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Abstract

This paper provides a non-asymptotic analysis of linear stochastic approximation
(LSA) algorithms with fixed stepsize. This family of methods arises in many
machine learning tasks and is used to obtain approximate solutions of a linear
system Ā✓ = b̄ for which Ā and b̄ can only be accessed through random estimates
{(An,bn) : n 2 N⇤}. Our analysis is based on new results regarding moments
and high probability bounds for products of matrices which are shown to be tight.
We derive high probability bounds on the performance of LSA under weaker
conditions on the sequence {(An,bn) : n 2 N⇤} than previous works. However,
in contrast, we establish polynomial concentration bounds with order depending on
the stepsize. We show that our conclusions cannot be improved without additional
assumptions on the sequence of random matrices {An : n 2 N⇤}, and in particular
that no Gaussian or exponential high probability bounds can hold. Finally, we
pay a particular attention to establishing bounds with sharp order with respect
to the number of iterations and the stepsize and whose leading terms contain the
covariance matrices appearing in the central limit theorems.

1 Introduction

This paper provides a detailed analysis of Linear Stochastic Approximation (LSA) schemes which
aim at finding a solution ✓

? for a linear system of the form Ā✓ = b̄. In particular, we analyze LSA
with a fixed stepsize ↵ > 0 which consists in defining a sequence of estimates {✓n : n 2 N} for ✓?
by the recursion

✓n+1 = ✓n � ↵{An+1✓n � bn+1} , n 2 N , (1)

where {(An,bn) : n 2 N⇤} is a sequence of i.i.d. random variables used as proxy for Ā 2 Rd⇥d

and b̄ 2 Rd which are typically unknown. This class of algorithms and the corresponding setting
have a long history and important applications in signal processing such as channel equalization and
echo cancellation [3, 23]. It has renewed interests in machine learning and computational statistics
especially for least-square estimation and Reinforcement learning (RL) [4, 7, 37]. The recursion
(1) has already been studied in depth in several works which derive asymptotic [33, 23, 6, 3] and
non-asymptotic [35, 27, 2, 20, 21, 5, 24, 36, 10, 13] guarantees.
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However, in most cases, there is a consistent gap between these two types of analyses. While
asymptotic analysis gives important insights on the qualitative convergence of (1) based on statistical
key quantities of the problem on hand, they do not provide finite-time convergence, or high probability
bounds, necessary to obtain non-asymptotic confidence sets, see [28, 11] and the references therein.
On the other hand, non-asymptotic studies are in general too coarse and lose significant statistical
information in their derivation. Further, their upper bounds are generally loose when used in
predicting the actual performance of LSA. We aim at filling this gap and provide conditions on
{(An,bn) : n 2 N⇤} ensuring tight high probability bounds on the sequence {✓n : n 2 N}.

This problem has been addressed in several contributions but at the expense of strong conditions on
the sequence {(An,bn) : n 2 N⇤}. [14] provided concentration bounds for non-linear stochastic
algorithms under a log-Sobolev condition which turns out to be hard to verify for most applications
except for the Euler-Maruyama discretization scheme applied to Stochastic Differential Equation.
[29] derived concentration inequalities but assuming that the innovations in (1) are uniformly bounded.
Another popular, yet restrictive condition (see [25]) is that for any n 2 N and ✓ 2 Rd, the matrix-
vector products (An � Ā)✓ are sub-Gaussian with parameter not depending on n and ✓. In contrast,
we aim at giving simple and mild conditions ensuring high probability bounds. More precisely,
one of our key contributions (Theorem 1) is to show that under mild conditions on the sequence
{(An,bn) : n 2 N⇤}, for any � 2 (0, 1), n 2 N and u 2 Sd�1,
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where ⇢↵ 2 (0, 1), c > 0 is a constant independent of n,↵, �, and p0 = o(↵�1/4). In the above, ⌃
is the unique solution of the Lyapunov equation which naturally appears in central limit theorems
for LSA with diminishing stepsize [cf. (26)]. In addition, we show that the bound we get is tight
with respect to ↵ and � in the case where we only assume that �E[A1] = �Ā is Hurwitz. Indeed,
we provide counterexamples illustrating that for a fixed stepsize ↵ and under the conditions that we
consider, logarithmic dependence in 1/� cannot hold in (2) but only a polynomial one. Regarding
the dependence with respect to ↵, we extend [30] and show that for ↵ small enough, {✓n : n 2 N}
admits a unique stationary distribution ⇡↵ and establish a central limit theorem for this family of
distribution as ↵ # 0 at rate

p
↵ and with asymptotic covariance matrix ⌃ appearing in (2).

Finally, our proofs rely on a new analysis of product of matrices which extends the recent work in
[18]. In particular, we establish conditions ensuring uniform bounds in n of the p-th moments of
Yn · · ·Y1, where {Yn : n 2 N⇤} is a sequence of independent matrices whose expected values have
a spectral radius strictly less than 1. In comparison to existing results, the main challenge addressed
is that the random matrices {Yn : n 2 N⇤} are not required to be almost surely symmetric.

The paper is organized as follows. Section 2 formally discusses the assumptions on LSA for our
analysis. Section 3 presents the moment bound for product of random matrices. Using this result,
Section 4 shows the high probability concentration inequality (2) and Section 5 shows the tightness
of the bounds by deriving a central limit theorem for LSA.

Notations Denote N⇤ = N \ {0} and N� = Z \ N⇤. Let d 2 N⇤ and Q be a symmetric positive
definite d⇥ d matrix. For x 2 Rd, we denote kxkQ = {x>Qx}1/2. For brevity, we set kxk = kxkId .
We denote kAkQ = maxkxkQ=1 kAxkQ, and the subscriptless norm kAk = kAkI is the standard
spectral norm. We denote the condition number of Q as Q = �

�1
min(Q)�max(Q). For B 2 Rd⇥d,

we denote by (�`(B))d`=1 its singular values. For p � 1, the Schatten p-norm is denoted by
kBkp = {

Pd
`=1 �

p
` (B)}1/p. For p, q � 1 and random matrix X, we write kXkp,q = {E[kXkqp]}1/q .

We denote Sd�1 = {x 2 Rd|kxk = 1}. Let A1, . . . , AN be d-dimensional matrices. We denoteQj
`=i A` = Aj . . . Ai if i  j and with the convention

Qj
`=i A` = Id if i > j. We say that a centered

random variable (r.v.) X is sub-Gaussian with variance factor �2 and we denote X 2 SG(�2) if
for all � 2 R, logE[e�X ]  �

2
�
2
/2. We define the Wasserstein distance of order 2 between two

probability measure µ and ⌫ on Rd as W2(µ, ⌫) = inf⇣2⇧(µ,⌫)

R
R2d kx�yk2d⇣(x, y), where ⇧(µ, ⌫)

is the set of probability measures on (R2d
,B(R2d)) with marginals µ and ⌫ respectively. Denote by

P2(Rd) the set of all probability measures on Rd with finite second moment.
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2 Linear Stochastic Approximation: Setting and Assumptions

Consider the LSA recursion (1) with a deterministic initial point ✓0. We require the following main
assumption in this paper:
A1. {(An,bn)}n2N⇤ is an i.i.d. sequence satisfying the following conditions.

(i) E[b1] = b̄ and there exists Cb > 0 such that, for any u 2 Sd�1, u>(b1 � b̄) 2 SG(C2
b).

(ii) There exists CA > 0 such that kA1k  CA almost surely.
(iii) The matrix �Ā = �E[A1] is Hurwitz, i.e. for any eigenvalue � of Ā, Re(�) > 0.

Both conditions A1-(i), (ii) are standard in analysis of LSA, e.g., in [12, 36, 26]. For example, the
assumption on the sub-Gaussianity of b1 is used in [12] and is relaxed from [36], the almost sure
boundedness of A1 is also used in [12, 36]. Meanwhile, A1-(iii) guarantees the existence of a unique
solution ✓

? to Ā✓ = b̄. It is a sufficient and necessary condition for the solution of the ordinary
differential equation ✓̇t = �Ā✓t to converge exponentially to ✓

? [19, Lemma 4.1.2]. The same kind
of result holds for the discrete system ✓

d
n+1 � ✓

d
n = �↵Ā✓

d
n.

Proposition 1. Assume that �Ā is a Hurwitz matrix. Then there exists a unique positive definite
matrix Q satisfying the Lyapunov equation Ā

>
Q+QĀ = I. In addition, setting

a = kQk�1/2 , and ↵1 = (1/2)kĀk�2Q kQk�1 , (3)

then for any ↵ 2 [0,↵1], we get kI� ↵Āk2Q  1� a↵. If in addition ↵  kQk2 then 1� a↵ � 1/2.

This result is well known but its proof can be found in Appendix B.1 for completeness. The
above proposition implies that the discrete system converges exponentially as k✓dn+1k  p

Q(1�
a↵)n/2k✓d0k for ↵ 2 (0,↵1).

The aim of this paper is to derive high probability bounds on u
>{✓n � ✓

?} for any n 2 N, u 2 Sd�1.
Below, we present a counterexample to show that under only A1, if ↵ > 0 is fixed, then there exists
p̄ > 0 such that limn!+1 E[k✓n � ✓

?kp] = +1 for p � p̄. As a corollary, it is impossible to obtain
any exponential high probability bounds for {k✓n � ✓

?k : n 2 N}.

Example 1. Consider (1) with d = 1 taking bn = 0 for any n 2 N⇤ and for {An : n 2 N⇤} an
i.i.d. sequence of biased Rademacher r.v.s with parameter qA 2 (1/2, 1):

An =

⇢
1 with probability qA ,

�1 with probability 1� qA .
(4)

This choice is associated with ✓
? = 0 and corresponds to the recursion: ✓n =

Qn
k=1(1� ↵Ak)✓0,

for some ✓0 6= 0. For any p � 1 and ↵ 2 (0, 1), we have by definition,

E [|✓n|p] = {qA(1� ↵)p + (1� qA)(1 + ↵)p}n|✓0|p .

Using the lower bounds (1� ↵)p � 1� ↵p and (1 + ↵)p � 1 + ↵p+ p(p� 1)↵2
/2, we get for any

p � 1 and ↵ 2 (0, 1),

E [|✓n|p] � {1� p↵[(2qA � 1)� (p� 1)↵(1� qA)/2]}n|✓0|p .

If ↵ 2 (0, 1) is fixed, then for any p > p̄q,↵ = 1 + 2(2qA � 1)/[↵(1 � qA)], we have
limn!+1 E [|✓n|p] = +1. On the other hand, if ↵ 2 (0, 2(2qA � 1)/(1� qA)), then
limn!+1 E[✓2n] = 0. Therefore {✓n : n 2 N} converges in distribution to the Dirac measure
at 0 which corresponds to the unique stationary distribution of this sequence as a Markov chain. In
such a case, this distribution admit p moments for any p � 0.

However, this result is specific to this particular case and does not hold if only A1 holds. Consider
{✓n : n 2 N} defined by (1) with {An : n 2 N⇤} given in (4) and {bn : n 2 N⇤} be
an i.i.d. sequence of zero-mean Gaussian random variables with unit variance independent of
{An : n 2 N⇤}. We show in Appendix B.2 that there exists ↵2,1 such that for any ↵ 2 (0,↵2,1],
the Markov chain {✓n : n 2 N} admits a unique invariant distribution ⇡↵ for any ↵ > 0. Further,
for any ↵ 2 (0,↵2,1] there exists p↵ � 1 such that

R
R |✓|pd⇡↵(✓) = +1 for any p � p↵.

It is, however, possible to obtain any p-th moment uniform bound for {k✓n � ✓
?k : n 2 N} by

strengthening A1-(iii) to:
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A2. There exist ã 2 (0, 1), ↵̃1 > 0 and a positive definite d-dimensional matrix Q̃ such that almost
surely, for any ↵ 2 (0, ↵̃1], kI� ↵A1kQ̃ < 1� ã↵.

Conditions similar to A2 are considered in [9] for the analysis of SA schemes with decreasing stepsize.
For example, A2 holds in the case of regularized linear regression. We take A1 = �I + a1a>1 , for
some � > 0 and under the assumption that ka1k is bounded almost surely. The LSA recursion (1)
approximates the solution to (�I + E[a1a>1 ])✓ = b̄, which admits a unique solution.

On the other hand, examples where A2 does not hold are common. For instance, we may consider
TD(0) learning with linear function approximation. For a Markov Reward Process with X as the
state space, P : X⇥ X ! [0, 1] as the transition probability, R : X ! R as the reward function, and
� 2 (0, 1) as a discount factor, TD(0) learning is described as in (1) with

An = �(xn){�(xn)� ��(x0n)}>, bn = R(xn)�(xn) , (5)

where � : X ! Rd is a feature map. A typical setting is when xn is drawn from the stationary
distribution of P and x

0
n ⇠ P(xn, ·). It is easy to verify A1 provided that k�(x)k, R(x) are bounded

for all x 2 X [38]. However, A2 is violated as An is only rank-one.

Our next endeavor is to establish moment estimates on the product below:

�(↵)
m:n =

Qn
i=m(I� ↵Ai) , m, n 2 N⇤, m  n . (6)

We also define its expected value as G(↵)
m:n = E[�(↵)

m:n] = (I� ↵Ā)n�m+1. To motivate, we observe
that the above product naturally appears after re-centering the LSA recursion (1). For any n 2 N⇤,

✓n � ✓
? =

�
I� ↵An

�
{✓n�1 � ✓

?}+ ↵"n , "n = bn � b̄� {An � Ā}✓? . (7)

An easy induction implies that

✓n � ✓
? = ✓̃

(tr)
n + ✓̃

(fl)
n , ✓̃

(tr)
n = �(↵)

1:n{✓0 � ✓
?} , ✓̃

(fl)
n = ↵

Pn
j=1 �

(↵)
j+1:n"j . (8)

The decomposition (8) highlights the two sources of error in the estimation of ✓? by {✓n : n 2 N}
which will be separately tackled: {✓̃(tr)n : n 2 N} corresponds to the transient (or bias) term and
{✓̃(fl)n : n 2 N} to the fluctuation term. Both errors are controlled by the product of matrices �(↵)

m:n,
thereby motivating the study of the moment bound on �(↵)

1:n as we present next.

3 Moment and High-probability Bounds for Products of Random Matrices

Recall from Proposition 1 that the norm of the expected value G
(↵)
1:n = E[�(↵)

1:n] decays exponentially
with n as kG(↵)

1:nk  p
Q(1� ↵a)n/2. We expect a similar phenomenon for the moment bound of

k�(↵)
1:nk. Precisely, in this section, we show that if p is fixed, then there exists ↵p,1 > 0 such that for

any ↵ 2 (0,↵p,1], the p-th moment of �(↵)
m:n decays exponentially with n�m.

We present the main technical result on the product of general random matrices as follows, whose
proof is based on the framework introduced in [18].
Proposition 2. Let {Y` : ` 2 N} be an independent sequence and P be a positive definite matrix.
Assume that for each ` 2 N there exist m` 2 (0, 1) and �` > 0 such that kE[Y`]k2P  1�m` and
kY` � E[Y`]kP  �` almost surely. Define Zn =

Qn
`=0 Y` = YnZn�1, for n � 1 and starting

from Z0. Then, for any 2  q  p and n � 1,

kZnk2p,q  P

nY

`=1

(1�m` + (p� 1)�2
` )kP 1/2Z0P

�1/2k2p,q , (9)

where we recall that P = �
�1
min(P )�max(P ).

Proof of Proposition 2 . Let 2  q  p. Consider the following decomposition Zn = YnZn�1 =
(Yn � E[Yn])Zn�1 + E[Yn]Zn�1, Therefore, we obtain for any n 2 N,

fP (Zn) = An +Bn , An = fP ((Yn � E[Yn])Zn�1) , Bn = fP (E[Yn])fP (Zn�1) ,
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where fP : Rd⇥d ! Rd⇥d is defined for any B 2 Rd⇥d by fP (B) = P
1/2

BP
�1/2. Since

E[An|Bn] = 0, [18, Proposition 4.3] (see Proposition 10 in Appendix C) implies that

kfP (Zn)k2p,q  kBnk2p,q + (p� 1)kAnk2p,q . (10)

It remains to bound the two terms on the right hand side. To this end, we use [17, Theorem 6.20]
which implies that for any B1, B2 2 Rd⇥d,

kB1B2kp,q  kB1kkB2kp,q . (11)

As a result and using that for any B 2 Rd⇥d, kBkP = kfP (B)k, and kYn �E[Yn]kP  �n we get

kAnkp,q =
�
E
⇥
kfP (Yn � E[Yn])fP (Zn�1)kqp

⇤�1/q


�
E
⇥
kYn � E[Yn]kqP kfP (Zn�1)kqp

⇤�1/q  �nkfP (Zn�1)kp,q . (12)

Similarly, applying kE[Yn]k2P  1�mn

kBnk2p,q =
�
E
⇥
kfP (E[Yn])fP (Zn�1)kqp

⇤�2/q


�
E
⇥
kE[Yn]kqP kfP (Zn�1)kqp

⇤�2/q  (1�mn)kfP (Zn�1)k2p,q . (13)

Combining (12) and (13) in (10) yields for any n 2 N⇤, kfP (Zn)k2p,q  (1 � mn + (p �
1)�2

n)kfP (Zn�1)k2p,q 
Qn

i=1(1 � mn + (p � 1)�2
n)kfP (Z0)k2p,q. The proof is then completed

upon using (11) which implies that kZnkp,q = kP�1/2fP (Zn)P 1/2kp,q  p
P kfP (Zn)kp,q .

In order to bound �(↵)
1:n using Proposition 2, we identify the latter with Y` = I�↵A`, ` � 1, Y0 = I.

As �Ā is Hurwitz, applying Proposition 1 yields kE[Y`]k2Q = kI � ↵Āk2Q  1 � a↵. Further, A
1-(ii) ensures that almost surely,

kY` � E[Y`]kQ = ↵kA` � ĀkQ  2↵
p
Q CA = bQ↵ .

Therefore, (9) holds with m` = a↵ and �` = bQ↵. As kIkp = d
1/p, we obtain the following

corollary.
Corollary 1. Assume A1-(ii)-(iii). Then, for any ↵ 2 [0,↵1], 2  q  p, and n 2 N,

E1/q
h
k�(↵)

1:nkq
i
 k�(↵)

1:nkp,q  p
Qd

1/p(1� a↵+ (p� 1)b2Q↵
2)n/2 , (14)

where ↵1 was defined in (3), and bQ = 2
p
Q CA.

Note that Corollary 1 shows supn2N E[k�(↵)
1:nkp] < +1 for any ↵ 2 (0,↵p,1], where

↵p,1 = ↵1 ^ a/(2b2Q(p� 1)) . (15)

This kind of condition relating the choice of ↵ with the required order p is necessary as illustrated in
Example 1. Corollary 1 further leads to the high-probability bound:
Corollary 2. Assume A1-(ii)-(iii). Then, for any ↵ 2 (0,↵1) where ↵1 was defined in (3), � 2 (0, 1)
and n 2 N, with probability at least 1� �,

k�(↵)
1:nk  p

Q exp
h
�(an↵� ↵

2
b
2
Qn)/2 + bQ↵

p
2n log(d/�)

i
.

Proof. The result follows from combining Corollary 1 with p = q and Lemma 1 in Appendix C
applied with A = (� log(Q)+a↵n+b

2
Q↵

2
n)/2, B = ↵

2
b
2
Qn/2 and C = d, p0 = 2, p1 = +1.

The result in Corollary 2 is tight with respect to �, as illustrated via the following example that
continues from Example 1.
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Example (Continuation of Example 1). Consider {✓n : n 2 N} defined by (1) with {An : n 2 N⇤}
given in (4) and bn = 0 for any n 2 N⇤. Define

'q(↵) = qA log

✓
1 + ↵

1� ↵

◆
� log(1 + ↵), ↵̄q = sup{↵̄ > 0 : 'q(↵) > 0, 8 ↵ 2 (0, ↵̄)} . (16)

Note that 'q(↵) ⇠ ↵(2qA � 1) as ↵ # 0. Therefore since qA > 1/2, {↵̄ > 0 : 'q(↵) >

0 for any ↵ 2 (0, ↵̄)} 6= ; and ↵̄q is well-defined. Consider also '̃q(↵) = 'q(↵) log
�1[(1 +

↵)/(1 � ↵)]. Then, we show in Appendix C that for any �̄ 2
�
e�2n'̃q(↵), 1

�
and � 2

(e�n'̃
2
q(↵)/(qA(1�qA))�2�1 log(n)

, 1),

P
 
✓n � exp

 
�'q(↵)n+ log

✓
1 + ↵

1� ↵

◆r
n log(1/�̄)

2

!!
 �̄ , (17)

P
 
✓n � exp

 
�'q(↵)n+ log

✓
1 + ↵

1� ↵

◆r
nqA(1� qA) log(1/�) +

n log(n)

2

!!
� � . (18)

The bounds (17), (18) show that the tail distribution associated with ✓n behaves as a log-normal one.
If ⇠ follows a zero-mean Gaussian distribution with unit variance, then an easy computation shows
that for any � > 0, P(e�⇠ � t) ⇠ (2⇡�2)�1/2 log�1(t) exp(�(2�2)�1t2) as t ! 1. Therefore, to
have P(e�⇠ � t�)  � for a small � > 0, the scalar t� has to be of order exp(�

p
log(1/�)).

We conclude the section with a complementary result of Corollary 1 that does not require A1-(ii):
Proposition 3. Assume A1-(iii), kA1� Āk 2 SG(C0A) for some C0A > 0. Then, for any ↵ 2 (0,↵1)
where ↵1 was defined in (3), 2  q  p, and n 2 N,

E1/q
h
k�(↵)

1:nkq
i
 k�(↵)

1:nkp,q  p
Qd

1/p(1� a↵+ q(p� 1)(b0Q)
2
↵
2)n/2 , (19)

where b
0
Q = 2

p
Q C0A.

The proof is similar to that of Proposition 2 and it can be found in Appendix C.

4 Finite-time High-probability Bounds for LSA

Relying on the results established in Section 3 and the decomposition (8), we derive high probability
bounds on u

>{✓n � ✓
?} for any n 2 N and u 2 Sd�1, where {✓n : n 2 N} is defined in (1).

We begin our study with the transient term ✓̃
(tr)
n defined in (8). Observe that

Proposition 4. Assume A1 and let p0 � 2. Then, for any n 2 N⇤, ↵ 2 (0,↵p0,1), where ↵p0,1 is
defined in (15), u 2 Sd�1 and � 2 (0, 1) it holds with probability at least 1� � that

|u>�(↵)
1:n(✓0 � ✓

?)|  p
Qd

1/p0(1� a↵/4)nk✓0 � ✓
?k��1/p0 ,

where a was defined in (3).

The proof of the above statement is given in Appendix D.1. Proposition 4 only provides a polynomial
high probability bound with respect to �. This is due to the fact that only polynomial moments of
k�(↵)

1:nk up to a maximal order are uniformly bounded in the number of iterations n.

We now turn to the fluctuation term ✓̃
(fl)
n defined in (8). Note that under A1, the sequence {"n : n 2 N}

defined in (7) is i.i.d.. From this observation and following [13], we consider the decomposition

✓̃
(fl)
n = ↵

nX

j=1

�(↵)
j+1:n"j = J

(↵,0)
n +H

(↵,0)
n , (20)

where {(J (↵,0)
n , H

(↵,0)
n ) : n 2 N} are defined by induction for n � 0 as:

J
(↵,0)
n+1 =

�
I� ↵Ā

�
J
(↵,0)
n + ↵"n+1 , J

(↵,0)
0 = 0 ,

H
(↵,0)
n+1 = (I� ↵An)H

(↵,0)
n � ↵(An+1 � Ā)J (↵,0)

n , H
(↵,0)
0 = 0 .

(21)
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The latter recurrence can be written as

J
(↵,0)
n = ↵

nX

j=1

G
(↵)
j+1:n"j , H

(↵,0)
n = �↵

nX

j=1

�(↵)
j+1:n(Aj � Ā)J (↵,0)

j�1 .

Note that J (↵,0)
n is a linear statistics of the random variables {"j : j 2 {1, . . . , n}} which are

centered and i.i.d. under A1. Next, we show that J (↵,0)
n is the leading term as the stepsize ↵ # 0.

Denote for any n 2 N⇤ and ↵ > 0, the covariance matrix of J (↵,0)
n as

⌃↵
n = Cov(J (↵,0)

n ) . (22)

We obtain the following statement which is proven in Appendix D.2:
Proposition 5. Assume A1. Then for any n 2 N⇤, ↵ 2 (0,↵1], where ↵1 is defined in (3), u 2 Sd�1
and � 2 (0, 1), it holds with probability at least 1� �,

��u>J (↵,0)
n

�� < D1

q
{u>⌃↵

nu} log(2/�) + ↵

p
1 + log(1/(a↵))D2 log

3/2(2/�) , (23)

where D1 = 60
p
3e4/3 and D2 is defined in (49).

We analyze further the covariance associated with J
(↵,0)
n and its dependence with respect to n and

↵. First, note that for any ↵ 2 (0,↵2,1], {⌃↵
n : n 2 N⇤} converges to ↵⌃↵ as n ! 1 where

⌃↵ = ↵
P1

k=0 G1:k⌃"G
>
1:k is the unique solution of the Ricatti equation

Ā⌃↵ +⌃↵
Ā
> � ↵Ā⌃↵

Ā
> = ⌃" , with ⌃" = E["1">1 ] . (24)

Notice that we focus on the cases where ⌃" is full-rank. Using Proposition 1, we obtain that for any
n � 0,

k⌃↵
n � ↵⌃↵k  ↵

2
X

k>n

kG1:kk2k⌃"k  ↵a
�1

Qk⌃"k(1� ↵a)n . (25)

We now give an expansion of ⌃↵ with respect to ↵. It is well-known that as ↵ # 0, ⌃↵ converges to
⌃, the unique solution of the Lyapunov equation (see [34, Lemma 9.1])

Ā⌃+⌃Ā
> = ⌃" . (26)

Our next result, whose proof is given in Appendix D.3, states the convergence of ⌃↵ to ⌃ is of the
order of the stepsize ↵.
Proposition 6. Assume that A1-(iii) holds. Then, for any ↵ 2 (0,↵1], where ↵1 is defined in (3),

k⌃↵ �⌃kQ  ↵a
�1kĀ⌃Ā

>kQ ,

where ⌃↵ and ⌃ are defined in (24) and (26) respectively and a is given in (3).

The last step in bounding ✓̃
(fl)
n is to consider H(↵,0)

n . We proceed similarly to (21) and consider
the decomposition H

(↵,0)
n = J

(↵,1)
n + H

(↵,1)
n , where {(J (↵,1)

n , H
(↵,1)
n ) : n 2 N} are defined by

induction for n � 0 as:

J
(↵,1)
n+1 = (I� ↵Ā)J (↵,1)

n � ↵(An+1 � Ā)J (↵,0)
n , J

(↵,1)
0 = 0 ,

H
(↵,1)
n+1 = (I� ↵An+1)H

(↵,1)
n � ↵(An+1 � Ā)J (↵,1)

n , H
(↵,1)
0 = 0 .

(27)

In our next results, whose proof is given in Appendix D.4, we bound each term of this decomposition
separately.
Proposition 7. Assume A1 and let p0 � 2. Then, for any n 2 N, ↵ 2 (0,↵p0,1), where ↵p0,1 is
defined in (15), u 2 Sd�1 and � 2 (0, 1/2), with probability at least 1� 2�, it holds

��u>J (↵,1)
n

�� < eD3↵ log2(1/�) ,
��u>H(↵,1)

n

�� < D4↵p
2
0�
�1/p0 , (28)

where D3 and D4 are given in (57) and (60), respectively.

Now we are ready to combine the previous bounds and to state the main result of this section.
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Theorem 1. Assume A1 and let p0 � 2. Then, for any n 2 N, ↵ 2 (0,↵p0,1), where ↵p0,1 is
defined in (15), u 2 Sd�1 and � 2 (0, 1/4), with probability at least 1� 4�, it holds

↵�1/2|u>(✓n � ✓?)| < D1

p
{u>⌃↵u} log(2/�) + ↵1/2q(1)(↵, �) + (1� a↵/4)n�(1)(↵, �) , (29)

where ⌃↵ is the unique solution of (24), D1 = 60
p
3e4/3, a is defined in (3),

q(1)(↵, �) =
�
eD3 log

2(1/�) +
p

1 + log(1/a↵)D2 log
3/2(2/�)

�
+ D4p

2
0�

�1/p0 ,

�(1)(↵, �) = D1

p
a�1Qk⌃"k log(2/�) +

p
Qd

1/p0k✓0 � ✓?k↵�1/2��1/p0 ,
(30)

where Q and ⌃" are defined in (3) and (24) respectively.

Proof. The proof follows from the decomposition

u
>(✓n � ✓

?) = u
>�(↵)

1:n(✓0 � ✓
?) + u

>
J
(↵,0)
n + u

>
J
(↵,1)
n + u

>
H

(↵,1)
n ,

where J
(↵,0)
n , J (↵,1)

n and H
(↵,1)
n are defined in (21)-(27), the union bound and Proposition 4, Propo-

sition 5, (25) and Proposition 7.

We now discuss the high probability bound (29). First, the term �(1)(↵, �), and in particular the
initial condition vanishes exponentially fast in the number of iterations n. In addition, q(1)(↵, �) and
�(1)(↵, �) are of order ��1/p0 as � ! 0 and therefore (29) provides polynomial high probability
bounds on LSA. However, this conclusion is expected as illustrated in Example 1. Finally, the
discussion of (29) with respect to ↵ is postponed to the next section.

Under A2 we can provide a better bound for H(↵,1)
n .

Proposition 8. Assume A1 and A2. Then, for any n 2 N, ↵ 2 (0,↵1 ^ ↵̃1), where ↵1 is defined
in (3), u 2 Sd�1 and � 2 (0, 1/2), with probability at least 1� 2�, it holds

��u>J (↵,1)
n

�� < eD3↵ log2(1/�) ,
��u>H(↵,1)

n

�� < eD5↵ log2(1/�) , (31)

where D3 and D5 are given in (57) and (61) respectively.

As a result, we can establish exponential high probability bounds with respect to �.

Theorem 2. Assume A 1 and A 2. Then, for any n 2 N, ↵ 2 (0,↵1 ^ ↵̃1), u 2 Sd�1 and
� 2 (0, 1/4), with probability at least 1� 4�, it holds

↵�1/2|u>(✓n � ✓?)| < D1

p
{u>⌃↵u} log(2/�) + ↵1/2q(2)(↵, �) + (1� ↵ã)n/2�(2)(↵, �) ,

where D1 = 60
p
3e4/3, ⌃↵ is solution of (24),

q(2)(↵, �) = e(D3 + D5) log
2(1/�) +

p
1 + log(1/ã↵)D2 log

3/2(2/�) ,

�(2)(↵, �) = D1

q
ã�1Q̃k⌃"k log(2/�) + 1/2

Q̃
k✓0 � ✓?k↵�1/2 ,

(32)

where ⌃" is defined in (24).

Proof. The proof follows the lines of Theorem 1 with Proposition 8 used instead of Proposition 7.

5 Optimality of the derived bounds with respect to ↵: analysis of (✓n)n2N as a
Markov chain

In this section, we study the sequence {✓n : n 2 N} defined in (1) as a Markov chain. This
perspective will allow us to show that the bounds that we derived in Theorem 1 are near-Berstein
high probability bounds with respect to the stepsize ↵. Denote by R↵ the Markov kernel associated
with {✓n : n 2 N}. First, we show that if ↵ is small enough then R↵ is geometrically ergodic
with respect to the Wasserstein distance of order 2 denoted by W2 and give a representation of its
stationary distribution as an infinite sum.
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Theorem 3. Assume A1. Then, for any ↵ 2 (0,↵2,1), where ↵2,1 is defined in (15), R↵ admits a
unique stationary distribution ⇡↵ 2 P2(Rd) and for any n 2 N,

W
2
2 (�✓R

n
↵,⇡↵)  Qd(1� a↵/2)n

Z

Rd

k✓̃ � ✓k2d⇡↵(✓̃) . (33)

Further, if {(Ak,bk) : k 2 N�} is any sequence of i.i.d. random variables with the same distribution
as (A1,b1), then the following limit exists almost surely and in L2 and has distribution ⇡↵:

✓
(↵)
1 = lim

n!�1
✓
(↵, )
n , ✓

(↵, )
n = ↵

1X

k=n

�k:0bk�1 , �k:0 =
0Y

i=k

(Id � ↵Ai) . (34)

The proof is postponed to Appendix F.1. Based on Theorem 1, we easily get concentration bounds
for the family of distributions {⇡↵ : ↵ 2 (0,↵2,1)} around ✓

?.
Theorem 4. Assume A1 and let p0 � 2. Then, for any ↵ 2 (0,↵p0,1), where ↵p0,1 is defined in
(15), u 2 Sd�1 and � 2 (0, 1/4), with probability at least 1� 4�, it holds

↵�1/2|u>(✓(↵)
1 � ✓?)| < D1

p
{u>⌃u} log(2/�) + ↵1/2[a�1/2kĀ⌃Ā>k1/2Q + q(1)(↵, �)] , (35)

where ⌃ is the unique solution of (26), D1 = 60
p
3e4/3, a is defined in (3), and q

(1)(↵, �) in (30).

Proof. The proof follows from Theorem 1, the Portmanteau theorem [22, Theorem 13.16], and the
fact that convergence in W2 implies weak convergence.

Our results is only polynomial in � and we cannot expect improving this dependency as illustrated
in Example 1 for fixed ↵. The leading term in (35) as ↵ # 0 is

p
D1{u>⌃u}. In our next result,

we establish a central limit theorem for the family (✓(↵)1 )↵2(0,↵2,1] where ⌃ plays the role of the
asymptotic covariance matrix. As a result, (35) is a Bernstein-type high probability bound with
respect to ↵ and therefore (35) is sharp. Define for any ↵ 2 (0,↵2,1],

✓̃
(↵)
1 = ↵

�1/2{✓(↵)1 � ✓
?} . (36)

Theorem 5. Assume A1. Then, the family {✓̃(↵)1 : ↵ 2 (0,↵2,1]} converges in law as ↵ # 0 to a
zero-mean Gaussian random variable with covariance matrix ⌃ defined by (26).

Note that this result was established in [30, Theorem 1] for general stochastic approximation schemes
but under stronger conditions on the sequence {"n : n 2 N⇤}. In particular, it is assumed that the
distribution of "1 admits a density with respect to the Lebesgue measure. We relax this condition and
provide a new proof for this result. In particular, our strategy to establish Theorem 5 is to consider
the decomposition (20) of {✓n : n 2 N} with ✓0 = 0, since in such case ✓n = ✓̃

(fl)
n for any n 2 N.

Define {J (↵, )
n : n 2 N�} by

J
(↵, )
n = ↵

1X

k=n

Gk:0"k�1 , Gk:0 =
0Y

i=k

(I� ↵Ā) . (37)

Note that for any n 2 N, ✓(↵, )
�n+1 has the same distribution as ✓(↵)n starting from ✓0 = 0 and J

(↵,0)
n

as J (↵, )
�n+1 . In contrast to J

(↵,0)
n , J (↵, )

�n+1 admits a limit in L2 and almost surely denoted by J
(↵, )
1 .

Then, we get for any u 2 Sd�1, ↵ 2 (0,↵2,1], bounded and Lipschitz function f : R ! R, with
Lipschitz constant smaller than 1, by the Lebesgue dominated convergence theorem

|E[f(u>✓̃(↵, )
1 )]� E[f(↵�1/2u>J (↵, )

1 )]|

= lim
n!+1

|E[f(↵�1/2u>[✓(↵, )
�n+1 � ✓

?])]� E[f(↵�1/2u>J (↵, )
�n+1 )]|

= lim
n!+1

|E[f(↵�1/2u>[✓(↵)n � ✓
?])]� E[f(↵�1/2u>J (↵,0)

n )]|  lim sup
n!+1

E[|↵�1/2u>H(↵,0)
n |] .

Using the decomposition H
(↵,0)
n = J

(↵,1)
n +H

(↵,1)
n , where {(J (↵,1)

n , H
(↵,1)
n ) : n 2 N} are defined

in (27) and plugging the bounds provided by Proposition 11 and Proposition 12 in Appendix D.4
shows that

lim sup
↵!0

|E[f(u>✓̃(↵, )
1 )]� E[f(↵�1/2u>J (↵, )

1 )]| = 0 .
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Therefore by the Cramer Wold device and the Portmanteau theorem [22, Theorem 13.16], Theorem 5
follows from the next result.
Proposition 9. Assume A1. Then, for any u 2 Sd�1, {↵�1/2u>J (↵, )

1 : ↵ 2 (0,↵2,1]} converges
in distribution to the zero-mean Gaussian distribution with variance u

>⌃u where ⌃ is given in (26).

The proof is postponed to Appendix F.2.

6 Conclusion

In this paper, we provided a novel non-asymptotic analysis of LSA algorithms with fixed stepsize. For
any � 2 (0, 1), we obtain bounds on the sequence {k✓n � ✓

?k : n 2 N} that holds with probability
at least 1 � �. The bounds are proven to be tight with respect to the stepsize, and we show that
such high probability bounds for LSA necessarily have polynomial dependency in �, leading to a
‘heavy-tail’ phenomena. Importantly, our results do not require the matrices An to be symmetric but
only Hurwitz, which enables one to apply them to various scenarios such as reinforcement learning.
Future work includes extending our high probability bounds to a larger panel of random noise, e.g.,
with heavy tailed distribution, Markovian dependency, as well as Polyak-Ruppert averaging and
nonlinear SA.
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