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Abstract

A surprising phenomenon in modern machine learning is the ability of a highly
overparameterized model to generalize well (small error on the test data) even
when it is trained to memorize the training data (zero error on the training data).
This has led to an arms race towards increasingly overparameterized models (c.f.,
deep learning). In this paper, we study an underexplored hidden cost of overpa-
rameterization: the fact that overparameterized models may be more vulnerable
to privacy attacks, in particular the membership inference attack that predicts the
(potentially sensitive) examples used to train a model. We significantly extend the
relatively few empirical results on this problem by theoretically proving for an
overparameterized linear regression model in the Gaussian data setting that mem-
bership inference vulnerability increases with the number of parameters. Moreover,
a range of empirical studies indicates that more complex, nonlinear models exhibit
the same behavior. Finally, we extend our analysis towards ridge-regularized linear
regression and show in the Gaussian data setting that increased regularization also
increases membership inference vulnerability in the overparameterized regime.

1 Introduction

As more machine learning models are being trained on sensitive user data (e.g., customer behavior,
medical records, personal media), there is a growing concern that these models may serve as a
gateway for malicious adversaries to access the models’ private training data [1, 2]. For example,
the possibility of performing membership inference (MI), the task of identifying whether a specific
data point was included in a model’s training set or not, can be greatly detrimental to user privacy. In
settings like healthcare, knowledge of mere inclusion in a training dataset (e.g., hospital visitation
records) already reveals sensitive information. Moreover, MI can enable the extraction of verbatim
training data from a released model [1].

The general motivation for this paper is the recent realization that privacy issues around machine
learning might be exacerbated by today’s trend towards increasingly overparameterized models that
have more parameters than training data points and so can be trained to memorize (attain zero error
on) the training data. Surprisingly, some overparameterized models (e.g., large regression models [3],
massive deep networks [4, 5]) generalize extremely well [6, 7]. Limited empirical evidence suggests
that overparameterization may lead to greater privacy vulnerabilities [1, 8–11]. However, there has
been little to no analytical work on this important problem.

In this paper, we take the first steps towards an analytical understanding of how the number of
parameters in a machine learning model relates to MI vulnerability. In a theoretical direction, we
prove for linear regression on Gaussian data in the overparameterized regime that increasing the
number of parameters of the model increases its vulnerability to MI (Theorem 3.2). In a supporting
empirical direction, we demonstrate that the same behavior holds for a range of more complex models:
a latent space model, a time-series model, and a nonlinear random ReLU features model (Section 5).
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We also extend our analysis towards the techniques of ridge regularization and noise addition in
Section 4. We first prove that MI vulnerability similarly increases with the number of parameters for
ridge-regularized models. Surprisingly, we also demonstrate analytically that additional regularization
increases this vulnerability in overparameterized linear models. Hence, ridge regularization is not
always an effective defense against MI and can even be harmful. Afterwards, we show that the
privacy-utility trade-off induced by reducing the number of parameters of a linear regression model is
equivalent to that obtained by adding independent Gaussian noise to the output of the model when
using all available parameters.

Overall, our analyses show that there are settings where reducing the number of parameters of a
highly overparameterized model is a simple strategy to protect a model against MI. As the trend
towards increasingly overparameterized machine learning models accelerates, our results make the
case for less overparameterization when privacy is a concern.

Related work. The problem of membership inference has received considerable attention, and we
refer the reader to [12] for a survey of the prior art. Many works have demonstrated how deep neural
networks can be highly vulnerable to MI attacks (cf., [13–16] for example). Various types of attacks,
such as shadow models [13], confidence-based attacks [17, 18], and label-only attacks [19] have
risen to further expose privacy vulnerability of machine learning models. Our analysis in this work is
based on optimal MI attacks, a framework also employed by other studies of MI [9, 14, 10].

While we study the effect parameterization has on MI vulnerability, several studies examine how
other aspects of the machine learning pipeline, such as data augmentation [20], dropout [15], sparsity
[21], and ensembles [22] affect MI vulnerability. [16] show that pruning a neural network can
defend against MI, lending further experimental support to the link between overparameterization
and membership inference. [9] analyzes the relationship between overfitting (as measured by
generalization error) and membership inference but does not connect this to the number of parameters.
Much recent work has shown though that overparameterization does not always lead to increased
generalization error and indeed sometimes can even decrease it [23, 6, 3, 7], suggesting that more work
is needed linking overparameterization and membership inference beyond mere generalization error.
Despite some empirical evidence that overparameterized models are vulnerable to MI attacks [1, 11],
to the best of our knowledge, there has been no theoretical study of the effect of this connection.

Differential privacy (DP) [24] is another popular framework frequently used to study the privacy
properties of machine learning algorithms, and models that have DP also enjoy MI guarantees [14].
[25] bounds the minimum dataset size as a function of dimension to ensure privacy, however its
results do not extend to data of continuous values (e.g., regression data) as is done in this work and
does not account for the randomness in the data generating process, which as argued in [14], is a
necessary condition to bound the optimal MI risk.

While our theoretical analysis focuses on linear regression, many works have studied overparame-
terized linear models as an interpretable and tractable test case of more complex overparameterized
models such as deep networks [26, 27, 3, 6, 23], suggesting links of our results to more complex
nonlinear models.

Contributions. In this paper, we establish the first theoretical connection between overparameteriza-
tion and vulnerability to membership inference attacks. Our contributions are as follows:

1. We derive the optimal MI accuracy for linear regression on Gaussian data and show that
increasing the number of parameters increases the vulnerability to MI.

2. We empirically show for more complex models that increasing the number of parameters
also increases MI vulnerability.

3. We theoretically show for overparameterized linear models that increased ridge regulariza-
tion increases MI vulnerability in the Gaussian data setting.

4. We use our analysis to show that reducing the number of parameters of a linear regression
model yields an equivalent privacy-utility trade-off as adding independent noise to the output
of a model using all available parameters.

Our code is provided in https://github.com/tanjasper/parameters_or_privacy.
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2 The Membership Inference Problem

We now introduce our notation and formally state the membership inference (MI) problem. Let
D 2 Z+ denote the data dimension. Let z = (x, y) 2 RD ⇥ R denote a data point, and let D
be a distribution over the data points. Consider a set S sampled S ⇠ Dn of size n 2 Z+ data
points and denote it by S = {z1, z2, ..., zn} = {(x1, y1), ..., (xn, yn)}. Let fS represent a machine
learning model obtained by applying a training algorithm T on the dataset S. In particular, fS is a
deterministic function in RD ! R. Typically, it is a function that minimizes

Pn
i=1 `(f(xi), yi) over

a family of functions f for some loss function ` : R⇥ R ! R�0. We denote byi = fS(xi).

Given a data point z0 and a trained model fS , membership inference is the task of identifying if z0
was included in the set S used to train fS . Different MI attacks are characterized by the types of
information accorded to the adversary. In this work, we focus on a blind black-box setting where
the adversary has access to x0, fS(x0), n, the training algorithm T , and the data distribution D,
but not to the ground truth y0, the loss value `(fS(x0), y0), or any learned parameters of fS . Thus,
the adversary is a function A : Rd ⇥ R ! {0, 1} such that given (x0, fS(x0)), it outputs 0 or 1,
representing its prediction as to whether x0 is a member of S based on fS(x0).

There are two main interests in studying blind MI wherein the adversary does not have access to
the loss value. First, there are many realistic scenarios where the ground truth variable of interest
is unknown for the general population, and hence the need for a model fS to predict it. Second,
since we study the interpolation regime where the training loss can be driven down to exactly 0,
MI becomes trivial given the loss value: an adversary that predicts any data point that achieves 0
loss as a member will have perfect accuracy. Multiple works in the literature also study this blind
setting [18, 28]. We emphasize that our results on the blind adversary lower bound the performance
of adversaries that additionally have access to more information.

MI is often defined as an experiment to facilitate precise analysis, and we follow the setup of [9]
summarized below.
Experiment 1. Membership inference experiment. Given a data distribution D, an integer n, a
machine learning training algorithm T , and an adversary A, the MI experiment is as follows:

1. Sample S ⇠ Dn.
2. Apply the training algorithm T on S to obtain fS .
3. Sample m 2 {0, 1} uniformly at random.
4. If m = 0, sample a data point (x0, y0) ⇠ D. Else, sample a data point (x0, y0) 2 S

uniformly at random.
5. Observe the adversary’s prediction A(x0, fS(x0)) 2 {0, 1}.

We wish to quantify the optimal performance of the adversary A and turn to the popular membership
advantage metric defined in [9]. The membership advantage of A is the difference between the true
positive rate and false positive rate of its predictions.
Definition 2.1 ([9]). The membership advantage of an adversary A is:

Adv(A) := P(A(x0, fS(x0)) = 1 | m = 1)� P(A(x0, fS(x0)) = 1 | m = 0),

where P(·) is taken jointly over all randomness in Exp. 1.

Note that membership advantage is an average-case metric, as opposed to worst-case metrics con-
sidered by other privacy frameworks such as differential privacy. Our analysis is thus focused on
average-case privacy leakage, and we do not provide worst-case guarantees.

3 Theoretical Results

3.1 Optimal Membership Inference Via Hypothesis Testing

In this paper, rather than studying current MI attacks, we study the optimal MI adversary: the
adversary that maximizes membership advantage. As such, our analysis and results are not restricted
to the current known attack strategies, which are constantly evolving, and instead serve as upper
bounds for the performance of any MI attack, now or in the future. The following proposition supplies
the theoretically optimal MI adversary.
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Proposition 3.1. The adversary that maximizes membership advantage is:

A
⇤(x0, fS(x0)) =

⇢
1 if P ( by0 | m = 1,x0) > P ( by0 | m = 0,x0),
0 otherwise,

where by0 = fS(x0) and P denotes the distribution function for by0 over the randomness in the
membership inference experiment conditioned on x0.

As observed by [29, 10], the optimal adversary performs a hypothesis test with respect to the posterior
probabilities, with the two hypotheses being:

H0 : S ⇠ Dn
, (x0, y0) ⇠ D and H1 : S ⇠ Dn

, (x0, y0) ⇠ S,
so that maximizing membership advantage is achieved by performing a likelihood ratio test.

3.2 Linear Regression with Gaussian Data

We begin our study of overparameterization’s effect on MI with linear regression with Gaussian
data. We find that in the sufficiently overparameterized regime, increasing the number of parameters
increases vulnerability to MI. We denote by n, p,D the number of data points, number of model
parameters, and data dimensionality, respectively. Let n, p,D 2 Z+ be given such that p  D, and
let � > 0 be given. Consider a D-dimensional random vector � ⇠ N

�
0, 1

DID

�
, representing the

true coefficients. We consider data points (xi, yi) where xi ⇠ N (0, Id) and yi = x>
i � + ✏i, where

✏i ⇠ N (0,�2). Sampling n data points, we denote by X the n⇥D matrix whose i
th row is x>

i and
by y the n-dimensional vector of elements yi. Further, let Xp be the n ⇥ p matrix containing the
first p columns of X . Least squares linear regression finds the minimum-norm p-dimensional vector
�̂ that minimizes ky �Xp�k22, which is �̂ = X†

py, where X†
p denotes the Moore-Penrose inverse

of Xp. Then, for a given feature vector x0, the model predicts by0 = x>
0,p�̂, where x0,p is the vector

containing the first p elements of x0. In this setting, we can derive the membership advantage of the
optimal adversary as a function of the number of parameters p used by the model.
Theorem 3.2. Let n, p,D 2 Z+ be given such that n + 1 < p  D. Let x0 be a given D-
dimensional vector. Let � ⇠ N (0, 1

DID),xi ⇠ N (0, ID), ✏i ⇠ N (0,�2), and yi = x>
i � + ✏i for

i 2 {1, 2, ..., n}. Let m be a variable whose value is either 0 or 1 such that, if m = 1, xk is set to
x0 for k chosen uniformly at random from 1, 2, ..., n. Let X be the n⇥D matrix whose rows are
x>
1 ,x

>
2 , ...,x

>
n . Finally, let by0 = x>

0,pX
†
py where y is the n-dimensional vector with elements yi.

Then, as n, p,D ! 1 such that p
n ! � 2 (1,1), we have:

( by0 | m = 0,x0) ⇠ N (0,�2
0) and ( by0 | m = 1,x0) ⇠ N (0,�2

1) (1)

where

�
2
0 :=

✓
n

p

◆✓
1

D
+

1 + �
2 � p

D

p� n� 1

◆
kx0,pk2 and �

2
1 := �

2 +
kx0k2

D
. (2)

Consider the case when �1 > �0. The resulting optimal membership inference algorithm A
⇤ is

A
⇤(x0, by0) :=

h
by02 > ↵

2
i

where ↵ :=

vuut�
2
0�

2
1 log

⇣
�2
1

�2
0

⌘

�
2
1 � �

2
0

. (3)

with membership inference advantage Adv:

Adv(A⇤) = Ex0


2

⇢
�

✓
↵

�0

◆
� �

✓
↵

�1

◆��
, (4)

where �(·) denotes the CDF of the standard normal, and ↵,�0,�1 are conditioned on x0.
Remark 3.3. The case where �1 < �0 occurs when � is small (p ⇡ n). The same membership
advantage result holds in this, reversing the roles of �0 and �1 in Adv(A⇤) in Eqs. (3) and (4) and
reversing the inequality in Eq. (3).
Remark 3.4. The above result holds using the asymptotic distributions as n, p,D ! 1. In Lemma C.1
in the Appendix, we derive the non-asymptotic distributions for the predictions of the minimum-norm
least squares interpolator, though they cannot be written in closed form.
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(a) Standard Deviations (b) � = 1.1 (c) � = 1.2

(d) � = 2 (e) � = 10 (f) � = 50

Figure 1: In the highly overparameterized regime, increasing the number of parameters p yields more
distinguishable posterior distributions. (a) Standard deviations of model outputs by0 for minimum-
norm least squares as a function of parameterization for � > 1. (b-f) The Gaussian distributions in Eq.
(1) (broken lines), as well as empirical histograms of 20,000 by0 samples for different � values with
n = 400, D = 20, 000, � = 1. The prediction variance for m = 1 stays constant, while the variance
for m = 0 decreases with increased parameterization, making the distributions easier to distinguish.

In Theorem 3.2, Eq. (1) shows that the posterior distributions of the outputs for test points (when
m = 0) and training points (when m = 1) are both 0-mean Gaussians but with variances �2

0 and �
2
1

respectively given in Eq. (2). Recall from Prop. 3.1 that the optimal MI adversary is a likelihood
ratio test (LRT) between the distribution of the model’s output for new test points (when m = 0) and
that for reused training points (when m = 1). This is reflected in Eq. (3) where we note that ↵ is the
standard sufficient statistic for an LRT between two 0-mean Gaussian distributions with deviations
�0 and �1. Finally, we compute the membership advantage of this adversary in Eq. (4) by taking an
expectation over the random draw of x0, as defined in Experiment 1, noting that �0, �1, and ↵ are all
functions of x0. Membership advantage is defined to be the difference between the true and false
positive probabilities in Defn. 2.1. This difference is given by �(↵/�0)��(↵/�1) for each side of the
Gaussian distributions, leading to the expression in Eq. (4).

To understand the implication of the result for MI, first observe that when m = 1 and x0 is a training
point that is memorized by the model, the variance of the model’s output is equal to the variance of
the measurement y0 itself independent of p. On the contrary, when m = 0 and x0 is a test point, the
variance of the model’s output is decreasing with p (Figure 1a). Hence, though the output distribution
means stay the same, as the variance for the m = 0 case decreases far below that of the m = 1 case,
an LRT can easily distinguish these two distributions. In the extreme case, suppose p,D � n, then
�
2
0 ! 0, while �

2
1 remains a nonzero value. Hence Adv(A⇤) ! 1.

We confirm our derivations of the output distributions numerically in Figure 1 where we plot empirical
histograms of the predicted distributions from Eq. (1) by repeatedly computing the minimum norm
least squares solution over 20,000 independent trials1. We also plot the standard deviations from
Eq. (2) in Fig. 1a. Visually, from the distributions in Figure 1, given f(x0), MI reduces to identifying
whether it is more likely that a sample came from the blue distribution or from the orange with the
adversary simply predicting the more likely outcome. These distributions intersect at ±↵, so it is
sufficient to compare by02 to ↵

2 to perform the LRT.

In Figure 2a, we plot the membership advantage for � > 1 using Eq. (4). Since the difference
between the variances of the model’s output when m = 0 and m = 1 increases with � for � > 2

1We detail additional experimental details and the computational hardware in Appendix E.
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(a) Asymptotic membership advantage (b) Empirical verification for non-asymptotic case

Figure 2: Increasing the number of parameters increases membership advantage. (a) Theoretical
membership advantage for linear regression with Gaussian data (Eq. 4) as a function of the number
of parameters for 100 sampled x0’s, n = 103, D = 107. (b) We empirically approximate the
membership advantage averaged over 20 sampled x0’s for n = 100, D = 3, 000, and � = 1 by
estimating the two posterior distributions for each x0 using empirical histograms with 100,000
samples. We plot it alongside the theoretical asymptotic membership advantage, showing a close
agreement between the two.

(cf., Fig. 1a), it becomes easier to distinguish the two distributions. This results in an increase in the
membership advantage. The initial decrease in membership advantage when �  2 is a consequence
of �1  �0 in this regime as shown in Fig. 1a. Since �0 is decreasing in p, initially, this decrease
makes the train and test output distributions harder to distinguish, leading to lower membership
advantage and 0 advantage for � = 2. However, for � > 2, �0 decreases past �1 and membership
advantage approaches 1 as � ! 1. In practice, the � < 2 regime (only slightly overparameterized)
is less interesting since models suffer larger generalization error in this setting (cf., Theorem 1 of
[23]) and are rarely (if ever) used in practice. A key takeaway is that for linear regression in the
Gaussian data setting, extreme overparameterization increases the vulnerability of a machine learning
model to MI.

While Theorem 3.2 operates in the asymptotic regime, we empirically approximate membership
advantage for n = 100 and D = 3, 000 by approximating the posterior distributions with histograms
of samples. As we see in Figure 2b, the asymptotic formula agrees very closely with the non-
asymptotic experiment. Experimental details are provided in Appendix E.

4 Mitigating Membership Inference Attacks

Next, we extend our analysis from the previous section towards two methods commonly used for
preserving privacy: regularization and noise addition. We present two key results. First, we show that
for the overparameterized Gaussian data setting, ridge regularization actually increases membership
advantage and is thus detrimental to privacy. Second, we show that the privacy-utility trade-off
induced by reducing the number of parameters of a linear regression model with Gaussian data is
equivalent to that of adding independent Gaussian noise to the output of a model that uses all available
features.

4.1 Ridge-Regularized Linear Regression

We analyze membership inference in ridge-regularized linear regression in the same setting as
Section 3.2 except that, now, the estimate is �̂� = (X>

p Xp+n�Ip)†X
>
p y, where � is a regularization

parameter. Larger values of � yield greater regularization, and � ! 0 reduces to the case of Section
3.2. Regularization is a common method to reduce overfitting and has thus been proposed in previous
works as a defense mechanism to protect models from MI attacks [13, 30].

A surprising observation resulting from our analysis is that, in the highly overparameterized regime
(� � 1), ridge regularization actually increases the model’s vulnerability to MI attacks for linear
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(a) Ridge (vs. parameters) (b) Ridge (vs. regularization) (c) Noise Addition

Figure 3: We analyze ridge regression and noise addition, two different methods that aim to reduce
membership advantage (MA). (a) MA vs. overparamterization � for a few ridge regularization
strengths �. Stronger ridge regularization harms privacy (increased MA). (b) MA vs. � for a few
�’s, explicitly showing how increasing � increases membership advantage. (c) We plot the privacy-
utility trade-off obtained when tuning the number of parameters (feature reduction) and when adding
independent noise to the output of a model that uses all available parameters (noise addition) and
demonstrate that the two trade-offs are essentially equivalent. For (a) and (b), n = 103, D = 107,
and � = 1. For (c), n = 100, D = 3000, and � = 1.

regression with Gaussian data. In Theorem D.1, presented in the appendix, we derive an analogous
result for the distributions of the ridge-regularized predictions as Theorem 3.2 demonstrated for the
unregularized case. In particular, if A⇤

� is the adversary for the �-regularized problem, its membership
advantage Adv(A⇤

�) is an increasing function in � when � � 1. To visualize this, we plot the
theoretical membership advantages for 100 sampled x0’s (each with iid standard normal elements)
for differing regularization strengths in Figure 3 with the same setting as in Figure 2a. In Figure 3a,
we plot membership advantage as a function of the overparameterization ratio � for a few n� values.
Conversely, In Figure 3b we plot membership advantage versus regularization n� for a few different
values of �. In particular, note how in both subplots, increasing � never decreases the membership
advantage. This observation has been made empirically (but not analytically) for techniques that have
similar regularizing effects, such as dropout [15], ensembling [22], and weight decay [30].

Intuitively, the reason ridge regularization increases MI vulnerability is because while it decreases
the variance of the model’s output on training points, it also significantly decreases the variance
for test points such that the two output distributions become more distinguishable. In Figure 5 in
the appendix, we plot the gap between the variances for the m = 0 and m = 1 cases for different
regularization amounts � to visualize this effect.

4.2 Noise Addition vs. Feature Reduction

A consequence of Thm. 3.2 is that, in the Gaussian data setting, one can reduce vulnerability to MI
attacks by simply decreasing the number of parameters/features. However, this comes at the cost of
decreased generalization performance (utility) due to the “double descent” effect [6, 23, 7], wherein
generalization error decreases with increased overparameterization. An alternative and popular
method to increase a model’s privacy is adding independent noise to the model output [24, 31], but
this also decreases generalization performance. Interestingly, we show in this subsection that for
Gaussian data, the privacy-utility trade-offs induced by both feature reduction and noise addition are
actually equivalent.

Feature reduction: To characterize the privacy-utility trade-off of feature reduction, we first need
the generalization error for a given number of parameters, provided in Corollary 2.2 of [23]:
Proposition 4.1. (Adapted from Corollary 2.2 of [23]). In the same setting as Theorem 3.2, for
x0 ⇠ N (0, ID), the generalization error is given by

E[(y � �̂
>x0,p)

2] = 1 + �
2 + n

✓
1 + �

2 � p
D

p� n� 1
� 1

D

◆
.

Alternatively, this expression can be written as 1 + �
2 + Ex0 [�

2
0 ]� 2 n

D , with �
2
0 as in Theorem 3.2.
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Noise addition: Next, we consider noise addition performed by perturbing the m = 0 model output
with independent noise before releasing it: by0 = x>

0,p�̂ + ✏̄ where ✏̄ ⇠ N (0, �̄2). Recall that MI
is possible for overparameterized linear regression models because the variance of the output of
test points (m = 0) is lower than the variance of the output for training points (m = 1) (Fig. 1).
Thus, adding random noise to the model output when a test point x0 is queried can make the output
distributions harder to distinguish. In the following lemma, we compute the membership advantage
and generalization error of noise addition using the full set of features p = D.
Lemma 4.2. Consider the setup of Theorem 3.2 restricted to p = D, �1 > �0, and � > 1, and
suppose independent 0-mean, variance �̄2 Gaussian noise is added to the outputs when m = 0 (x0 is
not a member of the training set). Then, ( by0 | m = 0,x0) ⇠ N (0,�2

0 + �̄
2). The optimal adversary

is

A
⇤
�̄(x0, by0) :=

⇥
ŷ0

2
> ↵

2
�̄

⇤
where ↵�̄ :=

vuut (�2
0 + �̄2)�2

1 log
⇣

�2
1

(�2
0+�̄2)

⌘

�
2
1 � (�2

0 + �̄2)
.

Its membership inference advantage is

Adv(A⇤
�̄)=Ex0

"
2

(
�

 
↵�̄p

�
2
0 + �̄2

!
� �

✓
↵�̄

�1

◆)#
. (5)

Additionally, for x0 ⇠ N (0, ID), the generalization error incurred is

E[(y � �̂
>x0)

2] = 1 + �
2 + n

✓
�
2

D � n� 1
� 1

D

◆
+ �̄

2
. (6)

The terms in Lemma 4.2 are similar to those in Theorem 3.2 except for the added dependence on the
added noise’s variance �̄

2 in the case that m = 0 (x0 is not a member). Increasing noise variance
�̄
2 decreases membership advantage (Eq. (5)) at the cost of increased generalization error (Eq. (6)).

Indeed, it is possible to add sufficient noise such that �2
1 = �

2
0 + �̄

2, rendering the membership
advantage 0, though possibly at the cost of impermissible generalization performance.

In Figure 3c, we plot the membership advantage vs. generalization error trade-offs for both feature
reduction (blue) and noise addition (orange). The plots follow the setting of Fig. 2b. For the blue
curve, we employ the expressions in Thm 3.2 and Prop 4.1 while varying the overparameterization
ratio �. For the orange curve, we use Lemma 4.2, using all available features (p = D) while varying
the noise variance �̄2. Fig. 3c shows that the trade-offs induced by both feature reduction and noise
addition are essentially equivalent.

5 More Complex Models

In this section, we present three more complex data models wherein we empirically observe increased
overparameterization leading to increased MI vulnerability.

For each data model, we perform the following experiment. We first sample a x0 vector, which is the
data point we wish to perform MI on. Then we sample a training dataset X , measurements y, as
well as other random elements according to the data model. To obtain an m = 0 prediction, we learn
a model on X that we then apply on x0. To obtain an m = 1 prediction, we first replace a row of X
with x0 and the corresponding element of y with y0 before learning the model and applying it on
x0. Keeping x0 fixed throughout the experiment and resampling all other random data (such as X)
many times, we collect a large set of m = 0 and m = 1 prediction samples. We build a histogram of
these samples by assigning them into fine discrete bins to obtain approximations of the conditional
densities P̂ ( by0 | m = 1,x0) and P̂ ( by0 | m = 0,x0) needed for the optimal adversary (cf., Prop 3.1).
To approximate membership advantage, we sum up the differences P̂ ( by0 | m1,x0)� P̂ ( by0 | m0,x0)
over all the histogram bins where P̂ ( by0 | m1,x0) > P̂ ( by0 | m0,x0). We repeat this experiment
20 times, each with a newly sampled x0, and plot the means (as points) and the estimated standard
errors (as shaded error regions) of the membership advantage values across the 20 experiments in
Figure 4. We next discuss the data models in detail.

Linear Regression on Latent Space Model: We first consider the latent space model from [3],
where the output variable yi is a noisy linear function of a data point’s d latent features zi, but one
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(a) Latent space model (b) Time-series data (c) Random ReLU features

Figure 4: Empirically measured membership advantage vs. parameterization for various data models
detailed in Section 5. The dashed line at � = 1 divides the underparameterized and overparameterized
regions. For all settings, when sufficiently overparameterized, increasing the number of parameters
increases vulnerability to membership inference attacks. (a) Latent space model with n = 200 where
p covariates of d = 20 latent features are observed. (b) Regression over n = 128 time samples
of a linear combination of D = 1024 Fourier features. (c) Nonlinear random ReLU features with
n = 100, D = 5000, and � = 1.

only observes a vector xi containing p � d covariates rather than the direct features zi. Let Z be an
n⇥ d matrix where each row is the vector of latent features for an observation. We then have:

y = Z� + ✏, Xi,j = w>
j zi + ui,j , by0 = x>

0 X
†
py,

where wj is a d-dimensional vector, and ui,j is a noise term. In this experiment, we set n = 200,
d = 20, and vary p. For each experiment, we sample a single x0 ⇠ N (0, Id) and a single set of
wj vectors, each from N (0, Id), and keep them fixed. We leave the other variables random with
the following distributions: zi ⇠ N (0, Id), ✏i ⇠ N (0,�2), � ⇠ N

�
0, 1

dId

�
and ui,j ⇠ N (0, 1). In

Fig. 4a, we plot the empirical membership advantage values, which increase with the number p of
features in the overparameterized regime.

Noise-Free Time-Series Regression: In this experiment, we consider a model that aims to interpolate
a time-series signal using frequency components as the features. For example, consider a patient
who visits a hospital at irregular times ti to get their blood glucose level measured. After obtaining
a number of measurements taken over time, the hospital fits a time-series signal representing the
patient’s blood glucose level at any time. Using this learned model, an adversary wishes to identify
whether the patient visited the hospital at a particular time t0, that is, if t0 is one such time point
included in the hospital’s training dataset for learning the patient’s blood glucose level.

To formalize this, we fix D = 1024 as the number of frequency components each signal contains
and let M = 2D� 1. Let W be the D⇥D matrix whose elements W kl =

1p
M+2

cos
�
2⇡kl
M

�
. That

is, each column of the matrix is half a period of an M -dimensional discrete cosine with frequency
2⇡k
M . Sample a � ⇠ N

�
0, 1

DID

�
, and let z = W� denote the true length-D signal. Thus, the signal

is a random linear combination of cosines. We randomly select n = 128 indices from 1, 2, . . . , D
uniformly without replacement, and let X be the n⇥D matrix whose rows are the rows of W at
these selected indices. Then, y = X� is the signal observed at the randomly selected n indices. The
regressor learns �̂ = X†

py and then predicts the signal at any other time point t0 as by0 = x>
0,p�̂,

where x0 is row t0 of W . Thus, identifying whether t0 was a time point in the training dataset is
equivalent to identifying if x0 was in X . The membership advantage values for this task, plotted in
Figure 4b, increases with the number p of frequency components included in the model.

Random ReLU Features: We next consider a nonlinear data model based on Random ReLU feature
networks [32, 33]. Let Z be a random n⇥D matrix whose elements are iid standard normal. Let
V be a random D ⇥ p matrix whose rows are sampled iid from the surface of the unit sphere in
Rp. Let X = max(ZV , 0), where the max is taken elementwise. The target variables are given
by y = Z� + �✏, where � ⇠ N

�
0, 1

DID

�
and ✏ ⇠ N (0, In). Finally, for the data point x0, let

its prediction be by0 = x>
0 X

†
y. We plot the membership advantage in Figure 4c with n = 100,

D = 5000, and � = 1. We again observe that in the highly overparametrized regime, membership
advantage increases with parameters.

9



6 Discussion and Conclusions

We have shown theoretically for (regularized) linear regression with Gaussian data and empirically
for more complex models (latent space regression, time-series regression using Fourier components,
and random ReLU features) that increasing the number of model parameters renders them more
vulnerable to membership inference attacks. Thus, while overparameterization may be attractive for
its robust generalization performance, one must proceed with caution to ensure the learned model
does not lead to unintended privacy leakages.

More speculatively, we hypothesize that the same overparameterization/vulnerability tradeoff should
exist in many machine learning models (e.g., deep networks) beyond those we have studied. Intuitively,
the output of a model that achieves zero training error but generalizes well must i) fit to any noise
(e.g. additive Gaussian noise) present in the training data to get a perfect fit to the noisy training data
but also ii) eliminate the effect of noise in the training data in predicting for unseen data to achieve
good generalization. This disparate behavior towards training and non-training data points leads to
different output distributions when the input is or is not among the training data and is universal for
overparameterized models. Ultimately, this causes a difference in the distributions of training and test
predictions that can be leveraged to perform a membership attack.

There are still many open questions in this line of research. While we have shown multiple settings
where reducing the number of parameters can increase privacy, it remains to be verified that the
phenomenon holds widely for other types of machine learning settings such as language tasks or
large-scale image recognition. Another interesting next step would be to investigate how increased
overparameterization affects privacy for models trained with privacy-preserving techniques or mem-
bership inference defense schemes other than ridge regularization. We believe the findings of our
work can provide insights towards developing the next generation of privacy-preserving techniques.
It is our hope that the observations and analyses in this paper take a step towards keeping sensitive
training data safer in a world increasingly intertwined with machine learning.
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