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Abstract001

End-to-end planning systems for autonomous driv-002

ing are rapidly improving, especially in closed-loop003

simulation environments like CARLA. Many such004

driving systems either do not consider uncertainty as005

part of the plan itself or obtain it by using specialized006

representations that do not generalize. In this paper,007

we propose EnDfuser, an end-to-end driving system008

that uses a diffusion model as the trajectory planner.009

EnDfuser effectively leverages complex perception010

information like fused camera and LiDAR features,011

through combining attention pooling and trajectory012

planning into a single diffusion transformer module.013

Instead of committing to a single plan, EnDfuser014

produces a distribution of candidate trajectories015

(128 for our case) from a single perception frame016

through ensemble diffusion. By observing the full017

set of candidate trajectories, EnDfuser provides in-018

terpretability for uncertain, multimodal future tra-019

jectory spaces. Using this information can directly020

increase safety by introducing a simple safety rule021

that improves the system’s driving score by 1.7%022

on the LAV benchmark. Our findings suggest that023

ensemble diffusion, used as a drop-in replacement024

for traditional point-estimate trajectory planning025

modules, can help improve the safety of driving de-026

cisions by modeling the uncertainty of the posterior027

trajectory distribution.028

1 Introduction029

Uncertainty quantification (UQ) of machine learn-030

ing systems is the problem of detecting situations in031

which a learned system cannot make a reliable pre-032

diction and is more likely to make a mistake [1]. UQ033

is especially important in the Autonomous Driving034

(AD) domain, where uncertainty about the correct035

action can have catastrophic consequences. Among036

other factors, the uncertainty of a learned AD sys-037

tem can be caused by sensor noise, wrong labels,038

real-world complexity, distribution shift, or archi-039

tectural shortcomings [2]. Over the past decades,040

substantial effort has been dedicated to the estima-041

tion of uncertainty in learned systems, including042

Bayesian methods [3], Monte Carlo dropout [4], en-043

sembles [5] and deterministic UQ methods [6]. In044

this work, we present a diffusion-based approach to045

uncertainty quantification.046

Diffusion models are expressive generative models, 047

proven to excel at modeling expressive distributions 048

given data, like generating images [7, 8], video [9] and 049

audio [10]. They are capable of modeling trajectories 050

for motion planning and closed-loop robotic control 051

tasks [11, 12], including autonomous driving [13– 052

16]. A key to the success of diffusion models is 053

that they can model multimodal distributions and 054

are stable to train. In contrast to many traditional 055

prediction models, which can only predict a single 056

point estimate, diffusion models can generate an 057

entire set of predictions for any single input. 058

In this study, we examine a diffusion model for 059

end-to-end (E2E) autonomous driving. We approach 060

uncertainty quantification through the introduction 061

of a diffusion-based planner that can predict an 062

arbitrary number of candidate trajectories in the 063

closed-loop CARLA simulator [17]. Our method can 064

assist in answering the following questions: When 065

and where does the agent experience uncertainty, 066

what is the cause, and what can it teach us about 067

the underlying data distribution? Without chang- 068

ing the ground truth data or perception architec- 069

ture of our baseline, we show that a probabilistic 070

planner based on denoising diffusion can produce 071

strong uncertainty estimates that can improve driv- 072

ing performance and provide insights into biases 073

in the agent’s training distribution. We demon- 074

strate the importance of uncertainty information 075

for the end-to-end planning task by using a sim- 076

ple uncertainty-informed safety rule to improve the 077

driving performance of our agent by 1.7% on the 078

LAV benchmark. Our work establishes a basis for 079

advanced filtering strategies, capable of detecting 080

uncertain, potentially dangerous situations in sparse 081

driving data. Our contributions are as follows: 082
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• We present EnDfuser, a simple end-to-end driv-083

ing agent capable of modeling planning uncer-084

tainty in closed-loop driving scenarios in the085

CARLA simulator.086

• We show that a simple uncertainty-informed087

safety rule improves the driving performance of088

EnDfuser by 1.7% in the LAV benchmark.089

• We demonstrate that the posterior trajectory090

distribution can aid in extracting the long tail091

of the driving distribution by revealing occur-092

rences of safety-critical situations.093

2 Related Work094

2.1 UQ for closed-loop E2E AD095

UQ is an essential aspect of autonomous driving sys-096

tems, with research spanning across the domains of097

perception, prediction, planning, and control [2, 18].098

Several studies have focused on UQ in closed-loop099

end-to-end planning approaches within the popular100

CARLA simulator [17]. Tai et al. [19] predict un-101

certainties over direct control actions. They choose102

a GAN-based approach in which the stochastic ele-103

ment is derived from a style transfer performed on104

the input image. Cai et al. [20] predict the variances105

of the speed and yaw distributions with a Gaussian106

mixture model (GMM). VTGNet [21] simultaneously107

predicts future trajectories, as well as the associated108

uncertainty of every trajectory position. More re-109

cently, VADv2 [22] models uncertainty implicitly110

by sampling from the planning action space in a111

probabilistic manner. It first defines a discretized112

action vocabulary of 4096 anchor trajectories and113

then assigns a probability to each candidate. Finally,114

TransFuser++ does not model uncertainty but has115

the ability to leverage the speed classifier’s softmax116

confidence score in its control decision. However,117

this is limited to its prediction of longitudinal move-118

ment (velocity) and requires the use of a discrete119

speed classifier.120

2.2 Diffusion models for AD and UQ121

Diffusion for AD planning. Diffusion models [7]122

have been successfully applied to a wide range of123

perception tasks [23], as well as tasks in the domain124

of AD [24–26]. Several works on AD planning and125

control have adopted diffusion in their policies.126

In the popular NuPlan simulator [27], Diffusion-127

ES uses unconditional diffusion to reduce the tra-128

jectory search space to the manifold of plausible129

trajectories w.r.t. the training set, then performs130

a gradient-free evolutionary search on the reduced131

solution space [13]. Diffusion Planner employs a132

conditional diffusion transformer [16]. In the non-133

reactive NAVSIM benchmark [28], DiffusionDrive134

extends a TransFuser [29] baseline with truncated 135

diffusion on a set of noisy anchor trajectories, achiev- 136

ing real-time inference speed [14], while GoalFlow 137

combines denoising diffusion and flow matching [30], 138

using goal points for guidance [15]. In D4RL, a 139

popular simulator for reinforcement learning (RL) 140

agents [31], Venkatraman et al. adopt diffusion for 141

their offline RL policy by producing latent candi- 142

dates that are passed to a separate autoregressive 143

policy decoder for direct action planning [32]. Like- 144

wise, Chu et al. integrate latent diffusion in their 145

RL-based approach in the CARLA simulator [33]. 146

Diffusion for UQ. Diffusion models have re- 147

cently been proposed as a method for uncertainty 148

modeling [34–36]. Shu et al. outline a UQ approach 149

based on diffusion ensembles, which, in contrast to 150

many other UQ methods, does not require UQ to 151

be part of the model architecture [36]. Diffusion- 152

based UQ has previously been applied to trajectory 153

prediction [37–39]. In addition to these approaches, 154

we leverage uncertainty information to increase the 155

safety of our agent specifically in the AD domain. 156

Although previous diffusion-based approaches in AD 157

actively use the multimodal posterior distribution, 158

they do not model uncertainty explicitly. To the 159

best of our knowledge, this is the first work applying 160

diffusion-based UQ for end-to-end imitation learning 161

in closed-loop AD planning. 162

3 Method 163

3.1 Preliminaries 164

End-to-end AD. End-to-end AD is a motion plan- 165

ning and control task, in which a driving agent 166

consumes raw sensor data and computes a motion 167

plan or control action. In AD, the plan is often 168

modeled as a trajectory in 2D space, where the ego 169

vehicle is located at the coordinates (0,0). 170

TransFuser++. We extend the TransFuser++ 171

(TF++) agent [40]. TF++ achieves strong closed- 172

loop performance in LAV, Longest6 and other end- 173

to-end driving benchmarks in CARLA, and holds the 174

second position on the CARLA leaderboard 2.0 [41]. 175

TF++ is based on imitation learning (IL) and has a 176

multitask architecture: Its perception encoder fuses 177

visual information from RGB images with depth 178

information from LiDAR bird’s eye view (BEV) im- 179

ages. Plans are decoded by a transformer+GRU 180

module that extracts waypoint queries, then pro- 181

cesses them into spatial path coordinates and a 182

target speed. An alternative variant, TF++ WP, 183

only predicts a spatiotemporal trajectory. TF++ 184

models speed prediction as classification and uses 185

the softmax confidence score as a proxy for uncer- 186

tainty [40]. EnDfuser adopts the perception module 187

from TF++, but replaces all other modules with a 188

simple probabilistic diffusion planner. 189
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Figure 1. EnDfuser architecture. (a) The TransFuser++ perception backbone consumes two modalities, RGB
images from the ego perspective and a LiDAR birds-eye-view (BEV) image. Transformer-based sensor fusion is
performed between the two convolutional branches, after which four auxiliary perception tasks are learned (BEV
segmentation, BEV object detection, ego perspective depth estimation and ego perspective segmentation). (b) We
enrich the BEV features with a driving instruction target point (TP), the current velocity and the diffusion step k.
(c) We iteratively denoise trajectories τ k sampled from a Gaussian, conditioning on the enriched BEV features via
cross attention.

3.2 Planning with a diffusion model190

We focus on UQ at the action level, specifically191

on the posterior action distribution predicted by192

a learned model. Diffusion models aim to model193

a distribution over a stochastic variable, given a194

data set D = {xi}Ni=1. When fitted to the data set,195

this allows us to retrieve samples distributed as the196

underlying data distribution x̃ ∼ pθ(x). In our AD197

application, we sample driving trajectories of the198

ego vehicle τ given an observation O.199

We choose a denoising diffusion probabilistic200

model (DDPM) [7] as our underlying diffusion model.201

At the core of DDPM is the forward diffusion pro-202

cess, indexed with k, which adds noise to the sample203

from the data distribution τ 0 and ends in a known204

distribution like the Gaussian distribution.205

τ k =
√
ᾱkτ

0+
√
1− ᾱkϵ, where ϵ ∼ N (0, I). (1)206

The sequence ᾱk is termed the diffusion schedule207

and corresponds to the amount of noise added to208

a sample at diffusion step k. A sample from a209

trained diffusion model is produced by an iterative210

process starting from a normally distributed value211

τ k ∼ N (0, I) and updated as212

τ k−1 =
(
γkτ k + ξkτ θ(τ

k,O, k)
)
+Σkϵ, (2)213

where τ θ(·) is the denoising network, ϵ ∼ N (0, I),214

and γk, ξk are coefficients given by the diffusion215

schedule. The denoising network is trained to predict216

the clean sample given the corrupted sample, by217

minimizing218

Ek,τ0,O,ϵ

[∥∥τ 0−τ 0
θ(
√
ᾱkτ

0+
√
1−ᾱkϵ,O, k)

∥∥2]. (3)219

3.3 EnDfuser architecture 220

Parallel batch sampling is effectively realized using 221

a GPU. The denoiser predicts a batch of trajecto- 222

ries Tt = {τ t,i}Ninfer
i=1 , where Ninfer is the number of 223

noisy input trajectories τ k, and t is the simulation 224

frame. We condition the diffusion model on the 225

perception input Ot, which contains an RGB image, 226

a LiDAR reading, a driving instruction target point 227

(TP), and the current velocity. For inference, we 228

adopt a DDIM schedule based on denoising diffusion 229

implicit models (DDIM) [42]. DDIM is not bound 230

to the Markovian process governing DDPM, which 231

allows the model to sample from the target distribu- 232

tion using much fewer denoising steps. We obtain 233

the perception encoding from the TF++ encoder’s 234

LiDAR bird’s eye view (BEV) branch (Fig. 1(a)) 235

and enrich the BEV encoding with embeddings of 236

target point (driving instruction), velocity, and the 237

diffusion step k (Fig. 1(b)). Then we denoise the tra- 238

jectory with a diffusion-based transformer decoder 239

(Fig. 1(c)). Similarly to TransFuser, EnDfuser’s out- 240

put trajectory is represented as 8 waypoints spaced 241

250ms apart, always describing the plan for the next 242

2 seconds. The shape of the noisy trajectories τ k
243

and the denoised trajectories τ is (8×2), encoding 8 244

(x, y) waypoint coordinates. We adopt the planning 245

architecture introduced by Chi et al. [12], choosing 246

a diffusion transformer decoder over a U-Net-based 247

architecture. In the transformer block, each of the 248

8 noisy waypoints in τ k is represented with its own 249

token embedding of size 256. This allows 8 waypoint 250

queries to attend to the perception encoding (BEV 251

feature memory) individually, effectively performing 252

attention pooling as shown in Fig. 2. 253
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Figure 2. Attention pooling on the BEV features.
(a) TF++ WP uses learned queries. (b) Our diffusion
transformer uses noisy waypoint queries.

3.4 Measuring uncertainty254

EnDfuser’s output representation Tt comprises 8255

(x, y) waypoint coordinates, i.e. 16 variables. To256

reduce the complexity of interpreting N candidates,257

we transform Tt into a bivariate set of control com-258

mands Kt. We extend the PID control logic of TF++259

WP [40] for the transformation, as it directly per-260

tains to the driving task. The desired speed and261

yaw angle are first calculated based on the predicted262

trajectory, before they are transformed into acceler-263

ation, braking, and steering commands. We apply264

these operations to all trajectories in Tt. The extrac-265

tion logic is described in Alg. 1 (omitting frame t266

for brevity). Speed is determined by the Euclidean267

distance of two waypoints. Yaw is inferred from the268

angle between the ego vehicle’s origin (0, 0) and a269

dedicated aim waypoint “aim idx”, where “wp dists”270

are the distances between any waypoint and the ori-271

gin, and “maxdist” is the maximum allowed distance272

of “aim idx” from the origin. We adopt the fixed273

values “wp1”,“wp3” and “maxdist” from the PID274

controller of TF++ WP [40]. Like in previous works275

[20], we can model two uncertainties, speed and yaw.276

We define σ̂2(Kspd
t ) and σ̂2(Kyaw

t ), respectively.277

In practice, we rely only on the speed uncertainty278

measure for two reasons: First, the calculated yaw279

is not independent of speed, since the choice of280

“aim idx” depends on the waypoint distances. Sec-281

ond, Jaeger et al. identify speed as the main source of282

multimodality in the task design of CARLA leader-283

board 1.0, since the route to follow is defined un-284

ambiguously by the target points [40]. In this work285

we therefore opt for the speed variance σ̂2(Kspd
t ) as286

our primary uncertainty indicator and refer to it as287

σ̂2
s for brevity. Instances of high σ̂2

s are of partic-288

ular interest to us. To emphasize the correlation289

of σ̂2
s with safety-critical events, we implement an290

optional rule-based safety system. The added safety291

rule states that the agent should override the desired292

speed with a value of 0m/s if σ̂2
s exceeds a given293

threshold λ, forcing the agent to brake. We find that294

this simple addition marginally improves EnDfuser’s295

infraction score, as seen in Section 4.296

Algorithm 1 Extracting uncertainties

Data: Observation O
Result: Uncertainty estimates σ̂2

s , σ̂
2
y

T ← τ θ(O) // sample a batch of trajectories

foreach τ i ∈ T do
τ i = {wp0, ..., wp7} // 8 WPs, 250<ms apart

κspd
i ← ∥wp1 − wp3∥2 × 2 // speed (m/s)

wp dists← {d ∈ ∥τ i∥2 : d ≤ maxdist}
aim idx← argmax(wp dists)
κyaw
i ←arctan2(wpaim idx)· 180

◦

π // yaw (deg.)

end

σ̂2
s ← σ̂2({κspd

i }), σ̂2
y ← σ̂2({κyaw

i })

3.5 Implementation 297

We train EnDfuser with imitation learning using the 298

publicly available TransFuser++ data set [40, 43], 299

which was recorded by an expert demonstrator. The 300

expert is a rule-based agent that can access privi- 301

leged information from the CARLA simulator, such 302

as the locations of the ego vehicle and obstacles [29, 303

40]). This privileged information is unavailable to 304

the sensor-based EnDfuser. Ground truth data are 305

collected by having the expert traverse the training 306

towns. The training samples used by EnDfuser in- 307

clude recorded observations O (LiDAR, RGB image, 308

speed, and next target point (TP)) and are labeled 309

with the expert’s driven trajectories τ gt (a set of 8 310

2D points from the ego vehicle’s frame of reference). 311

The TPs are GNSS-based anchor points on the town 312

maps (30 meters apart on average) and describe 313

the route to follow. The full TF++ dataset has 314

some 555, 000 training samples. NB: TF++ uses 315

the expert’s path (lateral plan) and target speed 316

(longitudinal plan) instead of trajectories. This is re- 317

quired to model speed multimodally. EnDfuser does 318

not require this path+speed split since it can model 319

the multimodal trajectory distribution directly. 320

Models are evaluated in a closed-loop manner by 321

running the agent through evaluation routes in the 322

CARLA simulator. The observed metrics are driving 323

score (DS), route completion (RC) and infraction 324

score (IS), where RC is the average route completion 325

distance (in %), IS is a geometric series of infraction 326

penalties for collisions and red-light infractions (in 327

(0, 1)) and DS is the weighted sum of every per-route 328

RC multiplied by the per-route IS (in %) [29]. 329

Training. We train EnDfuser with DDPM and 330

100 denoising steps. The diffusion model can be 331

trained to predict noise ϵ, or trajectories τ . Al- 332

though both training approaches produce functional 333

driving policies, we find that a trajectory prediction 334

network τ θ can denoise a valid trajectory within 335

only 2 DDIM steps, while a noise prediction network 336

ϵθ requires at least 10 DDIM steps to produce an 337

equivalent level of driving proficiency. As computa- 338

tional requirements scale linearly with the number of 339
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Table 1. Runtime scaling of EnDfuser: EnDfuser
with Nτ = 128 and 2 DDIM steps runs only slightly
slower than TF++, but provides a rich set of candidate
trajectories.

Steps Nτ time (ms) ↓ time (FPS) ↑
2 128 0.0335 29.047
4 128 0.0386 25.881
8 128 0.0477 20.940

16 128 0.0662 15.116

2 1 0.0344 29.787
2 256 0.0374 26.742

TransFuser++ 0.0300 33.252

diffusion steps, we opt for the trajectory prediction340

network. The models are trained on 2 A100 GPUs341

with a batch size of 48. Training follows the general342

regime of TF++ and is performed in two stages:343

First, the TF++ perception backbone is pre-trained344

for 31 epochs on the 4 perception tasks shown in345

Fig. 1(a). Then the full EnDfuser architecture is346

trained end-to-end for an additional 61 epochs.347

Inference. We evaluate using a DDIM sched-348

ule with 2 steps, after which we choose a single349

candidate trajectory to follow. As the sequential350

denoising process introduces additional computa-351

tional overhead, keeping the number of denoising352

steps low helps maximize inference speed. This does353

not apply to the number of sampled candidates Nτ :354

Sampling from the noise prior is trivial and Nτ is355

only limited by the GPU’s parallel processing ca-356

pability. We tested this on an NVIDIA RTX 4090357

GPU with different configurations. Table 1 shows358

that the inference speed does not scale considerably359

with the number of simultaneously predicted trajec-360

tory candidates, only with the number of applied361

denoising steps. Using 2 DDIM steps, EnDfuser can362

produce up to 128 candidate trajectories simultane-363

ously before any substantial slowdown occurs. The364

resulting framerate of 29.047 FPS is only marginally365

slower than TransFuser++. To achieve real-time366

performance, we choose N = 128 for our further367

experiments.368

4 Experiments and Results369

4.1 Experiment setup370

We evaluate our agent on the LAV [44] and371

Longest6 [29] benchmarks in CARLA. These were372

created as local alternatives to the official CARLA373

leaderboard 1.0, which relies on external servers.374

In the benchmarks, agents must navigate scenarios375

from the NHTSA pre-crash scenario typology [45],376

with simulated traffic, weather and daylight con-377

ditions, as well as predefined adversarial scenarios.378

Longest6 combines the 6 longest routes from CARLA 379

towns 1 to 6 for a total of 36 routes with an average 380

length of 1.5km. It is considered a training bench- 381

mark, i.e. the agents are evaluated on the same 36 382

routes in the same 6 towns which also constitute the 383

training environment. In contrast, the shorter LAV 384

benchmark excludes towns 2 and 5 from the training 385

data, then uses only them as the evaluation envi- 386

ronment. LAV is nevertheless easier to solve than 387

Longest6, due to the higher traffic density present 388

in the latter. To account for the stochastic nature of 389

the evaluations, we train using 3 different seeds for 390

each agent configuration, then evaluate each model 391

9 times and present the average score. 392

4.2 Speed variance and safety rule 393

We evaluate different EnDfuser variants, exploring 394

the effect of variance threshold λ on closed-loop 395

driving performance. Tables 2 and 3 show the top- 396

scoring EnDfuser configurations. On the LAV bench- 397

mark, EnDfuser’s base configuration outperforms 398

TF++ in DS and IS. With the safety rule, it achieves 399

an additional reduction of 0.05 in vehicle collisions 400

per kilometer (compare Table 2). Although all EnD- 401

fuser variants perform less well overall on Longest6 402

than TF++, the safety rule still decreases the overall 403

vehicle collision rate from 1.1 to 1.02 collisions per 404

kilometer on this benchmark. However, this does 405

not result in a higher DS because the gain in IS is 406

offset by a reduction in RC due to an increase in 407

agent timeouts (compare Table 3). We find that λ 408

values between 0.3 and 0.4 yield the highest scores. 409

A lower λ is detrimental to RC and a higher λ shows 410

lower increases in IS. On LAV, λ = 0.4 yields the 411

highest improvement, without reducing RC. 412

Relevance of speed variance. While the re- 413

sults with the active safety rule differ only marginally 414

from the EnDfuser baseline, there is a clear differ- 415

ence in overall driving behavior. The average agent 416

speed decreases with lower σ̂2
s thresholds λ, as the 417

agent brakes more often. EnDfuser’s average speeds 418

are higher in LAV (8.169) than in Longest6 (5.308), 419

indicating a higher tolerance for delays. This is 420

likely due to higher traffic density in Longest6, and 421

coincides with a lower timeout rate (compare Ta- 422

bles 2 and 3). This presents the possibility that 423

any improved IS on LAV is a consequence of lower 424

average speeds, rather than braking intelligently. 425

We test this by reducing EnDfuser’s speed näıvely 426

by 0.5 km/h and 1.0 km/h, to observe the effect of 427

different average speed reductions on LAV. While 428

Fig. 3 shows that a larger speed reduction achieves a 429

similar increase in DS as the safety rule, it coincides 430

with increased route timeouts. We conclude that the 431

safety rule is more likely to brake when the agent 432

enters potentially dangerous situations. 433
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Table 2. LAV evaluation. The metrics are driving score (DS), route completion (RC) infraction score (IS),
collisions with pedestrians, vehicles and static objects, red lights, stop signs, route deviations, timeouts and the
agent becoming blocked. Average scores and standard deviations are determined over 27 LAV evaluations (3 model
seeds and 9 repetitions). The highest non-expert scores are printed in bold, second highest are underlined.

Agent DS↑ RC↑ IS↑ Ped↓ Veh↓ Stat↓ Red↓ Dev↓ Stop↓ TO↓ Block↓
Ours, no rule 76.4 ±5 98.7 ±2 0.773 ±0.05 0.00 0.37 0.06 0.12 0.14 0.00 0.04 0.01
Ours, λ = 0.4 78.1 ±4 98.9 ±1 0.789 ±0.05 0.00 0.32 0.03 0.13 0.16 0.00 0.07 0.01
Ours, λ = 0.3 77.1 ±5 98.7 ±1 0.781 ±0.05 0.00 0.34 0.06 0.14 0.15 0.00 0.08 0.01

TF++ [40] 70 99 0.70 0.01 0.63 0.01 0.04 0.26 0.00 0.05 0.00

Expert [40] 94 95 0.99 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.08

Table 3. Longest6 evaluation. The metrics are driving score (DS), route completion (RC), infraction score
(IS), collisions with pedestrians, vehicles and static objects, red lights, route deviations, timeouts and the agent
becoming blocked. Average scores and standard deviations are determined over 27 Longest6 evaluations (3 model
seeds and 9 repetitions). The highest non-expert scores are printed in bold, second highest are underlined.

Agent DS↑ RC↑ IS↑ Ped↓ Veh↓ Stat↓ Red↓ Dev↓ TO↓ Block↓
Ours, no rule 62.6 ±6 91.8 ±3 0.669 ±0.06 0.01 1.10 0.05 0.11 0.01 0.16 0.05
Ours, λ = 0.4 61.9 ±6 90.1 ±3 0.673 ±0.06 0.01 1.02 0.03 0.10 0.00 0.20 0.05
Ours, λ = 0.3 61.6 ±6 91.6 ±3 0.656 ±0.07 0.01 1.11 0.04 0.10 0.00 0.17 0.05

TF++ [40] 69 94 0.72 0.00 0.83 0.01 0.05 0.00 0.07 0.06

Expert [40] 81 90 0.91 0.01 0.21 0.00 0.01 0.00 0.07 0.09

Figure 3. Effect of different driving rules in
LAV. We compare three different agent types: Baseline
EnDfuser ◦, EnDfuser + näıve speed reduction (km/h)
△ and EnDfuser + safety rule □.

4.3 Uncertainty map434

In the following experiments, we use σ̂2
s to detect435

high-uncertainty events. We collect σ̂2(Kspd
t ) at436

evaluation time for each inference frame t. We437

track the agent’s speed uncertainty and locations438

at any given point along the evaluation routes for439

Figure 4. Uncertainty map in Town02. Desired
speed variances for 6 routes driven by EnDfuser, down-
sampled to 2Hz and color coded from σ̂2

s = 0 (◦) to
σ̂2
s = 0.6 (•). Elevated variance is visible at intersections

and bends. All towns can be found in the appendix.

a full Longest6 evaluation (approximately 700, 000 440

frames). Instances of σ̂2
s > 0.4 appear in fewer than 441

0.001% of all frames. We then localize uncertainty 442

regions by observing the agent’s positions where 443

high variance was recorded. Figure 4 associates 444
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Figure 5. Categories of uncertain situations. The
majority of uncertainty spikes coincides directly with
traffic interactions. We investigate the agent’s context
in the 100 least certain situations by recording the sen-
sory input of one Longest6 evaluation (36 episodes) and
extracting the 100 frame sequences with the highest vari-
ance values σ̂2(Kspd

t ).

the variances with the points along the route where445

they occurred. There are clear clusters of uncer-446

tainty near intersections and bends, where the ego447

vehicle is more likely to interact with other traffic,448

than on straight stretches of road. Occurrences of449

high variance (“spikes”) coincide with the locations450

of generated adversarial scenarios in the CARLA451

routes. This implies that speed uncertainty can be452

used to pinpoint high-risk events and possibly used453

to filter for challenging segments in training data454

sets.455

4.4 Categorization456

For an informed visual inspection of uncertain situ-457

ations, we record the sensor readings and the plan458

output of EnDfuser for one full Longest6 evaluation459

and extract the frame sequences around the 100460

highest uncertainty values. We then categorize the461

circumstances surrounding the spikes. As shown462

in Fig. 5, most uncertain situations occur during463

interactions with other agents. Of the 100 events,464

83 occur during agent interactions, with 36 being465

highly dynamic interactions, in which the agent is466

changing lanes or crossing junctions, such as the467

crossing shown in Fig. 6(a). This coincides with468

the two most common infractions in EnDfuser and469

TF++, i.e., invading occupied lanes and not yield-470

ing to other traffic at intersections (the latter case471

being mentioned as one of TF++’s failure modes472

on the CARLA leaderboard 2.0 [41]). In 17 of the473

100 observed cases, no clear source of uncertainty474

is discernible through visual inspection. We inter-475

pret such behavior as instances of causal confusion.476

EnDfuser either slows down during the spike or, if477

already standing still, experiences the spike before 478

accelerating. As Longest6 is a training benchmark, 479

it is also possible that the model associates static 480

scene elements with driving behaviors. Collisions 481

occur in 7 of the 100 inspected scenes, while unsafe 482

behavior (cutting traffic, halting without reason) 483

appears in 9 additional cases, Figure 6(b) illustrates 484

the moment before one such collision during a lane 485

change. Note that the randomly selected speed (in 486

magenta) resulted in suboptimal behavior here. Had 487

the safety rule been active, the agent could have over- 488

ridden the suboptimal speed prediction with 0m/s 489

and forced the ego vehicle to brake. 490

4.5 Further observations 491

Multimodality. The training objective of the dif- 492

fusion model is to predict a representative sample 493

of the ground truth trajectory distribution (as dis- 494

cussed in Section 3.2), allowing it to capture mul- 495

timodality. Multiple modes are sometimes appar- 496

ent in the desired speed distributions, like the one 497

seen in Fig. 6(b). This implies that the posterior 498

speed distribution contains more granular uncer- 499

tainty information than can be captured by a simple 500

variance-based measure and that more sophisticated 501

measures (e.g., entropy) may use it more effectively. 502

Aleatoric uncertainty. The unpredictable 503

movement of other agents, as well as traffic signals, 504

appears to be linked to high speed uncertainty (like 505

in Fig. 6(a)). We interpret this, at least partially, as 506

an expression of aleatoric uncertainty, which is in- 507

herent to the environment and cannot be reduced by 508

adding more driving demonstrations during training. 509

Lateral label noise. Through further empirical 510

observation, we discovered that another source of 511

uncertainty is label noise in the training data. This 512

uncertainty pertains to lateral movement rather than 513

speed. Like TF++, EnDfuser always receives the 514

next TP along the route as its driving command, but 515

no instruction beyond this. In Fig. 6(c), the planned 516

trajectory extends beyond the known TP. Such oc- 517

currences introduce high lateral uncertainty in the 518

predicted plan trajectories T , indicating strong lat- 519

eral conditioning on the target point and suggesting 520

the presence of data noise in the training setup and 521

expert data. Incidentally, this uncertainty occurs 522

far enough from the vehicle’s origin to be filtered 523

out by the transformation T → K in Alg. 1, which 524

only considers a short planning horizon and discards 525

information further than 1 second into the future 526

(speed) or more than 3 meters away (yaw). Choos- 527

ing a different transformation operation could cause 528

erratic driving behavior. The observation may also 529

offer an explanation for why giving the agent two 530

consecutive target points did not result in an im- 531

provement in driving quality in recent studies on 532

TransFuser++ [41]. 533
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(a) Uncertain interaction.

(b) Imminent collision.

(c) Label noise.

Figure 6. Instances of trajectory disagreement in T . Desired speed and yaw angle represent Kt (KDE with
Scott’s rule for visualization). The selected action is marked in magenta. (a) Most instances of high variance are
interactions with dynamic objects like other agents. (b) Elevated longitudinal trajectory disagreement is observed
before a collision. (c) The prediction horizon extends beyond the target point, forcing the agent to predict positions
for which it has no driving instruction. This results in lateral trajectory disagreement.

4.6 Limitations534

EnDfuser fails to predict some safety-critical situa-535

tions, possibly due to insufficient, one-sided coverage536

during training. An example can be found in ap-537

pendix A.1. Our experiments also reveal significant538

noise in the key metrics, with σ(DS) up to 6%, and539

DS ranging between 56.8 and 67.7 on Longest6. This540

limits comparability, given the considerable compu-541

tational resources required by even a modest 27 rep-542

etitions per experiment. Future work should explore543

more difficult settings like the CARLA leaderboard544

2.0/2.1 or real-world settings, using a more informed545

uncertainty measure. Although speed variance is an546

easily controllable quantifier, it may not be sufficient547

for interpreting larger speed ranges and scene com-548

plexities. Uncertainty measures should also consider549

yaw, which requires disentangling its representation550

from speed. Finally, variance alone cannot distin-551

guish between aleatoric and epistemic uncertainty.552

For instance, some out-of-distribution frames (e.g.553

post-infraction frames) can be visually identified554

(there are no infractions in the training data), but555

this does not replace a quantitative distinction.556

5 Conclusion 557

In this work, we introduced EnDfuser, a simple yet 558

powerful AD motion planning model based on de- 559

noising diffusion, demonstrating its efficacy on the 560

LAV and Longest6 benchmarks. Using the diffusion 561

policy, we show that effective uncertainty model- 562

ing can be achieved in real time by generating a 563

large set of 128 candidate trajectories simultaneously. 564

We demonstrate that this set captures the model’s 565

prediction uncertainty by leveraging the predicted 566

speed variance to improve our agent’s behavior in 567

safety-critical situations, increasing its driving score 568

by 1.7% on the LAV benchmark. Our simple ap- 569

proach to safety rules highlights the potential for 570

more sophisticated heuristics informed by the poste- 571

rior trajectory distribution T . In addition, the same 572

measures can be used to find and extract areas of 573

high agent uncertainty during test time, including 574

instances of label noise, with the potential to apply 575

ensemble diffusion in data set mining by filtering for 576

the long tail of the driving distribution. 577
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A Appendix896

A.1 Limitation example897

(a) imminent collision (b) low uncertainty

Figure A.1. Prediction failure. (a) EnDfuser
changes lanes while taking a right turn. It ignores the
vehicle to its right and causes a collision. (b) No spike
in uncertainty is detectable before the collision.

A.2 Diffusion steps898

Inference speed scales linearly with the denoising899

schedule. As a consequence, we want to use as few900

denoising steps as possible. Increasing the number901

above 2 can yield higher driving scores, but not902

sufficiently to justify the slower inference speed.903

Table A.1. Ablation study. Longer denoising sched-
ules have a stronger effect on inference speed than on
driving performance, as demonstrated on LAV.

Steps FPS ↑ DS ↑ RC ↑ IS ↑
2 29.047 76.4 ±5 98.7 ±2 0.773 ±0.05
4 25.881 78.1 ±4 99.0 ±1 0.790 ±0.04
8 20.940 76.3 ±6 98.3 ±2 0.776 ±0.06
16 15.116 77.8 ±6 98.2 ±1 0.793 ±0.06

A.3 Uncertainty maps904

Areas with a regular occurrence of elevated speed905

variance are clearly visible around intersections and906

bends. Each town displays the variances of 6 cumu-907

lative routes driven by EnDfuser, downsampled to908

2Hz and color coded from σ̂2
s = 0 (◦) to σ̂2

s = 0.6 (•)909

in the speed predictions. Town06 in particular has910

long stretches with elevated uncertainty. All towns911

can be inspected below.912
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Figure A.2. Uncertainty map in Town01.
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Figure A.3. Uncertainty map in Town02.
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Figure A.4. Uncertainty map in Town03.
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Figure A.5. Uncertainty map in Town04.
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