
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROJECTIVE SYMBOLIC REGRESSION:
SOLVING HIGH-DIMENSIONAL PDES BY LEARNING
FROM LOW-DIMENSIONAL PROJECTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic regression (SR) provides a powerful means for uncovering the underly-
ing mathematical structure of physical systems, such as those governed by partial
differential equations (PDEs). However, applying SR directly to high-dimensional
PDEs remains intractable due to the curse of dimensionality. To address this, we
propose Projective Symbolic Regression (PSR), a novel framework that solves
high-dimensional PDEs by learning from low-dimensional projections. PSR first
generates multiple projections of the PDE solution data by fixing subsets of input
variables. Symbolic regression is then applied to each projection to extract compact,
localized functional components. These components are subsequently composed
into a unified global expression through a higher-level symbolic program. Critically,
the final composition is constrained by minimizing the PDE residual error, ensur-
ing physical validity. Empirical results demonstrate that PSR not only improves
predictive accuracy over conventional methods but also yields interpretable models
that reveal the compositional structure of the underlying physical dynamics.

1 INTRODUCTION

Partial Differential Equations (PDEs) are fundamental tools to describe a wide range of natural
phenomena and engineering problems, such as how heat transfers in a cooking pot (Hein et al., 2015)
or how pressure acts on the surface of an aircraft during flight (Karkoulias et al., 2023). Obtaining
analytical solutions to PDEs is of great significance for scientific understanding, as they offer explicit
insights into how the physical field governed by PDE varies over time and space. Such insights
provide a clear foundation for engineers and scientists to grasp the underlying physical principles and
make more informed and effective design decisions (Ganie et al., 2024).

Deriving analytical solutions for real-world PDEs poses significant challenges, as the inferring process
requires advanced mathematical expertise and sophisticated analytical techniques (Roach, 1982; Jena,
2025; Wong, 2022). More importantly, for a large class of PDEs, no analytical solution is known
to exist within the current theoretical frameworks. Therefore, finding more efficient approximate
methods (Temam, 2024; Gelbrecht et al., 2021) for solving PDEs continues to be a central goal in
scientific and engineering research.

While traditional numerical solvers (Dhatt et al., 2012; Bathe, 2007; Jagota et al., 2013) and deep
learning-based methods (Cuomo et al., 2022; Cai et al., 2021; Raissi et al., 2019) are widely applied
for solving PDEs, both paradigms share a fundamental limitation: they only provide approximate
numerical solutions, which restricts interpretability and limits the theoretical insights that can be
drawn from the results. Symbolic Regression (SR) emerges as a distinct paradigm to address this
gap. By reframing the solution process as a search for a symbolic expression satisfying the governing
constraints of PDE and observed dataset, SR can derive an explicit, human-readable approximate
solution in the form of a symbolic expression (Oh et al., 2024; Tsoulos & Lagaris, 2006). The
symbolic expression offers direct physical insight, bridging the interpretability gap inherent in
traditional numerical and deep learning-based methods.

Despite its interpretability and success in low-dimensional problems, SR still faces challenges when
applied to high-dimensional PDEs (Cao et al., 2024a). The core difficulty lies in the exponen-
tially expanding search space of symbolic expressions, which grows rapidly with the number of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

variables (Jiang & Xue, 2023; Udrescu et al., 2020). The existing works to mitigate this curse of
dimensionality can be categorized into two main directions. On one hand, some recent SR methods
proposed general decomposition strategies, such as divide-and-conquer or vertical discovery (Udrescu
et al., 2020; Jiang & Xue, 2023). However, these methods fail to utilize the intrinsic physical structure
inherent in PDEs, where variable dependencies are not arbitrary. The decomposition strategies for
solving PDEs still leave room for improvement. On the other hand, more specialized approaches
like HD-TLGP (Cao et al., 2024a) have shown success by using a known one-dimensional solution
to guide the search in higher dimensions. While effective in certain cases, a key limitation of this
approach is its reliance on a known low-dimensional PDE solution, which restricts its applicability
to real-world physical systems where such priors are often unavailable or difficult to obtain with
sufficient accuracy.

Therefore, in this work, we aim to reduce the difficulty of SR by proposing a new decomposition
strategy grounded in the foundational principle of physical fields described by PDEs, without relying
on low-dimensional prior solutions. The foundational principle supporting our approach is known as
sparsity-of-effects (Montgomery, 2017; Blatman & Sudret, 2009), which means that the behavior of
a complex physical system can often be decomposed into a combination of simpler effects that are
dominant in lower-dimensional spaces. (Box et al., 2005; Saltelli et al., 2008; Soboĺ, 1993; Szabo
& Ostlund, 1996) This principle has been extensively validated across a wide range of scientific
domains. In engineering, it forms the basis of classical experimental design, where system behavior is
assumed to be governed primarily by a limited number of main effects and low-order interactions (Box
et al., 2005). In mathematics, it is strictly formalized through global sensitivity analysis, where the
majority of output variance is typically attributed to first-order and second-order effects (Saltelli
et al., 2008; Soboĺ, 1993). In theoretical physics, it is implicitly employed in methods such as the
Hartree-Fock approximation (Lykos & Pratt, 1963), which constructs solutions by first capturing
dominant mean-field contributions and then incorporating higher-order corrections (Szabo & Ostlund,
1996).

Motivated by the above cross-disciplinary insight, we propose Projective Symbolic Regression (PSR),
a novel framework that puts the sparsity-of-effects principle into practice to address the curse of
dimensionality. PSR begins by projecting the dataset from observations or numerical simulations
corresponding to the high-dimensional PDE onto lower-dimensional subspaces. We simplify the
problem for each projection by treating all variables outside of that subspace as fixed parameters.
This allows us to apply a local symbolic regression that focuses only on the active variables. The
goal of this local search is to discover a functional component, a simpler mathematical expression
that captures how these active variables influence the PDE’s solution within that specific projection.
With the low-dimensional components identified, PSR performs a final global symbolic regression
to discover the optimal way to compose them into a high-dimensional expression. This search is
constrained by the governing PDE to ensure the resulting expression is a physically valid global
solution. The main contributions of our work can be summarized as follows:

• We propose Projective Symbolic Regression (PSR), a novel framework designed to mitigate
the curse of dimensionality in solving high-dimensional PDEs. PSR reframes the problem by
decomposing the high-dimensional search space into a series of lower-dimensional projections,
making the discovery of symbolic solutions more tractable.

• We design a hierarchical discovery process that operates in two stages. First, a local symbolic
regression is applied within each projection to identify low-dimensional functional components.
Second, a global symbolic regression discovers the optimal composition of these components, guided
by the governing PDE to ensure a physically valid solution.

•We demonstrate through experiments that the discovered symbolic solutions offer deep physical
insight by effectively revealing how the physical field governed by the PDE interacts across its various
dimensions.

2 PRELIMINARIES

This preliminary study is structured in three parts: defining the Partial Differential Equation problem,
outlining the current landscape of Symbolic Regression methods, and reviewing related work for
solving PDEs to establish the background for our approach.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 PARTIAL DIFFERENTIAL EQUATION

A partial differential equation (PDE) is a mathematical tool used to describe physical phenomena.
Let N be a partial differential operator. A PDE can be formally expressed as:

N (u(x)) = 0, x = (x1, ..., xd, t) (1)

where u is the unknown function to be solved and x is a vector of independent variables, often
including spatial coordinates and time. Real-world physical systems are typically modeled in up to
three spatial dimensions. Problems involving two or more spatial dimensions (d≥2) are commonly
considered high-dimensional. Solving a PDE refers to finding a mathematical expression for u(x)
that satisfies the equation, allowing us to understand and predict how the physical system behaves
over time and space.

2.2 SYMBOLIC REGRESSION

Several major approaches dominate the field of Symbolic Regression(SR). The most classical is
Genetic Programming (GP), an evolutionary algorithm that evolves a population of expression trees
that evolve tree-structured expressions through selection, crossover, and mutation (Zhang et al., 2022;
Zhong et al., 2025). However, GP suffers from inefficient exploration and poor scalability, due to its
reliance on random search and CPU-based execution. To address these limitations, neural network-
based approaches have been introduced. Deep symbolic regression (DSR) (Petersen et al., 2019)
leverages deep reinforcement learning to guide expression generation, enabling GPU acceleration
and improved search efficiency. Hybrid frameworks combining GP and DSR aim to leverage the
broad search ability of evolutionary algorithms and the targeted optimization strength of neural
methods (Landajuela et al., 2022). More recently, pre-trained transformer models (Valipour et al.,
2021; Kamienny et al., 2022) have been proposed to enable rapid inference by mapping numerical
data to symbolic expressions in a single forward pass. Despite their differences, all these methods
fundamentally struggle when the number of input variables becomes large, a problem known as the
curse of dimensionality.

Decomposition Strategies in Symbolic Regression. Some recent symbolic regression methods have
introduced decomposition strategies to mitigate the curse of dimensionality. Udrescu et al. (2020)
uses a recursive divide-and-conquer approach. It first checks for simple patterns like symmetry or
separability (such as f(x, y) = g(x) + h(y) or f(x, y) = g(x)h(y))). If such patterns are found, the
method splits the problem into smaller parts that can be solved independently. Jiang et al. follow a
vertical discovery strategy. They start with reduced equations that use only a few variables, and then
gradually add more variables one at a time (Jiang & Xue, 2023; 2024; Jiang et al., 2024). Although
general strategies offer broad applicability, they fall short in capturing the intrinsic structure of PDEs,
where variable dependencies are not arbitrary. This highlights the need for a decomposition strategy
customized to the physics of PDEs for improved performance.

2.3 RELATED WORK

Traditional numerical methods discretize a continuous problem domain into a finite mesh of points
or cells, obtaining approximate solutions that satisfy the PDE at each mesh point. The mesh structure
and resolution critically influence the accuracy, stability, and computational efficiency of the solution,
as well as the types of PDEs that can be effectively addressed (Braun & Sambridge, 1995; Rezzolla,
2011). Techniques such as the Finite Element Method (FEM) (Bonito et al., 2024; Liu et al., 2022;
Kudela & Matousek, 2022), Finite Difference Method (FDM) (Gedney, 2022; Meiliang et al., 2021;
Hoang, 2025), and Finite Volume Method (FVM) (Cardiff & Demirdžić, 2021; Muhammad, 2021)
have long served as the backbone of computational physics and engineering, offering robust and
well-established frameworks for simulating complex physical systems across diverse domains.

Deep learning-based methods can directly learn the solution trajectories of PDE from observed
data, often achieving orders-of-magnitude speedups compared to traditional numerical methods. Two
mainstream neural network paradigms have been widely adopted for solving PDE: the family of
PINN and Neural Operator.

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) represent the PDE solution using a
neural network whose loss functions explicitly incorporate the governing equations. By minimizing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

both the residuals of the PDE and the errors in initial/boundary conditions or observational data,
PINNs learn solutions that are physically consistent. The architecture of PINNs has evolved beyond
standard fully connected networks to generative adversarial networks (Yang & Perdikaris, 2019), and
recurrent neural networks Geneva & Zabaras (2020). Kharazmi et al. incorporated the variational
form of PDE to reduce residual errors Kharazmi et al. (2019; 2021). Jagtap et al. designed adaptive
activation functions to accelerate the minimization process of the loss values (Jagtap et al., 2020).

Neural Operators learns the mapping between function spaces, allowing for the rapid solution of
entire families of PDEs (Li et al., 2020b; Kovachki et al., 2023). DeepONet is the first neural operator
that combines two neural networks: a branch network that encodes input functions and a trunk
network that represents output coordinates (Lu et al., 2021a). Inspired by Green’s function method,
Li et al. (2020a) proposed Fourier neural operator (FNO), which parameterizes the convolution kernel
of the integral operator directly in Fourier space and achieves superior accuracy compared to previous
learning-based solvers. Cao et al. (2024b) proposed Laplace neural operator (LNO), which leverages
the Laplace transform to decompose the input space and demonstrates improved performance over
FNO.

Symbolic regression-based methods solve PDEs by discovering explicit mathematical expressions
that both fit the observation dataset and PDE constraints, thereby offering interpretability that is
often lacking in traditional numerical and deep learning-based methods. Oh et al. (2024) improved
genetic programming to recover true analytic solutions of differential equations. Cao et al. (2023)
built on the work of Oh et al. (2024) and added a pruning operator to avoid redundancy and increase
diversity. Wei et al. (2024) proposed a novel reinforcement learning (RL)-based method for deriving
closed-form symbolic solutions to differential equation. Cao et al. (2025) proposed NetGP, a hybrid
framework that integrates deep symbolic regression (DSR) with genetic programming (GP) to solve
PDE. However, these methods face significant challenges when applied to high-dimensional PDEs,
primarily due to the vast and complex search space. To mitigate this issue, Cao et al. (2024a)
proposed a transfer learning mechanism that transfers the structure of a one-dimensional analytical
solution to guide the search for a high-dimensional PDE solution. While effective in certain cases,
this approach is inherently limited, as most real-world physical systems governed by PDEs lack a
known single-dimensional PDE. Therefore, in this work, we focus on reducing the difficulty of SR
solely based on the available dataset and the form of high-dimensional PDE, without relying on
low-dimensional prior solutions.

3 PROPOSED METHOD

In this work, we propose an incremental builder called Projective Symbolic Regression (PSR)
to tackle the challenge of discovering a symbolic solution for a high-dimensional PDE, where
the spatial dimension d ≥ 2. The PSR is both data-driven and physics-informed. It leverages a
dataset D = (xi, ui), which describes the behavior of the physical field and may be sourced from
experimental measurements or numerical simulations. We design a decomposition strategy, grounded
in the sparsity-of-effects principle, that implements a divide-and-conquer process through projection
and hierarchical symbolic regression. The known partial differential operator N is then utilized
as a key component of the evaluation function, guiding this search towards a physically consistent
expression and making the entire framework physics-informed.

3.1 FRAMEWORK OVERVIEW

The framework of the proposed method (PSR) is illustrated in Figure 1. PSR first decomposes the
high-dimensional problem by generating multiple low-dimensional projected datasets based on a set
of predefined strategies (Stage 1). Based on these projected datasets, a Local Symbolic Regression
engine generates a set of symbolic expressions for each projection. These expressions form the local
components (Stage 2). Then, PSR treats these local components as high-level tokens and uses a
Global Symbolic Regression engine to combine these tokens into full expressions. These expressions
are substituted into the original PDE to evaluate how well they work, using a loss function that
captures both data fit and PDE consistency. The evaluation results are then used to guide the global
search towards a physically consistent solution (Stage 3). The whole process of PSR is shown in
Algorithm 1. We now describe each of these stages in detail.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: The hierarchical workflow of Projective Symbolic Regression (PSR). (Left) High-
dimensional data is decomposed into multiple low-dimensional projected datasets. (Center) A
Local Symbolic Regression engine operates on each projection, searching for the best-fitting expres-
sion (e.g., ûx) using a library of primitive tokens and a prefix representation. (Right) The resulting
local expressions are raised to become new tokens in a higher-level library for a Global Symbolic
Regression search. This final stage optimizes both the compositional structure (skeleton) and the
constants to discover the complete, high-dimensional symbolic solution.

Algorithm 1 Projective Symbolic Regression (PSR)
1: Input: N (PDE), D(Dataset), S(Projection strategies).
2: Output: û (Optimal symbolic expression solutions).
3: U ← ∅
4: for each strategy Sj in S do
5: Dj ← GenerateProjection(D,Sj)
6: uj ← LocalSymbolicRegression(Dj)
7: U ← U ∪ {uj}
8: end for
9: û← GlobalSymbolicRegression(D,U ,N)

10: return û

3.2 PROJECTION DATA GENERATION

This stage implements the “divide” part of our strategy, motivated by a widely observed property
of physical systems: their complex global behavior is often an aggregation of simpler, low-order
interactions. This empirical principle, known as the “sparsity-of-effects,” is supported by global
sensitivity analysis, which shows that most output variance is explained by main effects and second-
order terms. Inspired by this, we design a projection-based decomposition. By holding selected
variables defined by projection strategies as constant and slicing the data into lower-dimensional
subsets, we aim to isolate dominant low-order components. This allows us first to explore and
symbolically capture how the solution behaves within these simpler subspaces.

As shown in Algorithm 1, each Projection Strategy Sj determines how the data is partitioned. It
specifies which variables are to be fixed, thereby defining the active variables whose relationship
we aim to discover in the current subspace. For instance, in a spatio-temporal problem, a usual
strategy retains one spatial dimension and the temporal variable t active, while fixing all other spatial
dimensions.

To construct a projected dataset Dj under a given strategy Sj , we first identify the fixed vari-
ables xfixed and the active variables xactive. We then select the constant values cj for the fixed
variables. This is achieved by grouping the entire dataset D according to the unique values of
xfixed and choosing the most populated group. This ensures that symbolic regression is per-
formed on the most representative subset of the data. The resulting projected dataset is formed
as Dj = {(xactive, u(xactive, xfixed = cj))}.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 LOCAL COMPONENT DISCOVERY

Figure 2: Visual comparison of MSE and MSEDI for fitting a complex dataset. The true dataset
(black dots) exhibits a low-frequency trend with high-frequency oscillations. Case A (blue, dashed)
captures only the coarse trend. Case B (red, solid) accurately captures the full dynamics. Despite a
slightly higher MSE due to a minor offset, its near-zero MSEDI reflects a more physically faithful
solution.

While our framework is compatible with any symbolic regression (SR) algorithm, in this work
we employ a Neural-Guided Genetic Programming (NetGP) Cao et al. (2025). NetGP improves
traditional genetic programming by integrating deep reinforcement learning that predicts promising
symbolic operators and structures, thereby accelerating the evolutionary search and enhancing
convergence toward optimal solutions.

For each projected dataset Dj , NetGP searches for a low-dimensional function uj(xactive, xfixed =
cj)) that best fits the data. The fitness of each candidate expression is assessed using a composite loss
comprising two terms. We first employ the Mean Squared Error (MSE) to quantify the difference
between the predicted values and the true values (see Eq. 2). Since the full high-dimensional PDE
residual cannot be computed on a low-dimensional slice, we introduce the Mean Squared Error of
the first-order Difference (MSEDI), inspired by Fong et al. (2022). MSEDI evaluates the variance
between the discrete derivatives of the true data and those of the candidate expression (see Eq. 3).

Figure 3: The substitution process for evaluating a global candidate solution. The Global SR
engine discovers a compact expression using the local functions (ux, uy, uz) as high-level tokens. For
evaluation, this expression is unfolded by substituting each high-level token with its corresponding full
symbolic formula discovered in the local SR stage. This results in a complete, low-level expression
that can be directly evaluated against the original high-dimensional dataset and the PDE operator.

LMSE1 =
1

n

n∑
i=1

(ui − ûx,i)
2 (2)

LMSEDI =
1

n− 1

n−1∑
i=1

(∆ui −∆ûx,i)
2 (3)

As shown in Figure 2, incorporating MSEDI provides a crucial advantage: it makes the fitness
function sensitive to the dynamic patterns and local structure of the data, rather than solely to its

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

values. This aligns with the nature of PDEs, which impose constraints on derivatives. Thus, MSEDI
can help guide the search towards solutions that are not only numerically accurate on the slice but
also exhibit correct local behavior, thereby making them more appropriate for global composition.

As shown in Algorithm 1, this stage yields a set of functional components, denoted as U =
{u1, ..., uj , ...}, where each uj characterizes the behavior of an unknown function within a spe-
cific low-dimensional subspace.

3.4 GLOBAL EXPRESSION COMPOSITION

This stage implements the “conquer” part of our framework, where the previously identified local
components are integrated into a unified global solution. The set of local functions {uj}, together
with standard mathematical operators (e.g., +,×), defines a new high-level token library. A global
symbolic regression explores this new space to identify a compositional expression g that combines
these tokens, yielding the final solution u(x) = g(u1, .., uj , ...).

The evaluation of each candidate composition g is performed in the original high-dimensional space.
As illustrated in Figure 3, this involves a substitution process where each high-level token uj in g
is replaced by its full symbolic expression. This unfolds the compact high-level expression into a
complete candidate solution u(x). After this unfolding, any free constants within u(x) are optimized
to best fit the original dataset D.

The fitness of a candidate composition is evaluated using a composite loss function that integrates
physical constraints and data accuracy. The first term, LPDE, quantifies the residual of the original
PDE by applying the differential operator N to the symbolic expression u(x̂), as defined in Eq. 4.
This term ensures that the candidate respects the governing physical laws. The second term, LMSE2,
measures the mean squared error between the predicted and observed values, as shown in Eq. 5.
Together, these two components guide the search toward solutions that are both physically valid and
numerically precise.

LPDE = ∥N (g (ûx, ûy, ûz))∥2 (4)

LMSE2 =
1

n

n∑
i=1

(ui − g (ûx, ûy, ûz))
2 (5)

Table 1: Summary of the model’s performance for MSE. (Train,Test)
Problem 1-1D 1-2D 1-3D 2-1D 2-2D 2-3D

Algorithm Advection

NetGP (1.31e-15,1.19e-15) (4.59e-15,4.99e-15) (4.42e-01,4.24e-01) (1.43e-11,1.97e-11) (8.25e-02,8.72e-02) (4.70e-01,3.92e-01)
HD-TLGP (5.25e-12,5.37e-12) (4.98e-10,5.06e-10) (1.71e-12,1.76e-12) (9.92e-03,1.32e-02) (2.97e-02,4.25e-02) (5.69e-02,7.64e-02)

PINN (3.51e-01,4.16e-01) (1.46e+00,1.49e+00) (3.06e+00,3.59e+00) (2.10e-01,2.52e-01) (7.01e-01,9.13e-01) (1.51e+00,2.03e+00)
PSR (5.83e-11,7.13e-11) (4.27e-11,3.79e-11) (1.28e-10,1.42e-10) (8.73e-16,7.08e-16) (1.81e-10,2.09e-10) (1.51e-03,1.54e-03)

PSR+noise (1.35e-08,2.65e-08) (1.45e-08,1.34e-08) (5.47e-10,7.03e-10) (6.88e-08,1.48e-07) (2.84e-03,2.79e-03) (5.67e-04,5.56e-04)

Diffusion-Reaction

NetGP (5.74e-05,8.06e-05) (2.14e-03,3.40e-03) (3.71e-01,2.80e-01) (1.10e-05,2.77e-05) (1.57e-03,2.17e-03) (2.88e-01,3.78e-01)
HD-TLGP (2.20e-02,2.56e-02) (8.35e-02,1.05e-01) (5.63e-02,6.14e-02) (1.27e-02,1.40e-02) (2.16e-02,2.28e-02) (4.30e-02,4.08e-02)

PINN (1.59e-02,2.11e-02) (3.60e-02,7.36e-02) (6.93e-02,1.63e-01) (9.43e-03,1.67e-02) (2.48e-02,5.77e-02) (4.63e-02,1.27e-01)
PSR (1.92e-06,5.85e-06) (1.11e-04,4.14e-04) (3.11e-05,6.51e-05) (4.20e-07,1.29e-06) (1.91e-05,2.53e-05) (7.33e-05,3.47e-04)

PSR+noise (1.56e-08,2.74e-08) (1.01e-03,7.60e-04) (2.21e-04,3.87e-04) (3.11e-06,2.53e-05) (1.46e-04,2.86e-04) (1.17e-03,1.52e-03)

Heat

NetGP (2.60e-03,1.66e-02) (6.20e-03,2.99e+00) (3.40e-02,1.25e-02) (6.33e-04,7.11E-03) (1.09e-03,7.35e-03) (3.45e-03,1.20e-03)
HD-TLGP (1.02e-01,2.65e-02) (2.09e-02,1.63e-02) (2.83e+00,3.17e+00) (5.59e-02,1.48e-02) (9.00e-03,8.18e-03) (3.95e-01,3.59e-01)

PINN (1.73e-02,4.81e-02) (1.98e-02,1.55e-02) (2.91e-02,5.39e-03) (8.37e-03,2.47e-02) (4.89e-03,5.59e-03) (2.94e-03,1.21e-03)
PSR (2.57e-03,1.51e-02) (4.86e-04,3.23e-03) (9.52e-04,1.43e-01) (9.45e-04,8.12e-03) (2.62e-04,8.03e-01) (5.84e-04, 4.26e-03)

PSR+noise (3.17e-04,3.25e-03) (1.53e-03,3.48e-03) (4.52e-03,5.63e+03) (3.40e-04,6.28e-03) (2.01e-04,1.58e+04) (5.92e-04, 3.88e-03)

Poisson

NetGP (3.70e-13,4.92e-13) (2.34e-02,4.12e-02) (1.22e-01,1.50e-01) (6.23e-10,6.86e-10) (4.55e-04,4.72e-04) (7.16e-02,1.37e-01)
HD-TLGP (4.50e-15,4.96e-15) (6.26e-11,6.65e-11) (2.83e-11,2.06e-11) (2.56e-12,2.59e-12) (2.07e-11,2.17e-11) (2.82e-10,3.14e-10)

PINN (1.85e-02,2.10e-02) (6.15e-02,6.32e-02) (5.10e-02,8.52e-02) (2.11e-02,2.72e-02) (9.99e-03,9.15e-03) (8.81e-03,1.09e-02)
PSR (3.51e-11,3.71e-11) (6.37e-02,5.56e-02) (1.13e-02,2.76e-02) (4.58e-12 , 7.08e-12) (2.62e-12,1.96e-12) (4.58e-08,5.98e-08)

PSR+noise (1.90e-08,1.96e-08) (9.42e-05,1.30e-04) (2.02e-03,4.72e-03) (1.65e-08,1.92e-08) (2.18e-09,2.28e-09) (5.72e-08,5.68e-08)

Wave

NetGP (1.48e-10,1.68e-10) (3.68e-01,4.33e-01) (1.25e+00,1.27e+00) (1.35e-14,1.17e-14) (4.36e-01,4.51e-01) (4.14e+00,3.84e+00)
HD-TLGP (1.39e-01,1.27e-01) (2.92e-01,2.50e-01) (3.81e+00,4.76e+00) (1.38e-14,8.42e-15) (1.26e+00,1.17e+00) (2.98e+00,3.06e+00)

PINN (5.09e-01,4.98e-01) (1.23e+00,1.42e+00) (2.68e+00,2.82e+00) (5.50e-01,5.23e-01) (2.03e+00,2.02e+00) (4.55e+00,4.47e+00)
PSR (3.95e-11,3.58e-11) (3.05e-02,3.37e-02) (8.36e-01,7.69e-01) (1.72e-11,1.53e-11) (2.95e-01,2.74e-01) (4.38e-02,4.05e-02)

PSR+noise (2.56e-09,2.72e-09) (1.58e-01,1.50e-01) (5.18e-01,5.12e-01) (4.69e-09,4.17e-09) (7.30e-02,8.88e-02) (2.03e-01,2.58e-01)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

The experiments mainly include four parts. First, numerical data fitting is performed by computing
the mean squared error (MSE) between predicted and reference values. Second, PDE fidelity is
assessed by substituting the discovered expressions into the governing equations and calculating
the PDE residual error. Third, to evaluate interpretability, symbolic solutions obtained by PSR are
compared with ground-truth expressions, demonstrating how the underlying physical fields interact
across spatial and temporal dimensions. Finally, some ablation studies are conducted to analyze the
contribution of each component within the PSR framework.

4.1 EXPERIMENT SETTINGS

PDEs. To facilitate reproducible evaluation and foster future research, we introduce SymPDEBench,
a lightweight benchmark for symbolic regression based PDE solver. It comprises five representative
types of PDEs: Advection, Poisson, Heat, Wave, and Diffusion-Reaction. Each PDE includes multiple
instances generated under varying coefficients and boundary/initial conditions. Each instance has
a known analytical solution. These PDEs span diverse physical phenomena and mathematical
characteristics, offering a comprehensive benchmark for assessing performance. A summary of
the PDEs is provided in Table 4, with detailed formulations and parameter settings available in the
Appendix A.1.

Dataset Construction. We sample two separate datasets from the solution domain for training and
testing for each PDE instance. We add Gaussian noise with a standard deviation of 0.001 to the
training data to simulate real-world conditions where measurements may be imperfect.

Baselines and Configurations. We compare the proposed PSR framework against three baselines:
NetGP Cao et al. (2025), a state-of-the-art symbolic regression based method originally designed
for low-dimensional PDEs; HD-TLGP, a symbolic regression based method specifically designed to
tackle high-dimensional PDEs via transfer learning Cao et al. (2024a); and PINN Lu et al. (2021b), a
widely used deep learning-based approach for solving PDEs. A comprehensive description of each
method, along with detailed parameter settings, is provided in the Appendix A.2.

Table 2: PDE residual error: the MSE of the expression fitting error to the PDE. (Train, Test)
Problem 1-1D 1-2D 1-3D 2-1D 2-2D 2-3D

Algorithm Advection

NetGP (0.00e+00,0.00e+00) (0.00e+00,0.00e+00) (4.00e+04,4.00e+04) (1.21e-14,3.01e-13) (1.26e-05,1.84e-03) (4.00e+04,4.00e+04)
HD-TLGP (1.82e-14,7.28e-14) (1.86e-12,7.46e-12) (7.11e-15,2.84e-14) (1.11e-06,4.43e-06) (2.83e-06,1.13e-05) (4.67e-06,1.87e-05)

PSR (0.00e+00,0.00e+00) (9.99e-13,5.00e-13) (3.13e-13,1.23e-13) (0.00e+00,0.00e+00) (4.79e-11,1.54e-12) (7.89e-07,1.13e-07)
PSR+noise (5.45e-09,6.60e-10) (1.10e-11,7.90e-11) (2.38e-12,1.43e-12) (1.19e-11,9.84e-12) (2.04e-04,2.35e-05) (7.75e-05,7.17e-07)

Diffusion-Reaction

NetGP (1.52e-04,2.09e-03) (6.42e-05,4.62e-02) (2.50e+05,2.51e+05) (1.59e-01,1.81e-03) (2.94e-04,1.74e-02) (8.97e+04,8.98e+04)
HD-TLGP (1.37e-02,4.71e-03) (5.63e-02,2.41e-02) (2.55e-03,1.17e-02) (2.17e-05,3.74e-03) (2.14e-02,2.99e-03) (2.57e-02,5.13e-03)

PSR (1.58e-04 , 2.67e-03) (4.64e-04, 2.47e-02) (1.58e-03,2.49e-01) (1.48e-01,1.11e-03) (1.02e-04,1.26e-02) (7.90e-03,1.24e-01)
PSR+noise (1.62e-04 , 2.52e-03) (2.06e-04,4.21e-02) (9.93e-04,2.63e-01) (1.55e-01,1.32e-03) (3.37e-04,1.44e-02) (8.42e-02,9.37e-02)

Heat

NetGP (1.44e-03,2.93e-04) (2.76e-04,2.91e-03) (4.00e+02,4.00e+02) (3.41e-04,3.19e-03) (1.68e-06,1.36e-04) (1.00e+04,1.00e+04)
HD-TLGP (1.91e-07,7.72e-08) (7.16e-07,3.33e-09) (4.00e+02,3.99e+02) (3.38e-06,1.37e-06) (0.00e+00,0.00e+00) (1.00e+04,1.00e+04)

PSR (5.46e-05,1.65e-03) (4.78e-05,2.68e-03) (4.80e-06,3.62e-05) (3.94e-04,2.41e-03) (1.67e-06,3.87e-04) (6.49e-07,2.90e-05)
PSR+noise (1.69e-05,4.21e-04) (6.79e-05,2.28e-03) (4.75e-06,9.50e-05) (1.61e-04,6.64e-04) (2.90e-06,3.26e-05) (1.66e-08,8.24e-05)

Poisson

NetGP (5.11e+01,4.81e+01) (7.07e+01,9.31e+01) (4.20e+04,4.30e+04) (9.98e-01,9.99e-01) (9.98e-01,9.99e-01) (4.04e+04,4.04e+04)
HD-TLGP (5.16e+01,4.58e+01) (1.04e+02,8.47e+01) (1.10e+02,1.07e+02) (9.99e-01,9.95e-01) (9.99e-01,9.95e-01) (9.99e-01,9.95e-01)

PSR (5.11e+01, 4.81e+01) (7.07e+01, 9.31e+01) (7.40e+01,9.91e+01) (9.98e-01, 9.99e-01) (9.98e-01, 9.99e-01) (9.98e-01, 9.99e-01)
PSR+noise (5.11e+01, 4.81e+01) (7.07e+01, 9.31e+01) (7.40e+01,9.91e+01) (9.98e-01, 9.99e-01) (9.98e-01, 9.99e-01) (9.98e-01, 9.99e-01)

Wave

NetGP (5.86e-11,3.49e-11) (1.34e-03,8.45e-06) (1.00e+04,1.00e+04) (0.00e+00,0.00e+00) (7.28e-15,9.09e-16) (2.89e+06,2.89e+06)
HD-TLGP (0.00e+00,0.00e+00) (1.49e-04,3.31e-05) (1.00e+04,9.99e+03) (0.00e+00,0.00e+00) (0.00e+00,0.00e+00) (2.54e-02,8.43e-01)

PSR (9.17e-12,5.39e-12) (6.14e-02,8.48e-02) (1.00e+04,1.00e+04) (3.64e-14,2.27e-14) (9.99e+03,1.00e+04) (9.99e+03,1.00e+04)
PSR+noise (3.71e-09,1.38e-10) (5.00e-02,1.06e-01) (2.67e-02,8.22e-04) (1.22e-10,4.73e-11) (6.40e+05,6.40e+05) (6.40e+05,6.40e+05)

4.2 NUMERICAL DATA FITTING COMPARISON

This experiment evaluates the performance of PSR in fitting numerical datasets, both clean and noisy.
Table 1 reports the Mean Squared Error (MSE) on training and test sets across various benchmark
problems. While NetGP performs adequately in simple 1D cases, it struggles in higher dimensions
due to the curse of dimensionality. PINN yields moderate results. HD-TLGP achieves 13 best results,
but its overall performance is constrained by its dependence on accurate one-dimensional solutions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

PSR outperforms other baselines, achieving the lowest MSE in 39 out of 60 cases (highlighted in
bold), and matching the best order of magnitude in 3 additional cases (highlighted in gray).

Importantly, when Gaussian noise is added to the training data, PSR maintains stable performance
on the clean training and test sets. This robustness suggests that PSR fits the data accurately and
generalizes well, even under noisy conditions.

Table 3: Comparison of ground-truth and PSR-derived solutions
Problem 1D 2D 3D

Advection1-

True x1 − t x1 + x2 − 2t x1 + x2 + x3 − 3t
PSR −1.0 · f1 (f2 + (f1 − (f1 · 1.0))) 2.0 · f1 − 1.0 · f2 + f3

Advection2-

True sin(x1 − t) sin(x1 − t) + sin(x2 − t) sin(x1 − t) + sin(x2 − t) + sin(x3 − t)
PSR f1 −f1 − f2 + 2.0 f1 + f2 + (f2 + f3) · sin(f2) + 0.84

4.3 PARTIAL DIFFERENTIAL EQUATION FITTING COMPARISON

This experiment evaluates the proposed PSR framework’s ability to discover solutions that are
consistent with the underlying physical laws, particularly as the dimensionality of the problem
increases. Table 2 presents a comparison of the final PDE residual errors across three methods:
NetGP, HD-TLGP, and PSR. NetGP achieves the lowest residuals in 13 cases, while HD-TLGP leads
in 29 cases. PSR obtains the best results in 25 cases and matches the best order of magnitude in 7
additional ones. These results demonstrate that PSR achieves strong physical consistency and exhibits
robust performance, even when trained on noisy data.

4.4 REVEALING THE DEEPER PHYSICAL INSIGHT

A key claim of our work is that PSR offers deeper physical insight by revealing how the physical field
governed by the PDE interacts across its various dimensions. To demonstrate this, we compare the
high-level compositional structure discovered by our global SR stage with the ground-truth in Table 3
(full results provided in the Appendix C), where f1, f2, f3 represent the functional components
discovered from the projections. The results show that PSR can discover the correct compositional
form of lower-dimensional functions (such as the Advection).

4.5 ABLATION STUDIES

To validate the key components of our proposed framework, we conduct a series of ablation studies.
First, we demonstrate the effectiveness of PSR as an incremental builder that can enhance existing
algorithms. As shown in Table 1 and Table 2, PSR is incorporated into NetGP and consistently
improves accuracy and generalization across all high-dimensional PDE tasks, confirming the benefit
of this incremental builder. Next, we conduct an ablation study on the Heat 2-3D problem to isolate
the contribution of our decomposition strategy, which is specifically designed for PDEs. The results
are summarized in Table 10 and Appendix D. Finally, we conduct an ablation experiment on the Heat
2-1D problem to assess the effectiveness of the introduced MSEDI loss. Figure 4 shows that “MSE +
MSEDI” performs comparably to “MSE + PDE residual error”, indicating that MSEDI effectively
captures local dynamics of the solution without computing the full PDE residual error.

5 CONCLUSION

In this paper, we introduced Projective Symbolic Regression (PSR) to discover interpretable solutions
for high-dimensional PDEs by decomposing the search into low-dimensional projections and compos-
ing functional components hierarchically. Experiments on high-dimensional PDEs demonstrate that
PSR successfully discovers accurate and interpretable symbolic solutions that reveal the underlying
compositional structure of the physics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Klaus-Jürgen Bathe. Finite element method. Wiley encyclopedia of computer science and engineering,
pp. 1–12, 2007.

Géraud Blatman and Bruno Sudret. Anisotropic parcimonious polynomial chaos expansions based
on the sparsity-of-effects principle. In Proc ICOSSAR’09, International Conference in Structural
Safety and Relability, 2009.

Andrea Bonito, Claudio Canuto, Ricardo H Nochetto, and Andreas Veeser. Adaptive finite element
methods. Acta Numerica, 33:163–485, 2024.

George EP Box, J Stuart Hunter, and William G Hunter. Statistics for experimenters: design,
innovation, and discovery. John Wiley & Sons, 2005.

Jean Braun and Malcolm Sambridge. A numerical method for solving partial differential equations
on highly irregular evolving grids. Nature, 376(6542):655–660, 1995.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Lulu Cao, Zimo Zheng, Chenwen Ding, Jinkai Cai, and Min Jiang. Genetic programming symbolic
regression with simplification-pruning operator for solving differential equations. In International
Conference on Neural Information Processing, pp. 287–298. Springer, 2023.

Lulu Cao, Yufei Liu, Zhenzhong Wang, Dejun Xu, Kai Ye, Kay Chen Tan, and Min Jiang. An
interpretable approach to the solutions of high-dimensional partial differential equations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 20640–20648,
2024a.

Lulu Cao, Yinglan Feng, Min Jiang, and Kay Chen Tan. Netgp: A hybrid framework combining
genetic programming and deep reinforcement learning for pde solutions. In 2025 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–8. IEEE, 2025.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, 6(6):631–640, 2024b.

Philip Cardiff and Ismet Demirdžić. Thirty years of the finite volume method for solid mechanics.
Archives of Computational Methods in Engineering, 28(5):3721–3780, 2021.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Gouri Dhatt, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John Wiley & Sons,
2012.

Kei Sen Fong, Shelvia Wongso, and Mehul Motani. Rethinking symbolic regression: Morphology and
adaptability in the context of evolutionary algorithms. In The Eleventh International Conference
on Learning Representations, 2022.

Abdul Hamid Ganie, Lamiaa H Sadek, MM Tharwat, M Ashik Iqbal, M Mamun Miah, Md Mamunur
Rasid, Nasser S Elazab, and MS Osman. New investigation of the analytical behaviors for some
nonlinear pdes in mathematical physics and modern engineering. Partial Differential Equations in
Applied Mathematics, 9:100608, 2024.

Stephen Gedney. Introduction to the finite-difference time-domain (FDTD) method for electromagnet-
ics. Springer Nature, 2022.

Maximilian Gelbrecht, Niklas Boers, and Jürgen Kurths. Neural partial differential equations for
chaotic systems. New Journal of Physics, 23(4):043005, 2021.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anno Hein, Noémi S Müller, and Vassilis Kilikoglou. Heating efficiency of archaeological cooking
vessels: Computer models and simulations of heat transfer. Ceramics, Cuisine and Culture: The
Archaeology and Science of Kitchen Pottery in the Ancient Mediterranean World, Oxbow Books,
Oxford, pp. 49–54, 2015.

Manh Tuan Hoang. High-order nonstandard finite difference methods preserving dynamical properties
of one-dimensional dynamical systems. Numerical Algorithms, 98(1):219–249, 2025.

Vishal Jagota, Aman Preet Singh Sethi, and Khushmeet Kumar. Finite element method: an overview.
Walailak Journal of Science and Technology (WJST), 10(1):1–8, 2013.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020.

Sofen Kumar Jena. Fourier analysis for the solution of differential and integral equations. In Fourier,
Laplace, and the Tangled Love Affair with Transforms: The Art of Signal Synthesis and Analysis,
pp. 459–511. Springer, 2025.

Nan Jiang and Yexiang Xue. Symbolic regression via control variable genetic programming. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 178–195.
Springer, 2023.

Nan Jiang and Yexiang Xue. Racing control variable genetic programming for symbolic regression.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 12901–12909,
2024.

Nan Jiang, Md Nasim, and Yexiang Xue. Vertical symbolic regression via deep policy gradient. arXiv
preprint arXiv:2402.00254, 2024.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

Dionysios G Karkoulias, Panagiota-Vasiliki N Bourdousi, and Dionissios P Margaris. Passive control
of boundary layer on wing: Numerical and experimental study of two configurations of wing
surface modification in cruise and landing speed. Computation, 11(3):67, 2023.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-vpinns: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Applied Mechanics
and Engineering, 374:113547, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Jakub Kudela and Radomil Matousek. Recent advances and applications of surrogate models for
finite element method computations: a review: J. kudela, r. matousek. Soft Computing, 26(24):
13709–13733, 2022.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Aravena,
Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for deep
symbolic regression. Advances in Neural Information Processing Systems, 35:33985–33998, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wing Kam Liu, Shaofan Li, and Harold S Park. Eighty years of the finite element method: Birth,
evolution, and future. Archives of Computational Methods in Engineering, 29(6):4431–4453, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021b.

P Lykos and GW Pratt. Discussion on the hartree-fock approximation. Reviews of Modern Physics,
35(3):496, 1963.

MAO Meiliang, JIANG Yi, MIN Yaobing, ZHU Huajun, and DENG Xiaogang. A survey of geometry
conservation law for high-order finite difference method. Acta Aerodynamica Sinica, 39(1):
157–167, 2021.

Douglas C Montgomery. Design and analysis of experiments. John wiley & sons, 2017.

Noor Muhammad. Finite volume method for simulation of flowing fluid via openfoam. The European
Physical Journal plus, 136(10):1–22, 2021.

Hongsup Oh, Roman Amici, Geoffrey Bomarito, Shandian Zhe, Robert M Kirby, and Jacob Hochhal-
ter. Inherently interpretable machine learning solutions to differential equations. Engineering with
Computers, 40(4):2349–2361, 2024.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Luciano Rezzolla. Numerical methods for the solution of partial differential equations. Lecture Notes
for the COMPSTAR School on Computational Astrophysics, pp. 8–13, 2011.

Gary Francis Roach. Green’s functions. Cambridge University Press Cambridge, 1982.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli,
Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis: the primer. John Wiley &
Sons, 2008.

Ilya Meyerovich Soboĺ. Sensitivity estimates for nonlinear mathematical models. Math. Model.
Comput. Exp., 1:407, 1993.

Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to advanced electronic
structure theory. Courier Corporation, 1996.

Roger Temam. Navier–Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Society, 2024.

Ioannis G Tsoulos and Isaac E Lagaris. Solving differential equations with genetic programming.
Genetic Programming and Evolvable Machines, 7(1):33–54, 2006.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. Ai
feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in Neural
Information Processing Systems, 33:4860–4871, 2020.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Shu Wei, Yanjie Li, Lina Yu, Weijun Li, Min Wu, Linjun Sun, Jufeng Han, and Yan Pang. Closed-form
solutions: A new perspective on solving differential equations. arXiv preprint arXiv:2405.14620,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Man Wah Wong. Partial differential equations: topics in fourier analysis. Chapman and Hall/CRC,
2022.

Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural
networks. Journal of Computational Physics, 394:136–152, 2019.

Hengzhe Zhang, Aimin Zhou, Hong Qian, and Hu Zhang. Ps-tree: A piecewise symbolic regression
tree. Swarm and Evolutionary Computation, 71:101061, 2022.

Jinghui Zhong, Junlan Dong, Wei-Li Liu, Liang Feng, and Jun Zhang. Multiform genetic pro-
gramming framework for symbolic regression problems. IEEE Transactions on Evolutionary
Computation, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED EXPERIMENTAL SETUP

A.1 PROBLEM DESCRIPTION

Table 4: Summary of PDE
Name Application General form

Advection Transport physical quantity
∂ϕ
∂t + v · ∇ϕ = 0

Poisson Potential field ∆ϕ = f
Heat Heat (or temperature) ∆ϕ = − q

k

Wave Propagation of waves ∂2u
∂t2 = c2∇2u

Diffusion-reaction Chemical Concentration ∂u
∂t = D∇2u+R(u)

A detailed description of the PDEs addressed in the experiment is presented.

Advection equation, also known as the transport equation, models the evolution of a physical quantity
as it is carried by a moving fluid. Eq. 6 shows the general form of advection equation, where ϕ is
the physical quantity being transported (e.g., temperature, concentration), t is time, v is the velocity
vector of the fluid, ∇ϕ is the gradient of ϕ.

∂ϕ

∂t
+ v · ∇ϕ = 0 (6)

Diffusion-reaction equation models the behavior of chemical substances undergoing diffusion
and reaction processes. Eq. 7 shows the general form of diffusion-reaction equation, where u =
u(x1, x2, . . . , xn, t) is the concentration of the substance, t is time, D is the diffusion coefficient,∇2

is the Laplacian operator, R(u) is the reaction term, which can be a function of u.

∂u

∂t
= D∇2u+R(u) (7)

Heat equation models how heat (or temperature) diffuses through a given region over time. Eq. 8
shows the general form of the heat equation, where u is the temperature, α is the thermal diffusivity
of the material. The diffusivity is defined as α = k

ρc , where k denotes the thermal conductivity, ρ is
the density, and c is the specific heat capacity.

∂u

∂t
= α∆u (8)

Poisson equation models the potential field generated by the source term. Eq. 9 shows the general
form of the poisson equation, where ∆ is the Laplace operator, often denoted as∇2. ϕ is the unknown
function. f is a known function, typically representing a source term or distribution.

∆ϕ = f (9)

Wave equation models the propagation of waves, such as sound, light, and water waves. Eq. 10
shows the general form of wave equation, where u = u(x1, x2, . . . , xn, t) is the wave function, t is
time, ∇2 is the Laplacian operator, c is the speed of wave propagation.

∂2u

∂t2
= c2∇2u (10)

Table 5 assigns a simple name to each PDE and provides detailed specifications. The notation ∂·
denotes the boundary of the domain ·.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Summary of PDE with their initial condition, boundary condition, and analytical solution.
Name PDE Initial Condition Boundary Condition Set of Operators

Advection 1-1D ∂u
∂t + ∂u

∂x1
= 0, x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = x1 u(0, t) = −t, u(1, t) = 1− t ×,+,−

Advection 1-2D ∂u
∂t + ∂u

∂x1
+ ∂u

∂x2
= 0, x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = x1 + x2 - ×,+,−

Advection 1-3D ∂u
∂t + ∂u

∂x1
+ ∂u

∂x2
+ ∂u

∂x3
= 0, x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = x1 + x2 + x3 - ×,+,−

Advection 2-1D ∂u
∂t + ∂u

∂x1
= 0, x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = sin(x1) u(0, t) = sin(−t), u(1, t) = sin(1− t) ×,+,−, sin

Advection 2-2D ∂u
∂t + ∂u

∂x1
+ ∂u

∂x2
= 0, x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) - ×,+,−, sin

Advection 2-3D ∂u
∂t + ∂u

∂x1
+ ∂u

∂x2
+ ∂u

∂x3
= 0, x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) + sin(x3) - ×,+,−, sin

Diffusion-reaction 1-1D ∂u
∂t − 3(∂

2u
∂x2

1
)− u = 0,x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = sin(x1) - ×,+,−, sin, exp

Diffusion-reaction 1-2D ∂u
∂t − 3(∂

2u
∂x2

1
+ ∂2u

∂x2
2
)− u = 0,x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) - ×,+,−, sin, exp

Diffusion-reaction 1-3D ∂u
∂t − 3(∂

2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
)− u = 0,x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) + sin(x3) - ×,+,−, sin, exp

Diffusion-reaction 2-1D ∂u
∂t − 2(∂

2u
∂x2

1
) + u = 0,x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = sin(x1) - ×,+,−, sin, exp

Diffusion-reaction 2-2D ∂u
∂t − 2(∂

2u
∂x2

1
+ ∂2u

∂x2
2
) + u = 0,x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) - ×,+,−, sin, exp

Diffusion-reaction 2-3D ∂u
∂t − 2(∂

2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
) + u = 0, x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) + sin(x3) - ×,+,−, sin, exp

Heat 1-1D ∂u
∂t − 0.4

(
∂2u
∂x2

1

)
= 0,x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = δ(x) - ×,+,−, exp,

√
·,÷

Heat 1-2D ∂u
∂t − 0.4

(
∂2u
∂x2

1
+ ∂2u

∂x2
2

)
= 0,x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = δ(x) - ×,+,−, exp,

√
·,÷

Heat 1-3D ∂u
∂t − 0.4

(
∂2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3

)
= 0,x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = δ(x) - ×,+,−, exp,

√
·,÷

Heat 2-1D ∂u
∂t −

(
∂2u
∂x2

)
= 0,x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = δ(x) - ×,+,−, exp,

√
·,÷

Heat 2-2D ∂u
∂t −

(
∂2u
∂x2

1
+ ∂2u

∂x2
2

)
= 0,x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = δ(x) - ×,+,−, exp,

√
·,÷

Heat 2-3D ∂u
∂t −

(
∂2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3

)
= 0,x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = δ(x) - ×,+,−, exp,

√
·,÷

Poisson 1-1D ∂2u
∂x2

1
+ π2sin(πx1) = 0,x ∈ [0, 1] - u(x) = 0,x ∈ ∂[0, 1] ×,+,−, sin

Poisson 1-2D ∂2u
∂x2

1
+ ∂2u

∂x2
2
+ 2π2sin(πx1) sin(πx2) = 0,x ∈ [0, 1]2 - u(x) = 0,x ∈ ∂[0, 1]2 ×,+,−, sin

Poisson 1-3D ∂2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
+ 3π2sin(πx1) sin(πx2) sin(πx3) = 0,x ∈ [0, 1]3 - u(x) = 0,x ∈ ∂[0, 1]3 ×,+,−, sin

Poisson 2-1D ∂2u
∂x2

1
+ 1 = 0, x ∈ {x1 | x2

1 ≤ 1} - u(x) = 0,x ∈ {x1 | x2
1 = 1} ×,+,−, sin

Poisson 2-2D ∂2u
∂x2

1
+ ∂2u

∂x2
2
+ 1 = 0, x ∈ {(x1, x2) | x2

1 + x2
2 ≤ 1} - u(x) = 0,x ∈ {(x1, x2) | x2

1 + x2
2 = 1} ×,+,−, sin

Poisson 2-3D ∂2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
+ 1 = 0, x ∈ {(x1, x2, x3) | x2

1 + x2
2 + x2

3 ≤ 1} - u(x) = 0,x ∈ {(x1, x2, x3) | x2
1 + x2

2 + x2
3 = 1} ×,+,−, sin

Wave 1-1D ∂2u
∂t2 − 12(∂

2u
∂x2

1
) = 0,x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = sin(3x1) - ×,+, sin

Wave 1-2D ∂2u
∂t2 − 12(∂

2u
∂x2

1
+ ∂2u

∂x2
2
) = 0,x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = sin(3x1) + sin(3x2) - ×,+, sin

Wave 1-3D ∂2u
∂t2 − 12(∂

2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
) = 0,x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = sin(3x1) + sin(3x2) + sin(3x3) - ×,+, sin

Wave 2-1D ∂2u
∂t2 − 32(∂

2u
∂x2

1
) = 0,x ∈ [0, 1], t ∈ (0, 2] u(x, 0) = sin(x1) - ×,+, sin

Wave 2-2D ∂2u
∂t2 − 32(∂

2u
∂x2

1
+ ∂2u

∂x2
2
) = 0,x ∈ [0, 1]2, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) - ×,+, sin

Wave 2-3D ∂2u
∂t2 − 32(∂

2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
) = 0,x ∈ [0, 1]3, t ∈ (0, 2] u(x, 0) = sin(x1) + sin(x2) + sin(x3) - ×,+, sin

A.2 PARAMETERS SETTING

Table 6 presents the key parameter settings for the PSR. HD-TLGP and NetGP share the same
parameters with PSR. The termination condition is defined by a reward value exceeding 0.999, where
the reward function is formulated as Eq. 11 or Eq. 12. These reward functions yield values in the
range (0, 1] with values closer to 1 indicates better performance.

A fair evaluation requires that each baseline is tested under its optimal conditions. The performance
of the HD-TLGP method is directly dependent on the quality of the one-dimensional solutions it
uses for transfer learning, which are generated by NetGP. Compared to its performance reported in
the original paper, NetGP achieves significantly better results when trained on randomly sampled
data rather than boundary-sampled data. Therefore, to ensure that HD-TLGP operates under its most
favorable conditions and its performance is not unfairly compromised by a suboptimal data sampling
strategy, we use randomly sampled datasets for both training and evaluating HD-TLGP.

R =
1

0.001 · LMSE1 + LMSEDI + 1
(11)

R =
1

0.001 · LMSE2 + LPDE + 1
(12)

Table 6: Main Parameters Setting of PSR.
Default operators ×,+,−, sin, exp,

√
·,÷

Set of terminals x1, x2, x3, t, c
Population Size 100
Maximum generations for local SR 10
Maximum generations for global SR 5
Keep for the next generation (nkeep) 10
Termination condition > 0.999
Crossover probability 0.6
Mutation probability 0.6
System configuration Intel(R) Core(TM) i5-1135G7 CPU

Table 7 presents the key parameter settings for the PINN. The Physics-Informed Neural Network
(PINN) is trained using a two-stage optimization strategy. The first stage employs the Adam optimizer
with a learning rate of 1e− 04 and runs for 10,000 iterations. This phase ensures initial convergence
and balances the data-driven and physics-based loss components. In the second stage, the model is
fine-tuned using the L-BFGS optimizer, which internally determines the number of iterations based

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Main Parameters Setting of PINN.
Optimizer (Phase 1) adam
Learning Rate 1e-4
Iterations 1 10000
Optimizer (Phase 2) L-BFGS (optimizer for fine-tuning)
Iterations 2 Determined internally by L-BFGS convergence
System configuration NVIDIA GeForce RTX 3090 GPU
Framework DeepXDE

Table 8: Summary of the Model’s Performance for MSE Trained on Noisy Dataset.
Problem Train (Noisy) Clean Training Datasets Test

NetGP PINN PSR NetGP PINN PSR NetGP PINN PSR
Advection 1-1D 1.08e-06 3.21e-01 1.07e-06 5.46e-09 3.53e-01 1.35e-08 9.53e-09 4.13e-01 2.65e-08
Advection 1-2D 9.55e-07 1.32e+00 9.53e-07 1.07e-08 1.46e+00 1.45e-08 9.24e-09 1.54e+00 1.34e-08
Advection 1-3D 4.40e-01 3.13e+00 9.97e-07 4.40e-01 3.06e+00 5.47e-10 4.14e-01 3.50e+00 7.03e-10
Advection 2-1D 9.47e-07 2.30e-01 9.88e-07 1.42e-09 2.12e-01 6.88e-08 2.05e-09 2.48e-01 1.48e-07
Advection 2-2D 1.52e-02 7.05e-01 2.31e-03 1.52e-02 7.01e-01 2.84e-03 1.36e-02 9.12e-01 2.79e-03
Advection 2-3D 8.27e-01 1.48e+00 5.33e-04 8.27e-01 1.52e+00 5.67e-04 1.01e+00 2.10e+00 5.56e-04
Diffusion* 1-1D 5.23e-05 1.37e-02 1.01e-06 6.14e-05 1.58e-02 1.56e-08 7.94e-05 2.12e-02 2.74e-08
Diffusion* 1-2D 2.36e-03 4.07e-02 6.81e-04 3.09e-03 3.59e-02 1.01e-03 2.76e-03 7.25e-02 7.60e-04
Diffusion* 1-3D 4.02e-01 8.62e-02 2.63e-04 3.72e-01 6.95e-02 2.21e-04 2.85e-01 1.58e-01 3.87e-04
Diffusion* 2-1D 1.18e-06 8.57e-03 4.22e-06 2.10e-09 9.44e-03 3.11e-06 1.95e-09 1.67e-02 2.53e-05
Diffusion* 2-2D 7.24e-04 2.54e-02 1.50e-04 6.63e-04 2.48e-02 1.46e-04 1.34e-03 5.71e-02 2.86e-04
Diffusion* 2-3D 1.53e-01 5.56e-02 8.36e-04 1.56e-01 4.63e-02 1.17e-03 2.55e-01 1.26e-01 1.52e-03
Heat 1-1D 1.78e-03 1.80e-02 2.90e-04 1.89e-03 1.73e-02 3.17e-04 2.60e-02 4.83e-02 3.25e-03
Heat 1-2D 8.50e-03 1.54e-02 1.56e-03 9.02e-03 1.99e-02 1.53e-03 1.04e-02 1.53e-02 3.48e-03
Heat 1-3D 3.48e-02 2.19e-02 4.70e-03 3.86e-02 2.91e-02 4.52e-03 1.56e-02 5.27e-03 5.63e+03
Heat 2-1D 6.49e-04 7.38e-03 3.95e-04 7.83e-04 8.39e-03 3.40e-04 8.38e-03 2.49e-02 6.28e-03
Heat 2-2D 1.13e-03 3.65e-03 1.11e-04 1.36e-03 4.90e-03 2.01e-04 1.51e+00 5.60e-03 1.58e+04
Heat 2-3D 9.98e-03 2.36e-03 3.47e-04 1.06e-02 2.94e-03 5.92e-04 1.14e-02 1.22e-03 3.88e-03
Poisson 1-1D 9.95e-07 1.88e-02 9.95e-07 2.10e-08 1.94e-02 1.90e-08 2.17e-08 2.18e-02 1.96e-08
Poisson 1-2D 5.23e-02 5.57e-02 9.23e-05 5.15e-02 5.41e-02 9.42e-05 4.28e-02 5.47e-02 1.30e-04
Poisson 1-3D 1.99e-01 5.52e-02 1.89e-03 1.84e-01 5.38e-02 2.02e-03 2.61e-01 9.30e-02 4.72e-03
Poisson 2-1D 9.46e-07 2.21e-02 9.51e-07 1.86e-08 2.11e-02 1.65e-08 1.72e-08 2.73e-02 1.92e-08
Poisson 2-2D 4.71e-04 1.05e-02 9.29e-07 4.76e-04 1.04e-02 2.18e-09 4.32e-04 9.65e-03 2.28e-09
Poisson 2-3D 2.36e-01 9.16e-03 1.07e-06 2.31e-01 9.02e-03 5.72e-08 3.42e-01 1.18e-02 5.68e-08
Wave 1-1D 1.02e-06 4.68e-01 1.02e-06 1.67e-09 5.10e-01 2.56e-09 1.62e-09 5.03e-01 2.72e-09
Wave 1-2D 2.90e-01 1.28e+00 1.33e-01 2.84e-01 1.23e+00 1.58e-01 3.08e-01 1.41e+00 1.50e-01
Wave 1-3D 2.66e+00 2.70e+00 4.93e-01 2.74e+00 2.68e+00 5.18e-01 2.90e+00 2.80e+00 5.12e-01
Wave 2-1D 1.05e-06 5.28e-01 1.05e-06 4.92e-09 5.50e-01 4.69e-09 4.45e-09 5.25e-01 4.17e-09
Wave 2-2D 5.25e-01 2.01e+00 6.40e-02 5.45e-01 2.05e+00 7.30e-02 5.26e-01 2.05e+00 8.88e-02
Wave 2-3D 7.54e+00 4.64e+00 1.91e-01 7.05e+00 4.57e+00 2.03e-01 6.69e+00 4.52e+00 2.58e-01

on convergence criteria. All experiments are conducted using the DeepXDE library on an NVIDIA
GeForce RTX 3090 GPU.

B DETAILED NUMERICAL DATA FITTING COMPARISON

To further investigate the robustness of the models when trained on noisy datasets, we conducted a
comprehensive evaluation across multiple PDE benchmarks. Each model was trained on data with
noise and then assessed on three aspects: the noisy training data, the original clean training data,
and randomly sampled test points. As shown in Table 8, PSR consistently achieves the lowest MSE
across all tasks and evaluation settings, demonstrating exceptional resilience to noise and strong
generalization.

C DETAILED REVEALING THE DEEPER PHYSICAL INSIGHT

A key claim of our work is that PSR offers deeper physical insight by revealing how the physical
field governed by the PDE interacts across its various dimensions. To demonstrate this, we compare
the high-level compositional structure discovered by our global SR stage with the ground-truth in
Table 9, where f1, f2, f3 represent the functional components discovered from the projections.

The results shows that for PDEs whose solutions are fundamentally additive or multiplicative com-
binations of lower-dimensional functions (such as the Advection, Diffusion-Reaction, and Wave

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

equations), PSR consistently discovers the correct compositional form. For example, in the 1-3D
Advection problem, the true solution is an addition of variables. PSR correctly identifies this additive
structure, discovering a high-level solution of the form 2.0 · f1 − 1.0 · f2 + f3.

While the discovered high-level expressions are not always a perfect one-to-one match with the
simplest form of the true solution, they correctly capture the essential nature of the interaction
between the dimensional components (e.g., whether they add or multiply). This ability to uncover the
underlying compositional grammar of a physical system is a unique advantage of our hierarchical
approach, providing a level of interpretability that is unattainable with black-box models.

Table 9: Comparison of ground-truth and PSR-derived solutions
Problem 1D 2D 3D

Advection1-

True x1 − t x1 + x2 − 2t x1 + x2 + x3 − 3t
PSR −1.0 · f1 (f2 + (f1 − (f1 · 1.0))) 2.0 · f1 − 1.0 · f2 + f3

Advection2-

True sin(x1 − t) sin(x1 − t) + sin(x2 − t) sin(x1 − t) + sin(x2 − t) + sin(x3 − t)
PSR f1 −f1 − f2 + 2.0 f1 + f2 + (f2 + f3) · sin(f2) + 0.84

Diffusion-Reaction1-

True e−2tsin(x1) e−2tsin(x1) + e−2tsin(x2) e−2tsin(x1) + e−2tsin(x2) + e−2tsin(x3)
PSR 2.0 · f1 + f1 · exp(−2 · f1) (f2 − (f1 + 1.0)(f1 − f2(2 · f2 + 1.0)))exp(f2) −f1 + 2 · f2 + f3 + 1.0

Diffusion-Reaction2-

True e−3tsin(x1) e−3tsin(x1) + e−3tsin(x2) e−3tsin(x1) + e−3tsin(x2) + e−3tsin(x3)
PSR f1(1.0 · f1 − 1.0 · sin(f1) + 1.84) f1sin(2.71exp(f1 − f2)) f1 · exp(f1) + f2 + f3

Heat1-

True 1√
π·1.6·te

− x2
1

1.6t
1

4π×0.4te
− x2

1+x2
2

4×0.4t 1
(4π×0.4t)3/2

e−
x2
1+x2

2+x2
3

4×0.4t

PSR f−1.75
1 − 1.0/f1 + 1.0 f1 · (1.0 · f1 · f2 − f1 + 1.0) −f2 · (f1 + 2 · f2 + 2 · f3 − 1.0)/(f1 · f3)

Heat2-

True 1√
π·4·te

− x2
1

4t
1

4πte
− x2

1+x2
2

4t
1

(4πt)3/2
e−

x2
1+x2

2+x2
3

4t

PSR −1.0 · f1 f1 + 1.0 · f2 2 · f3/(f1 + f2 + exp(f1))

Poisson1-

True sin(πx1) sin(πx1) sin(πx2) sin(πx1) sin(πx2) sin(πx3)
PSR −1.0 · f1 − 0.158 −f2 + sin(f1 − 1.0) −f2 + f3 · (f3 − 1.0)sin(f1)− f3

Poisson2-

True sin(πx1) sin(πx1) sin(πx2) sin(πx1) sin(πx2) sin(πx3)
PSR −1.0 · f1 − 0.158 −f2 + sin(f1 − 1.0) −f2 + f3 · (f3 − 1.0)sin(f1)− f3

Wave1-

True sin(3x1 + 3t) sin(3x1 + 3t) + sin(3x2 + 3t) sin(3x1 + 3t) + sin(3x2 + 3t) + sin(3x3 + 3t)
PSR 0.841 · f1 f2 + sin(2 · f1 · f2 + f1) f1 + sin(f1 · f2 + f3) + 1.0

Wave2-

True sin(x1 + 3t) sin(x1 + 3t) + sin(x2 + 3t) sin(x1 + 3t) + sin(x2 + 3t) + sin(x3 + 3t)
PSR 2 · f1 + 3.0 2.0 · f2

1 · f2 f1 · f2 + 3.0 · f3

D DETAILED ABLATION STUDIES

We first discuss the performance improvement. The proposed PSR framework is designed as an
incremental builder that can be integrated into any SR algorithm. As shown in Table 1 and Table 2,
PSR is incorporated into NetGP and consistently improves accuracy and generalization across all
high-dimensional PDE tasks, confirming the benefit of this incremental builder.

We then conduct an ablation experiment on the Heat 2-3D to prove the effective of the decomposition
strategy specified designed for PDE in Table 10. The first row corresponds to the decomposition strat-
egy generated by our method, while the remaining rows represent randomly selected decomposition
strategies. Our approach achieves the lowest PDE residual error on both the training and test sets. It
also obtains the lowest data fitting error on the training set and matches the best order of magnitude
on the test set.

Finally, we conduct an ablation experiment on the Heat 2-1D problem to assess the effectiveness of
the introduced MSEDI loss. Figure 4 shows that “MSE + MSEDI” performs comparably to “MSE
+ PDE residual error”, indicating that MSEDI effectively captures local dynamics of the solution
without computing the full PDE residual error.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: Evaluating the effectiveness of MSEDI on heat 2-1D.

Table 10: Projection Strategy Comparison on Heat 2-3D.
Projection strategy Data fitting error (Train, Test) PDE residual error (Train, Test)

(x1,t), (x2,t), (x3,t) (Ours) (5.84e-04, 4.26e-03) (6.49e-07, 2.90e-05)
(x1,t), (x2), (x3) (3.27e-03, 5.29e-03) (4.00e+04, 3.99e+04)
(x2,t), (x1), (x3) (2.88e-03, 1.15e-03) (9.99e+03, 9.99e+03)
(x3,t), (x1), (x2) (1.20e-01, 1.07e-01) (9.99e+03, 9.99e+03)

E ETHICS STATEMENT

All authors of this submission confirm that they have read and agree to abide by the ICLR Code of
Ethics.

F REPRODUCIBILITY STATEMENT

All data and source code are provided in the supplementary materials to support reproducibility of
our results.

G THE USE OF LLMS

We used a large language model (LLM) to polish our initial draft and ensure grammatical correctness.

18

	Introduction
	-0.2cmPreliminaries
	Partial Differential Equation
	Symbolic Regression
	Related Work

	Proposed Method
	Framework Overview
	Projection data generation
	Local component discovery
	Global expression composition

	Experiments
	Experiment settings
	Numerical data fitting comparison
	Partial differential equation fitting comparison
	Revealing the deeper physical insight
	Ablation studies

	Conclusion
	Detailed Experimental Setup
	Problem Description
	Parameters Setting

	Detailed Numerical Data Fitting Comparison
	Detailed revealing the deeper physical insight
	Detailed Ablation Studies
	Ethics statement
	Reproducibility statement
	The use of LLMs

