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ABSTRACT

We develop a novel method for personalized off-policy learning in scenarios with
unobserved confounding. Thereby, we address a key limitation of standard policy
learning: standard policy learning assumes unconfoundedness, meaning that no un-
observed factors influence both treatment assignment and outcomes. However, this
assumption is often violated, because of which standard policy learning produces
biased estimates and thus leads to policies that can be harmful. To address this
limitation, we employ causal sensitivity analysis and derive a semi-parametrically
efficient estimator for a sharp bound on the value function under unobserved
confounding. Our estimator has three advantages: (1) Unlike existing works,
our estimator avoids unstable minimax optimization based on inverse propensity
weighted outcomes. (2) Our estimator is semi-parametrically efficient. (3) We
prove that our estimator leads to the optimal confounding-robust policy. Finally,
we extend our theory to the related task of policy improvement under unobserved
confounding, i.e., when a baseline policy such as the standard of care is available.
We show in experiments with synthetic and real-world data that our method out-
performs simple plug-in approaches and existing baselines. Our method is highly
relevant for decision-making where unobserved confounding can be problematic,
such as in healthcare and public policy.

1 INTRODUCTION

Policy learning is crucial in many areas such as healthcare (Feuerriegel et al., 2024)), education (Chan,
2023), and public policy (Ladi & Tsarouhas| [2020). However, collecting data through randomized
experiments is often either infeasible or unethical. Instead, methods are needed that use observational
data to inform decision-making. Here, we focus on off-policy learning to optimize decision policies
from observational data (Athey & Wager, 2021)).

The reliability of standard off-policy learning is compromised when unobserved confounding is
present (Kallus et al., 2019). Unobserved confounding arises when factors affect both treatment
choices and outcomes but are not recorded (Pearl, 2009). For example, the race of a patient may
— unfortunately — affect the access to treatments (Obermeyer et al.,[2019), yet race is typically not
recorded in patient records. Hence, standard off-policy learning that relies on the assumption of no
unobserved confounding will lead to biased estimates and may even generate harmful policies.

As a remedy, confounding-robust policy learning aims to find the optimal policy under worst-case
unobserved confounding. This is typically achieved using the marginal sensitivity model (MSM) (Tan|
2006)), a framework from causal sensitivity analysis that bounds the effect of unobserved confounding.
However, the existing method for confounding-robust policy learning under the MSM (see (Kallus
& Zhou, [2018a)) for the conference paper and (Kallus & Zhou, 2021) for the journal version) has
notable shortcomings. First, it must numerically optimize the worst-case effect on the regret function
due to unobserved confounding. Such minimax optimization is based on inverse propensity weighted
outcomes and hence unstable. Second, this method is statistically suboptimal: it lacks the property of
semi-parametric efficiency and thus suffers from suboptimal variance properties.

In this paper, we address the above shortcomings by developing a novel semi-parametrically efficient
and sharp estimator for personalized off-policy learning under unobserved confounding. Here,
semi-parametric efficiency means the unbiased estimator with the lowest possible variance. Our
key novelties are the following: (i) We derive a closed-form expression for a sharp bound on the
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value function of a candidate policy under unobserved confounding As a result, we can thereby
directly minimize our closed-form bound and, unlike existing works, avoid an unstable minimax
optimization based on inverse propensity weighted outcomes. (ii) We propose an estimator that is
semi-parametrically efficient. Hence, our estimator is the first to achieve the lowest variance among
all unbiased estimators for our task.

Methodologically, we proceed as follows. We first derive a sharp bound on the value function for
scenarios with unobserved confounding and, hence, avoid the unstable minimax optimization as in
other methods. We then propose a novel one-step bias-corrected estimator to achieve semi-parametric
efficiency and thus guarantee that our estimator has the lowest variance among all unbiased estimators.
For this, we derive the corresponding efficient influence function of the sharp bound on the value
function. We finally provide theoretical guarantees that minimizing our estimated sharp bound on the
value function ensures that our method yields the optimal confounding-robust policy. Such guarantees
are particularly crucial in high-stakes applications such as medicine or public policy, where unreliable
policies can lead to harmful consequences.

Our work makes the following contribution (i) We propose a novel efficient estimator for our sharp
bound on the value function. (ii) We derive an estimator for our bounds that is semi-parametrically
efficient. (iii) We generalize our theoretical findings to the related task of confounding-robust policy
improvement. (iv) Through extensive experiments using synthetic and real-world datasets, we show
that our method consistently outperforms simple plug-in estimators and existing baselines.

2 RELATED WORK

We provide an overview of three literature streams Robwrunder | Shp | D Eifcien for
. unobserved conf.  bounds  treatments olicy learning
particularly relevant to our work, namely, stan- 5= - - e
dard off-policy learning (i) with and (i) without 5w buitrapon x x 7 ;
. cee Kallus & Zhou F2018a3 2021} v X v X
unobserved confounding as well as (iii) causal sen- — -~ ; ; ; ;

sitivity analysis. We provide an extended related
work in Appendix [A] (where we distinguish our
work from other streams such as, e.g., unobserved
confounding in reinforcement learning).

Table 1: Overview of related methods. |(Oprescu
et al.| (2023) is designed for a different task, and
standard policy learners ignore the issue of un-
observed confounding. Only |[Kallus & Zhou
Off-policy learning under unconfoundedness: (2018a; [2021)) deals with our setting, but pro-
Off-policy learning aims to optimize the policy vides neither sharp bounds nor an efficient esti-
value, which needs to be estimated from data. For mator. On]y our work can deal with unobserved
this, there are three major approaches: (i) the di- confounding, discrete treatments, provides sharp
rect method (DM) (Qian & Murphy} 2011)) lever- bounds, and an efficient estimator.

ages estimates of the response functions; (ii) in-

verse propensity weighting (IPW) (Swaminathan & Joachims| [2015)) re-weights the data such that in
order to resemble samples under the evaluation policy; and (iii) the doubly robust method (DR) (Athey:
& Wager, 2021} [Dudik et al., |2011). The latter is based on the efficient influence function of the
policy value (Robins et al.l[1994) and is asymptotically efficient (Chernozhukov et al.||2018} jvan der
'Vaart,, [1998).

Several works aim at improving the finite sample performance of these methods, for instance, via
re-weighting (Kallus|, [2018; 2021)) or targeted maximum likelihood estimation (Bibaut et al.l 2019).
Further, several methods have been proposed for off-policy learning in specific settings involving, for
example, distributional robustness (Kallus et al.,2022), fairness (Frauen et al.| | 2024b)), interpretability
(Tschernutter et al.| [2022), and continuous treatments (Kallus & Zhoul [2018b; |[Schweisthal et al.|
2023)). However, all of the works assume unconfoundedness and, therefore, do not account for
unobserved confounding.

Off-policy learning under unobserved confounding: In scenarios with unobserved confounding,
standard approaches for off-policy learning are biased (Kallus & Zhou, |[2018a; 2021}, which can lead

'We use the term “sharp” as in earlier work from causal sensitivity analysis (Frauen et al.l [2023): a valid
upper (lower) bound of a causal quantity is sharp if there does not exist another valid bound that is strictly
smaller (larger).

2Code is available at https://anonymous.4open.science/r/CBCE and will be released upon
acceptance of the paper.
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to harmful decisions. The reason is that, under unobserved confounding, the policy value cannot be
identified from observational data. As a remedy, previous works leverage causal sensitivity analysis or
related methods to obtain bounds on the unidentified policy value (Bellot & Chiappa, 2024} (Guerdan
et al., 2024} Huang & Wu, [2024; Joshi et al., 2024; Namkoong et al.| 2020; Zhang & Bareinboim)
2024), which can then be used to learn an optimal worst-case policy. Optimizing such bounds is often
termed “confounding-robust policy learning”. However, these works do not consider sharp bounds
under unobserved confounding and do not provide semi-parametrically efficient estimators.

Closest to our work is (Kallus & Zhou, [2018a) with an extended version published in (Kallus & Zhou,
2021). Therein, the authors propose a method for confounding-robust policy improvement, yet with
two notable shortcomings: (i) it is not based on closed-form solutions for the bounds, and (ii) it is
not based on a semi-parametrically efficient estimator of these bounds. Therefore, |Kallus & Zhou
(2018a;[2021)) require solving a minimax optimization problem that is relies in inverse propensity
weighted outcomes, which is unstable. Further, their estimator is suboptimal because it fails to
achieve semi-parametric efficiency, meaning it does not achieve the lowest-possible variance among
all unbiased estimators.

Causal sensitivity analysis: Causal sensitivity analysis (Cornfield et al.,|1959) allows practitioners
to account for unobserved confounding by using so-called sensitivity models (Jin et al., 2022}
Rosenbaum, [1987), which incorporate domain knowledge on the strength of unobserved confounding.
As a result, the sensitivity model allows to obtain bounds on a causal quantity of interest, which,
if the sensitivity model is correctly specified, can then be used for consequential decision-making
(Jesson et al ., [2021)).

A prominent sensitivity model is the MSM (Tan, 2006). The MSM gained popularity in recent years
and, for instance, was used to obtain bounds on the conditional average treatment effect (CATE)
through machine learning (Jesson et al., |2021} Kallus et al.,|2019} |Yin et al.| 2022). Only recently,
sharp bounds on the CATE have been derived (Bonvini et al., 2022} |Dorn & Guol 2022} [Frauen et al.,
20244a;2023; [Jin et al., 2023). Other works have considered the estimation of such bounds (Dorn
et al., [2024} |Oprescu et al.l 2023). However, these works only consider causal sensitivity analysis for
CATE but not policy learning. Further, their works are limited to binary treatments. In contrast, our
method can handle discrete treatments, and, therefore, requires entirely different influence functions.

Research gap: To the best of our knowledge, we are the first to derive a semi-parametrically efficient
estimator for a sharp bound on the value function using the MSM. Thereby, we enable optimal
confounding-robust off-policy learning.

3 PROBLEM SETUP

Data: Let Y € )V C R be our outcome of interest, such as the -~ 7T -

health condition of a patient. We follow the convention that w.l.o.g. | | ) Sontord
lower values correspond to better outcomes (Kallus & Zhoul [2018a). § /‘ > A leaming Do
Further, let X € X C R% denote covariates that contain additional | X P
. . . . . v /*\< \A/ *~\; |
information, such as age, gender, or disease-related information. | (", (v )

: N / .

Finally,let A € A= {0,1,...,d,—1} be the assigned treatment (or | "% 71—
action). Note that we do not restrict our setting to binary treatments |

but allow for arbitrary, discrete treatments. For the product space,

weuse D = Y x X x A. In the following, we assume that we N~ .

have access to an observational dataset D,, = {(Y;, X;, 4;)}7 that Figure 1: We can only bloc
consists of n i.i.d. copies of (Y, X, A) € D. backdoor paths for observed

Policy value: Policy learning aims to find the best policy for as- confounders X. Hence, un-
signing treatments, given covariates. Formally, a policy m(a | z) is der unobserved confounding
a conditional probability mass function 7 : A x X — [0, 1] with U, we cannot point-identify
> wca™(a | z) =1, corresponding to the probability of receiving the potential outcome Y'[a]
treatment A = a, given covariates X = x. The value V(r) of a and related quantities such as

o the value function V(7).
policy is defined as V() = E[ZaeA m(a | X)Y[a]|, where Y[a)

denotes the potential outcome for Y when intervening on treatment A = a (Neymanl [1923];[Rubin|
1978)). Hence, the policy value V() is the expected average potential outcome when adhering to the
policy 7.

Confounding-
robust policy
learning
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Standard off-policy learning: Off-policy learning aims to find a policy 7 that has the best policy
value among all € II for some policy class II. Of note, it is standard in the literature (Frauen et al.,
2024bj Hatt et al., [2022; Kallus & Zhou, 2018a) to restrict the analysis to policy classes II with finite
complexity such as neural networks.

The value function is identifiable under the following three assumptions (Rubin, |1978)): (i) Consis-
tency: Y[A] =Y (ii) Positivity: 0 < p(A=a | X =2) <1V a € A,z € X; (iil) Unconfounded-
ness: Y]a] 1L A | X V a € A. Then, the policy value is identified from the observational data via
V(r) = E[ZaeAw(a | X)Q(a,X)} , where Q(a,x) = E[Y | X =z, A = q] is the conditional
average potential outcome function.

The optimal policy can then be learned via

7T;ktandard = arg Iﬁin V(”)? (D
TE

where f/(w) is an estimator of the identified policy value. Recall that we follow the convention in
(Kallus & Zhoul, 2018a;[2021)) that lower Y are better, so we aim to minimize the value function.

Allowing for unobserved confounding: The assumption of (iii) unconfoundedness is problematic
and often unrealistic (Hemkens et al.||2018)): Unconfoundedness requires that the observed covariates
X capture all factors that affect both treatment choice and outcome. In this work, we do not rely on
the unconfoundedness assumption, which is restrictive and oftentimes unrealistic. Instead, we allow
for unobserved confounding, which we denote by a random variable U € U C R (see Figure2).

Importantly, under unobserved confounding, we cannot point-identify the value function V(7).
Instead, we aim to partially identify the value function V' () by leveraging causal sensitivity analysis.
Specifically, we adopt the MSM (Tan, |2006) to bound the ratio between the nominal propensity score

ea,x) = p(A=a| X =), @)
which can be estimated from data D,, and the true propensity score
e(a,z,u) =p(A=a| X =2,U =u), 3)

which is fundamentally unobserved. Formally, the MSM assumes

-1 < e(a,z) 1—e(a,z,u)
~ 1—e(a,z) ela,z,u)

<T “

for some I > 1 that can be chosen by domain domain knowledge (Frauen et al.l 2023} |[Kallus et al.,
2019) or data-driven heuristics (Hatt et al., [2022)) (see Supplement@).

Intuitively, I' close to 1 implies that the impact of unobserved variables U on the treatment decision
is small, whereas a large I" means that observed variables X do not contain sufficient information
to fully capture the treatment decision. In particular, I' = 1 implies that the true propensity score
coincides with the nominal propensity score. Hence, there is no unobserved confounding and our
scenario simplifies to the naive unconfoundedness setting. Conversely, if we let I' > 1, the true
and the nominal propensity scores differ, and, therefore, we account for additional unobserved
confounding.

Formally, the marginal sensitivity model gives rise to a set of distributions P(I") over D x U that are
compatible with the constraints in Equation ] This set is defined as

- - _ e(A,X) 1-¢e(AX,U)
r) = DxU) : d,u)du =p(d)Vd € D, I'"* < ’ - <T
P = {pePoaan: [ pdwa=pamep, 1< AEEL AT o
)
where P (D x U) is the set of all possible joint distributions of the observables and the unobserved con-
founders, and where the nominal propensity score (A, X) and the true propensity score é(A, X, U)
result from p as in Equation [2]and Equation[3] respectively.

Different from standard off-policy learning under the unconfoundedness assumption, we can not
point-identify the value function, and, hence, optimizing the objective in Equation[I]is biased. Instead,
we need to account for the worst-case scenario that can occur under unobserved confounding. That
is, we are interested in: Which policy yields the optimal value under the worst-case unobserved
confounding, given our sensitivity constraints?
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Objective: Formally, the optimal confounding-robust policy 7* is the solution to the minimax
problem

7 =argmin sup V(m). (6)
mell  peP(T)

However, the existing method (Kallus & Zhoul, 2018a;2021)) for our task has key limitations: (i) It
requires directly solving the minimax optimization problem, which can be unstable due to inverse
propensity weighting. Instead, we later derive a closed-form expression for the inner supremum (i.e.,
an upper bound), which reduces Equation[6]to a simple minimization task. (i) This method is not
semi-parametrically efficient, thus leading to suboptimal finite-sample performance. As a remedy, we
later derive an estimator that is semi-parametrically efficient.

4 SHARP BOUNDS AND EFFICIENT ESTIMATION

In this section, we introduce our estimator for sharp bounds of the value function under unobserved
confounding. For this, we first derive a closed-form solution for the sharp bounds of the value function
(Section [.T)), which directly solves the inner maximization in Equation [6] Then, we present our
estimator for these bounds (Section [4.2)), which is based on non-trivial derivations of the efficient
influence function to offer semi-parametric efficiency. Further, we provide learning guarantees when
optimizing the bounds of the value function (Section[4.3). Finally, we propose an extension of our
method for scenarios where the aim is to optimize the relative improvement of a policy over a given
baseline policy such as the standard of care in medicine (Section[4.4).

4.1 SHARP BOUNDS FOR THE VALUE FUNCTION

‘We now derive our sharp bound for the value function

under unobserved confounding, given our sensitivity
constraints P(I") in Equation[3] Recall that our aim is
to minimize the value function V' (), and, hence, we
are interested in an upper bound for V(). That is, :
we seek to find the value function in the worst-case ‘

confounding scenario under the MSM, which is given Figure 2: Under unobserved confounding,
by V*(m) = SUDsep(r) V(r). the value function is unidentifiable, and the

ground-truth optimal policy is unknown. Ig-
By definition, a closed-form solution to this maxi- poring unobserved confounding can lead to a
mization problem ensures that (i) the bound is valid, policy with large regret, and may introduce
ie, VF*(r) > V(r) for all p € P(T), and that harm. Further, optimizing w.r.t. a subopti-
(i) the bound is sharp, i.e., there does not exist a mal bound can lead to an overconservative
valid upper bound V*T(r) such that V*(r) < policy. Instead, we seek to find the optimal
V(). confounding-robust policy by minimizing a
sharp bound on the worst-case effect of unob-

In order to derive V™ *(7), we first introduce the !
served confounding.

conditional average potential outcome function
Q(a,z) =E[Y]a] | X = x], @)

which is the expected potential outcome for treatment A = a, given covariate information X = .
Importantly, because we do not make Assumption (iii) of unconfoundedness, the quantity Q(a, x) is
not point-identified.

We now state our first theorem, which provides a sharp upper bound of the value function under our
sensitivity constraints 7°(I"). Further, we also provide the sharp lower bound V' ~=* = inf ;e p(ry V' (7),
which we later need for our extensions in Section 4.4]

Proposition 4.1. Let Q" (a, ) = supzep(r) Q(a, ) and Q™ *(a, z) = infsep(ry Q(a, x) be the
sharp upper and lower bound for the conditional average potential outcome, respectively, given
our sensitivity constraints P(T'). Then, the sharp upper bound supscpry V(m) = VT * () and the
sharp lower bound infscpry V(m) = V=" (n) for the value function V () are given by

Ex(r) = x5 2)rla | ).
v<>A;@<,><>dp<> ®)



Under review as a conference paper at ICLR 2026

Proof. See Supplement O

Our above derivation of the closed-form solution has a crucial advantage over existing works (Kallus
& Zhou, 2018a;2021): we avoid an unstable minimax optimization that is based on inverse propensity
weighted outcomes, and, instead, we can directly work with V*(7), which simplifies Equation E]to
7 = argmin_c; V*(7). As a result, we have reduced the original minimax problem to a much
simpler minimization task.

4.2 SEMI-PARAMETRICALLY EFFICIENT ESTIMATOR FOR THE SHARP UPPER BOUND

In this section, we derive a semi-parametrically efficient estimator for our sharp upper bound V * (1)
of the value function V(7). semi-parametrically efficient estimators are desirable because they
achieve the lowest possible variance among all unbiased estimators (Hines et al.,[2022; Kennedy),
2022).

In order to derive such an estimator of V 7*(7), we first need to decompose the estimand Q**(a, )

in Proposition
Definition 4.2 ((Dorn & Guo, 2022; Frauen et al.,2023)). Sharp bounds Qi’* (a, x) of the conditional
average potential outcome @)(a, ) function are given by

Q" (a,2) = c¥(a,2)u™ (a, 2) + ¢ (a, 2) ™ (a, 2), ©)
where we let
c*(a,x) = bFe(a, r) + T b = (1 - TH) (10)
and
pE(a, ) =E[YAR (Y, A, X) | X =x,A=a], §T(a,2) =EYAT(V,AX)| X =1,A Zg
with

Af(y,a,2) =1 Af(y,a,z) =1 (12)

{y<Fsala®)} {y>Fy a(a®)}

where at =T'/(14T)and @~ = 1/(1+T), and where F}} (q) is the conditional quantile function
Fra(q)=inf{yeY: p(Y <y|X =u,4=0a) > q}. (13)

x,a
In order to achieve semi-parametric efficiency for the sharp upper bound V1 * (), we need to
carefully take into account the nuisance functions in Equation [8]and Equation [0} respectively. That is,
the key difficulty lies in that V7 *(7) depends on several nuisance functions

n={e(a, ), F, 1 (a™), i (a,x), 1" (a,2)}. (14)
If we followed a naive plug-in approach (i.e., if we estimated 7) from data D,, and plugged them into

Equation [8|and thus Equation |§I) our final estimator ¥ +* () would suffer from first-order bias due
to estimation errors in the nuisance functions.

As a remedy, we present a one-step bias-corrected estimator. That is, we estimate the first-order bias
and subtract it from our plug-in estimate (Kennedy} 2022; ivan der Vaart, [1998)). To obtain a one-step
bias-corrected estimator for our task, we need to make non-trivial derivations of the efficient influence
function of V* () below. In the following, we let P,,{-} denote the sample average for a dataset
D,,. Further, we use the short notation f,, = f(x) for any function f(-) to improve readability.

Theorem 4.3. An estimator for the sharp upper bound of the value function is given by

V() = P 3 Tax | Q% = ax (07 ik + 07t )|+ max (55 x0T x )

TAX [[ae . A A
+ 3 [(CA,X - CX,X) (FX}A(aJr)(AY,A,X - a+))
éax
A ~+ A~ ~ ~ ~
tC4x (YAKA,X - MX,X) +&h x (YA;A,X - MX,X):| }

Further, the above estimator is semi-parametrically efficient.
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Proof. See Supplement O

We now have a semi-parametrically efficient estimator for the sharp upper bound of the value function
under unobserved confounding. Algorithm T]presents a flexible procedure to learn confounding-robust
policies for parametric policy classes 11y (e.g., neural networks).

4.3 LEARNING GUARANTEES Algorithm 1 Confounding-robust policy

In this section, we provide asymptotic learning guarantees learning

in the form of generalization bounds when learning the Input: Data D, = {(Yi, A, Xi)}i, sen-

confounding-robust policy 7 via our Algorithm[T} Of note, Sitivity parameter I" > 1, sample split p €

it is not obvious that minimizing the estimated sharp up- (0, 1), learning rate \, parametric policy class
ok . . . I, training iterations K

per bound V**(7) provides a meaningful, confounding- p s

robust policy 7*. Hence, we provide learning guarantees Output: V™ (m)

where we show that, with high probability, minimizing our

estimated sharp upper bound yields the optimal policy.

: Perform sample split D?P"W , DY(T%)M

: Estimate nuisance functions 7) on D[,m]

For this, we show that minimizing the estimated sharp up-  3: Evaluate 7} on DK;’_*p)n |
per bound Vo () with respect to 7 indeed minimizes the
true, unknown value function V'(7) on population level. 5: fork =0t K — 1 do

Fortunately, our method only requires one additional as- Estimate V* (Wék)) as in (2) (using
sumption, namely, boundedness of the outcome |Y| < C,,. evaluated 7))

This is a very mild restriction and reasonable in practice. ~ /:  Update policy parameters:

8: O+ g*) _ ATV (7P
We express the flexibility of our policy class II in terms of 9. end for
10

the Rademacher complexity R, (), which is a common
choice in the literature (Athey & Wager, 2021} [Frauen
et al.|, [2024b; Hatt et al.| 2022} [Kallus & Zhou, [2018a)). Importantly, parametric policy classes
IT = Tl such as neural networks have vanishing Rademacher complexity R, (IT) € O(n~'/2).

Theorem 4.4. Assume Y is bounded by a constant C, i.e. |Y| < C,. Then, for any policy m € I, it
holds that

: Initialize policy Wéo) e Ily

Uk WY =

: Return: Robust policy 7% + ﬂéK)

. 5 /1 2
< [ H* R -
Vi(r) < V() + 20, (Rn(H) + 2/ 3= 1o (5)) (15)
with probability 1 — 6, where C,, = 2C,(1 + T~ +T') and R, () is the empirical Rademacher
complexity of policy class I1.

Proof. See Supplement O

The above Theoremhas the following implication: given our sensitivity constraints P(I"), our
estimated sharp upper bound V ** () correctly bounds the true, unknown value function V() on

population level with high probability. Therefore, given sufficient data D,,, minimizing Vo () with
respect to 7 also minimizes V() and, hence, yields the optimal 7*.

In sum, we have derived (i) a novel sharp upper bound of the value function, which circumvents
unstable minimax optimization based on inverse propensity weighted outcomes. Further, we have
proposed (ii) an estimator for this bound that is semi-parametrically efficient, i.e., an unbiased
estimator with the lowest possible variance. Finally, we have derived (iii) learning guarantees, which
show that minimizing our estimated bound via Algorithm [I] indeed optimizes the true, unknown
population value.

4.4 EXTENSION TO POLICY IMPROVEMENT

Our main results from above focus on optimizing the value function V (), which is common in
practice (e.g., |Dudik et al.| 2011} Hatt et al.| |2022)). However, in some scenarios, an established
baseline policy my may be available; then, one may aim to make a small relative improvement yet
with certain guarantees. This setting is commonly termed as policy improvement (Kallus & Zhou,
2018a; 2021} |Laroche et al.,|2019]; Thomas et al.| 2015)). We extend our theory to policy improvement
under unobserved confounding in Supplement[C]
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5 EXPERIMENTS

=2 =4 I'"=6 =38 =10 I =12 I"=14 I =16
Standard IPW estimator —-1.31+£0.02 -0.60+0.15 —0.09 £0.01 —0.07£0.01 —0.06 +0.01 —0.06 £0.01 —0.05+0.01 —0.03 4+ 0.01
Standard DR estimator —1.304+0.04 —0.71£0.02 —0.18 £0.13 —0.07£0.01 —0.074+0.01 —0.06 +0.01 —0.05£0.01 —0.04 £0.01
Kallus & Zhou 2018a| 2021| —1.21+£0.10 —0.70+0.06 —0.40£0.06 —0.22+0.04 —0.16+0.02 —0.14+0.02 —0.10£0.01 —0.08 £ 0.01
Efficient + sharp estimator (ours) —1.12+0.08 —1.00 + 0.08 —0.89 +0.13 —0.66 £ 0.14 —0.64 + 0.14 —0.58 + 0.17 —0.50 + 0.20 —0.30 + 0.22
Absolute improvement +0.19 —0.29 —0.49 —0.44 —0.48 —0.44 —0.40 —0.22

Table 2: Varying confounding strength. We vary the confounding parameter I'* in the DGP along
with the sensitivity parameter I" in both our efficient estimator and the baseline
2021). Then, we report the regret over a randomized policy (lower values are better). As
confounding increases, our estimator is the only method that is robust and thus performs best.

In the following, we evaluate the performance of our method against: (1) the minimax optimization
approach by Kallus & Zhou| (2018a};[2021)) and standard methods for policy learning, namely, (2) the
IPW estimator (Swaminathan & Joachims|, 2015) and (3) the DR estimator (Athey & Wager} 2021},
Dudik et al.,2011). Importantly, the approach by [Kallus & Zhou| (20184; [2021) is the only baseline
that can deal with confounding-robust policy learning with the MSM and thus the only baseline for
our task. To ensure a fair comparison, we use the same neural instantiations for all models in terms
of (i) the nuisance functions 7} and (ii) the policy 7y (see Supp.[E). All results are averaged over 10
seeds.

o Synthetic Data: As is standard in causal infer-
ence literature (Hess & Feuerriegel, 2025; [Hess|
et all, 2024} [Kallus et al.,[2019), we evaluate our
method on synthetic data in order to have access
to ground-truth counterfactuals. Here, we use an
established data-generating process from the lit-
erature (Kallus et al, 2019): First, we simulate
observed confounders X ~ Unif[—2, 2] and un-
observed confounders U ~ Ber(1/2). The po-

Regret over randomized policy

. . I —e— Standard DR estimator (biased)
tential outcomes Y'[a] are then given by Y[a] = | - ficient + shar estimator our)

(2a - 1)X + (2(1 — 1) — 28111(2(2(1 — I)X) - M2 3 5 7 9 11 1B 15 100

2(2U _ 1)(1 + 05X) +€’ where e~ N(O, 1) iS Sensitivity parameter " in the model

random noise. Further, we assume a binary treat- Figure 3: Robustness analysis. We set ['* = 7 in

ment, i.e., d, = 2. For this, we first fix a ground-  the data-generating process but use mis-specified

truth I'*. Then, we let the true propensity score sensitivity parameters I' in our estimator (i.e.,
—Uu

be given by e(1,z,u) = p(w;{‘/r*) + S@rey» I = 7is correctly specified, while I 2 7 is mis-
where p(z;7) = 1+ (1/e(1,z) — 1)v, and specified). We report the regret over a randomized
e(1,z) = (0.752+0.5) is the nominal propen- policy (lower values are better). Our estimator
sity score. significantly improves upon the standard DR esti-

. ) . mator, even for a completely mis-specified I'.
Varying confounding strength: First, we

demonstrate the performance of our method for increasing levels of unobserved confounding. For
this, we increase the confounding parameter I'* in the data-generating process. We compare the
regret of each method over a randomized baseline policy. In our method and (Kallus & Zhoul [2018a}
2021)), we set the sensitivity parameter I" equal to I'*.

Our results are shown in Table[2} (i) As expected, the standard methods for off-policy learning (i.e.,
a standard IPW estimator and a standard DR estimator) perform well for zero to very low levels of
confounding. However, the standard methods are biased and thus become ineffective for I'* > 1.
(ii) The method by [Kallus & Zhou| (2018a} [2021)) performs well under low levels of confounding. Yet,
the performance quickly deteriorates. (iii) Our proposed method performs clearly best for increasing
T'*. Here, our method achieves a relative performance gain by up to a factor of 4.

Robustness analysis: Next, we show that our method is robust to mis-specification of the sensitivity
parameter I'. We thus fix the confounding strength to I'* = 7 in the DGP. We increase I' from 1
(which corresponds to unconfoundedness) up to 100 (which mirrors almost assumption-free bounds).
We again compute the regret of our learned policy over a randomized baseline policy to showcase
the improvement. The method by [Kallus & Zhou| (2018a; [2021)) has only a regret of —0.27 £ 0.06,
even for correctly specified I' = 7, and is hence not competitive; we thus removed it from the plot for
better visualization. Figure [3shows that our approach yields robust results even for mis-specified
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I (i.e., when I' £ 7). Further, even under the (almost) no assumptions constraint of I' = 100, our
method provides significant improvements over the biased DR estimator.

Semi-parametrically efficient estimation: Fi-
nally, we show the benefits of our efficient es-
timation strategy over simple plug-in estima-
tors. A semi-parametrically efficient estima-
tor is the unbiased estimator with the lowest
variance (Kennedy} 2022} [van der Vaart, [1998).
Hence, policies based on efficiently estimated
bounds are learned better in low sample settings
than those based on plug-in approaches. There-
fore, we report the performance when we vary
the number of training samples D,,. Here, we
compare our method against a naive plug-in es-
timator of our sharp bounds based on Propo-
sition .1} We again report the regret over a
randomized baseline policy. Figure [4] shows
that our method performs better in low sample
settings, and achieves larger performance gains
when increasing the sample size.

o Real-world medical data: We evaluate our
method on a real-world medical case study. For
this, we use data from the International Stroke

Trial (Sandercock et al,[2011)), which is a ran-

domized control trial (RCT) that examines the

| I !
=3 =3 =3
> IS N

Regret over randomized policy
s
»

0'0 |||||| “‘\‘\
-1.0

Plug-in sharp estimator (ours)

12 s Efficient + sharp estimator (ours)
1000 1500 2000

Number of samples for training

2500

Figure 4: Property of semi-parametrically effi-
cient estimation. We compare our efficient esti-
mator with a simple plug-in estimator of our sharp
upper bound from Proposition[d.T] We report the
regret over a randomized policy (lower values are
better). Our efficient estimator leads to a lower re-
gret and benefits from increasing sample size due
to its optimal estimation properties.

outcomes for early administration of aspirin, heparin, a combination of both, or none on acute
ischaemic stroke. Importantly, this means that there are four different treatments available. The
advantage of an RCT over observational data is that we can estimate the ground truth value function
without bias, as the true propensity score is known. Our aim is to find the optimal treatment strategy
based on patient covariates in order to prolong the time-to-death (TD) outcome variable (in days).

For this, we artificially introduce unobserved
confounding as follows: In the training dataset,
we randomly drop 60% of the untreated patients
whose diastolic blood pressure is larger than the
average, as well as 60% of the patients who re-
ceived aspirin and whose blood pressure is lower
than average. Then, we remove the diastolic
blood pressure variable. Thereby, we introduce
unobserved confounding in the training dataset.

1000

o
o

./.
L
[

/\.\
/

o\/. o
1/~ \/

/

~
=]
S

IPW estimator (biased)

DR estimator (biased)

Kallus & Zhou (2018; 2021)
—e— Efficient + sharp estimator (ours)

Improvement of TD over RCT policy
®
8

Results: We report the estimated improvement
of the TD outcome of all methods over the ran- 00
domized policy in Figure[5] Here, we vary the
sensitivity parameter for both the method by
Kallus & Zhou| (2018a}; [2021)) and our method.
Our method performs best at I' = 24. Further,
our method has the overall best treatment strat-
egy, whereas all baselines fail to improve upon
the randomized policy. Importantly, our method
is stable for different parameterizations of I,
which confirms the effectiveness of our method, and shows its applicability to medical scenarios.

10 15 20 25 30 35 40 45
Sensitivity parameter I

Figure 5: Real-world medical data. We compare
our efficient estimator against the previous base-
lines based on data from the International Stroke
Trial. Our method yields the best treatment policy
and is robust over different I'.

Conclusion: We develop a novel semi-parametrically efficient estimator for sharp bounds on the value
function under unobserved confounding. Further, our approach yields provably optimal, confounding-
robust policies and avoids the instability of existing minimax-based methods. Our results provide a
principled way for reliable decision-making from observational data, and show that robust policy
learning can improve decision-making in sensitive applications such as healthcare.
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A EXTENDED RELATED WORK

Offline reinforcement learning under unobserved confounding: Offline reinforcement learning
deals with the problem of learning the optimal policy when the reward (value) function is defined
over an infinite time horizon. Therefore, these works rely upon techniques that are different from
ours.

Some works focus on off-policy evaluation under unobserved confounding (Bennett et al.| 2021}
Kallus & Zhou, [2020) and even propose computationally efficient algorithms for this task (Kausik
et al.,|2024). However, these methods primarily focus on the identification of policy value bounds
without semi-parametrically efficient estimation procedures. In contrast, Bennett et al.|(2024) propose
an efficient estimator for offline reinforcement learning. Different from our work, however, they
require estimation of density ratios in order to evaluate the policy value. Further, |Pace et al.| (2024)
propose a heuristic approach that learns representations of the unobserved confounders but does not
provide theoretical guarantees for efficiency or unbiasedness. |Shi et al.| (2022) propose an approach
that involves the approximation of bridge functions in partially observable Markov decision processes
(POMDPs). Additionally, [Shi et al.|(2024) use mediators as auxiliary variables to construct confidence
intervals for policy evaluation under unobserved confounding. Finally, Wang et al.|(2021) improve
sample efficiency in offline reinforcement learning under both observed and unobserved confounding.

14
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B CHOOSING THE SENSITIVITY PARAMETER IN THE MSM
In this work, we adopt the MSM (Tan, 2006) in order to bound the ratio between the nominal
propensity score
e(a,z) =p(A=a| X =x), (16)
and the true propensity score
e(a,z,u) =p(A=a| X =2,U =u). (17

Here, the nominal propensity score can be estimated from data, whereas the true propensity score is
fundamentally unobservable. In particular, the MSM is given by

-1 < e(a,z) 1—e(a,z,u)
~1l—e(a,z) e(a,z,u)

<T (18)

for some sensitivity parameter I' > 1.

Typically, the sensitivity constraints I" are chosen via domain knowledge (Frauen et al., [2023} [Kallus
et al.l 2019) or data-driven heuristics (Hatt et al., 2022). For example, in practical applications,
one typically has a benchmark variable (e.g., hours with sunlight) that is a known cause of the
outcome (e.g., vitamin D deficiency), and one then wants to study how strong a confounder (e.g.,
other ecological activities such as nutrition) must be to explain away the effect of the benchmark
variables. (Cinelli & Hazlett, 2020) term this the robustness value, which quantifies the strength of
unobserved confounding needed to change conclusions.

Hence, to achieve this, a commonly used strategy for selecting I' is the following: We can search for
the smallest I' such that the partially identified interval for the causal quantity of interest includes 0.
Then, we can interpret I' as a measure of the minimal deviation from unconfoundedness required to
invalidate the effect of an intervention (Jesson et al., [2021; Jin et al., [2023).
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C EXTENSION TO POLICY IMPROVEMENT

Our main results from above focus on optimizing the value function V (), which is common in
practice (e.g., Dudik et al., 2011} |[Hatt et al., [2022). However, in some scenarios, an established
baseline policy g may be available; then, one may aim to make a small relative improvement yet
with certain guarantees. This setting is commonly termed as policy improvement (Kallus & Zhou,
2018a;[2021; |[Laroche et al., [2019; Thomas et al., [2015).

Hence, we no longer aim to minimize bounds on the value function V () but, instead, bounds on
the regret of a candidate policy against a baseline policy (Kallus & Zhou, |2018a). Specifically, we
can define the regret of policy 7 over baseline 7y as R, (w) = V(m) — V(m). Hence, a negative
regret implies that policy 7 improves upon 7. Importantly, the optimal confounding-robust policy
7* in Equation 6] can also be defined as the policy  that achieves the best relative improvement over
baseline 7 in the worst-case scenario, that is,

7" =argmin sup R, (7). (19)
well peP(I")

This definition is equivalent to Equation[6] Nevertheless, the above objective may be preferred in
practice when aiming at policy improvement.

We now show in the following three corollaries that our results directly generalize to policy improve-
ment. First, we provide a closed-form solution for an upper bound of the regret function R, (),
given our sensitivity constraints P (T").

Corollary C.1. An upper bound for the regret function R.,(m) is given by Ri(w) =
JoXa (@7 (@@)n(a | 2) = Q™ (a,2)mola] ) dp(a).

Proof. See Supplement[D.4] O

Next, we derive a semi-parametrically efficient, one-step bias-corrected estimator, which is based on
the efficient influence function.

Corollary C.2. A semi-parametrically efficient estimator for the upper regret bound is given by

R;_ro(ﬂ') = Z :I:IP’T,,{ Zﬂix [Qi; — €a.x (b:FQiX + biﬁiX”

te{-+}
+ Tt +at ”f,x T At —1 AT o
T Ty x (b bax+b MA,X) + Bax [(CA x — €4 X) ( ol Ay ax — ))
~ ~t ~+ A~ N 2~
+ ¢l x (YAY,A,X - MA,X) + Cix (YA):E,A,X - ﬂix)}}
where we let 77 = 7 and 7~ = 7 for readability.
Proof. See Supplement|[D.5] O

Finally, we provide improvement guarantees: given a baseline policy 7 (e.g., the standard of care), if

the empirical estimator IA%WO ()™ is negative, which we can check by evaluating it, we are guaranteed
that 7 improves upon 7y and introduces no harm.

Corollary C.3. Under the same assumption as in Theorem[d.4| for any policy n € 11 and baseline pol-
icy mo € 11, it holds, with probability 1 -9, that R, (1) < Rjr‘ (m)+4C, ( n(ID)+324 /5= log (%))

Proof. See Supplement O
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D PROOFS

D.1 SHARP BOUND OF THE VALUE FUNCTION

Proposition D.1. Let QT *(a,x) be the sharp upper/lower bound for the conditional average
potential outcome, given our sensitivity constraints P(T). Then, sharp bounds for the value function
V() are given by

(1) = E*(a. 2)m(a | 2 ).
V()/Xza:Q(J(I)dp() 20)

Proof. We provide the proof for the sharp upper bound V ™* (7). The lower bound follows completely
analogously by swapping the signs and replacing the supremum with an infimum.

We start by noting that the upper bound on the value function depends on the set of admissible
distributions P(T") induced by the sensitivity model, that is,

VEH(m) = VT (r, P(D)). 21)
Hence, we can write
V() (22)
=V*(m, P(I)) (23)
= sup V(m,p) (24)
pEP(T)
= sup /ZQaa:p (a | z) dp(x) (25)
peP (T
= sup /ZQaa:p (a | z) dp(x), (26)
peP (T

where Equation 26/ follows from the equality p(D) = p(D) for all p € P(I').
Clearly, by definition of the optimal bounds Q*(a, x), we have that

Q(a,z,p) < sup Q(a,z,p) = Q" (a,z,P(I)) (27)

peP ()

for all p € P(T), and since Q**(a,x) € L*(r,p), we know by dominated convergence (Frauen
et al.| |2023) that

sup /Zanp (a|z)dp(z /ZQ"’*ax (a | z)dp(z). (28)

peP(T)

O
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D.2 EFFICIENT ESTIMATOR OF THE SHARP BOUND OF THE VALUE FUNCTION

Theorem D.2. The efficient estimator for the sharp upper bound of the value function is given by

vV (m) (29)
{ Z Ta,X [ —éa,x (b Iia x +otif X)} +7TAX (lfﬁz,x + b+ﬁ:§,x) (30)
TA X r— A+ A A+ A ~ N 2~
+5 eax [(CA x — &4 X) (FX,lA(O‘+)(éY,A,X - 04+)) tCyx (YAKA?X - QX7X> + C:,X (YA;A,X - M:,X)} }
| (31)
Proof. The sharp upper bound of the value function is given by
VE( / ZQi “(a,z)m(a | z)dp(z). (32)

In the following, we derive the efficient estimator for this quantity. Therein, we make use of the chain
rule for deriving efficient influence function (Kennedy, [2022)). A proof of the validity of the chain
rule for deriving efficient influence functions is provided by |Luedtke|(2024) (Lemma S3).

In order to av01d notat10na1 overload and for the sake of clarity, we do not use additional variables such
as b*, ¢*, AT , i, etc. until the final steps, such that the derivation becomes easier to follow. More-

over, we make the dependency on nuisance functions n C {e(a, z), F, }(a*), i*(a,z), p* (a, )}
explicit by writing, for example, V*(7r; i) for V1* ().
The influence function of V*(7;n) is given by
IF (V' (mm)) (33)
—1F( [ 3@ (a.zmne] o) dpla) (34)
X a
=3 [ #ta o) ()@ @ i) do (5)
—~ Jx
=3 [ el ) IF (b)) Q" (arin) + wla | ) pla) IE (@ (a ) (36)
—~ Jx
:Z/w(a\x)(]l{xzw}— p(x ))QJr a,x;n dsc—!—Z/ (a]x)p HF(Q**(amn))dx
—~ Jx

(37
*Z (a] X)Q"*(a,X;n) — V*T*(mn) +Z/ (a|x)p ]I]P‘(Q+*(axn))dm (33)

Hence, in Equatlonn we are left to compute the efficient influence function of Q**(a, ), that is,
the sharp upper bound of the CAPO. With o = I'/(1 + T), the sharp upper bound Q**(a, z) is
given by

Q" (a,x;n) (39)
:((1 T Ve(a,z) + P*l)E[YIL{YSF;}A(M)} | X =2, A= a] (40)
+ ((1 ~TDe(a,z) + F)IE{YH{YZF;}A(M)} | X =z, A= a] 41)
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Hence, the influence function is given by
IF Q" (a,2im))
:mp(u — T Ye(a,z) + r*l) ]E[YJI{YSF;}A(M)} | X =a, A= a]

@

+ ((1 T Ye(a,z) + F-l) mF(E [Y]l{YSF;}A(M)} (X =2, A= a])
©

+TF( (1= D)e(a,2) + T) E[Y1ys ot ooy | X =2, 4=

®)
+ ((1 —Te(a,z) + F) IHF(E [Yﬂ{YZF;AW)} | X =a,A= a]) .

(d)

We start with (a) and (b). For (a), we obtain
IHE‘((l T Ye(a,z) + r—l)
=(1 - r—l)m(e(a,x))

Lix=a) (1{A=a} — e(a, x))’

1 -1
=0T

and, similarly for (b), we yield

]IIF((l ~D)e(a,z) + F)

=(1-T) ]l;)((;)x} (]l{A:a} - e(a,x)).

Next, we compute the influence function of (c) via

TF(E[Y Ty ot aiy | X =2,4=a)
:]HF(/y Ly tany YP(Y | ,a) dy)

= [ 1P (Lprogiaon) v 20 4 Ly T (ply | 2,) dy

= IF(1p1iar yp(ylx,a)der/]l 1ty YIF(p(y | 2, a) ) dy.
/y ( {ySFx.a( )}) v {ygFm,a( )} ( )

(c1) (c2)

For (cq), we first note that
IF (Fz,a(oﬁ))
:]HF(IP’(Y <y|X=u1A= a))

=IF (E[Ljy<,y | X = 2,4 =ad])

_ ]]'{X:m,A:a} B B
LA (1)~ Bll ey | X = 0.4 =d))
_ ]]'{X=3?7A=a}

T par) (ﬂ{vgy} - Fm,a(y)) :

()
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(42)

(43)

(44)

(45)

(46)

(47)
(43)

(49)

(50)

6D

(52)

(53)

(54)

(55)

(56)
(57)
(58)

(59)

(60)
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Then, we can simplify (¢1) via
L1 (Vi) vpty | o,0)dy (61)

:/ya(y—FLi(aﬂ)mF(Fwﬁ(Oﬁ))
)

yp(y | z,a)dy (62)

—1F (£ b0h) [ 8(y - Frdah) uply | ma)dy (63)
y
—IF (F 3 (Fralw) [ 8y F2@) pty ] o.0) dy (64)
Y

d ., . o

quM<q> vt T (Fea) [ oy k@)t vy 69
_ =1+
__}?£A1<lrx HEF(JTI¢1 ) d/m (y }lga(Of )) y])(y |Hﬁ a)(iy (66)
_W ( )/y5( a (@ ))yp(ylar,a)dy (67)
(f) 1 ﬂ'{)( T /4 a} " "
= oyt |z a) (H{Y<y} ) /5(y—y Jyp(y | w,a)dy  (68)
_ 1 ﬂ'{)( x 14 a}

oy |z, a) (H{Y<y} /531 Yy )yp(y | z,a)dy (69)
_ 1 ﬂ'{)( x, 14 a} "

~ oy |z, a) ( vsy}y — )y p(y™ | z,a) (70)

B—{)(::m,/i::a}
~ plar) I’“(aJr)(l{YSF;é(aﬂ}_a+)7 (71)

for some y* € Y such that F}, ,(y*) = o™, where 6(-) is the Dirac-delta function.

Next, we simplify (c2) via

/y Lyt oy VIE (p(y | 2,0)) dy (72)
:/y Lyt ooy YIF (ElLy—yy | X = 2,4 =d]) dy (73)
:/y Lysridan ¥ W (Lpy=) —ply | 2.a) dy (74)
:W (Yﬂ{vgﬁzimﬂ} ~EY Ly crgt oy | X =2,4= “]) (75)

Then, combining (¢1) and (c2), we get

TF(E[Y 1y cpt oy | X =24 =al) (76)
:W (Yl ersitoon ~BY Lycroiony | X =24 = al + Fd @) Uy s ary —h)).
(77)
Finally, we compute the influence function of (d) analogously to (c) via
II]F(IE [Y]l{YZF;A(M)} | X =, A= aD (78)

[ T (Lt vp 2.+ [ Lo oy IE (bl | 2.0)) dy. (79)
/y ({yz&,a< +)}) |, Hyzraen) ( )

(d1) (d2)
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Again, we start with (d;) via

R LY )
= /y IF (1= Ty it o)) 920 | 2,0) dy 81)
=" /yﬂF(l{y%;(aﬂ}) yp(y | z,a)dy (82)
—1{;;2):} (= Frd@) Aycpiory — o), (83)

using the result for (¢;) in Equation [71} Further, for (d2), we get that
[ iy vIE (o | .0)) dy &2
:W (Ylysmrt@on —EW Lyysrgy oy | X =2, A=a)). (85)

Combining (d;) and (d3), we obtain that

TF(E[Y1(ysptary | X =2,4=0]) (86)

_ l{X:z,A:a}

p(a,x) “

Finally, we can state the influence function of Q% *(a,z) by combining (a)—(d) in Equation @L
Equation [5T] Equation[77] and Equation[87} We get

IF (Q**(a. i) (38)
Tixo
_ {X=z} -1 _ _ — —
T (1-T )(1{,4:@} e(a’x))E[Y]l{Yng’g(aﬂ} | X =z,A=a (89)
1 xmo A
{X=x,A=a} -1 -1
XAzl (g p T
s (=T e ) +T7) 90)
(Yl erton ~EW Lyerg ooy | X = 2.4 = al 4+ 0 Ly ey oy — )
oD
L{x=a}
+ (1=T) (Tpacay = €@,2) )E[Y Ly ot iy | X =2, A=a 92)
Il{X=gc A=a}
“X=wdza) (g p r 3
oo (1= Tela,a) +T) ©93)

< (Ylysrtoy ~ BV Lysrgt oy | X =2 A=) = BLHO) Ly cpmyoy — @

(94)

+)).

In order to simplify the above lengthy equation as in our main paper, we introduce the following
variables:

e bt =(1-T%)
 ¢*(a,z5m) = (bFe(a, z) +TF)
° Ai(%%x?n) = ]l{ySF;,i(ai)}

* Ay, a,23m) = Liys pot 0ty

o wF(a,2m) =E[YA*(Y, A, X;n) | X =2,A = d
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o i (a,z;n) =E[YAT(Y,A, X;n) | X =2, A = d

Then, Equation [94] simplifies to

]IIF(Q+’*(a,a:;n)> 95)
Lix=a},_
= ;)éli) }b (]l{A:a} - 6(0795)>H+(a>93;’7) (96)
DXCn Al (o) (YA (Y, 0) — 1 (a5) + Frb(0 ) (A (V,a,2:) — o))
p(@)e(a.a) ,
o7
Trix—y _

LS (Lacay = el ) )i (0, 3m) ©8)
LN e o) it ) (Y AH (Vo) — 1 (0, 25m) — (@) (A (Vi) — o)
p@)e(a,z)

99)

Teix—y _ -

= (s —cla.0)) (s @) +67 5 i) (100)
Tia—g _ _ +
Fola g @ = @) (Fole)@ (Ve — o)) (101)
e (@) (YAT (Y, a,a5m) = wt(a,mim)) + ¢ (a,osm) (VAT (Va,2m) — i (a,23m)) | }
(102)

Finally, we can combine Equation [38]and Equation[T02] That is, the efficient influence function of
V+*(rr) is given by

IF (vﬁ* (r; n)) 103
—Z a| X)Q"(a, X) =V (m) (104)
# e 20 (Vamap 0, X)) (47 (0 Xim) 4 6 0, X)) (105)
+ Z L}g [(c_(a,X; n) — c+(a,X;?7)) (Fz_,;(a+)(é+(Y,a,X;77) B a+))
(106)
+c (a,X;5m) (YAJF(Y,a,X;??) —M+(a,X;77)) +ct(a, X;n) (YA+(Y7a,X;77) —ﬂ+(a,X;n))}
(107)

S G +Z alX) [Q”aX)—e(a X)<b wh(a, X;n) + 0" +(aX77))] (108)

+7r(A|X)(M (A Xi) + bt (A, X)) (109)
R L (X - X)) (P @0 (VA X —a®)) 110
(A X)) (YA (Y A, Xim) — (A, X)) + (A, Xin) (YAT (V. A, Xim) — i (A, Xim) )|
(111)
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We can derive the efficient estimator for the bounds of the value function through one-step bias
correction via

v () + BV (i) } (112)

=P { > w(a] X)[Q" (. X:7) — éla, X) (b7 (0, Xi0) + b5 (@, Xa) | 13)

(A X) (57 (A X))+ b (A, X)) (114)

IR LX) (4 X)) (L @A A Xi) — ) 19
(A (YA (Y A X30) = 17 (A X50)) + ¢ (A, X)) (YA (V. A X5 ) - (A4, X39)) | |

(116)

<P { D" 7 x [ Q0% = fax (0 i + 0 i) |+ max (070K x + 6 ) (117)

TA X

A ~ L ~+ A At N ~ ~ ~
+ [(CA,X - ng,x) (Fx,lA(aﬂ(éy,A,x - 04+)) +TCax (YAY,A,X - lij&,x) + ng,x (YA;A,X - NX,X)} }

using our short-hand notation from the main paper.

€a,x
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D.3 LEARNING GUARANTEE: VALUE FUNCTION

Theorem D.3. Assume Y is bounded by a constant Cy, i.e. |Y| < Cy. Then, for any policy m € 1L, it
holds, with probability 1 — ¢, that

Vim) <V () + 20, (Ra(ID) + g % log (%)) (118)

where Cy, = 2C (1 + T~ +T) and R,,(7) is the empirical Rademacher complexity of policy class
1L

Proof. We start by bounding the sharp upper bound V*(7) of the value function. By assumption,
we have that |Y| < C,,. Hence, for any € II, we can bound V** () via

[V ()] (119)
:‘ /X ZQ+,*(a,x)ﬁ(a | ) dp(x)‘ (120)
<| sup Q*’*(a,m)‘ (121)

(z,a)EX XA
T rmera (=T el ) + T )EV Ly cpsary | X =2 4=a] 022

+ ((1 ~D)e(a,z) + F)E{Yn{yzmi(m} | X =2, A= a] ’ (123)
(0 ) s 0t er)
<, (2 Fort 4 2F) (125)
=Ch. (126)

Now, for the main result, we seek to find an upper bound for

sup VH*(n) — V(). (127)
well

By adding a zero and sublinearity of the supremum operator, we have that

sup V* () — V() < sup (V+*(7T) — V+’*(7T)> + sup (V+’*(7r) - V(Tf‘)). (128)
well well well
Further, by validity of our bounds, we know that
sup V¥ (m) — V(r) > 0, (129)
mell
such that we only need to focus on
D = sup VH*(n) — V' (m). (130)
mell
Since
~ 1< 1 &
Vi) ==Y Vi) = = (X X; 131
() = & V) = 5 QT (Kan(a | X (131

is a sample average with |V;"*(r)| < C,, we know that D satisfies the bounded difference with
C\ /n. Hence, we can apply McDiarmid’s inequality (McDiarmid, 1989), which yields

IP’(D ~E[D] > e) < exp ( — 2222") . (132)
- 7

=P1
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Then, solving for € gives us
C? 1
€=/ =2 1og (7) (133)
2n D1
Hence, we know, with probability at least 1 — py, that

2
D <E[D] + % log (i) (134)

As in (Athey & Wager, 2021} |[Frauen et al., [2024bj Hatt et al., 20225 |Kallus & Zhou, 2018a), we
express the flexibility of our policy class II in terms of the Rademacher complexity. For this, we first
note that a standard symmetrization argument yields

E[D] <E l;ﬂ Z sup

oe{—1,41) "<

1 n

n-
1=

o Vi ()
1

], (135)

where o; ~jiq Unif{—1, +1}. Then, using the Rademacher-comparison lemma (Ledoux & Talagrand|
1989), we have that

E[D] < 2C,E[R, (1), (136)
where
1 n
R,(II) = E, | sup — VT 137
(ID) ﬂggn;oz (137)

is the empirical Rademacher complexity of policy class IT. Again, R, (1) satisfies bounded difference
with 2/n, such that we can apply McDiarmid’s inequality (McDiarmid, 1989). This gives

2

P(Ra(ID) ~ B[R, (IT)] > ¢) < exp ( ~ %) . (138)
—_ 2/

=Pp2

¢ = 1/%bg (p%) (139)

such that, with probability at least 1 — p-, we have that

Solving for € yields

2 1
B[R, ()] < Ra() + /= log (). (140)
n b2
Combining Equation [T40| with our previous result in Equation[T34] we have, with probability of at
least 1 — p; — po, that

sup (V+*(7T) - V+’*(7T)) (141)
re

<20, Ry (I1) + g—; log (pil) 20, /%bg (p%) (142)
:2CU<RH(H)+\/81H log (pil) + \/zlog (piz)) (143)

Now let p; = pa = /2. Then, we know that with probability at least 1 — 4,
:gg (‘7+*(7T) — V+’*(7T)) (144)
<20, (Rn(H) n \/81n log (%) n \/i log (%)) (145)
—20, (Rn(H) + g %bg (%)) (146)
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or, equivalently,

V() < U () 420, (R + 245 log (5) (147)

for all w € II, which concludes the proof. O
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D.4 BOUND OF THE REGRET FUNCTION

Corollary D.4. Given Q**(a,x) and our sensitivity constraints P(T') as in Proposition an
upper bound for the regret function Ry () is given by

= [ S (@ wanta|2) - @ @ amla | 1) pla). 149

Proof. Our proof follows similar steps as in the proof of Proposition[&.1] For clarity, we repeat the
same steps such that the proof is self-contained.

Again, we start by noting that the upper bound on the regret function depends on the choice of our
sensitivity constraints and, hence, the set of distributions P(T"). Therefore, we can write that

Ry (m) = Ry, (m, P(I)). (149)
Following similar steps as in Proposition[d.I} we can write
Ry (7) (150)
=R} (m,P(I)) (151)
= Ssup Rﬂ'o (Waﬁ) (152)
peP ()
= sup (V(w,;ﬁ) — V(Tro,ﬁ)) (153)
peP(T)
= sup / Z (Q(a,m,ﬁ)ﬂ'(a | z) — Qa, z,p)mo(a | m)) dp(x) (154)
peP() Jx =
= sup / Z (Q(a,m,ﬁ)ﬂ'(a | ) — Q(a,z,p)mo(a | m)) dp(z), (155)
peP() Jx =

where Equation [155again follows from p(D) = p(D) for all p € P(T').

Since the optimal bounds Q**(a,z) are those Q(a,z,p), p € P(T), for which the supre-
mum/infimum are attained, we have that

Q(a,z,p) < sup Q(a,z,p) = Q"*(a,z,P(I)) (156)
peP(I)
and
Qa,z,p) > inf Qa,z,p) =Q " (a,z,P(I)) (157)
peP(T)
for all p € P(T'). Then, since Q**(a, x) € L'(,p), it follows by dominated convergence that
sup / Z (a,z,p)m(a | ) — Q(a,z,p)mo(a | x)) dp(zx) (158)
peP (T
:/ sup Z ( a,z,p)(a | x) — Q(a,z,p)mo(a | x)) dp(zx) (159)
X peP(I)
< sup Q(a,x,p)w(a | x)dp(z / inf Q(a,z,p)mo(a | x)dp (160)
/X;W(F) (0.2, 9)m(a S, Qe p)mo(a | ) dp(o)
- [ Y (@ @one] ) - Q@ o)mla | 2)) dp(o), (161)
X a
where Equation [T60] follows from the sublinearity of the supremum/infimum operator. O
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D.5 EFFICIENT ESTIMATOR OF THE REGRET BOUND
Corollary D.5. The efficient estimator for the upper bound of the regret function is given by
R (m) (162)

= > P> QF — tax (Vi + V) | (Vi P )
ie{_)"’_} a

(163)
T x AT At f—1 (VAT + AT AT ~t At At At
+ éA/X [(CA,X - CA,X) (FX,A(a YAy 4 x — )) +CAx (YAY,A,X - MA,X) +Cy x (YAY,A,X - MA,X)} },
’ (164)
where we use 7 = 7 and m~ = 7 for readability.
Proof. The upper bound of the regret function is given by
Ry, =V (m) = V7 (m), (165)
where
vEre) = [ 30 wan(a] o) dplo). (166)
X a

By additivity of the efficient influence function, we know that
=+, % _ +,% — %
IF (RWD (71')) — IF (V (7’1’)) _IF (v (770)), (167)

such that we can focus on both terms separately in Supplements [D.5.Tand [D.5.2]and then plug them
together in Supplement|[D.5.3|in order to obtain our efficient estimator.

D.5.1 EFFICIENT INFLUENCE FUNCTION OF V*(7r)

We already have the efficient influence function of V** () from the proof of Theorem in
Supplement[D.2] It is given by

IF (V+’*(7T; n)) (168)

==V + Yl | X)[@F (0, X) — el X) (07 (0, Xin) + 6T (0 X)) | (169)

+(A] X) (b7t (A Xim) + BT (A, X)) (170)

I (e @i et (Fh @) (Bue (A Xi —at)) a7

(A X)) (YAT (Y A, Xim) — (A, X)) + (A, Xa) (YAT (V. A, Xam) — (4, Xim) )|
172)

28



Under review as a conference paper at ICLR 2026

D.5.2 EFFICIENT INFLUENCE FUNCTION OF V ~* (1)

We can derive the sharp lower bound for the value function analogously to V' *. Again, we make
use of the chain rule for deriving efficient influence function (Kennedyl, 2022)), a proof of which can
be found in (Luedtkel 2024) (Lemma S3).

For this, let «~ = 1/(1 +T"). Then, the sharp lower bound of the CAPO is given by

Q™" (a,z;n) (173)
:((1 —TD)e(a,z) + F)E[Y]l{YSF;}A(a,)} | X =a,A= a} (174)
+ ((1 T Ye(a,z) + F—l)E[Y]l{YZF;A(a,)} | X =a,A= a] (175)

Hence, the influence function of Q@ ~*(a, x) is given by

IF(Q""(a,z:m)) (176)
Lix=a}
:W(l - F)(H{A:a} - e(a,x))E[Yll{YSF;}A(a,)} | X =a2,A= a} a7
]l{X:a:,A:a}
g (@-Dela o) +T) (178)
. (YH{YSFzTi(a‘)} —ENV Ly cpn @ [ X =0 A=d+ Fra(@) My cppian)y — a_))
(179)
Iix=s} _
+a-r (Lpamay = €@ 0) ) E[Y L iyspor oy | X =2, A = ] (180)
Tix=z,4=a} 1 .
e (@=Tela ) 1) s
. (”{YZFH(&*)} “EV Lysp @y | X =2 A=a = Fa(@)(ycpia )y — 07))
(182)
_I{X:l’} 4+ - . - .
=0 {(]]-{A:a} —e(aw)) (b w (a,z3n) + b [ (a,x,n)> (183)
T ) o .
+ eé;‘x)} Kﬁ(a,x;n) —c (a,x;n)) (FL;(a WA~ (Y, a,2;1m) — a )) (184)
+ ct(a, x;m) (Yé_(y7 a,z;n) — u (a,; 77)) +c (a,x;n) (YA—(K a, ;1) — ﬁ_(a,x;n))} }
(185)
Following the same steps as for Equation the influence function of V'~ *(7r) is given by
MF(V_’*(”;”)) (186)
)+ Sl | 0[Q o X)) (5 Xon) 67 i)
' (187)
T(A|X)r/ 4 - B . I . B
(A, X) [(C (4, Xsm) —c (AaXﬂ?)> (FX.,A(O‘ YA (Y, A, X5m) — )) (189)
+ c*(A,X;U)<YA7(Y, A X;n) —g*(A,X;n)> +c*(A,X;77)<YA*(Y, A, X;n) — ﬂf(AX;??))}.
(190)
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D.5.3 EFFICIENT ESTIMATOR OF R ()

We can derive the efficient estimator for the bounds of the value function through one-step bias
correction using our results form Supplements and via

VE () + P {VE (mi)} 191)
=P, { > m(a] X)| Q" (. X;i) — é(a, X) (bFi* (o, X50) + b *(a, X)) | (192)
vr(z: | X) (Vi (A, X 0) + (4, X)) (193)
(P - ) (Fhe@amaxi -a9)  as

+ (A X ) (YA (Y, A, X3 ) — (A, X39) ) + (A, X30) (YAS(V, A, X3) — (A, X30) |}
195
an{ZwaX[ % = o (Vi + 05 0E )|+ max (0705 + 05 ) E1963

TAX S + R At ot R ~ .
+ [(Ci X~ Ci X) (Fx,lA(ai)(éY,A,X - fF)) + CE,X (YAY,A,X - MA,X) + Ci,x (YA}i/,A,X - #f,x)} }

eA,
(197)

using our short-hand notation from the main paper. Hence, the efficient estimator of the upper bound
of the regret function is given by

R (m) (198)
=R} (m:) + P, {II]F(R* o )} (199)
=(VH (i) = Vo (o) ) + Pa{TE (V- (i) ) = TR (V" (o3 ) ) } (200)
= >+ wax (0% = eax (Vi + 65 ) |+ 7 (Vi x + VK x )
+e{+,—-} a 01)
[~ ) (B 0BT o) T (VAS 4 i) + 5 (VA
(202)
where we let 7+ = 7 and 7~ = 7 for readability. O

30



Under review as a conference paper at ICLR 2026

D.6 IMPROVEMENT GUARANTEE: REGRET FUNCTION

Corollary D.6. Under the same assumption as in Theorem[.4} for any policy m € 11 and baseline
policy wg € 11, it holds, with probability 1 — 6, that

Ry (7) < RY (7) +4C, (R (I1) + g % log (%)) (203)

where Cy, = 2C (1 + T~ +T) and R,,(7) is the empirical Rademacher complexity of policy class
1L
Proof. In order to show the main result, we note that
Rl (m) =V (m) = V™" (m) (204)
for arbitrary 7, my € IL
From Theorem |4.4] we know that
+ % O % 5 ]. 2
Ve (r) < V() + 2, (Rn(n) + 51/ 3- los (5)). (205)
n

Since 7, o € II are arbitrary, we can repeat the same arguments for V' ~* () and obtain

N 5 1 2
V= () > V¥ (o) — 20, (Rn(H) + 2/ 3= 1o (5)). (206)
Then, we conclude the proof by
R, (m) 207)
=V (m) — V(o) (208)
<VT* () — VX (mo) (209)
Ok ) 1 2 Sk 5 1 2
=V () + 20, (R (1) + V3 s (5))} = [V (mo) = 26, (Ra() + V3 o (5))}
(210)
- 5 [1 2
=R} (1) +4C, (Rn(H) + 23108 (5)) @11)
O
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E IMPLEMENTATION DETAILS

We summarize the neural instantiations of all estimators in Section

Runtime: Training the first and second stage models for our method took in total approximately 20
seconds using n = 1000 synthetic data samples and a standard computer with AMD Ryzen 7 Pro
CPU and 32GB of RAM.634. All baselines have a comparable runtime.

Nuisance function | Hyperparameter | Configuration | Standard methods | [Kallus & Zhou|(2018a//2021} | Plug-in sharp (ours) | Efficient sharp (ours)
| | | IPW estimator | DR estimator | | |
Hidden layers 3
Layer size {64,64,32}
Hidden activation ReLU
Propensity score Learning rate 0.001 v v v X v
Number of epochs 300
Early stopping patience 10
Batch size 64
Hidden layers 3
Layer size {64, 64,32}
Hidden activation ReLU
Conditional quantile function | Learning rate 0.001 X X X X v
Number of epochs 300
Early stopping patience 10
Batch size 64
Hidden layers 3
Layer size {64,64, 32}
Hidden activation ReLU
(Masked) CAPO model Learning rate 0.001 X v X v v
Number of epochs 300
Early stopping patience 10
Batch size 64
Hidden layers 3
Layer size {64.64,32}
Hidden activation ReLU
Parametric policy Learning rate 0.001 v v v v v
Number of epochs 300
Early stopping patience 10
Batch size 64

Table 3: Neural instantiations of estimated nuisance functions 7 and parametric policy mg. To ensure
a fair comparison, all methods share the same nuisance function where applicable. For all models,
we set the split parameter for training the nuisance and the policy model to p = 0.5.
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