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Abstract

Given a labeled training set and a collection of unlabeled data, the goal of active learning
(AL) is to identify the best unlabeled points to label. In this comprehensive study, we
analyze the performance of a variety of AL algorithms on deep neural networks trained on 69
real-world tabular classification datasets from the OpenML-CC18 benchmark. We consider
different data regimes and the effect of self-supervised model pre-training. Surprisingly,
we find that the classical margin sampling technique matches or outperforms all others,
including current state-of-art, in a wide range of experimental settings. To researchers,
we hope to encourage rigorous benchmarking against margin, and to practitioners facing
tabular data labeling constraints that hyper-parameter-free margin may often be all they
need.
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1 Introduction

Active learning (AL), the problem of identifying examples to label, is an important problem
in machine learning since obtaining labels for data is oftentimes a costly manual process.
Being able to efficiently select which points to label can reduce the cost of model learning
tremendously. Margin sampling, also referred to as uncertainty sampling (Lewis et al., 1996;
MacKay, 1992), is a classical active learning technique that chooses the classifier’s most
uncertain examples to label. In the context of modern deep neural networks, the margin
method scores each example by the difference between the top two confidence (e.g. softmax)
scores of the model’s prediction. Since the margin sampling method is very simple, it seems
particularly appealing to try to modify and improve on it, or even develop more complex AL
methods to replace it. Indeed, many papers in the literature have proposed such methods
that, at least in the particular settings considered, consistently outperform margin. In this
paper, we put this intuition to the test by doing a head-to-head comparison of margin with
a number of recently proposed state-of-the-art active learning methods across a variety of
tabular datasets. We show that in the end, margin matches or outperforms all other methods
consistently in almost all situations. Thus, our results suggest that practitioners of active
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learning working with tabular datasets, similar to the ones we consider here, should keep
things simple and stick to the good old margin method.

In many previous AL studies, the improvements over margin are oftentimes only in
settings that are not representative of all practical use cases. One such scenario is the
large-batch case, where the number of examples to be labeled at once is large. It is often
argued that margin is not the optimal strategy in this situation because it exhausts the
labeling budget on a very narrow set of points close to decision boundary of the model and
introducing more diversity would have helped (Huo and Tang, 2014; Sener and Savarese,
2017; Cai et al., 2021). However, some studies find that the number of examples to be
labeled at once has to be very high before there is advantage over margin (Jiang and Gupta,
2021) and in practice a large batch of examples usually does not need to be labeled at once,
and it is to the learners’ advantage to use smaller batch sizes so that as datapoints get
labeled, such information can be incorporated to re-train the model and thus choose the
next examples in a more informed way. It is important to point out, however, that in some
cases, re-training the model is very costly (Citovsky et al., 2021). In that case, gathering a
larger batch could be beneficial. In this study, we focus on the practically more common
setting of AL that allows frequent retraining of the model.

In the real world live active learning setting, examples are sent to human labelers and
thus we don’t have the luxury of comparing multiple active learning methods or even tuning
the hyper-parameters of a single method, without incurring significantly higher labeling cost.
Our results on the OpenML-CC18 benchmark suggest that in almost all cases when training
with tabular data, it is safe for practitioners to commit to margin sampling (which comes
with the welcome property of not having additional hyper-parameters) and have the peace
of mind that other alternatives wouldn’t have performed better in a statistically significant
way.

2 Problem Statement

We begin with a brief overview of pool-based active learning. One has an initial sample of
S labeled training examples I0 = {(xi, yi)}Si=1 where xi ∈ RD and yi ∈ N. We also assume
a pool of unlabeled examples Z = {z ∈ RD} that can be selected for labeling, for a grand
total of Ntotal points. The goal is for rounds t = 1, 2, ..., T , to select B examples (active
learning batch size) in each round from Z to be labeled and added to the train set It−1 (and
removed from Z) to produce the new labeled set It .

2.1 SCARF

Recently, Bahri et al. (2021) proposed a technique for pre-training deep networks on tabular
datasets they term Scarf. They show that pre-training boosts test accuracy on the same
benchmark datasets we consider here even when the labels are noisy, and even when labeled
data is limited and semi-supervised methods are used. We investigate the effect of Scarf
pre-training on AL methods.
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2.2 Active Learning Baselines

Margin, Entropy, Least Confident. These three popular methods score candidates
using the uncertainty of a single model, p. It is assumed that at round t, p is trained on the
labeled set thus far to select the next batch of examples with highest uncertainty scores in
Z. We seek points with the smallest margin, largest entropy, or largest least confident (LC)
scores, defined as follows:

Margin(x) = p(y = y1(x)|x)− p(y = y2(x)|x), where

y1(x) = arg max
c

p(y = c|x),

y2(x) = arg max
c|c 6=y1(x)

p(y = c|x).

Entropy(x) = −
∑
c

p(y = c|x) log p(y = c|x).

LC(x) = 1−max
c
p(y = c|x).

Random-Margin. A 50-50 mix of random and margin; a common way to enhance
diversity. Half of the batch is chosen based on margin, and the other half of the examples
are randomly selected.

Min-Margin (Jiang and Gupta, 2021). An extension of margin that uses bootstrapped
models to increase the diversity of the chosen batch. K = 25 models are trained on bootstrap
samples drawn from the active set (where the bootstrap is done on a per-class basis with
the sample size the same as the original training dataset size), and the minimum margin
across the K models is used as the score.

Typical Clustering (TypiClust) (Hacohen et al., 2022). A method that uses self-
supervised embeddings to balance selection of “typical” or representative points with diverse
ones as follows. At round t, all Ntotal pre-trained embeddings are clustered into |It−1|+B
clusters using K-means and then the most typical examples from the B largest uncovered
clusters (i.e. clusters containing no points from Ii−1) are selected. Given that cosine
similarity is the distance used when learning Scarf embeddings, we use spherical K-means
and define the typicality score as:

Typicality(x) =

1

k

∑
xi∈k-NN(x)

1− CosSim(x, xi)

2

−1 .
k is chosen as min{Ntotal,max{20, |C(x)|}}, where |C(x)| is the size of the cluster containing
x.

Maximum Entropy (MaxEnt) and BALD. These Bayesian-based approaches use
M models drawn from a posterior. Oftentimes, Monte-Carlo dropout (MC-dropout) is used,
wherein a single model is trained with dropout and then M different dropout masks are
sampled and applied during inference (Gal et al., 2017). This can be seen as model inference
using different models with weights {wm}Mi=1. For maximum entropy, we score using the
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model’s entropy H:

H[y|x] = −
∑
c

αc(x) logαc(x), where

αc(x) =
1

M

M∑
m=1

p(y = c|x,wm).

BALD (Houlsby et al., 2011) estimates the mutual information (MI) between the datapoints
and the model weights, the idea being that points with large MI between the predicted
label and weights have a larger impact on the trained model’s performance. The measure,
denoted I, is approximated as:

I[y|x] = H[y|x]− 1

M

M∑
m=1

∑
c

−βc,m(x) log βc,m(x), where

βc,m(x) = p(y = c|x,wm).

We use M = 25 and a dropout rate of 0.5 as done in prior work (Beluch et al., 2018). For
consistency, dropout is not applied during pre-training, only fine-tuning.

BADGE (Ash et al., 2019). Batch Active learning by Diverse Gradient Embeddings
(BADGE) uses the loss gradient of the neural network’s final dense layer for each unlabeled
sample, where the loss is computed using the model’s most likely label for the sample. The
gradient embeddings are clustered using the K-means++ seeding algorithm (Arthur and
Vassilvitskii, 2006) and the centroids are the samples added to the labeled set. We use the
sklearn.cluster.kmeans plusplus function with the default settings.

CoreSet (Sener and Savarese, 2017). Selects points to optimally cover the samples in
embedding space. Specifically, at each acquisition round, it grows the active set one sample
at a time for B iterations. In each iteration, the candidate point xi that maximizes the
distance between itself and its closest neighbor xj in the current active set is added. We use
Euclidean distance on the activations of the penultimate layer (the layer immediately before
the classification head), as done in Citovsky et al. (2021).

Margin-Density (Nguyen and Smeulders, 2004). Scores candidates by the product of
their margin and their density estimates, so as to increase diversity. The density is computed
by first clustering the penultimate layer activations of the current model on all |Z| candidate
points via K-means. Then, the density score of candidate xi is computed as: |C(xi)|/|Z|,
where C(xi) is the cluster containing xi. We use min{20, |Z|} clusters.

Cluster-Margin (Citovsky et al., 2021). Designed as a way to increase diversity in the
extremely large batch size (100K-1M) setting where continuously model retraining can be
expensive, Cluster-Margin prescribes a two step procedure. First, after the model is trained
on the seed set, penultimate layer activations for all points are extracted and clustered using
agglomerative clustering. This clustering is done only once. During each acquisition round,
candidates with the m×B lowest margin scores (denoted M) along with their clusters CM

are retrieved. CM is sorted ascendingly by cluster size and cycled through in order, selecting
a single example at random from each cluster. After sampling from the final (i.e. largest)
cluster, points are repeatedly sampled from the smallest unsaturated cluster until a total of
B points have been acquired. We explore the same settings as they do: m = 1.25 as well as

4



Is margin all you need?

m = 10. We use Scikit-Learn’s (Pedregosa et al., 2011) agglomerative clustering API with
Euclidean distance, average linkage, and number of clusters set to bNtotal/mc.

Query-by-Committee (QBC) Beluch et al. (2018). Uses the disagreement among
models in an ensemble, or committee, of K models trained on the active set at each iteration.
Like Munjal et al. (2022), we use the variance ratio v which was shown to give superior
results. It is computed as v = 1 − fm/K, where fm is the number of predictions in the
modal class. We set K = 25. As noted in prior work, differences among the committee
members largely stem from differences in random initialization of the model than from
random mini-batch ordering. Thus, when evaluating with pre-training, we use randomly
initialized non-pre-trained members.

PowerMargin and PowerBALD. Like many other AL methods, both margin and
BALD were designed for the case when points are acquired one at a time (i.e. batch size 1).
Recently, Kirsch et al. (2021) proposed a simple and efficient technique for extending any
single sample acquisition method to the batch setting. Letting {si} represent the scores for
the candidate points Z, instead of selecting topk {si}, they propose selecting topk {si + εi}
(softmax variant) or topk {log(si) + εi} (power variant), where εi ∼ Gumbel(0, β−1). As
they recommend, we use the power variant with β = 1 for both BALD and margin with
1−Margin(·) used for the latter.

3 Experiments

3.1 Setup

Active Learning Setting. We consider batch-based AL in this work. Starting with a seed
set I0 of labeled points drawn from the training split, we select the best B points—according
to the examined AL method—from the remainder of training to be labeled and added to
our active set at each acquisition round. We do this iteratively for T rounds or until the
training dataset is exhausted, whichever happens first. In order to get a clear picture into
the performance of AL algorithms across active learning settings of practical interest, we
construct the following scenarios, fixing T = 20. Small: |I0| = 30, B = 10. Medium:
|I0| = 100, B = 50. Large: |I0| = 300, B = 200.

Datasets, Models Architecture, and Training. Our precise setup is detailed in the
Appendix. We highlight the important points here. We use the 69 tabular datasets from
Bahri et al. (2021) (which is from the public OpenML-CC18 classification benchmark1) using
the same pre-processing steps. Our model consists of a 5-layer ReLU backbone (with 256
units per layer) followed by a classification head (a single affine projection down to number
of classes). When the model is Scarf pre-trained, a pre-training head (a 2-layer ReLU
net with 256 units per layer) is attached to the output of the backbone and then discarded
during supervised fine-tuning.

1. https://docs.openml.org/benchmark/
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Figure 1: Medium scale win and box plots. The box plots shown are unfiltered (those
filtered by p-value are shown in the Appendix). We see with and without pre-
training, margin matches or outperforms alternatives on nearly all datasets for
which there was a statistically significant difference. For example, without pre-
training, it outperforms random all 41 of 41 times, CoreSet 41 of 41 times, and
BALD 37 of 37 times. The relative gain over random is about 1-3%. See §3.2 for
details on the statistical computation.
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Figure 2: Medium scale AL curves. Margin has strong, stable performance across rounds
for its best (top) and worst (bottom) datasets alike, with and without pre-training.
Average dataset is in the Appendix.

3.2 Evaluation Methods

Win matrix. Given M methods, we compute a “win” matrix W of size M ×M , where the
(i, j) entry is defined as:

Wi,j =

∑69
d=1w(i, j, d)∑69

d=1w(i, j, d) + l(i, j, d)
, where

w(i, j, d) = 1[method i beats j on dataset d], and

l(i, j, d) = 1[method i loses to j on dataset d].

“Beats” and “loses” are only defined when the means are not a statistical tie (using Welch’s
t-test with unequal variance and a p-value of 0.01). A win ratio of 0/1 means that out of
the 69 (pairwise) comparisons, only one was significant and it was a loss.

Box plots. The win matrix effectively conveys how often one method beats another but does
not capture the degree by which. To that end, for each method, we compute the relative
percent improvement over the random sampling baseline on each dataset. We then build
box-plots depicting the distribution of the relative improvement across datasets. We show
relative gains on all datasets as well as gains only on statistically significant datasets where
the means of the method and the reference are different with p-value 0.1 (we use a larger
p-value here than with the win ratio to capture more points).
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We show win ratio and box plots for the Area Under the Budget Curve (AUBC) metric,
where the x-axis is “number of batches acquired” and the y-axis is test accuracy. The
trapezoidal rule is used to calculate the area.

Probability of Improvement. Following the methodology of Agarwal et al. (2021), we estimate
the probability that a method will outperform margin when the dataset is unknown and
we use stratified bootstrapping to estimate confidence intervals of this statistic. See the
Appendix for details.

3.3 Results

Figure 1 shows results for our medium scale active learning setup. We find, firstly, that
all baselines except for CoreSet, Max-Entropy, BALD, and PowerBALD methods are able
to outperform the random sampling baseline on roughly half of all the datasets. Thus,
actively selecting which points to label does in fact help model performance in this regime.
Furthermore, with and without pre-training, margin slightly outperforms Least Confident and
Entropy (the other uncertainty baselines) along with QBC, Margin-Density and Min-Margin.
It significantly outperforms clustering-centric baselines TypiClust and Cluster-Margin, if the
latter uses an average cluster size of 10. When Cluster-Margin uses an average cluster size
of 1.25, performance is similar to margin. This makes sense, since in this case, the algorithm
first selects the roughly B lowest margin points, and each point will more or less have its own
cluster (except perhaps if two datapoints are near duplicates), so sampling from these clusters
will just return the same lowest margin points. From the box plots we see that margin
beats random by a relative 1-3% on average. Methods that tied or slightly underperformed
margin on the win plots have a comparable relative gain over random, whereas the gains
for others are near zero or negative (in the case of BALD). For each pre-training setting,
Figure 2 shows AL curves for the datasets margin performs best, average, and worst on,
compared to random (filtering using a p-value of 0.1). We clearly see margin near or at the
top of the pack in all cases and across all acquisition rounds. Results for the small and large
settings, along with a deeper analysis to understand the mechanisms at play, are deferred to
the Appendix due to space constraints.

4 Related Works

We review related works thoroughly in the Appendix, due to space constraints.

5 Conclusion

In this work, we question whether many active learning strategies, new and old alike, can
really outperform simple margin sampling when deep neural networks are trained on small
to medium-sized tabular datasets. We analyzed a diverse set of methods on 69 real-world
datasets with and without pre-training under different seed set and batch sizes, and we found
that no method was able to outperform margin sampling in any statistically remarkable
way. Margin has no hyper-parameters and is consistently strong across all settings explored.
We cannot recommend a single better method for practitioners faced with data labeling
constraints, especially in the case of tabular data, or baseline to be benchmarked against by
researchers in the field.
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6 Reproducibility

We strive to make our findings completely reproducible. The datasets we use are open-source
and all data processing steps and train/test split constructions are carefully detailed (see
Section 3). All aspects of our model architecture and training are also described elaborately,
as are all baseline methods – both the methods themselves and every hyper-parameter used.
The goal of this work is to provide a careful and statistically sound benchmark of active
learning methods across a large number of tabular datasets; to that end, we have presented
our results through visual devices like box plots, win matrices, line plots, and probability of
improvement plots, all of which include measures of certainty (e.g. p-values). Our goal with
this work is to make a very convincing point that margin matches or outperforms alternative
active learning techniques for tabular data and we believe we have included every detail
necessary for anyone to recreate our results.
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Appendix A.

A.1 Datasets

We pre-process our data as follows: if a feature column is always missing, we drop it.
Otherwise, if the feature is categorical, we fill in missing entries with the mode, or most
frequent, category computed over the full dataset. For numerical features, we impute it with
the mean. We represent categorical features by a one-hot encoding. We z-score normalize
(i.e. subtract the mean and divide by the standard deviation) all numerical features of every
dataset except three (OpenML dataset ids 4134, 28, and 1468), which are left unscaled.
For each OpenML dataset, we form 80%/20% train/test splits where a different split is
generated for each of the 20 trials and all methods use the same splits. Unsupervised Scarf
pre-training uses the features (and not the labels) of the entire train split – 70% for training
and the remaining 10% as a validation set for early stopping.

A.2 Model Architectures and Training

Our model consists of a backbone followed by a classification head (a single affine projection
down to number of classes). The backbone is a 5-layer ReLU deep net with 256 units
per layer. When the model is Scarf pre-trained, a pre-training head, a 2-layer ReLU net
with 256 units per layer, is attached to the output of the backbone. After pre-training the
backbone with the pre-training head, the head is discarded; both the backbone and the
classification head are updated during supervised fine-tuning. We use the recommended
settings for Scarf – 60% of the feature indices are corrupted and no temperature scaling
(i.e. τ = 1). We pre-train for a maximum of 1000 epochs, early stopping with patience 3 on
a static validation set built from 20 epochs of the validation data. We train all models with
the Adam optimizer using default learning rate 0.001 and a batch size of 128. For supervised
training, we minimize the cross-entropy loss for 30 epochs.

A.3 Implementation and Infrastructure.

Methods were implemented using the Keras API of Tensorflow 2.0. Experiments were run
on a cloud cluster of CPUs, and we used on the order of one million CPU core hours in total
for the experiments.

A.4 Related Work

There have been a number of works in the literature providing an empirical analysis of active
learning procedures in the context of tabular data. Schein and Ungar (2007) studies active
learning procedures for logistic regression and show that margin sampling performs most
favorably. Ramirez-Loaiza et al. (2017) show that with simple datasets and models, margin
sampling performs better compared to random and Query-by-Committee if accuracy is the
metric, while they found random performs best under the AUC metric. Pereira-Santos et al.
(2019) provides a investigation of the performance of active learning strategies with various
models including SVMs, random forests, and nearest neighbors. They find that using margin
with random forests was the strongest combination. Our study focuses on the accuracy
metric and also shows that margin is the strongest baseline, but is much more relevant to
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the modern deep learning setting and with a comparison to a much more expanded set of
baselines and datasets. Our focus on neural networks is timely as recent work (Bahri et al.,
2021) showed that neural networks often outperform traditional approaches for modeling
tabular data, like Gradient Boosted Decision Trees (Chen and Guestrin, 2016), particularly
when they are pre-trained in the way we explore here. To our knowledge we provide the
most comprehensive and practically relevant empirical study of active learning baselines
on neural networks thus far. There have also been empirical evaluations of active learning
procedures in the non-tabular case. Hu et al. (2021) showed that margin attained the best
average performance of the baselines tested on two image and three text classification tasks
across a variety of neural network architectures and labeling budgets. Munjal et al. (2022)
showed that on the image classification benchmarks CIFAR-10, CIFAR-100, and ImageNet,
under strong regularization, none of the numerous active learning baselines they tested had
a meaningful advantage over random sampling. We hypothesize that this may be due to
the initial network having too little information (i.e. no pre-training and small initial seed
set) for active learning to be effective and conclusions may be different otherwise. It is also
worth noting that many active learning studies in computer vision only present results on
a few benchmark datasets (Munjal et al., 2022; Sener and Savarese, 2017; Beluch et al.,
2018; Emam et al., 2021; Mottaghi and Yeung, 2019; Hu et al., 2018), and while they may
have promising results on such datasets, it’s unclear how they translate to a wider set of
computer vision datasets. We show that many of these ideas do not perform well when put
to the test on our extensive tabular dataset setting. Dor et al. (2020) evaluated various
active learning baselines for BERT and showed in most cases, margin provided the most
statistically significant advantage over passive learning. One useful direction for future work
is establishing an extensive empirical study for computer vision and NLP.

While our study is empirical, it is worth mentioning that despite being such a simple
and classical baseline, margin is difficult to analyze theoretically and there remains little
theoretical understanding of the method. Balcan et al. (2007) provides learning bounds
for a modification of margin where examples are labeled in batches where the batch sizes
depend on predetermined thresholds and assume that the data is drawn on the unit ball
and the set of classifiers are the linear separators on the ball that pass through the center
of the ball (i.e. no bias term). Wang and Singh (2016) provide a noise-adaptive extension
under this style of analysis. Recently, Raj and Bach (2022) proposed a general family of
margin-based active learning procedures for SGD-based learners that comes with theoretical
guarantees; however these algorithm require a predetermined sampling function and hence,
like the previous works, does not provide any guarantees for the classical margin procedure
with a fixed batch size. Without such theoretical understanding of popular active learning
procedures, having comprehensive and robust empirical studies become even more important
for our understanding of active learning.

A.5 Small and Omitted Medium Setting Results

Small and omitted Medium setting results are shown in Figures 3, 6, 9. Somewhat to our
surprise, the trends in the small setup are similar to those for the medium scale setup. A
priori it seemed that with a seed set size of merely 30, embeddings or uncertainties derived
from the current model would be untrustworthy and that random sampling would often be
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optimal. However, we find that even in this regime, margin and other uncertainty-based
baselines provide a boost. We see that as before, CoreSet, TypiClust, PowerBALD, and
Max-Entropy perform similar to random while BALD underperforms substantially. For
example, without pre-training, margin outperforms random all 39 of 40 times, CoreSet 36 of
36 times, and BALD 44 of 44 times. The relative gain over random is about 1-4%.

A.6 Large Setting Results

In this setting we use a larger seed set and a larger batch, to test whether starting with a more
accurate underlying model will benefit alternatives more than margin and whether margin’s
naive top-k batch acquisition approach would be overshadowed by the other baselines’
diversity-promoting ones. With the caveat that what sizes are considered small or large is
subjective and application specific, we observe no differences in high level trends in this
setting. Results are presented in Figures 7, 10, 8.

A.7 Deeper Analysis

Our analysis thus far has only looked at each method’s overall test accuracy. While it can
be challenging to pinpoint why one method outperforms another, we attempt to provide
some insight by comparing which examples each method chooses to acquire. Specifically, we
track which examples (i.e. the “example ids”) comprise the active set after each round. We
discard the seed set since it is shared across all methods and it dilutes the metrics. Like
the win plots, we do pairwise comparisons. Given some dataset, let E[i, r] be the example
ids in the active set for method i after round r (i.e. examples acquired at or before round
r) and let P [i, r] be the probability distribution over class labels for such examples. We
use the Jaccard similarity to measure the degree of overlap in acquired examples between
two methods and the Total Variation (TV) distance between the class label distributions of
these examples:

Jaccard(i, j, r) =
|E[i, r] ∩ E[j, r]|
|E[i, r] ∪ E[j, r]|

TV(i, j, r) = max
k
|P [i, r][k]− P [j, r][k]| .

Figure 4 depicts the pairwise comparisons on an example dataset and round for the medium
setting. Without pre-training, we see that the Jaccard similarity with random is about
0.06, so this serves as a “uncorrelated” baseline score that captures overlap caused only
because of the finite size of the training set. Scores above this indicate positive correlation in
how the methods choose to acquire samples. Interestingly, we see that (1) Least Confident,
PowerMargin, Entropy, Cluster Margin (1.25), QBC, Margin-Density, Min-Margin have
strong (around 0.23) overlap with margin, (2) Random-Margin, Max-Entropy, and BADGE
have moderate overlap, and (3) CoreSet, TypiClust, Cluster Margin (10), BALD, and
PowerBALD have little-to-no noteworthy overlap. This suggests that margin’s uncertainty-
based alternatives operate in a similar way (i.e. low margin samples may also be low
confidence and high entropy points), whereas clustering-based methods do not, especially as
fewer clusters are used.

Meanwhile, the TV distance plots indicate the following by way of comparison against
random (which should preserve the underlying class distribution). (1) CoreSet, TypiClust,
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PowerBALD are very close to random (around 0.02) (2) BADGE, BALD, Random-Margin
are moderately close to random (around 0.10) and (3) the remaining methods are far from
random. This indicates that (1) margin and other uncertainty methods do not preserve class
balance as they acquire samples, whereas clustering-based ones do, and (2) maintaining class
balance is not vital (and sometimes sub-optimal) for achieving good performance in active
learning.

A.8 Probability Improvement: An Alternative to Win Ratio Plots

Agarwal et al. (2021) suggests various statistically sound strategies for comparing the
performance of methods across tasks (or datasets) in the presence of stochastic factors. One
such strategy is probability of improvement, which we briefly review for completeness (see
the paper for more details).

Let X and Y be the scalar performance metric (higher is better) of algorithms X and Y ,
and Xm (Ym) be the performance of X (Y ) on dataset m. Suppose we observe N samples
of Xm and K samples of Ym. We use the Mann-Whitney U-statistic:

P (Xm > Ym) =
1

NK

N∑
i=1

K∑
j=1

S(xm,i, ym,j) where S(x, y) =


1, if y < x,
1
2 , if y = x,

0, if y > x.

P (X > Y ) =
1

M

M∑
i=1

P (Xm > Ym),

where xm,i represents the performance of X on trial i on dataset m. We perform stratified
bootstrap sampling (re-sampling 200 times from Xm,1:N and Ym,1:K for each dataset m)
and then show violin plots of the bootstrap sampling distribution of the U-statistic (i.e.
probability of improvement). If the upper CI is higher than a threshold of 0.75, then the
results are said to be statistically meaningful as per the Neyman-Pearson statistical testing
criterion.

In Figure 5 we plot the probability that a method beats margin on the AUBC metric.
We find that this probability is less than around 0.50 and the quantiles are well below 0.75
so we can say that when the dataset / task is unknown, no method outperforms margin in
any reasonably statistically meaningful way.
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Figure 5: Probability of Improvement charts for small (top) and medium (bottom) settings.
We see that the alternatives to margin do not beat margin in a statistically
meaningful way.
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A.9 Small Setting Results

Figure 6: Win and unfiltered box plots for the small setting.
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A.10 Large Setting Results

Figure 7: Win and unfiltered box plots for the large setting.
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Figure 3: AL curves: middle curves for medium setting (top), curves for small setting
(bottom three). Like the medium setting, margin has strong, stable performance
across rounds for its best, average, and worst datasets alike, with and without
pre-training.
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Figure 4: Pairwise comparisons of Jaccard similarities and TV distances for an example
dataset and round with and without pre-training under the medium setting. The
(i, j) entry compares methods i and j. Metrics are averaged over the number of
independent trials. The standard errors are low (TV: median = 0.006, max =
0.03; Jaccard: median = 0.002, max = 0.012).
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Figure 8: AL curves for the large setting.
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A.11 Filtered Box plots for Small and Medium Settings

Figure 9: Box plots for the small (top) and medium (middle) settings filtered using p-value
0.1.
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A.12 Filtered Box plots for Large Setting

Figure 10: Box plots for the large setting filtered using p-value 0.1.
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