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Abstract

End-to-end planning systems for autonomous driv-
ing are rapidly improving, especially in closed-loop
simulation environments like CARLA. Many such
driving systems either do not consider uncertainty as
part of the plan itself or obtain it by using specialized
representations that do not generalize. In this paper,
we propose EnDfuser, an end-to-end driving system
that uses a diffusion model as the trajectory planner.
EnDfuser effectively leverages complex perception
information like fused camera and LiDAR features,
through combining attention pooling and trajectory
planning into a single diffusion transformer module.
Instead of committing to a single plan, EnDfuser
produces a distribution of candidate trajectories
(128 for our case) from a single perception frame
through ensemble diffusion. By observing the full
set of candidate trajectories, EnDfuser provides in-
terpretability for uncertain, multimodal future tra-
jectory spaces. Using this information we design a
simplistic “safety-rule” that improves the system’s
driving score by 1.7% on the LAV benchmark. Our
findings suggest that ensemble diffusion, used as a
drop-in replacement for traditional point-estimate
trajectory planning modules, can contribute to an
uncertainty-aware decision making process in End-
to-End driving policies by modeling the uncertainty
of the posterior trajectory distribution.

1 Introduction

Uncertainty quantification (UQ) of machine learn-
ing systems is the problem of detecting situations in
which a learned system cannot make a reliable pre-
diction and is more likely to make a mistake [1]. UQ
is especially important in the autonomous driving
(AD) domain, where uncertainty about the correct
action can have catastrophic consequences. Among
other factors, the uncertainty of a learned AD sys-
tem can be caused by sensor noise, wrong labels,
real-world complexity, distribution shift, or archi-
tectural shortcomings [2]. Over the past decades,
substantial effort has been dedicated to the estima-
tion of uncertainty in learned systems, including
Bayesian methods [3], Monte Carlo dropout [4], en-
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sembles [5] and deterministic UQ methods [6]. In
this work, we present a diffusion-based approach to
uncertainty quantification.

Diffusion models are expressive generative models,
proven to excel at modeling expressive distributions
given data, like generating images [7, 8], video [9] and
audio [10]. They are capable of modeling trajectories
for motion planning and closed-loop robotic control
tasks [11, 12], including autonomous driving [13—
16]. A key to the success of diffusion models is
that they can model multimodal distributions and
are stable to train. In contrast to many traditional
prediction models, which can only predict a single
point estimate, diffusion models can generate an
entire set of predictions for any single input.

In this study, we examine a diffusion model for
end-to-end (E2E) autonomous driving. We approach
uncertainty quantification through the introduction
of a diffusion-based planner that can predict an
arbitrary number of candidate trajectories in the
closed-loop CARLA simulator [17]. Our method can
assist in answering the following questions: When
and where does the agent experience uncertainty,
what is the cause, and what can it teach us about
the underlying data distribution? Without changing
the ground truth data or perception architecture of
our baseline, we show that a probabilistic planner
based on denoising diffusion can produce strong un-
certainty estimates that can improve driving perfor-
mance and provide insights into biases in the agent’s
training distribution. We demonstrate the potential
benefit of uncertainty information for the end-to-end
planning task by introducing a simple uncertainty-
informed heuristic. Our work establishes a basis for
advanced filtering strategies, capable of detecting
uncertain, potentially dangerous situations in sparse
driving data. Our contributions are as follows:
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e We present EnDfuser, a simple end-to-end driv-
ing agent capable of modeling planning uncer-
tainty in closed-loop driving scenarios in the
CARLA simulator.

e We show that a simple uncertainty-informed
heuristic can increase the driving score of EnD-
fuser by 1.7% in the LAV benchmark.

e We demonstrate that the posterior trajectory
distribution can aid in extracting the long tail
of the driving distribution by revealing occur-
rences of potentially safety-critical situations.

2 Related Work
2.1 UQ for closed-loop E2E AD

UQ is an essential aspect of autonomous driving sys-
tems, with research spanning across the domains of
perception, prediction, planning, and control [2, 18].
Several studies have focused on UQ in closed-loop
end-to-end planning approaches within the popular
CARLA simulator [17]. Tai et al. [19] predict un-
certainties over direct control actions. They choose
a GAN-based approach in which the stochastic ele-
ment is derived from a style transfer performed on
the input image. Cai et al. [20] predict the variances
of the speed and yaw distributions with a Gaussian
mixture model (GMM). VTGNet [21] simultaneously
predicts future trajectories, as well as the associated
uncertainty of every trajectory position. More re-
cently, VADv2 [22] models uncertainty implicitly
by sampling from the planning action space in a
probabilistic manner. It first defines a discretized
action vocabulary of 4096 anchor trajectories and
then assigns a probability to each candidate. Fi-
nally, TransFuser++ does not explicitly model un-
certainty but has the ability to leverage the speed
classifier’s softmax confidence score in its control
decision. However, this is limited to its prediction of
longitudinal movement (velocity) and requires the
use of a discrete speed classifier.

2.2 Diffusion models for AD and UQ

Diffusion for AD planning. Diffusion models [7]
have been successfully applied to a wide range of
perception tasks [23], as well as tasks in the domain
of AD [24-26]. Several works on AD planning and
control have adopted diffusion in their policies.

In the popular nuPlan simulator [27], Diffusion-
ES uses unconditional diffusion to reduce the tra-
jectory search space to the manifold of plausible
trajectories w.r.t. the training set, then performs
a gradient-free evolutionary search on the reduced
solution space [13]. Diffusion Planner employs a
conditional diffusion transformer [16]. In the non-
reactive NAVSIM benchmark [28], DiffusionDrive

extends a TransFuser [29] baseline with truncated
diffusion on a set of noisy anchor trajectories, achiev-
ing real-time inference speed [14], while GoalFlow
combines denoising diffusion and flow matching [30],
using goal points for guidance [15]. In D4RL, a
popular simulator for reinforcement learning (RL)
agents [31], Venkatraman et al. adopt diffusion for
their offline RL policy by producing latent candi-
dates that are passed to a separate autoregressive
policy decoder for direct action planning [32]. Like-
wise, Chu et al. integrate latent diffusion in their
RL-based approach in the CARLA simulator [33].

Diffusion for UQ. Diffusion models have re-
cently been proposed as a method for uncertainty
modeling [34-36]. Shu et al. outline a UQ approach
based on diffusion ensembles, which, in contrast to
many other UQ methods, does not require UQ to
be part of the model architecture [36]. Diffusion-
based UQ has previously been applied to trajectory
prediction [37-39]. In addition to these approaches,
we leverage uncertainty information to increase the
safety of our agent specifically in the AD domain.
Although previous diffusion-based approaches in AD
actively use the multimodal posterior distribution,
they do not model uncertainty explicitly. To the
best of our knowledge, this is the first work applying
diffusion-based UQ for end-to-end imitation learning
in closed-loop AD planning.

3 Method

3.1 Preliminaries

End-to-end AD. End-to-end AD is a motion plan-
ning and control task, in which a driving agent
consumes raw sensor data and computes a motion
plan or control action. In AD, the plan is often
modeled as a trajectory in 2D space, where the ego
vehicle is located at the coordinates (0,0).

TransFuser+-4. We extend the TransFuser-+-
(TF++) agent [40]. TF++ achieves strong closed-
loop performance in LAV, Longest6 and other end-
to-end driving benchmarks in CARLA, and holds the
second position on the CARLA leaderboard 2.0 [41].
TF++ is based on imitation learning (IL) and has a
multitask architecture: Its perception encoder fuses
visual information from RGB images with depth
information from LiDAR bird’s eye view (BEV) im-
ages. Plans are decoded by a transformer+GRU
module that extracts waypoint queries, then pro-
cesses them into spatial path coordinates and a
target speed. An alternative variant, TF++ WP,
only predicts a spatiotemporal trajectory. TF++
models speed prediction as classification and uses
the softmax confidence score as a proxy for uncer-
tainty [40]. EnDfuser adopts the perception module
from TF++, but replaces all other modules with a
simple probabilistic diffusion planner.
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Figure 1. EnDfuser architecture. (a) The TransFuser++ perception backbone consumes two modalities, RGB
images from the ego perspective and a LiDAR birds-eye-view (BEV) image. Transformer-based sensor fusion is
performed between the two convolutional branches, after which four auxiliary perception tasks are learned (BEV
segmentation, BEV object detection, ego perspective depth estimation and ego perspective segmentation). (b) We
enrich the BEV features with a driving instruction target point (TP), the current velocity and the diffusion step k.
(c) We iteratively denoise trajectories 7" sampled from a Gaussian, conditioning on the enriched BEV features via

cross attention.

3.2 Planning with a diffusion model

We focus on UQ at the action level, specifically
on the posterior action distribution predicted by
a learned model. Diffusion models aim to model
a distribution over a stochastic variable, given a
data set D = {x;}~ ;. When fitted to the data set,
this allows us to retrieve samples distributed as the
underlying data distribution X ~ pg(x). In our AD
application, we sample driving trajectories of the
ego vehicle 7 given an observation O.

We choose a denoising diffusion probabilistic
model (DDPM) [7] as our underlying diffusion model.
At the core of DDPM is the forward diffusion pro-
cess, indexed with k, which adds noise to the sample
from the data distribution 7° and ends in a known
distribution like the Gaussian distribution.

¢ = VarT? + V1 — age,

The sequence @y is termed the diffusion schedule
and corresponds to the amount of noise added to
a sample at diffusion step k. A sample from a
trained diffusion model is produced by an iterative
process starting from a normally distributed value
% ~ N(0,TI) and updated as

where € ~ N(0,1). (1)

Tkil = (')/ka + ngG(Tka O’ k)) + Ekea (2)
where 74(+) is the denoising network, ¢ ~ N(0,1),
and ¥, &F are coefficients given by the diffusion
schedule. The denoising network is trained to predict
the clean sample given the corrupted sample, by
minimizing

Ekr00, [HTO —19(VarT? +v/1—age, O, k) HQ} . (3)

3.3 EnDfuser architecture

Parallel batch sampling is effectively realized using
a GPU. The denoiser predicts a batch of trajecto-
ries T; = {Tt,i}iv:“if“, where Niyfer is the number of
noisy input trajectories 7%, and ¢ is the simulation
frame. We condition the diffusion model on the
perception input Oy, which contains an RGB image,
a LiIDAR reading, a driving instruction target point
(TP), and the current velocity. For inference, we
adopt a DDIM schedule based on denoising diffusion
implicit models (DDIM) [42]. DDIM is not bound
to the Markovian process governing DDPM, which
allows the model to sample from the target distribu-
tion using much fewer denoising steps. We obtain
the perception encoding from the TF++ encoder’s
LiDAR bird’s eye view (BEV) branch (Fig. 1(a))
and enrich the BEV encoding with embeddings of
target point (driving instruction), velocity, and the
diffusion step k (Fig. 1(b)). Then we denoise the tra-
jectory with a diffusion-based transformer decoder
(Fig. 1(c)). Similarly to TransFuser, EnDfuser’s out-
put trajectory is represented as 8 waypoints spaced
250ms apart, always describing the plan for the next
2 seconds. The shape of the noisy trajectories 7%
and the denoised trajectories T is (8 x 2), encoding 8
(z,y) waypoint coordinates. We adopt the planning
architecture introduced by Chi et al. [12], choosing
a diffusion transformer decoder over a U-Net-based
architecture. In the transformer block, each of the
8 noisy waypoints in 7F is represented with its own
token embedding of size 256. This allows 8 waypoint
queries to attend to the perception encoding (BEV
feature memory) individually, effectively performing
attention pooling as shown in Fig. 2.
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Figure 2. Attention pooling on the BEV features.
(a) TF++ WP uses learned queries. (b) Our diffusion
transformer uses noisy waypoint queries.

3.4 Measuring uncertainty

EnDfuser’s output representation 7; comprises 8
(z,y) waypoint coordinates, i.e. 16 variables. To
reduce the complexity of interpreting N candidates,
we transform 7; into a bivariate set of control com-
mands IC;. We extend the PID control logic of TF++
WP [40] for the transformation, as it directly per-
tains to the driving task. The desired speed and
yaw angle are first calculated based on the predicted
trajectory, before they are transformed into acceler-
ation, braking, and steering commands. We apply
these operations to all trajectories in 7;. The extrac-
tion logic is described in Alg. 1 (omitting frame ¢
for brevity). Speed is determined by the Euclidean
distance of two waypoints. Yaw is inferred from the
angle between the ego vehicle’s origin (0,0) and a
dedicated aim waypoint “aim_idx”, where “wp_dists”
are the distances between any waypoint and the ori-
gin, and “maxdist” is the maximum allowed distance
of “aim_idx” from the origin. We adopt the fixed
values “wp1”,“wps” and “maxdist” from the PID
controller of TF+-+ WP [40]. Like in previous works
[20], we can model two uncertainties, speed and yaw.
We define 62(K;P%) and 62(KY™™), respectively.

In practice, we rely only on the speed uncertainty
measure for two reasons: First, the calculated yaw
is not independent of speed, since the choice of
“aim_idx” depends on the waypoint distances. Sec-
ond, Jaeger et al. identify speed as the main source of
multimodality in the task design of CARLA leader-
board 1.0, since the route to follow is defined un-
ambiguously by the target points [40]. In this work
we therefore opt for the speed variance 62(K:%) as
our primary uncertainty indicator and refer to it as
62 for brevity. Instances of high 62 are of partic-
ular interest to us. To emphasize the correlation
of 62 with safety-critical events, we implement an
optional rule-based safety system. The added safety
rule states that the agent should override the desired
speed with a value of 0m/s if 62 exceeds a given
threshold A, forcing the agent to brake. We find that
this simple addition marginally improves EnDfuser’s
infraction score, as seen in Section 4.

Algorithm 1 Extracting uncertainties

Data: Observation O

Result: Uncertainty estimates 62, &5

T < 719(0) // sample a batch of trajectories

foreach 7; € T do
7; + {wpo,...,wpr} // 8 WPs, 250ms apart
&P |lwpy — wps? x 2 // speed (m/s)
wp_dists < {d € ||7:]|* : d < maxdist}
aim_idz + arg max(wp_dists)
nzjaw%arctanZ(wpaimidm)@ // yaw (deg.)

62« G2 ({kP"}), 62 « 62({

K:EIL:[(I'U) })

3.5 Implementation

We train EnDfuser with imitation learning using the
publicly available TransFuser++ data set [40, 43],
which was recorded by an expert demonstrator. The
expert is a rule-based agent that can access privi-
leged information from the CARLA simulator, such
as the locations of the ego vehicle and obstacles [29,
40]). This privileged information is unavailable to
the sensor-based EnDfuser. Ground truth data are
collected by having the expert traverse the training
towns. The training samples used by EnDfuser in-
clude recorded observations O (LiDAR, RGB image,
speed, and next target point (TP)) and are labeled
with the expert’s driven trajectories T4 (a set of
8 2D points from the ego vehicle’s frame of refer-
ence). The TPs are GNSS-based anchor points on
the town maps (30 meters apart on average) and
describe the route to follow. The full TF++ dataset
has some 555,000 training samples. TF-++ uses
the expert’s path (lateral plan) and target speed
(longitudinal plan) instead of trajectories. This is re-
quired to model speed multimodally. EnDfuser does
not require this path-+speed split since it can model
the multimodal trajectory distribution directly.
Models are evaluated in a closed-loop manner by
running the agent through evaluation routes in the
CARLA simulator. The observed metrics are driving
score (DS), route completion (RC) and infraction
score (IS), where RC is the average route comple-
tion percentage, IS is a geometric series of infraction
penalties for collisions and red-light infractions in
(0,1) and DS is the weighted sum of every per-route
RC multiplied by the per-route IS [29].

Training. We train EnDfuser with DDPM and
100 denoising steps. The diffusion model can be
trained to predict noise €, or trajectories 7. Al-
though both training approaches produce functional
driving policies, we find that a trajectory prediction
network 7Ty can denoise a valid trajectory within
only 2 DDIM steps, while a noise prediction network
€p requires at least 10 DDIM steps to produce an
equivalent level of driving proficiency. As computa-
tional requirements scale linearly with the number of



Table 1. Runtime scaling of EnDfuser: EnDfuser
with N; = 128 and 2 DDIM steps runs only slightly
slower than TF++, but provides a rich set of candidate
trajectories.

Steps N, time (ms) | time (FPS) 1

2 128 0.0335 29.047

4 128 0.0386 25.881

8 128 0.0477 20.940

16 128  0.0662 15.116

2 1 0.0344 29.787

2 256  0.0374 26.742
TransFuser++  0.0300 33.252

diffusion steps, we opt for the trajectory prediction
network. The models are trained on 2 A100 GPUs
with a batch size of 48. Training follows the general
regime of TF++ and is performed in two stages:
First, the TF+4 perception backbone is pre-trained
for 31 epochs on the 4 perception tasks shown in
Fig. 1(a). Then the full EnDfuser architecture is
trained end-to-end for an additional 61 epochs.

Inference. We evaluate using a DDIM sched-
ule with 2 steps, after which we choose a single
candidate trajectory to follow. As the sequential
denoising process introduces additional computa-
tional overhead, keeping the number of denoising
steps low helps maximize inference speed. This does
not apply to the number of sampled candidates N, :
Sampling from the noise prior is trivial and N, is
only limited by the GPU’s parallel processing ca-
pability. We tested this on an NVIDIA RTX 4090
GPU with different configurations. Table 1 shows
that the inference speed does not scale considerably
with the number of simultaneously predicted trajec-
tory candidates, only with the number of applied
denoising steps. Using 2 DDIM steps, EnDfuser can
produce up to 128 candidate trajectories simultane-
ously before any substantial slowdown occurs. The
resulting framerate of 29.047 FPS is only marginally
slower than TransFuser++. To achieve real-time
performance, we choose N = 128 for our further
experiments.

4 Experiments and Results

4.1 Experiment setup

We evaluate our agent on the LAV [44] and
Longest6 [29] benchmarks in CARLA. These were
created as local alternatives to the official CARLA
leaderboard 1.0, which relies on external servers.
In the benchmarks, agents must navigate scenarios
from the NHTSA pre-crash scenario typology [45],
with simulated traffic, weather and daylight con-
ditions, as well as predefined adversarial scenarios.

Longest6 combines the 6 longest routes from CARLA
towns 1 to 6 for a total of 36 routes with an average
length of 1.5km. It is considered a training bench-
mark, i.e. the agents are evaluated on the same 36
routes in the same 6 towns which also constitute the
training environment. In contrast, the shorter LAV
benchmark excludes towns 2 and 5 from the training
data, then uses only them as the evaluation envi-
ronment. LAV is nevertheless easier to solve than
Longest6, due to the higher traffic density present
in the latter. To account for the stochastic nature of
the evaluations, we train using 3 different seeds for
each agent configuration, then evaluate each model
9 times and present the average score.

4.2 Speed variance and safety rule

We evaluate different EnDfuser variants, exploring
the effect of variance threshold A\ on closed-loop
driving performance. Tables 2 and 3 show the top-
scoring EnDfuser configurations. On the LAV bench-
mark, EnDfuser’s base configuration outperforms
TF++ in DS and IS. With the safety rule, it achieves
an additional reduction of 0.05 in vehicle collisions
per kilometer (compare Table 2). Although all EnD-
fuser variants perform less well overall on Longest6
than TF++4, the safety rule still decreases the overall
vehicle collision rate from 1.1 to 1.02 collisions per
kilometer on this benchmark. However, this does
not result in a higher DS because the gain in IS is
offset by a reduction in RC due to an increase in
agent timeouts (compare Table 3). We find that A
values between 0.3 and 0.4 yield the highest scores.
A lower A is detrimental to RC and a higher A shows
lower increases in IS. On LAV, A = 0.4 yields the
highest improvement, without reducing RC.

Relevance of speed variance. While the re-
sults with the active safety rule differ only marginally
from the EnDfuser baseline, there is a clear dif-
ference in overall driving behavior. The average
agent speed decreases with lower 62 thresholds )\,
as the agent brakes more often. EnDfuser’s aver-
age speeds are higher in LAV (8.169km/h) than
Longest6 (5.308 km/h), indicating a higher toler-
ance for delays. This is likely due to higher traffic
density in Longest6, and coincides with a lower time-
out rate (compare Tables 2 and 3). This presents
the possibility that any improved IS on LAYV is a
consequence of lower average speeds, rather than
braking intelligently. We test this by reducing EnD-
fuser’s speed naively by 0.5km/h and 1.0km/h, to
observe the effect of different average speed reduc-
tions on LAV. While Fig. 3 shows that a larger
speed reduction achieves a similar increase in DS
as the safety rule, it coincides with increased route
timeouts. We conclude that the safety rule is more
likely to brake when the agent enters potentially
dangerous situations.



Table 2. LAV evaluation. The metrics are driving score (DS), route completion (RC) infraction score (IS),
collisions with pedestrians, vehicles and static objects, red lights, stop signs, route deviations, timeouts and the
agent becoming blocked. Average scores and standard deviations are determined over 27 LAV evaluations (3 model
seeds and 9 repetitions). The highest non-expert scores are printed in bold, second highest are underlined.

Agent | DSt RCtT ISt |Ped| Veh| Stat| Red| Dev] Stop| TO| Block]|

Ours, no rule |76.4 +5 98.7 +2 0.773 +£0.05 |0.00 0.37 0.06 0.12 0.14 0.00 0.04 0.01
Ours, A =0.4|78.1 +4 98.9 +1 0.789 +0.05(0.00 0.32 0.03 0.13 0.16 0.00 0.07 0.01
Ours, A =0.3|77.1 +5 98.7 +1 0.781 +0.05 {0.00 0.34 0.06 0.14 0.15 0.00 0.08 0.01

TF++ [40] |70 99 0.70 |0.01 0.63 0.01 0.04 0.26 0.00 0.05 0.00
Ezpert [40] |94 95 0.99 |0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.08

Table 3. Longest6 evaluation. The metrics are driving score (DS), route completion (RC), infraction score
(IS), collisions with pedestrians, vehicles and static objects, red lights, route deviations, timeouts and the agent
becoming blocked. Average scores and standard deviations are determined over 27 Longest6 evaluations (3 model
seeds and 9 repetitions). The highest non-expert scores are printed in bold, second highest are underlined.

Agent | DSt RCt ISt | Ped| Veh| Stat| Red| Dev] TO| Block]|

Ours, no rule | 62.6 +6 91.8 +£3 0.669 +£0.06 |0.01 1.10 0.05 0.11 0.01 0.16 0.05
Ours, A =0.4|61.9 £6 90.1 £3 0.673 £0.06|0.01 1.02 0.03 0.10 0.00 0.20 0.05
Ours, A =0.3|61.6 £6 91.6 £3 0.656 =0.07/0.01 1.11 0.04 0.10 0.00 0.17 0.05

TF++ [40] |69 94 0.72 |0.00 0.83 0.01 0.05 0.00 0.07 0.06
Ezpert [40] | 81 90 0.91 | 0.01 021 0.00 0.01 0.00 0.07 0.09
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Figure 3. Effect of different driving rules in Figure 4. Uncertainty map in Town02. Desired
LAV. We compare three different agent types: Baseline speed variances for 6 routes driven by EnDfuser, down-
EnDfuser O, EnDfuser + naive speed reduction (km/h) sampled to 2Hz and color coded from 62 = 0 (o) to
A and EnDfuser + safety rule . &2 = 0.6 (o). Elevated variance is visible at intersections
and bends. All towns can be found in the appendix.

4.3 Uncertainty map

In the following experiments, we use 62 to detect full Longest6 evaluation (approximately 700,000
high-uncertainty events. We collect 62(K;P?) at frames). Instances of 62 > 0.4 appear in fewer than
evaluation time for each inference frame ¢t. We 0.001% of all frames. We then localize uncertainty
track the agent’s speed variance and locations at regions by observing the agent’s positions where
any given point along the evaluation routes for a high variance was recorded. Figure 4 associates
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Figure 5. Categories of uncertain situations. The
majority of uncertainty spikes coincides directly with
traffic interactions. We investigate the agent’s context
in the 100 least certain situations by recording the sen-
sory input of one Longest6 evaluation (36 episodes) and
extracting the 100 frame sequences with the highest vari-
ance values §2(KC;P%).

the variances with the points along the route where
they occurred. There are clear clusters of uncer-
tainty near intersections and bends, where the ego
vehicle is more likely to interact with other traffic,
than on straight stretches of road. Occurrences of
high variance (“spikes”) coincide with the locations
of generated adversarial scenarios in the CARLA
routes. This implies that speed uncertainty can be
used to pinpoint high-risk events and possibly to
filter for challenging segments in training data sets.

4.4 Categorization

For an informed visual inspection of uncertain sit-
uations, we record the sensor readings and plan
output for one full Longest6 evaluation and extract
the frame sequences around the 100 highest uncer-
tainty values. We then categorize the circumstances
surrounding the spikes. As shown in Fig. 5, most
uncertain situations occur during interactions with
other agents. Of the 100 events, 83 occur during
agent interactions, with 36 being highly dynamic
ones, in which the agent changes lanes or crosses
junctions, such as the example in Fig. 6(a). This
coincides with the two most common infractions in
EnDfuser and TF++4, i.e., invading occupied lanes
and not yielding to other traffic at intersections (the
latter case being mentioned as one of TF++s failure
modes on the CARLA leaderboard 2.0 [41]). In 17 of
the 100 observed cases, no clear source of uncertainty
is discernible through visual inspection. We inter-
pret such behavior as instances of causal confusion.
EnDfuser either slows down during the spike or, if
already standing still, experiences the spike before
accelerating. As Longest6 is a training benchmark,

it is also possible that the model associates static
scene elements with driving behaviors. Collisions
occur in 7 of the 100 inspected scenes, while unsafe
behavior (cutting traffic, halting without reason)
appears in 9 additional cases, Figure 6(b) illustrates
the moment before one such collision during a lane
change. Note that the randomly selected speed (in
magenta) resulted in suboptimal behavior here. Had
the safety rule been active, the agent could have over-
ridden the suboptimal speed prediction with 0m/s
and forced the ego vehicle to brake.

4.5 Further observations

Multimodality. The training objective of the dif-
fusion model is to predict a representative sample
of the ground truth trajectory distribution (as dis-
cussed in Section 3.2), allowing it to capture mul-
timodality. Multiple modes are sometimes appar-
ent in the desired speed distributions, like the one
seen in Fig. 6(b). This implies that the posterior
speed distribution contains more granular uncer-
tainty information than can be captured by a simple
variance-based measure and that more sophisticated
measures (e.g., entropy) may use it more effectively.
Aleatoric uncertainty. The unpredictable
movement of other agents, as well as traffic signals,
appears to be linked to high speed uncertainty, like
in Fig. 6(a). We interpret this, at least partially, as
an expression of aleatoric uncertainty, which is in-
herent to the environment and cannot be reduced by
adding more driving demonstrations during training.
Lateral label noise. Through further empirical
observation, we discovered that another source of
uncertainty is label noise in the training data. This
uncertainty pertains to lateral movement rather than
speed. Like TF++, EnDfuser always receives the
next TP along the route as its driving command, but
no instruction beyond this. In Fig. 6(c), the planned
trajectory extends beyond the known TP. Such oc-
currences introduce high lateral uncertainty in the
predicted plan trajectories 7, indicating strong lat-
eral conditioning on the target point and suggesting
the presence of data noise in the training setup and
expert data. Incidentally, this occurs far enough
from the vehicle’s origin to be filtered out by the
transformation 7 — K in Alg. 1, which only con-
siders a short planning horizon and discards infor-
mation further than 1 second into the future (speed)
or more than 3 meters away (yaw). Choosing a dif-
ferent transformation operation could cause erratic
driving behavior. The observation may also offer an
explanation why using two consecutive TPs did not
result in improved driving in recent work [41].

4.6 Limitations

EnDfuser fails to predict some safety-critical situa-
tions, possibly due to insufficient, one-sided coverage
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during training. An example can be found in ap-
pendix A.1. Our experiments also reveal significant
noise in the key metrics, with o(DS) up to 6%, and
DS ranging from 56.8% to 67.7% in Longest6. This
limits comparability, given the considerable com-
putational resources required by even a modest 27
repetitions per experiment. As a consequence, the
EnDfuser baseline is yet to be compared with estab-
lished non-diffusion UQ methods like GMM. Future
work should explore more difficult settings like the
CARLA leaderboard 2.0/2.1 or real-world settings,
using a more informed uncertainty measure. Al-
though speed variance is an easily controllable quan-
tifier, it may not be sufficient for interpreting larger
speed ranges and scene complexities. In addition to
speed, uncertainty measures should consider yaw,
which requires disentangling its representation from
speed. Furthermore, variance alone cannot distin-
guish between aleatoric and epistemic uncertainty.
For instance, some out-of-distribution frames (e.g.
post-infraction frames) can be visually identified
(there are no infractions in the training data), but
this does not replace a quantitative distinction. Pos-
sible candidate measures include entropy, as well as
density-based measures like mode count and curva-
ture. Finally, the braking heuristic based on a hard-

coded threshold is simplistic and not expected to
generalize. Future research should explore dynamic
approaches as well as learned safety heuristics.

5 Conclusion

We introduced EnDfuser, a simple yet powerful AD
motion planning model based on denoising diffu-
sion and show its efficacy on the LAV and Longest6
benchmarks. Using the diffusion policy, we achieve
effective, real-time uncertainty modeling by generat-
ing a set of 128 candidate trajectories simultaneously.
By modeling the variance of the predicted speed dis-
tribution, we demonstrate that this set captures
the model’s prediction uncertainty and can be in-
corporated into the agent’s planning process. The
resulting 1.7% increase in driving score in LAV and
our extensive visual investigation highlight the po-
tential for more sophisticated heuristics informed
by the posterior trajectory distribution 7. Our en-
semble diffusion method can also be used to extract
areas of high agent uncertainty at test time, includ-
ing instances with label noise, possibly facilitating
data set mining by filtering for the long tail of the
driving distribution.
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A Appendix

A.1 Limitation example

\ ¢
1] -0 -5 0 5 10
(a) imminent collision (b) low uncertainty

Figure A.l1. Prediction failure. (a) EnDfuser
changes lanes while taking a right turn. It ignores the
vehicle to its right and causes a collision. (b) No spike
in uncertainty is detectable before the collision.

A.2 Diffusion steps

Inference speed scales linearly with the denoising
schedule. As a consequence, we want to use as few
denoising steps as possible. Increasing the number
above 2 can yield higher driving scores, but not
sufficiently to justify the slower inference speed.

Table A.1. Ablation study. Longer denoising sched-
ules have a stronger effect on inference speed than on
driving performance, as demonstrated on LAV.

Steps | FPS1 | DSt  RCt  IS1?

2129.047 | 76.4 =5 98.7 £2  0.773 £0.05
4125881 | 781 +4 99.0 1 0.790 +0.04
8120940 | 76.3 £6 98.3 £2 0.776 +0.06
16 | 15.116 | 77.8 =6 98.2 =1  0.793 +0.06

A.3 Uncertainty maps

We record the speed variances for a full Longest6
evaluation. Areas with a regular occurrence of ele-
vated speed variance are clearly visible around inter-
sections and bends. Each town displays the variances
of 6 cumulative routes driven by EnDfuser, down-
sampled to 2Hz and color coded from 62 =0 (o) to
62 = 0.6 (e) in the speed predictions. Town06 in par-
ticular has long stretches with elevated uncertainty.
All towns can be inspected below.
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Figure A.2. Uncertainty map in TownO1.
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Figure A.3. Uncertainty map in Town02.
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Figure A.4. Uncertainty map in Town03.
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Figure A.5. Uncertainty map in Town04.
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