Das Purba, Arpita Ghosh, Benjamin J. Rad-
ford, and Bill Chu. 2023. Software vulnerability
detection using large language models. In 34th IEEE
International Symposium on Software Reliability En-
gineering, ISSRE 2023 - Workshops, Florence, Italy,
October 9-12, 2023, pages 112-119. IEEE.

Niklas Risse and Marcel Bohme. 2024. Uncovering the
limits of machine learning for automatic vulnerabil-
ity detection. In 33rd USENIX Security Symposium,
USENIX Security 2024, Philadelphia, PA, USA, Au-
gust 14-16, 2024. USENIX Association.

Stephen E. Robertson and Steve Walker. 1988. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In Pro-
ceedings of the 17th Annual International ACM-
SIGIR Conference on Research and Development in
Information Retrieval. Dublin, Ireland, 3-6 July 1994
(Special Issue of the SIGIR Forum), pages 232-241.
ACM/Springer.

Alexey Shestov, Anton Cheshkov, Rodion Levichev,
Ravil Mussabayev, Pavel Zadorozhny, Evgeny
Maslov, Chibirev Vadim, and Egor Bulychev. 2024.
Finetuning large language models for vulnerability
detection. CoRR, abs/2401.17010.

Yugiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun
Wang, Zhengzi Xu, Xiaofei Xie, and Yang Liu. 2023.
When gpt meets program analysis: Towards intelli-
gent detection of smart contract logic vulnerabilities
in gptscan.

Saad Ullah, Mingji Han, Saurabh Pujar, Hammond
Pearce, Ayse K. Coskun, and Gianluca Stringhini.
2024. Llms cannot reliably identify and reason about
security vulnerabilities (yet?): A comprehensive eval-
uation, framework, and benchmarks. In IEEE Sym-
posium on Security and Privacy, SP 2024, San Fran-
cisco, CA, USA, May 19-23, 2024, pages 862—880.
IEEE.

Weishi Wang, Yue Wang, Shafiq Joty, and Steven C.H.
Hoi. 2023. Rap-gen: Retrieval-augmented patch gen-
eration with codet5 for automatic program repair. In
Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE
2023, page 146—158, New York, NY, USA. Associa-
tion for Computing Machinery.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu,
Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel
Fried. 2024. Coderag-bench: Can retrieval augment
code generation?

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Cheng Wen, Yuandao Cai, Bin Zhang, Jie Su, Zhiwu Xu,
Dugang Liu, Shengchao Qin, Zhong Ming, and Tian

10

Cong. 2024. Automatically inspecting thousands of
static bug warnings with large language model: How
far are we? ACM Trans. Knowl. Discov. Data, 18(7).

Ratnadira Widyasari, David Lo, and Lizi Liao. 2024.
Beyond chatgpt: Enhancing software quality assur-
ance tasks with diverse llms and validation tech-
niques.

Fangzhou Wu, Qingzhao Zhang, Ati Priya Bajaj, Tiffany
Bao, Ning Zhang, Ruoyu Wang, and Chaowei Xiao.
2023. Exploring the limits of chatgpt in software
security applications. CoRR, abs/2312.05275.

Aidan Z. H. Yang, Claire Le Goues, Ruben Martins,
and Vincent J. Hellendoorn. 2024. Large language
models for test-free fault localization. In Proceedings
of the 46th IEEE/ACM International Conference on
Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024, pages 17:1-17:12. ACM.

Jeffy Yu. 2024. Retrieval augmented generation inte-
grated large language models in smart contract vul-
nerability detection. ArXiv, abs/2407.14838.

Chenyuan Zhang, Hao Liu, Jiutian Zeng, Kejing Yang,
Yuhong Li, and Hui Li. 2023. Prompt-enhanced soft-
ware vulnerability detection using chatgpt. CoRR,
abs/2308.12697.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Xin Zhou, Ting Zhang, and David Lo. 2024. Large
language model for vulnerability detection: Emerg-
ing results and future directions. ICSE-NIER’24,
page 47-51, New York, NY, USA. Association for
Computing Machinery.

Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning
Du, and Yang Liu. 2019. Devign: Effective vul-
nerability identification by learning comprehensive
program semantics via graph neural networks. In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurlPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 10197-10207.

A Dataset

Construction Procedure. In this section, we elab-
orate more details on the following two key steps
involved in the benchmark construction process.
Vulnerable and Patched Code Collection. We
first collect all the CVEs from (lin, 2024), an open-
source project dedicated to automatically tracking
CVEs within the upstream Linux kernel. Based on
the list of collected CVE IDs, we further extract
corresponding CWE IDs and CVE descriptions
from the National Vulnerability Database (NVD),
enriching our dataset with detailed vulnerability

https://doi.org/10.1109/ISSREW60843.2023.00058
https://doi.org/10.1109/ISSREW60843.2023.00058
https://doi.org/10.1109/ISSREW60843.2023.00058
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.48550/ARXIV.2401.17010
https://doi.org/10.48550/ARXIV.2401.17010
https://doi.org/10.48550/ARXIV.2401.17010
http://arxiv.org/abs/2308.03314
http://arxiv.org/abs/2308.03314
http://arxiv.org/abs/2308.03314
http://arxiv.org/abs/2308.03314
http://arxiv.org/abs/2308.03314
https://doi.org/10.1109/SP54263.2024.00210
https://doi.org/10.1109/SP54263.2024.00210
https://doi.org/10.1109/SP54263.2024.00210
https://doi.org/10.1109/SP54263.2024.00210
https://doi.org/10.1109/SP54263.2024.00210
https://doi.org/10.1145/3611643.3616256
https://doi.org/10.1145/3611643.3616256
https://doi.org/10.1145/3611643.3616256
http://arxiv.org/abs/2406.14497
http://arxiv.org/abs/2406.14497
http://arxiv.org/abs/2406.14497
https://doi.org/10.1145/3653718
https://doi.org/10.1145/3653718
https://doi.org/10.1145/3653718
https://doi.org/10.1145/3653718
https://doi.org/10.1145/3653718
http://arxiv.org/abs/2409.01001
http://arxiv.org/abs/2409.01001
http://arxiv.org/abs/2409.01001
http://arxiv.org/abs/2409.01001
http://arxiv.org/abs/2409.01001
https://doi.org/10.48550/ARXIV.2312.05275
https://doi.org/10.48550/ARXIV.2312.05275
https://doi.org/10.48550/ARXIV.2312.05275
https://doi.org/10.1145/3597503.3623342
https://doi.org/10.1145/3597503.3623342
https://doi.org/10.1145/3597503.3623342
https://api.semanticscholar.org/CorpusID:271328891
https://api.semanticscholar.org/CorpusID:271328891
https://api.semanticscholar.org/CorpusID:271328891
https://api.semanticscholar.org/CorpusID:271328891
https://api.semanticscholar.org/CorpusID:271328891
https://doi.org/10.48550/ARXIV.2308.12697
https://doi.org/10.48550/ARXIV.2308.12697
https://doi.org/10.48550/ARXIV.2308.12697
https://doi.org/10.1145/3639476.3639762
https://doi.org/10.1145/3639476.3639762
https://doi.org/10.1145/3639476.3639762
https://doi.org/10.1145/3639476.3639762
https://doi.org/10.1145/3639476.3639762
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

categorizations and descriptions. Based on the
CVE ID list, we then parse the commit information
for each CVE to extract function-level vulnerable
and patched code pairs. Vulnerable code snippets
prior to the commit diffs are labeled as positive
samples and the patched code snippets as negative
samples. In this way, we initially obtain a dataset
of 4,667 function pairs of vulnerable and patched
code across 2,174 CVEs.

Patched Code Verification. The patched code
cannot always be non-vulnerable, thus it is impor-
tant to double-check the correctness of the patched
code. To this end, we further implement a filter-
ing process to ensure the patched code is not sub-
sequently reverted or modified by other commits.
Specifically, we construct a patch graph in which
vulnerable and patched code pairs are represented
as independent triplets. Each triplet consists of a
head node representing the vulnerable code and a
tail node representing its corresponding patched
code. If the patched code is modified or reverted
by subsequent commits, the triplet evolves into a
chain or a loop comprising multiple nodes. For
chains in the graph, we retain only the vulnerable
and patched code pairs linked by the final edge.
For loops, we eliminate all nodes within the loop.
This process systematically filters out all patched
code snippets that have been altered or reverted,
ensuring the correctness of our benchmark dataset.

PairVul includes 592 pairs across 373 CVEs.
The statistical data for each CWE category within
our benchmark are detailed as Table 5

Table 5: Statistics of PairVul

CWE-416
145
267

CWE
CVE Num.
Pair Num.

CWE-476
60
89

CWE-362
81
121

CWE-119
42
53

CWE-787
45
62

Data Format. Our benchmark PairVul contains
the following information for each vulnerability.
(i) CVE ID: the unique identifier assigned to a re-
ported vulnerability in the Common Vulnerabili-
ties and Exposures (CVE); (ii)) CVE Description:
descriptions of the vulnerability provided by the
CVE system, including the manifestation, the po-
tential impact, and the environment where the vul-
nerability may occur; (iii) CWE ID: the Common
Weakness Enumeration identifier that categorizes
the type of the vulnerability exploits; (iv) Vulnera-
ble Code: the source code snippet containing the
vulnerability, which will be modified in the com-
mit; (v) Patched Code: the source code snippet
that has been committed to fix the vulnerability
in the vulnerable code; (vi) Patch Diff: a detailed

11

line-level difference between the vulnerable and
patched code with added and deleted lines.
Data for constructing knowledge base. We
construct the knowledge base using 1462 pairs of
vulnerable and patched code across 953 CVEs that
do not overlap with PairVul. Table 6 presents the
distribution of the five CWE categories within the
knowledge base.

Table 6: Statistics of Training Set
CWE-416

339
587

CWE-476
194
262

CWE-362
169
280

CWE-119
129
163

CWE-787
122
170

CVE Num.
Pair Num.

B Studied Baselines

In RQ1, we evaluate the capabilities of studied
LLMs with following basic prompt:

Basic Prompt: Is this code vulnerable? Answer in
Yes or No.
Code Snippet: [Code Snippet].

In RQ2, we further investigate three state-of-the-
art prompting strategies, including:

Chain-of-thought(CoT) strategies enhances
the basic LLMs with two chain-of-thought prompt
design, guiding LLMs step-by-step reasoning.

CoT-1 Prompt: I want you to act as a vulnerabil-
ity detection expert. Initially, you need to explain the
behavior of the code. Subsequently, you need to deter-
mine whether the code is vulnerable. Answer in YES
or NO.

Code Snippet: [Code Snippet].

CoT-2 Prompt: I want you to act as a vulnerabil-
ity detection system. Initially, you need to explain
the behavior of the given code. Subsequently, analyze
whether there are potential root causes that could result
in vulnerabilities. Based on above analysis, determine
whether the code is vulnerable, and conclude your an-
swer with either YES or NO.

Code Snippet: [Code Snippet].

CWE-enhanced strategies enhances the basic
LLM by incorporating CWE description informa-
tion (cwe, 2024) as vulnerability knowledge to
LLMs.

CWE-enhnced Prompt: [want you to act as a
vulnerability detection system. I will provide you with
a code snippet and a CWE description. Please analyze
the code to determine if it contains the vulnerability
described in the CWE. Answer in YES or NO.

Code Snippet: [Code Snippet].

CWE Description: [CWE Description]

C Prompt Design of VUL-RAG
C.1 Prompt Templates in Vulnerability
Knowledge Base Construction

Given the vulnerable code snippet, VUL-RAG
prompts LLMs with the following instructions to

summarize both the abstract purpose and the de-
tailed behavior respectively, where the placeholder
“[Vulnerable Code]” denotes the vulnerable code
snippet.

Prompt for Abstract Purpose Extraction:
[Vulnerable Code] What is the purpose of the
function in the above code snippet? Please summarize
the answer in one sentence with the following format:
“Function purpose:”.

Prompt for Detailed Behavior Extraction:
[Vulnerable Code] Please summarize the functions
of the above code snippet in the list format without any
other explanation: “The functions of the code snippet
are: 1. 2. 3..7

The detailed prompts for vulnerability causes
and fixing solutions extraction are as follows,
where the placeholders “[Vulnerable Code]”,
“[Patched Code]”, and “[Patch Diff]” denote
the vulnerable code, the patched code, and the code
diff of the given vulnerability, and [CVE ID] and
[CVE Description] denote the details of the given
vulnerability.

Extraction Prompt in Round 1: This is a code
snippet with a vulnerability /[CVE ID]: [Vulnerable
Code] The vulnerability is described as follows:/CVE
Description] The correct way to fix it is by [Patch Diff]
The code after modification is as follows: [Patched
Code] Why is the above modification necessary?

Extraction Prompt in Round 2: I want you to act
as a vulnerability detection expert and organize vul-
nerability knowledge based on the above vulnerability
repair information. Please summarize the generalizable
specific behavior of the code that leads to the vulner-
ability and the specific solution to fix it. Format your
findings in JSON. Here are some examples to guide
you on the level of detail expected in your extraction:
[Vulnerability Causes and Fixing Solution Example 1]
[Vulnerability Causes and Fixing Solution Example 2]

The detailed prompts for knowledge abstraction
are as follows, which queries LLMs to abstract the
method invocations and variable names.

Knowledge Abstraction Prompt: With the de-
tailed vulnerability knowledge extracted from the pre-
vious stage, your task is to abstract and generalize this
knowledge to enhance its applicability across different
scenarios. Please adhere to the following guidelines

and examples provided:
[Knowledge Abstraction Guidelines and Examples]

C.2 Prompt Templates in
Knowledge-Augmented Vulnerability
Detection

The prompts used for identifying the existence of
vulnerability causes and the fixing solutions of the
given code snippets are as follows.

12

Prompt for Finding Vulnerability Causes: Given
the following code and related vulnerability causes,
please detect if there is a vulnerability caused in the
code. [Code Snippet]. In a similar code scenario, the
following vulnerabilities have been found: [Vulnera-
bility causes][fixing solutions]. Please use your own
knowledge of vulnerabilities and the above vulnerabil-
ity knowledge to detect whether there is a vulnerability
in the code.

Prompt for Finding Fixing Solutions: Given the
following code and related vulnerability fixing solu-
tions, please detect if there is a vulnerability in the
code. [Code Snippet]. In a similar code scenario, the
following vulnerabilities have been found: [Vulnera-
bility causes][fixing solutions]. Please use your own
knowledge of vulnerabilities and the above vulnerabil-
ity knowledge to detect whether there is a correspond-
ing fixing solution in the code.

D Retrieval Implementation

VUL-RAG adopts BM25 (Robertson and Walker,
1988) for similarity calculation in retrieval process.
Given a query ¢ and the documentation d for re-
trieval, BM25 calculates the similarity score be-
tween ¢ and d based on the following Equation 1,
where f(w;,q) is the word w;’s term frequency
in query ¢, I DF (w;) is the inverse document fre-
quency of word w;. The hyperparameters k& and
b (where k=1.2 and b=0.75) are used to normal-
ize term frequencies and control the influence of
document length.

n

IDF (wi) x f (wi, q) x (k + 1)
= (wiya) +kox (1b 4 b x gl
)
We re-rank candidate knowledge items with the
Reciprocal Rank Fusion (RRF) strategy. For each
retrieved knowledge item k, the re-rank score for
k is calculated using the following Equation 2. E
denotes the set of all query elements (i.e., the code,
the abstract purpose, and the detailed behavior),
rank: (k) denotes the rank of knowledge item k&
based on query element .

Simpaas(g, d)

1

ReRankScore;, = Z m
t

tel

2

E Overall Performance

Table 7-Table 11 presents the performance of VUL-
RAG and all baselines across the five CWE cate-
gories.

Table 7: Effectiveness in CWE-119

Tech. LLM Pair Acc. | Bal. Recall | Bal. Pre.
GPT-4 0.05 0.50 0.50
. Claude 0.08 0.52 0.53
BasicLLM |y en 0.06 0.48 0.48
DeepSeek 0.02 0.44 0.44
GPT-4 0.17 0.56 0.56
Claude 0.19 0.53 0.53
CoT-1 Qwen 0.06 0.53 0.59
DeepSeek 0.13 0.50 0.50
GPT-4 0.11 0.53 0.53
Claude 0.09 0.48 0.48
CoT-2 Qwen 0.26 0.60 0.61
DeepSeek 0.21 0.56 0.56
GPT-4 0.03 0.52 0.52
CWE Claude 0.08 0.53 0.58
Enhanced Qwen 0.06 0.53 0.55
DeepSeek 0.02 0.51 0.55
GPT-4 0.04 0.50 0.50
Claude 0.11 0.51 0.51
CodeRAG | en 0.04 0.49 047
DeepSeek 0.02 0.43 0.43
GPT-4 0.30 0.62 0.62
Claude 0.32 0.62 0.65
VUL-RAG | en 036 0.64 0.64
DeepSeek 0.23 0.58 0.59
Table 8: Effectiveness in CWE-476
Tech. LLM Pair Acc. | Bal. Recall | Bal. Pre.
GPT-4 0.06 051 051
_ Claude 0.02 047 047
BasicLLM | en 0.06 0.51 0.52
DeepSeek 0.09 0.49 0.49
GPT-4 0.12 047 047
Claude 0.11 048 0.48
CoT:1 Qwen 0.02 0.51 0.63
DeepSeek 0.08 0.51 0.51
GPT-4 0.09 052 052
Claude 0.25 0.54 0.55
CoT-2 Qwen 0.15 051 051
DeepSeek 0.10 0.51 0.51
GPT-4 0.02 0.49 0.49
CWE Claude 0.08 0.51 0.51
Enhanced Qwen 0.01 0.48 0.46
DeepSeek | 0.01 0.50 0.25
GPT-4 0.08 0.49 0.49
Claude 0.04 047 0.47
CodeRAG | (yen 0.08 048 047
DeepSeek 0.08 0.46 0.46
GPT-4 0.28 0.62 0.62
Claude 0.33 0.61 0.64
VUL-RAG | en 034 0.61 0.61
DeepSeek 0.32 0.60 0.61

F Case Study

F.1 Case Study in Empirical Study

We sample and manually analyze pairs that all stud-
ied LLMs and advanced techniques in RQ1 and
RQ2 fail to distinguish between vulnerable and
patched code. Particularly, LLMs fail to distinguish
the subtle textual difference between vulnerable
code and patched code. Figure 3 illustrates three
specific examples, with the patch diffs highlighted
in yellow.

F.2 Case Study in Overall Improvements

we use two examples that VUL-RAG can success-
fully detect the vulnerability but code-level RAG
cannot, to explain the superiority of VUL-RAG in
both knowledge representation and retrieval strat-

13

Table 9: Effectiveness in CWE-787

Tech. LLM Pair Acc. | Bal. Recall | Bal. Pre.
GPT-4 0.08 0.52 0.53
) Claude 0.08 0.53 0.54
BasicLLM |y e 0.08 051 0.51
DeepSeek 0.11 0.52 0.53
GPT-4 0.18 0.53 0.53
Claude 0.16 0.54 0.54
CoT:1 Qwen 0.08 053 0.59
DeepSeek | 0.08 0.51 0.51
GPT-4 0.11 0.54 0.55
Claude 0.19 053 0.53
CoT-2 Qwen 0.19 0.52 0.52
DeepSeek 0.10 0.52 0.52
GPT-4 0.03 0.50 0.50
CWE Claude 0.06 053 0.68
Enhanced Qwen 0.02 0.51 0.75
DeepSeek 0.01 0.50 0.25
GPT-4 0.11 055 0.59
Claude 0.13 0.54 0.54
CodeRAG | (e 0.05 052 055
DeepSeek 0.11 0.49 0.49
GPT-4 0.25 0.61 0.61
Claude 0.39 0.65 0.67
VUL-RAG |y en 031 0.60 0.60
DeepSeek 0.32 0.63 0.63

Table 10: Effectiveness in CWE-362

Tech. LLM Pair Acc. | Bal. Recall | Bal. Pre.
GPT-4 0.04 0.50 051
. Claude 0.06 0.48 0.48
Basic LLM | (o on 0.01 0.50 0.50
DeepSeek 0.06 0.48 0.48
GPT4 0.14 0.48 048
Claude 0.15 0.52 0.52
CoT-l Qwen 0.02 051 0.54
DeepSeek 0.11 0.50 0.51
GPT-4 0.11 0.50 0.50
Claude 0.16 0.53 0.54
CoT:2 Qwen 0.14 0.50 0.50
DeepSeek 0.12 0.52 0.52
GPT-4 0.04 047 0.47
CWE Claude 0.07 0.48 0.48
Enhanced Qwen 0.08 0.48 0.48
DeepSeek 0.01 0.48 0.32
GPT-4 0.03 0.50 0.50
Claude 0.12 0.49 0.49
CodeRAG | e 0.11 0.54 0.59
DeepSeek 0.12 0.48 0.48
GPT-4 0.26 0.59 0.59
Claude 0.31 0.61 0.62
VUL-RAG | en 023 0.58 0.58
DeepSeek 0.29 0.61 0.62

Table 11: Effectiveness in CWE-416

Tech. LLM Pair Acc. | Bal. Recall | Bal. Pre.
GPT-4 0.05 0.49 048
) Claude 0.04 0.48 048
BasicLLM |y e 0.03 0.50 0.49
DeepSeek 0.04 0.47 0.47
GPT-4 0.13 0.49 048
Claude 0.13 051 0.51
CoT:1 Qwen 0.02 0.50 048
DeepSeek | 0.08 0.50 0.50
GPT-4 0.10 051 051
Claude 0.16 053 0.53
CoT-2 Qwen 0.15 0.52 0.52
DeepSeek 0.12 0.50 0.50
GPT-4 0.02 0.50 0.52
CWE Claude 0.01 0.50 075
Enhanced Qwen 0.01 0.50 0.42
DeepSeek 0.01 0.50 0.25
GPT4 0.03 049 046
Claude 0.14 0.52 0.52
CodeRAG | () en 0.06 0.50 0.50
DeepSeek 0.12 0.48 0.48
GPT-4 0.29 0.61 0.61
Claude 0.24 0.58 0.60
VUL-RAG |y en 028 0.60 0.60
DeepSeek 0.26 0.57 0.57

. static struct inet frag queue
*inet_ frag_ intern(struct netns_frags *nf,

AY

1

1

2P struct inet frag queue *gp_in, struct :
inet_frags *f, void *arg) :

SR 1
4. struct inet frag bucket *hb; :
Bo struct inet_ frag_queue *gp; 1
6. unsigned int hash; :
1
38. atomic_inc(&gp->refent) ; :
BOE hlist add head(&gp->list, &hb->chain); 1
40. inet_frag_lru add(nf, qp); H
a1. spin_unlock (hb->chain_lock) ; 1
42. read_unlock (&£->lock) ; 4
43. 1
44. return gp; :
45. }]

Non-vulnerable Code

(a) Example 1: Moving the location of a method invocation

__ N
AY

1. static int da9150_ charger_remove (struct :
platform device *pdev) 1

Ao 1
3. struct da9150_charger *charger = 1
platform get drvdata (pdev) ; 1

1
19. if (!IS_ERR OR _NULL (charger->usb_phy)) 1
20. usb_unregister_notifier (charger->usb_phy, I
&charger->otg_nb) ; 1

2519 1
22. cancel work_sync (&charger->otg_work) ; :
75, power_supply_ unregister (charger->battery) ; 1
24. power_supply unregister (charger->usb) ; :
1

S28 return 0; :
. B /ll

Non-vulnerable Code

(b) Example 2: Adding a method invocation

I’ 1. static struct inet_ frag_queue \| |'
1 *inet_ frag_intern(struct netns_frags *nf, 1
: 28 struct inet frag queue *gp_in, struct : :
inet_frags *f, void *arg) 11
o {0 :
4. struct inet_ frag bucket *hb; :
58 struct inet_frag_queue *gp; 1
6. unsigned int hash; !
| = 1
: 38. atomic_inc(&qp->refent) ; : :
1 39. hlist_add_head(&gp->list, &hb->chain); 11
I ao0. spin_unlock (shb->chain_lock) ; H !
41. read unlock (&f->lock) ; 1
42. inet_frag lru_add(nf, qp); .
43. return gp; 1
1
44. }
l
e e e e e e e e e e e o o o s N
Vulnerable Code
228 K
: 1. static int da9150_charger_remove (struct : :
1 platform device *pdev) 11
1 2. 1
: o struct da9150_charger *charger = :
platform get_drvdata (pdev) ; :
1
19. if (!IS_ERR OR NULL(charger->usb_phy)) H
20. usb_unregister notifier (charger->usb_phy, I |
&charger->otg_nb) ; :
25198 1
22. power_supply unregister (charger->battery) ; :
23. power_supply_unregister (charger->usb) ; !
1
31. return 0; :
32. } ! i
LRI SN
Vulnerable Code

o e N
’ N7
I 1. static void nft_set_commit update(struct list headl I
: set_update_list) 1 :
12, { : 1
: 3. struct nft_set *set, *next; 1 :
4. 1
5. list_for each entry safe(set, next, 1l
set_update_list, pending_update) { : :
6. list _del_init(&set->pending_update) ; 1
7 '
1 8. if (!set->ops->commit) 1]
i ©- continue; H .
1 10. [
: 11. set->ops->commit (set) ; : :
12. } b
1
18, b : 1
!

Vulnerable Code

~
AY
static void nft set_commit update (struct list head |l
set_update_list)
{
struct nft set *set, *next;

list for_each entry_ safe(set, next,
set_update_list, pending update) {

6. list_del_init(&set->pending_update) ;
s

8. if (!set->ops->commit || set->dead)

©e continue;

10.

11. set->ops->commit (set) ;

12. }

g, n

e

Non-vulnerable Code

(c) Example 3: Adding a conditional check

Figure 3: Examples of vulnerable code and similar-but-benign patched code.

cgy.

Knowledge Representation. Figure 4 illustrates
an example to show the benefits of our knowl-
edge representation comparing VUL-RAG with
basic LLM and code-level RAG baselines, all im-
plemented on GPT-4. When detecting the given
code from CVE-2023-30772, the basic GPT-4 fails
to identify the real cause of the vulnerability (as
shown in Figure 4 (A)). GPT-4 incorrectly sug-
gests that the absence of a return value check
in “platform_get_irg_byname()” could cause a
vulnerability, whereas such a check is not required
here. However, it overlooks the true issue, which
is the improper handling of asynchronous events
resulting in a race condition and subsequently a
use-after-free vulnerability. This misunderstand-

14

ing continues as GPT-4 detects the corresponding
patched code, leading to false positives and affect-
ing the pairwise accuracy. Enhancing GPT-4 with
code-based RAG also fails to detect the vulner-
ability. As shown in Figure 4 (B), although the
retrieved code pair contains a similar functional
semantic and vulnerability cause, GPT-4 still strug-
gles to associate the vulnerability knowledge im-
plied in the retrieved source code with the target
code under detection. In contrast, providing the dis-
tilled high-level vulnerability knowledge from our
approach VUL-RAG, GPT-4 not only successfully
detects the vulnerability root cause in the vulnera-
ble code but also accurately identifies the patched
code (Figure 4 (C)). The comparison demonstrates
the high-level vulnerability knowledge can effec-

Q:/ want you to act as a vulnerability detection expert.
Given the following code, please detect whether there is a
vulnerability in the following code snippet:

static int da9150_charger _remove(struct platform_device *pdev)
{

struct da9150_charger *charger =
platform_get_drvdata(pdev);

intirg;

/* Make sure IRQs are released before unregistering
power supplies */

irq = platform_get_irq_byname(pdev, "CHG_VBUS");

free_irq(irq, charger);

if (IS_ERR_OR_NULL(charger->usb_phy))
usb_unregister_notifier(charger->usb_phy,
&charger->otg_nb);
Patch diff: add cancel work_sync
(&charger->otg_work);
power_supply_unregister(charger->battery);
power_supply_unregister(charger->usb);

/* Release ADC channels */
[Code Snippet]

return 0;

}

Q: | want you to act as a vulnerability detection expert,
given the following code snippet and related vulnerability
knowledge, please detect whether there is a vulnerability in
the code snippet: [Code Snippet] ...

Related vulnerable code snippet:

static int cedrus_remove(struct platform_device *pdev)
{

struct cedrus_dev *dev = platform_get_drvdata(pdev);

Patch diff: cancel delaved_work_sync
(&dev-> watchdog_work);dev->mdev.devnode))

media_device_unregister(&dev->mdev);
v4l2_m2m_unregister_media_controller(dev-
>m2m_dev);
media_device_cleanup(&dev->mdev);
}
v4l2_m2m_release(dev->m2m_dev);
video_unregister_device(&dev->vfd);
V412_device_unregister(&dev->v4l2_dev);

cedrus_hw_remove(dev);
return 0;

[Vulnerable Source

Please answer YES or NO, and explain why you think so.

JA: YES, there is a potential vulnerability in the code snippet
provided... The code does not check the return value of
‘platform _get_irq_byname()" before calling “free_irq() ...

X Fails to identify the root
cause of the vulnerability.

Code Snippet]

)
Related Patched code snippet: [Patched Code Snippet]
...Please answer YES or NO...

A: NO, ..., Without clear evidence of asynchronous
operations that need to be canceled in the same way as the
xgene_hwmon device, it's difficult to directly label this

Q:1 want you to act as a vulnerability detection expert,
given the following code snippet and related vulnerability
knowledge, please detect whether there is a vulnerability
in the code snippet: [Code Snippet] In a similar code
scenario, the following vulnerabilities have been found.
Related vulnerability knowledge:

Vulnerability Causes:

...Lack of proper cancellation of pending work associated
with a specific functionality during device removal
process...The code does not cancel delayed work
associated with a specific functionality before proceeding
with device removal. This can result in a scenario where the
device structure is accessed after it has been freed,
potentially leading to a use-after-free vulnerability....

Fixing Solution:

To mitigate the vulnerability, it is necessary to cancel any
pending work related to the specific functionality
before proceeding with further cleanup during device
removal. This ensures that the code handles asynchronous
events properly and prevents the use-after-free
vulnerability... [Vulnerability Knowledge]

...Please answer YES or NO...

A: YES, ..., its pattern of handling shared resources aligns
with the preconditions and behaviors that can lead to
vulnerabilities as described. Without explicit
synchronization or cancellation of asynchronous
operations before resource release, the code is potentially

function as vulnerable based solely on the pi
information...

X Fails to identify the associations therein

to race and fter-free issues...

Vv Successfully identify the root cause.

(A)

(B)

©

Figure 4: An example of vulnerability knowledge representation

Code Purpose: Handle a logical link complete event in the

Bluetooth stack.

Code Function: 1. Log a logical link complete event. 2. Look up a
HCI connection based on the physical handle. 3... 6. Confirm the
logical link for a BREDR channel. 7. Hold the HCI connection.

Code Purpose: To remove a Bluetooth SDIO
function and free

Code Function: 1. Remove a Bluetooth SDIO
function. 2.Retrieve the Bluetooth SDIO data. 3.
Unregister and free the HCI device.

Code Purpose: To remove the xgene_hwmon device
and free associated resources.

Code Function: 1. Remove the xgene_hwmon device
associated with the platform device. 2. Unregister the
hardware monitoring device. 3. ...

. static void hci_loglink_complete_evt(struct hci_dev *hdeyv, struct sk_buff N

*skb)
{

BT_DBG("%s log_handle 0x%4.4x phy_handle 0x%2.2x status
0x%2.2x", hdev->name, le16_to_cpu(ev->handle), ev->phy_handle, ev-

>status);

hcon = hci_conn_hash_lookup_handle(hdeyv, ev->phy_handle);

if (!hcon)
return;

hchan->handle = 1e16_to_cpu(ev->handie);

BT_DBG("hcon %p mgr %p hchan %p”, hcon, hcon->amp_mgr,

hchan);m X Irrelevant code with

) different vulnerability

struct btsdio_data *data =
sdio_get_drvdata(func);

struct hci_dev *hdev;
BT_DBG("func %p", func);
if (!data)

return;
hdev = data->hdev;
sdio_set drvdata(func, NULL);
hci_unregister dev(hdev);
hci_free dev(hdev);

/" static void btsdio [BMOVE(struct sdio_func *func)

{ static int xgene_hwmon _[iBIOV8(struct platform_device
*pdev)
{

struct xgene_hwmon_dev *ctx =
platform_get_drvdata(pdev);

hwmon device unregister(ctx->hwmon_dev);
kfifo_free(&.ctx->async_msg_fifo);
if (acpi_disabled)
mbox_free_channel(ctx->mbox_chan);
else
pcc_mbox_free_channel(ctx->pcc_chan);
return 0; Vv Relevant code with
J similar vulnerability

CVE-2021-33034
Code-based Retrieval Result

CVE-2023-1989
Code Snippet Under Retrieval

CVE-2023-1855
Functional Semantics based Retrieval Result

Figure 5: An example of knowledge retrieval strategy

tively help LL.Ms understand the behavior of the
vulnerable code, thereby improving the accuracy
of vulnerability detection.

Retrieval Strategy. Figure 5 compares the retriev-
ing outcomes of code-based retrieval (i.e., retriev-
ing only by code snippet) and our retrieval strat-
egy (i.e., retrieving by both code snippet and ex-
tracted functional semantics) for the given code
snippet. As shown in Figure 5, when detecting
a given code snippet from CVE-2023-1989, the
code-based retrieval finds a code snippet (from
CVE-2021-33034) that shares more operational re-
sources with the target code (highlighted in yellow),
but differ significantly in their functional semantics,
leading to disparate root causes of vulnerabilities.
In contrast, our retrieval strategy finds a code snip-
pet (from CVE-2023-1855) that shares more se-
mantic similarity with the target code (highlighted
in green). Furthermore, they share an identical vul-

15

nerability root cause, which lies in the failure to
adequately handle asynchronous events during the
device removal process. This indicates that our re-
trieval strategy can help LLMs find code pairs with
more similar vulnerability causes.

F.3 Case Study of Previously-Unknown
Vulnerability detected by VUL-RAG

Figure 6 shows a previously-unknown bug detected
by VUL-RAG in Linux kernel v6.9.6. This
vulnerability is a use-after-free (UAF) caused by
race condition found in the switchtec_ntb_remove
function located in drivers/ntb/hw/msc-
c/ntb_hw_switchtec.c file. In switchtec_ntb_add

function, a call to switchtec_ntb_init_sndev
binds &sndev->check_link_status_work
with check link status_work. The

switchtec_ntb_link_notification function may
subsequently trigger the work by calling switchtec_

. static void switchtec_ntb_remove (struct device *dev)
-t
struct switchtec_dev *stdev = to_stdev(dev);

struct switchtec_ntb *sndev = stdev->sndev;

if (!sndev)

return;

© g e s W N R

B o
o -

stdev->link_notifier = NULL;
stdev->sndev = NULL;

-
[

ntb_unregister_device (&sndev->ntb) ;

R
N

switchtec_ntb_deinit_db_msg_irqg(sndev);

-
w

switchtec_ntb_deinit_shared mw(sndev);

oR
[CIES

switchtec ntb_deinit crosslink(sndev);

.| kfree(sndev);

dev_info(dev, "ntb device unregistered\n");

R
g o

-}

1. static int switchtec ntb_init sndev(struct
switchtec_ntb *sndev)

{

N

7 sndev->ntb.pdev = sndev->stdev->pdev;
8 sndev->ntb. topo = NTB_TOPO_SWITCH;
9. sndev->ntb.ops = &switchtec_ntb_ops;
1
1

0.
1.| INIT WORK (&sndev->check_link_status_work,
check_link_ status_work) ;

3hq
28

Yo

static int switchtec_ntb_add(struct device *dev)

{

stdev->sndev = NULL;

16. |[sndev->stdev = stdev;

17.
18.
19.
49.
50.
51.

52.
53.

6. T

rc = switchtec_ntb_init_sndev(sndev) ;
if (xc)
goto free_and exit;

rc = ntb_register_device (&sndev->ntb) ;
if (rc)
goto deinit_and_exit;

stdev->sndev = sndev;

stdev->link notifier = switchtec_ntb link notification;

dev_info(dev, "NTB device registered\n");

. static void switchtec_ntb_link_notification(struct

switchtec_dev *stdev)

struct switchtec_ntb *sndev = stdev->sndev;

switchtec_ntb_check link(sndev, MSG_CHECK LINK) ;

. static void switchtec ntb_check_link(struct switchtec_ntb *sndev,

enum switchtec_msg msg)

{

I schedule work (&sndev->check link status_work) ; I

Figure 6: An example of a previously-unknown bug in Linux kernel reported by VUL-RAG

ntb _check_link. When switchtec_ntb_remove
is called during cleanup, it frees sndev via
kfree(sndev). If sndev is accessed by CPU 1
via check_link_status_work after being freed by
CPU 0, it could result in a use-after-free (UAF)
vulnerability. The vulnerability can be mitigated by
ensuring that any pending work is canceled before
the cleanup proceeds in switchtec_ntb_remove,
preventing access to memory that has been freed.
Both the root cause and fixing solutions for this
vulnerability align with those retrieved from
CVE-2023-30772 in our constructed vulnerability
knowledge base, demonstrating the scalability
and effectiveness of the knowledge captured by
VUL-RAG.

G Usability for Developers

This section details the setup for our user study in
investigating the quality of VUL-RAG generated
knowledge and whether the knowledge can help de-
velopers understand and check the vulnerabilities.
Tasks and Participants. We select 10 cases from
PairVul for the user study. Specifically, we ran-
domly select two cases from each of the five CWE
categories PairVul, including both true positive (i.e.,
genuinely vulnerable code snippets) and false pos-
itive (i.e., correct code snippets mistakenly pre-
dicted by VUL-RAG as vulnerable) instances. To
ensure a balanced evaluation, we randomly assign
the two cases from each CWE category into two
equal groups (14 and T’g), with each group com-
prising 5 cases. We invite 6 participants with 3-5

16

years c/c++ programming experience for the user
study. We conduct a pre-experiment survey on
their c/c++ programming expertise, based on which
they are divided into two participant groups (G 4
and Gp) of similar expertise distribution. Each
participant are payed with 250$ with the exper-
iments. The procedure is approved with Ethics
Review Board.

Procedure. Each participant is tasked to iden-
tify whether the given code snippet is vulnerable.
For comparison, participants are asked to iden-
tify vulnerability in two settings. (1) Basic set-
ting: provided with the given code snippets and
the detection labels generated by VUL-RAG; (2)
Knowledge-accompanied setting: provided with
the given code snippets, the detection labels gen-
erated by VUL-RAG, and the vulnerability knowl-
edge generated by VUL-RAG. In particular, the
participants in G 4 are tasked to identify vulnera-
bility in 7’4 with the knowledge-accompanied set-
ting, and to identify vulnerability in T’ with the
basic setting; conversely, the participants in Gp
are tasked to identify vulnerability in 7’4 with the
basic setting, and to identify vulnerability in T’z
with the knowledge-accompanied setting. In ad-
dition to recording the outputs (i.e., vulnerable or
not) of each participant, we further survey the par-
ticipants on the helpfulness, preciseness, and gen-
eralizability of the vulnerability knowledge on a
4-point Likert scale (Likert, 1932) (i.e., 1-disagree;
2-somewhat disagree; 3-somewhat agree; 4-agree).

» Helpfulness: The vulnerability knowledge pro-

vided by VUL-RAG is helpful in understanding
the vulnerability and verifying detection labels.

* Preciseness: The vulnerability knowledge offer
precise and detailed descriptions of the vulnera-
bility, avoiding overly generic narratives that do
not adequately identify the root cause.

* Generalizability: The vulnerability knowledge
maintains a degree of general applicability, es-
chewing overly specific descriptions that dimin-
ish its broad utility (e.g., narratives overly reliant
on variable names from the source code).

H Bad Case Analysis

To understand the limitation of VUL-RAG, we
manually analyze the bad cases (i.e., false nega-
tives and false positives reported by VUL-RAG).
In particular, we include all 19 FN and 21 FP cases
from CWE-119 for manual analysis. Table 12 sum-
marizes the reasons and distributions. In particular,
the reasons for false negatives are classified into
three primary categories:

Table 12: FN/FP analysis in CWE-119

Type
FN

Reason Number
Inaccurate vulnerability knowledge descriptions. 5
Unretrieved relevant vulnerability knowledge. 2
Non-existent relevant vulnerability knowledge. 12
Mismatched fixing solutions. 11
Irrelevant vulnerability knowledge retrieval 10

FP

* Inaccurate Vulnerability Knowledge Descrip-
tions. We observe that for 5 instances (26.3%),
VUL-RAG successfully retrieves relevant vulner-
ability knowledge but fails to detect the vulner-
ability due to the imprecise knowledge descrip-
tions. For example, given the vulnerable code
snippet of CVE-2021-4204, although VUL-RAG
successfully retrieves the relevant knowledge of
the same CVE, it yields a false negative due to
the vague descriptions of vulnerability knowl-
edge (i.e., only briefly mentioning “lacks proper
bounds checking” in the vulnerability cause and
fixing solution description with explicitly stat-
ing what kind of bound checking should be per-
formed).

* Unretrieved Relevant Vulnerability Knowl-
edge. We observe that for 2 cases (15.8%)
VUL-RAG fails to retrieve relevant vulnerabil-
ity knowledge, thus leading to false negatives.
Although there are instances in the knowledge
base that share the similar vulnerability root
causes and fixing solutions of the given code,
their functional semantics are significantly differ-
ent. Therefore, VUL-RAG fails to retrieve them

17

from the knowledge base.

* Non-existent Relevant Vulnerability Knowl-
edge. Based on our manual checking, the 12
cases (63.2 %) in this category are cased by the
absence of relevant vulnerability knowledge in
our knowledge base. Even though there are other
vulnerable and patched code pairs of the same
CVE, the vulnerability behaviors and fixing so-
lutions are dissimilar, rendering these cases un-
solvable with the current knowledge base. This
limitation is inherent to the RAG-based frame-
work. In future work, we will further extend the
knowledge base by extracting more CVE infor-
mation to mitigate this issue.

In addition, the reasons for false positive can be
classified into the following two categories:

* Mismatched Fixing Solutions. There are 11
cases (52.4 %) that although VUL-RAG success-
fully retrieves relevant vulnerability knowledge,
the code snippet is still considered vulnerable,
as it is considered not applied to the fixing solu-
tion of the retrieved knowledge. This is because
one vulnerability can be fixed by more than one
alternative solution.

¢ Irrelevant Vulnerability Knowledge Retrieval.
There are 10 (47.6%) false positives caused
by VUL-RAG retrieving irrelevant vulnerabil-
ity knowledge. Based on our manual inspection,
these incorrectly-retrieved knowledge descrip-
tions often generally contain “missing proper val-
idation of specific values”, which is too general
for GPT4 to precisely identify the vulnerability.

