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Abstract

Unsigned distance fields (UDFs) provide a versatile framework for representing1

a diverse array of 3D shapes, encompassing both watertight and non-watertight2

geometries. Traditional UDF learning methods typically require extensive training3

on large datasets of 3D shapes, which is costly and often necessitates hyperparame-4

ter adjustments for new datasets. This paper presents a novel neural framework,5

LoSF-UDF, for reconstructing surfaces from 3D point clouds by leveraging lo-6

cal shape functions to learn UDFs. We observe that 3D shapes manifest simple7

patterns within localized areas, prompting us to create a training dataset of point8

cloud patches characterized by mathematical functions that represent a continuum9

from smooth surfaces to sharp edges and corners. Our approach learns features10

within a specific radius around each query point and utilizes an attention mecha-11

nism to focus on the crucial features for UDF estimation. This method enables12

efficient and robust surface reconstruction from point clouds without the need for13

shape-specific training. Additionally, our method exhibits enhanced resilience14

to noise and outliers in point clouds compared to existing methods. We present15

comprehensive experiments and comparisons across various datasets, including16

synthetic and real-scanned point clouds, to validate our method’s efficacy.17

1 Introduction18

3D surface reconstruction from raw point clouds is a significant and long-standing problem in19

computer graphics and machine vision. Traditional techniques like Poisson Surface Reconstruction[1]20

create an implicit indicator function from oriented points and reconstruct the surface by extracting21

an appropriate isosurface. The advancement of artificial intelligence has led to the emergence22

of numerous neural network-based methods for 3D reconstruction. Among these, neural implicit23

representations have gained significant influence, which utilize signed distance fields (SDFs) [2–8]24

and occupancy fields [9–12] to implicitly depict 3D geometries. SDFs and occupancy fields extract25

isosurfaces by solving regression and classification problems, respectively. However, both techniques26

require internal and external definitions of the surfaces, limiting their capability to reconstructing only27

watertight geometries. Therefore, unsigned distance fields [13–20] have recently gained increasing28

attention due to their ability to reconstruct non-watertight surfaces and complex geometries with29

arbitrary topologies.30

Reconstructing 3D geometries from raw point clouds using UDFs presents significant challenges due31

to the non-differentiability near the surface. This characteristic complicates the development of loss32

functions and undermines the stability of neural network training. Various unsupervised approaches33

[17, 14, 19] have been developed to tailor loss functions that leverage the intrinsic characteristics34

of UDFs, ensuring that the reconstructed geometry aligns closely with the original point clouds.35

However, these methods suffer from slow convergence, necessitating an extensive network training36

time to reconstruct a single geometry. As a supervised method, GeoUDF [15] learns local geometric37
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priors through training on datasets such as ShapeNet [21], thus achieving efficient UDF estimation.38

Nonetheless, the generalizability of this approach is dependent on the training dataset, which also39

leads to relatively high computational costs.40

In this paper, we propose a lightweight and effective supervised learning framework, Losf-UDF, to41

address these challenges. Since learning UDFs does not require determining whether a query point is42

inside or outside the geometry, it is a local quantity independent of the global context. Inspired by the43

observation that 3D shapes manifest simple patterns within localized areas, we synthesize a training44

dataset comprising a set of point cloud patches by utilizing local shape functions. Subsequently, we45

can estimate the unsigned distance values by learning local geometric features through an attention-46

based network. Our approach distinguishes itself from existing methods by its novel training strategy.47

Specifically, it is uniquely trained on synthetic surfaces, yet it demonstrates remarkable capability48

in predicting UDFs for a wide range of common surface types. For smooth surfaces, we generate49

training patches (quadratic surfaces) by analyzing principal curvatures, meanwhile, we design simple50

shape functions to simulate sharp features. This strategy has three unique advantages. First, it51

systematically captures the local geometries of most common surfaces encountered during testing,52

effectively mitigating the dataset dependence risk that plagues current UDF learning methods. Second,53

for each training patch, the ground-truth UDF is readily available, streamlining the training process.54

Third, this approach substantially reduces the costs associated with preparing the training datasets.55

We evaluate our framework on various datasets and demonstrates its ability to robustly reconstruct56

high-quality surfaces, even for point clouds with noise and outliers. Notably, our method can serve as57

a lightweight initialization that can be integrated with existing unsupervised methods to enhance their58

performance. We summarize our main contributions as follows.59

• We present a simple yet effective data-driven approach that learns UDFs directly from a60

synthetic dataset consisting of point cloud patches, which is independent of the global shape.61

• Our method is computationally efficient and requires training only once on our synthetic62

dataset. Then it can be applied to reconstruct a wide range of surface types.63

• Our framework achieves superior performance in surface reconstruction from both synthetic64

point clouds and real scans, even in the presence of noise and outliers.65

2 Related Work66

Surface reconstruction. Reconstructing 3D surfaces from point clouds is a classic and important67

topic in computer graphics. The most widely used Poisson method [1, 22] fits surfaces by solving68

PDEs. These traditional methods involve adjusting the gradient of an indicator function to align with69

a solution derived from a (screened) Poisson equation. A crucial requirement of these methods is the70

input of oriented normals. The Iterative Screened Poisson Reconstruction method[23] introduced71

an iterative approach to refine the reconstruction process, improving the ability to generate surfaces72

from point clouds without direct computation of normals. The shape of points [24] introduced a73

differentiable point-to-mesh layer by employing a differentiable formulation of PSR [1] to generate74

watertight, topology-agnostic manifold surfaces.75

Neural surface representations. Recently, the domain of deep learning has spurred significant76

advances in the implicit neural representation of 3D shapes. Some of these works trained a classifier77

neural network to construct occupancy fields [9–12] for representing 3D geometries. Poco [12]78

achieves superior reconstruction performance by introducing convolution into occupancy fields.79

Ouasfi et al. [25] recently proposed a uncertainty measure method based on margin to learn occu-80

pancy fields from sparse point clouds. Compared to occupancy fields, SDFs [2–8] offer a more81

precise geometric representation by differentiating between interior and exterior spaces through the82

assignment of signs to distances. Some recent SOTA methods, such as DeepLS [3], using volumetric83

SDFs to locally learned continuous SDFs, have achieved higher compression, accuracy, and local84

shape refinement.85

Unsigned distance fields learning. Although Occupancy fields and SDFs have undergone signif-86

icant development recently, they are hard to reconstruct surfaces with boundaries or nonmanifold87

features. G-Shell[26] developed a differentiable shell-based representation for both watertight and88

non-watertight surfaces. However, UDFs provide a simpler and more natural way to represent89

general shapes [13–20]. Various methods have been proposed to reconstruct surfaces from point90

clouds by learning UDFs. CAP-UDF [17] suggested directing 3D query points towards the surface91
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Figure 1: Pipeline. First, we train a UDF prediction network UΘ on a synthetic dataset, which contains
a series of local point cloud patches that are independent of specific shapes. Given a global point
cloud P, we then extract a local patch P assigned to each query point q within a specified radius,
and obtain the corresponding UDF values UΘ̂(P,q). Finally, we extract the mesh corresponding to
the input point cloud by incorporating the DCUDF[32] framework.

with a consistency constraint to develop UDFs that are aware of consistency. LevelSetUDF [14]92

learned a smooth zero-level function within UDFs through level set projections. As a supervised93

approach, GeoUDF [15] estimates UDFs by learning local geometric priors from training on many94

3D shapes. DUDF [19] formulated the UDF learning as an Eikonal problem with distinct boundary95

conditions. UODF [20] proposed unsigned orthogonal distance fields that every point in this field96

can access to the closest surface points along three orthogonal directions. Instead of reconstructing97

from point clouds, many recent works [27–30] learn high-quality UDFs from multi-view images for98

reconstructing non-watertight surfaces. Furthermore, UiDFF [31] presents a 3D diffusion model for99

UDFs to generate textured 3D shapes with boundaries.100

3 Method101

Motivation. Distinct from SDFs, there is no need for UDFs to determine the sign to distinguish102

between the inside and outside of a shape. Consequently, the UDF values are solely related to the local103

geometric characteristics of 3D shapes. Furthermore, within a certain radius for a query point, local104

geometry can be approximated by general mathematical functions. Stemming from these insights, we105

propose a novel UDF learning framework that focuses on local geometries. We employ local shape106

functions to construct a series of point cloud patches as our training dataset, which includes common107

smooth and sharp geometric features. Fig. 1 illustrates the pipeline of our proposed UDF learning108

framework.109

3.1 Local shape functions110

Smooth patches. From the viewpoint of differential geometry [33], the local geometry at a specific111

point on a regular surface can be approximated by a quadratic surface. Specifically, consider a regular112

surface S : r = r(u, v) with a point p on it. At point p, it is possible to identify two principal113

direction unit vectors, e1 and e2, with the corresponding normal n = e1 × e2. A suitable parameter114

system (u, v) can be determined such that ru = e1 and rv = e2, thus obtaining the corresponding115

first and second fundamental forms as116

[I]p =

[
E F
F G

]
=

[
1 0
0 1

]
, [II]p =

[
L M
M N

]
=

[
κ1 0
0 κ2

]
, (1)

where κ1, κ2 are principal curvatures. Without loss of generality, we assume p corresponding to117

u = v = 0 and expand the Taylor form at this point as118

r(u, v) = r(0, 0) + ru(0, 0)u+ rv(0, 0)v +
1

2
[ruu(0, 0)u

2+

ruv(0, 0)uv + rvv(0, 0)v
2] + o(u2 + v2).

(2)

Decomposing ruu(0, 0), ruv(0, 0), and rvv(0, 0) along the tangential and normal directions, we can119

formulate Eq.(2) according to Eq.(1) as120

r(u, v) = r(0, 0) + (u+ o(
√
u2 + v2))e1 + (v + o(

√
u2 + v2))e2

+
1

2
(κ1u

2 + κ2v
2 + o(u2 + v2)))n

(3)

where o(u2 + v2) ≈ 0 is negligible in a small local region. Consequently, by adopting {p, e1, e2,n}121

as the orthogonal coordinate system, we can define the form of the local approximating surface as122

x = u, y = v, z =
1

2
(κ1u

2 + κ2v
2), (4)
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Figure 2: Local geometries. (a) For points on a geometry that are differentiable, the local shape at
these points can be approximated by quadratic surfaces. (b) For points that are non-differentiable, we
can also construct locally approximated surfaces using functions.

which exactly are quadratic surfaces z = 1
2 (κ1x

2 + κ2y
2). Furthermore, in relation to Gaussian123

curvatures κ1κ2, quadratic surfaces can be categorized into four types: ellipsoidal, hyperbolic,124

parabolic, and planar. As shown in Fig. 2, for differentiable points on a general geometry, the local125

shape features can always be described by one of these four types of quadratic surfaces.126

Sharp patches. For surfaces with sharp features, they are not differentiable at some points and cannot127

be approximated in the form of a quadratic surface. We categorize commonly seen sharp geometric128

features into four types, including creases, cusps, corners, and v-saddles, as illustrated in Fig. 2(b).129

We construct these four types of sharp features in a consistent form z = f(x, y) like smooth patches130

creases: z = 1− h · |kx− y|√
1 + k2

, cusps: z = 1− h ·
√
x2 + y2,

corners: z = 1− h ·max(|x|, |y|), v-saddles: z = 1− h · |x|+ |y| · ( |x|
x

· |y|
y
),

(5)

where h can adjust the sharpness of the shape, and k can control the direction of the crease. Fig 3131

illustrates various smooth and sharp patches with distinct parameters.132

Synthetic training dataset. We utilize the mathematical functions introduced above to synthesize a133

series of point cloud patches for training. As shown in Fig. 3, we first uniformly sample m points134

{(xi, yi)}mi=1 within a circle of radius r0 centered at (0, 0) in the xy-plane. Then, we substitute135

the coordinates into Eq.(4-5) to obtain the corresponding z-coordinate values, resulting in a patch136

P = {pm
i=1}, where pi = (xi, yi, z(xi, yi)). Subsequently, we randomly collect query points137

{qi}ni=1 distributed along the vertical ray intersecting the xy-plane at the origin, extending up to a138

distance of r0. For each query point qi, we determine its UDF value U(qi), which is either |q(z)
i | for139

smooth patches or 1−|q(z)
i | for sharp patches. Noting that for patches with excessively high curvature140

or sharpness, the minimum distance of the query points may not be the distance to (0, 0, z(0, 0)), we141

will exclude these patches from our training dataset. Overall, each sample in our synthetic dataset is142

specifically in the form of {q,P,U(q)}.143

Query points
Point cloud patch

Figure 3: Synthetic dataset for training. By manipulating functional parameters, we can readily create
various smooth and sharp surfaces, subsequently acquiring pairs of point cloud patches and query
points via sampling.
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3.2 UDF learning144

We perform supervised training on the synthesized dataset which is independent of specific shapes.145

The network learns the features of local geometries and utilizes an attention-based module to output146

the corresponding UDF values from the learned features. After training, given any 3D point clouds147

and a query point in space, we extract the local point cloud patch near the query, which has the same148

form as the data in the training dataset. Consequently, our network can predict the UDF value at that149

query point based on this local point cloud patch.150

3.2.1 Network architecture151

For a sample {q,P = {pi}mi=1,U(q)}, we first obtain a latent code fp ∈ Rlp related to the local152

point cloud patch P through a Point-Net [34] Fp. To derive features related to distance, we use153

relative vectors from the patch points to the query point, V = {pi − q}mi=1, as input to a Vectors-154

Net Fv, which is similar to the Point-Net Fp. This process results in an additional latent code155

fv ∈ Rlv . Subsequently, we apply a cross-attention module [35] to obtain the feature codes for the156

local geometry,157

fG = CrossAttn(fp, fv) ∈ RlG , (6)

where we take fp as the Key-Value (KV) pair and fv as the Query (Q). In our experiments, we set158

lp = lv = 64, and lG = 128. Based on the learned geometric features, we aim to fit the UDF values159

from the distance within the local point cloud. Therefore, we concatenate the distances d ∈ Rm160

induced from V with the latent code fG, followed by a series of fully connected layers to output the161

predicted UDF values UΘ(q). Fig. 4 illustrates the overall network architecture and data flow.162
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Figure 4: Network architecture of LoSF-UDF.

Denoising module. In our network, even if point cloud patches are subjected to a certain degree of163

noise or outliers, their representations in the feature space should remain similar. However, distances164

induced directly from noisy vectors V will inevitably contain errors, which can affect the accurate165

prediction of UDF values. To mitigate this impact, we introduce a denoising module that predicts166

displacements ∆d from local point cloud patches, as shown in Fig. 4. We then add the displacements167

∆d to the distances d to improve the accuracy of the UDF estimation.168

3.2.2 Training and evaluation169

Data augmentation. During the training process, we scale all pairs of local patches P and query170

points q to conform to the bounding box constraints of [−0.5, 0.5], and the corresponding GT UDF171

values U(q) are scaled by equivalent magnitudes. Given the uncertain orientation of local patches172

extracted from a specified global point cloud, we have applied data augmentation via random rotations173

to the training dataset. Furthermore, to enhance generalization to open surfaces with boundaries, we174

randomly truncate 20% of the smooth patches to simulate boundary cases. To address the issue of175

noise handling, we introduce Gaussian noise N (0, 0.1) to 30% of the data in each batch during every176

training epoch.177

Loss functions. We employ L1 loss Lu to measure the discrepancy between the predicted UDF178

values and the GT UDF values. Moreover, for the displacements ∆d output by the denoising module,179
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we employ L1 regularization to encourage sparsity. Consequently, we train the network driven by the180

following loss function,181

L = Lu + λdLr, where Lu = |U(q)− UΘ(q)|, Lr = |∆d|, (7)

where we set λd = 0.01 in our experiments.182

Evaluation. Given a 3D point cloud P for reconstruction, we first normalize it to fit within a bounding183

box with dimensions ranging from [−0.5, 0.5]. Subsequently, within the bounding box space, we184

uniformly sample grid points at a specified resolution to serve as query points. Finally, we extract the185

local geometry Pp for each query point by collecting points from the point cloud that lie within a186

sphere of a specified radius centered on the query point. We can obtain the predicted UDF values187

by the trained network UΘ∗(q,Pq), where Θ∗ represents the optimized network parameters. Note188

that for patches Pp with fewer than 5 points, we set the UDF values as a large constant. Finally, we189

extract meshes from the UDFs using the DCUDF model [32].190

4 Experiments191

4.1 Experiment setup192

Datasets. To compare our method with other state-of-the-art UDF learning approaches, we tested it on193

various datasets that include general artificial objects from the field of computer graphic. Following194

previous works [30, 17, 14], we select the "Car" category from ShapeNet[21], which has a rich195

collection of multi-layered and non-closed shapes. Furthermore, we select the real-world dataset196

DeepFashion3D[36] for open surfaces, and ScanNet[37] for large outdoor scenes. To assess our197

model’s performance on actual noisy inputs, we conducted tests on real range scan dataset [38]198

following the previous works[17, 14].199

Baselines. For our validation datasets, we compared our method against the state-of-the-art UDF200

learning models, which include unsupervised methods like CAP-UDF[17], LevelSetUDF[14], and201

DUDF[19], as well as the supervised learning method, GeoUDF[15]. We trained GeoUDF inde-202

pendently on different datasets to achieve optimal performance. Table. 1 shows the qualitative203

comparison between our methods and baselines. To evaluate performance, we calculate the Chamfer204

Distance (CD) and F1-Score (setting thresholds of 0.005 and 0.01) metrics between the ground truth205

meshes and the meshes extracted from the UDFs out by our model and each baseline model. For a fair206

comparison, we test all baseline models using the DCUDF[32] method. All experimental procedures207

are executed on NVIDIA RTX 4090 and A100 GPUs.208

Methods Input Normal Learning Type Feature Type Noise Outlier

CAP-UDF [17] Dense Not required Unsupervised Global ✗ ✗
LevelSetUDF [14] Dense Not required Unsupervised Global ✓ ✗
GeoUDF [15] Sparse Not required Supervised Local ✗ ✗
DUDF [19] Dense Required Unsupervised Global ✗ ✗

Ours Dense Not required Supervised Local ✓ ✓

Table 1: Qualitative comparison of different UDF learning methods. “Normal” indicates whether
the method requires point cloud normals during learning. “Feature Type”’ refers to whether the
information required during training is global or local. “Noise” and “Outlier” indicate whether the
method can handle the presence of noise and outliers in point clouds.

4.2 Experimental results209

Synthetic data. For general 3D graphic models, ShapeNetCars, and Deep-210

Fashion3D, we obtain dense point clouds by randomly samping on meshes.211

Considering that GeoUDF [15] is a supervised method, we212

retrain it on ShapeNetCars, and DeepFashion3D, which213

are randomly partitioned into training (70%), testing214

(20%), and validation subsets (10%). All models are eval-215

uated in the validation sets, which remain unseen by any216

of the UDF learning models prior to evaluation. The first217

three rows of Fig. 5 show the visual comparison of recon-218

struction results, while Tab. 2 presents the quantitative comparison results of CD and F1-score. We219
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test each method using their own mesh extraction technique, as shown in the inset figure, which220

display obvious visual artifacts such as small holes and non-smoothness. We thus apply DCUDF [32]221

, the state-of-art method, to each baseline model , extracting the surfaces as significantly higher222

quality meshes. Since our method utilizes DCUDF for surface extraction, we adopt it as the default223

technique to ensure consistency and fairness in comparisons with the baselines. Our method achieves224

stable results in reconstructing various types of surfaces, including both open and closed surfaces,225

and exhibits performance comparable to that of the SOTA methods. Noting that DUDF[19] requires226

normals during training, and GeoUDF utilizes the KNN approach to determine the nearest neighbors227

of the query points. Although DUDF and GeoUDF achieve better evaluations, they are less stable228

when dealing with point clouds with noise and outliers.229

Clean Noise Outlier

CD ↓ F1 ↑ CD ↓ F1 ↑ CD ↓ F1 ↑
method F10.005 F10.01 F10.005 F10.01 F10.005 F10.01

Sh
ap

eN
et

C
ar

s
[2

1] CAP-UDF [17] 2.432 0.523 0.888 2.602 0.194 0.381 4.982 0.183 0.314
LevelSetUDF [14] 1.534 0.561 0.908 2.490 0.209 0.401 4.177 0.199 0.363
GeoUDF [15] 1.257 0.571 0.889 1.232 0.351 0.873 4.870 0.187 0.346
DUDF [19] 0.568 0.903 0.991 3.180 0.312 0.527 4.235 0.168 0.308
Ours 1.085 0.510 0.938 1.114 0.427 0.922 1.272 0.485 0.771

D
ee

pF
as

hi
on

3D
[3

6] CAP-UDF [17] 1.660 0.417 0.818 1.892 0.336 0.542 4.941 0.172 0.430
LevelSetUDF [14] 1.500 0.403 0.856 1.488 0.453 0.729 4.328 0.203 0.468
GeoUDF [15] 0.652 0.864 0.977 1.258 0.380 0.957 4.463 0.147 0.300
DUDF [19] 0.381 0.991 0.998 1.894 0.334 0.535 4.970 0.144 0.272
Ours 0.932 0.652 0.983 1.150 0.361 0.976 1.029 0.549 0.973

Table 2: Quantitative evaluation of UDF learning methods (CD score is multiplied by 100).

Noise & outliers. To evaluate our model with noisy inputs, we added Gaussian noise N (0, 0.0025) to230

the clean data across all datasets for testing. The middle three rows in Fig. 5 display the reconstructed231

surface results from noisy point clouds, and Tab. 2 also presents the quantitative comparisons. It232

can be observed that our method can robustly reconstruct smooth surfaces from noisy point clouds.233

Additionally, we tested our method’s performance with outliers by converting 10% of the clean point234

cloud into outliers, as shown in the last three rows of Fig. 5. To further demonstrate the robustness235

of our method, we conducted experiments on point clouds with higher percentage of outliers. Our236

framework is able of reconstructing reasonable surfaces even with 50% outliers. We also tested the237

task on point clouds containing both noise and outliers. Please refer to Fig. 9 in the Appendix for the238

corresponding results.239

Real-world scanned data. Dataset [38] provide several real-world scanned point clouds, as illustrated240

in Fig. 6 (Left), we evaluate our model on the dataset to demonstrate the effectiveness. Our approach241

can reconstruct smooth surfaces from scanned data containing noise and outliers. However, our242

model cannot address the issue of missing parts. This limitation is due to the local geometric training243

strategy, which is independent of the global shape. Additionally, we conduct tests on large scanned244

scenes to evaluate our algorithm, as shown in Fig. 6 (Right).245

4.3 Analysis & ablation studies246

Efficiency. As a supervised UDF learning method, our approach has a247

significant improvement in training efficiency compared to GeoUDF [15].248

Method Storage (GB) Data-prep (min) Training (h)

GeoUDF 120 0.5 36

Ours 0.59 0.02 14.5

As shown in the insert table, we calculate the data storage249

space required by GeoUDF when using ShapeNet as a250

training dataset. This includes the GT UDF values and251

point cloud data needed during the training process. Our252

synthetic point cloud patches training dataset occupies under 1GB, which is merely 0.5% of the storage253

needed for GeoUDF. Our network is very lightweight, with only 653KB of trainable parameters and a254

total parameter size of just 2MB. Additionally, we highlight time-saving benefits. The provided table255

illustrates the duration required to produce a single data sample for dataset preparation (“Data-prep”),256

as well as the total time for training (“Training”).257

Patch radius. During the evaluation phase, the radius r used to find the nearest points for each258

query point determines the size of the extracted patch and the range of effective query points in the259

space. As shown in Fig. 7, we analyzed the impact of different radii on the reconstruction results.260

An excessively small r will generate artifacts, while an overly large r will lose many details. In our261

experiments, we generally set r to 0.018.262
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(a) Input (b) CAP-UDF (c) LevelSetUDF (d) GeoUDF (e) DUDF (f) Ours (g) GT

Figure 5: Visual comparisons on the synthetic dataset. First three rows: uniformly sampled points.
Meddle three rows: point clouds with 0.25% added noise. Last three rows: point clouds with 10%
outliers. All point clouds here have 48K points, except for the Bunny model, which has 100K points.
We refer readers to the appendix for more visual results.
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Missing

Figure 6: Reconstructed surfaces from real-world scanned point clouds.

GT r = 0.08 r = 0.10 r = 0.20 r = 0.30
Figure 7: Comparison of different radii for extracting patches from the point cloud on reconstruction
results.

Denoising module. Our framework incorporates a denoising module to handle noisy point clouds.263

We conducted ablation experiments to verify the significance of this module. Specifically, we set264

λd = 0 in the loss function Eq. (7) to disable the denoising module, and then retrained the network.265

As illustrated in Fig. 8, we present the reconstructed surfaces for the same set of noisy point clouds266

with and without the denosing module, respectively.267

Noise

W/O W/OW/ W/

Outliers

Figure 8: Ablation on denoising module: Reconstructed surfaces from the same point clouds with
noise/outliers corresponding to framework with and without the denoising module, respectively.

5 Conclusion268

In this paper, we introduce a novel and efficient neural framework for surface reconstruction from 3D269

point clouds by learning UDFs from local shape functions. Our key insight is that 3D shapes exhibit270

simple patterns within localized regions, which can be exploited to create a training dataset of point271

cloud patches represented by mathematical functions. As a result, our method enables efficient and272

robust surfaces reconstructions without the need for shape-specific training. Extensive experiments273

on various datasets have demonstrated the efficacy of our method. Moreover, our framework achieves274

superior performance on point clouds with noise and outliers.275

Limitations & future work. Owing to its dependence solely on local geometric features, our276

approach fails to address tasks involving incomplete point cloud reconstructions. However, as a277

lightweight framework, our model can readily be integrated into other unsupervised methods to278

combine the global features with our learned local priors. Furthermore, in our future work, we279

intend to design a method that dynamically adjusts the radius based on local feature sizes [39] of 3D280

shapes when extracting local point cloud patches for queries, aiming to improve the accuracy of the281

reconstruction.282
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the model (e.g., with an open-source dataset or instructions for how to construct492

the dataset).493

(d) We recognize that reproducibility may be tricky in some cases, in which case494

authors are welcome to describe the particular way they provide for reproducibility.495
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Question: Does the paper provide open access to the data and code, with sufficient instruc-500

tions to faithfully reproduce the main experimental results, as described in supplemental501

material?502

Answer: [No]503

Justification: We will definitely make our code publicly available one day, but not at this504
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versions (if applicable).523

• Providing as much information as possible in supplemental material (appended to the524
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6. Experimental Setting/Details526

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-527

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the528

results?529

Answer: [Yes]530

Justification: We introduce all the training and test details in the main text and appendix.531
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• The answer NA means that the paper does not include experiments.533

• The experimental setting should be presented in the core of the paper to a level of detail534

that is necessary to appreciate the results and make sense of them.535
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material.537

7. Experiment Statistical Significance538

Question: Does the paper report error bars suitably and correctly defined or other appropriate539

information about the statistical significance of the experiments?540

Answer: [Yes]541

Justification: We provide various evaluation metrics about our method.542

Guidelines:543

• The answer NA means that the paper does not include experiments.544

• The authors should answer "Yes" if the results are accompanied by error bars, confi-545

dence intervals, or statistical significance tests, at least for the experiments that support546

the main claims of the paper.547
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• The method for calculating the error bars should be explained (closed form formula,551

call to a library function, bootstrap, etc.)552

• The assumptions made should be given (e.g., Normally distributed errors).553

• It should be clear whether the error bar is the standard deviation or the standard error554

of the mean.555

• It is OK to report 1-sigma error bars, but one should state it. The authors should556

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis557

of Normality of errors is not verified.558

• For asymmetric distributions, the authors should be careful not to show in tables or559

figures symmetric error bars that would yield results that are out of range (e.g. negative560

error rates).561

• If error bars are reported in tables or plots, The authors should explain in the text how562

they were calculated and reference the corresponding figures or tables in the text.563

8. Experiments Compute Resources564

Question: For each experiment, does the paper provide sufficient information on the com-565

puter resources (type of compute workers, memory, time of execution) needed to reproduce566

the experiments?567

Answer: [Yes]568

Justification: We provide the related information in the experimental section.569

Guidelines:570

• The answer NA means that the paper does not include experiments.571

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,572

or cloud provider, including relevant memory and storage.573

• The paper should provide the amount of compute required for each of the individual574

experimental runs as well as estimate the total compute.575

• The paper should disclose whether the full research project required more compute576

than the experiments reported in the paper (e.g., preliminary or failed experiments that577

didn’t make it into the paper).578

9. Code Of Ethics579

Question: Does the research conducted in the paper conform, in every respect, with the580

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?581

Answer: [Yes]582

Justification: We strictly adhere to the NeurIPS Code of Ethics.583

Guidelines:584

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.585

• If the authors answer No, they should explain the special circumstances that require a586

deviation from the Code of Ethics.587

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-588

eration due to laws or regulations in their jurisdiction).589

10. Broader Impacts590

Question: Does the paper discuss both potential positive societal impacts and negative591

societal impacts of the work performed?592

Answer: [Yes]593

Justification: Our method may be applied to 3D reconstruction in daily life, demonstrating594

significant social value.595

Guidelines:596

• The answer NA means that there is no societal impact of the work performed.597

• If the authors answer NA or No, they should explain why their work has no societal598

impact or why the paper does not address societal impact.599
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• Examples of negative societal impacts include potential malicious or unintended uses600

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations601

(e.g., deployment of technologies that could make decisions that unfairly impact specific602

groups), privacy considerations, and security considerations.603

• The conference expects that many papers will be foundational research and not tied604

to particular applications, let alone deployments. However, if there is a direct path to605

any negative applications, the authors should point it out. For example, it is legitimate606

to point out that an improvement in the quality of generative models could be used to607

generate deepfakes for disinformation. On the other hand, it is not needed to point out608

that a generic algorithm for optimizing neural networks could enable people to train609

models that generate Deepfakes faster.610

• The authors should consider possible harms that could arise when the technology is611

being used as intended and functioning correctly, harms that could arise when the612

technology is being used as intended but gives incorrect results, and harms following613

from (intentional or unintentional) misuse of the technology.614

• If there are negative societal impacts, the authors could also discuss possible mitigation615

strategies (e.g., gated release of models, providing defenses in addition to attacks,616

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from617

feedback over time, improving the efficiency and accessibility of ML).618

11. Safeguards619

Question: Does the paper describe safeguards that have been put in place for responsible620

release of data or models that have a high risk for misuse (e.g., pretrained language models,621

image generators, or scraped datasets)?622

Answer: [NA]623

Justification: Our paper poses no such risks.624

Guidelines:625

• The answer NA means that the paper poses no such risks.626

• Released models that have a high risk for misuse or dual-use should be released with627

necessary safeguards to allow for controlled use of the model, for example by requiring628

that users adhere to usage guidelines or restrictions to access the model or implementing629

safety filters.630

• Datasets that have been scraped from the Internet could pose safety risks. The authors631

should describe how they avoided releasing unsafe images.632

• We recognize that providing effective safeguards is challenging, and many papers do633

not require this, but we encourage authors to take this into account and make a best634

faith effort.635

12. Licenses for existing assets636

Question: Are the creators or original owners of assets (e.g., code, data, models), used in637

the paper, properly credited and are the license and terms of use explicitly mentioned and638

properly respected?639

Answer: [Yes]640

Justification: The original owners of all code, data, and models in our paper are properly641

credited.642

Guidelines:643

• The answer NA means that the paper does not use existing assets.644

• The authors should cite the original paper that produced the code package or dataset.645

• The authors should state which version of the asset is used and, if possible, include a646

URL.647

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.648

• For scraped data from a particular source (e.g., website), the copyright and terms of649

service of that source should be provided.650
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• If assets are released, the license, copyright information, and terms of use in the651

package should be provided. For popular datasets, paperswithcode.com/datasets652

has curated licenses for some datasets. Their licensing guide can help determine the653

license of a dataset.654

• For existing datasets that are re-packaged, both the original license and the license of655

the derived asset (if it has changed) should be provided.656

• If this information is not available online, the authors are encouraged to reach out to657

the asset’s creators.658

13. New Assets659

Question: Are new assets introduced in the paper well documented and is the documentation660

provided alongside the assets?661

Answer: [NA]662

Justification: There is no new assets attached to our paper. We will make our code and data663

public once paper is accepted.664

Guidelines:665

• The answer NA means that the paper does not release new assets.666

• Researchers should communicate the details of the dataset/code/model as part of their667

submissions via structured templates. This includes details about training, license,668

limitations, etc.669

• The paper should discuss whether and how consent was obtained from people whose670

asset is used.671

• At submission time, remember to anonymize your assets (if applicable). You can either672

create an anonymized URL or include an anonymized zip file.673

14. Crowdsourcing and Research with Human Subjects674

Question: For crowdsourcing experiments and research with human subjects, does the paper675

include the full text of instructions given to participants and screenshots, if applicable, as676

well as details about compensation (if any)?677

Answer: [NA]678

Justification: Our paper does not involve crowdsourcing nor research with human subjects.679

Guidelines:680

• The answer NA means that the paper does not involve crowdsourcing nor research with681

human subjects.682

• Including this information in the supplemental material is fine, but if the main contribu-683

tion of the paper involves human subjects, then as much detail as possible should be684

included in the main paper.685

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,686

or other labor should be paid at least the minimum wage in the country of the data687

collector.688

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human689

Subjects690

Question: Does the paper describe potential risks incurred by study participants, whether691

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)692

approvals (or an equivalent approval/review based on the requirements of your country or693

institution) were obtained?694

Answer: [NA]695

Justification: Our paper does not involve crowdsourcing nor research with human subjects.696

Guidelines:697

• The answer NA means that the paper does not involve crowdsourcing nor research with698

human subjects.699

• Depending on the country in which research is conducted, IRB approval (or equivalent)700

may be required for any human subjects research. If you obtained IRB approval, you701

should clearly state this in the paper.702
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• We recognize that the procedures for this may vary significantly between institutions703

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the704

guidelines for their institution.705

• For initial submissions, do not include any information that would break anonymity (if706

applicable), such as the institution conducting the review.707
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A Appendix708

A.1 Network details709

The two PointNets used in our network to extract features from point cloud patches P and vectors V710

consist of four ResNet blocks. In addition, the two fully connected layer modules in our framework711

consist of three layers each. To ensure non-negativity of the UDF values output by the network, we712

employ the softplus activation function.713

A.2 Robustness to outliers714

Our method can reconstruct relatively accurate geometry from point clouds with 10% added outliers715

and reasonably smooth surfaces from point clouds with even higher outlier ratios. Furthermore, our716

approach can reconstruct high-quality geometry from point clouds containing both noise and outliers,717

as shown in Fig. 9.718

Figure 9: Our model demonstrates robustness to more outliers.

A.3 More results719

As shown in Fig. 10 and Fig. 11, we provide more visual comparisons on the DeepFashion3D and720

ShapeNetCars dataset, using point clouds containing noise and outliers.721
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(a) Input (b) CAP-UDF (c) LevelSetUDF (d) GeoUDF (e) DUDF (f) Ours (g) GT

Figure 10: More visual results on the DeepFashion3D dataset. Top three rows: Reconstruction results
under noise-free conditions. Bottom three rows: Reconstruction results under noise condition.
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(a) Input (b) CAP-UDF (c) LevelSetUDF (d) GeoUDF (e) DUDF (f) Ours (g) GT

Figure 11: More visual results on the synthetic datasets with outliers.

22


	Introduction
	Related Work
	Method
	Local shape functions
	UDF learning
	Network architecture
	Training and evaluation


	Experiments
	Experiment setup
	Experimental results
	Analysis & ablation studies

	Conclusion
	Appendix
	Network details
	Robustness to outliers
	More results


