
Published as a conference paper at ICLR 2025

TESTGENEVAL: A REAL WORLD UNIT TEST GENER-
ATION AND TEST COMPLETION BENCHMARK

Kush Jain1,2, Gabriel Synnaeve 2, Baptiste Rozière2
1 Carnegie Mellon University, 2 FAIR, Meta AI
{kdjain}@andrew.cmu.edu

ABSTRACT

Code generation models can help improve many common software tasks rang-
ing from code completion to defect prediction. Most of the existing benchmarks
for code generation LLMs focus on code authoring or code completion. Surpris-
ingly, there has been far less effort dedicated to benchmarking software testing,
despite the strong correlation between well-tested software and effective bug de-
tection. To address this gap, we create and release TESTGENEVAL, a large-scale
benchmark to measure test generation performance. Based on SWEBench, TEST-
GENEVAL comprises 68,647 tests from 1,210 code and test file pairs across 11
well-maintained Python repositories. It covers initial tests authoring, test suite
completion, and code coverage improvements. Test authoring simulates the pro-
cess of a developer writing a test suite from scratch, while test completion mimics
the scenario where a developer aims to improve the coverage of an existing test
suite. We evaluate several popular models, with sizes ranging from 7B to 405B
parameters. Our detailed analysis highlights TESTGENEVAL’s contribution to
a comprehensive evaluation of test generation performance. In particular, mod-
els struggle to generate high-coverage test suites, with the best model, GPT-4o,
achieving an average coverage of only 35.2%. This is primarily due to models
struggling to reason about execution, and their frequent assertion errors when ad-
dressing complex code paths.

1 INTRODUCTION

Software testing is a critical component of the software development process. A high-quality test
suite can be instrumental in finding inconsistencies between a system’s specifications and its imple-
mentation. Test suites ideally execute all code paths (high code coverage), and catch regressions in
the code under test that a developer might introduce (high mutation score) (Fraser & Arcuri, 2013;
Veloso & Hora, 2022). However, writing high quality tests can be time-consuming (Beller et al.,
2015a;b) and is often either partially or entirely neglected.

As a result there has been extensive research on automated test generation, including both classi-
cal (Fraser & Arcuri, 2011; Brandt & Zaidman, 2022; Baldoni et al., 2018) and neural-based meth-
ods (Dinella et al., 2022; Watson et al., 2020; Touvron et al., 2023b; OpenAI, 2023). However,
despite this growing area of research, unit test generation benchmarks remain limited in size and
scope (Chen et al., 2021; Bhatia et al., 2024). While existing benchmarks capture test generation
abilities on simple, typically self-contained programs, there is an absence of large scale test gen-
eration benchmarks corresponding to real world use cases. Other related benchmarks (Jain et al.,
2024) report performance on adjacent tasks such as generating equivalence tests rather than standard
unit tests, which also differs from the real world use case. Current benchmarks report pass@k, with
few reporting code coverage and none reporting mutation score, despite mutation score being most
correlated with real fault detection (Just et al., 2014; Papadakis et al., 2018).

Existing benchmarks also do not measure test completion capabilities, despite many code comple-
tion benchmarks existing (Liu et al., 2023; Zhuo et al., 2024). Test completion can be used to add
tests to an already existing unit test file and improve overall coverage. This is important for IDE
auto-completion features, where given a part of a test file an the code under test, the goal is to add
more tests. Test completion is also measured by many state of the art software testing models (Rao

1

Published as a conference paper at ICLR 2025

 assert [2,3,3] == [3,2,1]

class Utils:

l1: def reverse(lst):
l2: return lst[::-1]

l3: def increment(lst):
l4: return lst+1

 GitHub code

class TestClass(unittest.TestCase):

 def test_reverse(self):
 assert reverse([1,2,3]) ==
[3,2,1]
 ...

 LLM generated tests Execute and evaluate LLM generated tests

class Utils:

l1: def reverse(lst):
l2: return lst[::-1]

l3: def increment(lst):
l4: return lst+1

class Utils:

l1: def reverse(lst):
l2: return lst[::-2] # mutated
...

Coverage Mutation score

Figure 1: An overview of TESTGENEVAL. We start with a GitHub code file and generate a test suite
with an LLM. Then we execute the generated test suite and measure the proportion of lines in the
code file that are executed (code coverage). We also inject synthetic bugs into the code and measure
the proportion of synthetic bugs detected by the generated test suite (mutation score).

et al., 2023; Nie et al., 2023; Dinella et al., 2022; Tufano et al., 2020), yet a benchmark that measures
test completion doesn’t exist.

Motivated by this, we introduce TESTGENEVAL with two tasks 1) full file unit test generation and
2) test completion (see Section 2.2 for more details). Our benchmark consists of real world projects,
with each source file containing an average 1,157 lines of code (LOC) and each test file containing an
average of 943 LOC. TESTGENEVAL consists of 68,647 tests from 1,210 unique code-tests file pairs.
For fast iteration in low-compute settings, we also provide a smaller version of the benchmark TEST-
GENEVALLITE, which approximates all the metrics computed in TESTGENEVAL (see Appendix E
for more details). TESTGENEVALLITE includes 160 code-tests file pairs, file unit test generation,
and test completion tasks. It was sampled to be representative of the full TESTGENEVAL: the repos-
itories and other statistics are similar in TESTGENEVALLITE and TESTGENEVAL (see Appendix A
for more details and Appendix G for statistical significance tests).

We find that models struggle to generate high quality test suites (Section 3.1). The best performing
model—GPT-4o—has an average coverage of 35.2% and a mutation score of 18.8%. Generating
tests for large scale projects is significantly harder than generating tests for self-contained prob-
lems; this is reflected by significantly lower scores compared to existing benchmarks such as TestE-
val (Wang et al., 2024), where top models achieve nearly 100% line coverage. Test completion
(Section 3.2) is significantly easier than test generation, reflected by the high pass@5 rates of the
best performing models. However, models struggle to add coverage to a complete test suite, with
top models adding less than 1% coverage when generating the last test for an existing file.

We perform extensive quantitative and qualitative analysis of all results (Section 4). We measure
correlation between TESTGENEVAL and other popular benchmarks, the correlation between the test
generation and test completion tasks, and the correlation between models for each task. We also
perform an analysis of errors, and measure the effects of sampling more and context size on TEST-
GENEVAL performance (Section 4.1). We also examine cases where TESTGENEVAL can discrimi-
nate between highly performing models (Section 4.2). More analysis can be found in Appendix F.

We provide all the code for our benchmark at https://figshare.com/s/
51171ae97cd21d233d4f, including detailed instructions on how to run our benchmark,
and even extend it. We also provide a website with all model generations for TESTGENEVAL. We
hope that this will enable the community to use TESTGENEVAL and further build upon our work.

Our contribution are as follows:

• We release a benchmark for partial and full test suite generation on a realistic set of 1,210
snippets in 11 repositories. We use coverage and mutation score metrics to evaluate the
value of the generated test suites

• We evaluate various prominent open and closed-source code generation models on our
benchmark, and show that, for large scale repositories, models struggle to generate high
coverage test suites

• We release docker images allowing to easily run code from these 11 repositories and eval-
uate scores on our benchmark

2

https://figshare.com/s/51171ae97cd21d233d4f
https://figshare.com/s/51171ae97cd21d233d4f

Published as a conference paper at ICLR 2025

1 Modify SWEBench images

fix broken images

add coverage, mutation score

2 Extract test file pairs

heuristic match on filename

covers and imports code under test

3 Filter paired tests

coverage computes for all settings

runs in 60 seconds

Figure 2: A pipeline describing the creation of TESTGENEVAL. We start with docker images of the
SWEBench dataset and instrument them with coverage and mutation score dependencies. Then we
extract code test file pairs by performing a heuristic match on filename. Finally, we filter out tests
that don’t have coverage on the code under test and run in 60 seconds.

2 TESTGENEVAL

TESTGENEVAL consists of 1,210 code test file pairs from 11 large, well-maintained repositories
(3,523-78,287 stars). We use these file pairs to construct two testing tasks: 1) unit test completion for
the first, last and additional tests and 2) full file unit test generation. Our benchmark is easy to run and
extend, as we have docker containers for each version of each repository with coverage and mutation
testing dependencies installed. For both tasks we use execution based metrics, including pass@1,
pass@5 along with code coverage improvement, and mutation score improvement compared to the
gold (human written) tests. Code and test files in TESTGENEVAL are long in length (on average
782 LOC per code file and 677 LOC per test file) and high coverage (median coverage of 60.4%).
Detailed statistics of TESTGENEVAL can be found in Appendix A.

2.1 BENCHMARK CONSTRUCTION

We construct TESTGENEVAL by adapting the SWEBench dataset to software testing tasks. Figure 2
shows the full set of steps to construct TESTGENEVAL. We apply these exact steps to SWEBench-
Lite to construct TESTGENEVALLITE.

Modify SWEBench images: We start with the docker images provided by SWEBench 1. We first
modify the images that did not build manually, by installing appropriate dependencies and modifying
requirements files so every test suite executes. Next, we install both coverage and mutation testing
dependencies and modify the test commands to run with coverage instrumentation.

Extract test file pairs: After we have the execution environment for each pull request version built,
we next extract code test file pairs from the code and test files run in the PR. Specifically, we extract
code test file pairs by performing a heuristic match on filenames, and filtering out pull requests that
do not meet our heuristic. With each file pair we perform program analysis on the test file to extract
the first test, last test as context for our test completion settings. We later validate for each file pair
that the gold tests cover some part of the code under test.

Filter paired tests: Next, we run code coverage for all the gold test settings (first, last, and extra)
to filter out repositories where contexts were extracted incorrectly or partial test files do not run. We
also filter out tests that take longer than 60 seconds to run to ensure TESTGENEVAL runs efficiently.

2.2 TASKS

Figure 5 shows an example of both testing tasks. TESTGENEVAL consists of 2 separate tasks: test
generation and test completion.

Test generation: The goal of test generation is to generate an entire test suite given a file under test.
We provide the necessary inputs to the model as part of the prompt (see Appendix C for full details).
Our test generation task aligns with real world unit testing; unit testing in practice involves writing
tests for large code files in complex projects.

Test completion: The goal of test completion is to generate the next test in an existing test suite
given an existing test suite and the file under test. Test completion is measured by many software

1https://github.com/aorwall/SWE-bench-docker

3

Published as a conference paper at ICLR 2025

class Character:
...
def level_up(self):

self.level += 1

def damage(self, health):
self.health -= heath

TestGenEval-Full: full test suite
generation

def test character setup():
...

def test character levels up():
...

def test character damage():
...

Figure 3: Full test suite generation

class Character:
...
def level_up(self):
self.level += 1

def damage(self, health):
self.health -= heath

TestGenEval test prefix

def test_character_setup():
...

def test_character_levels_up():
...

TestGenEval: test completion

def test character damage(self):
...

Figure 4: Test completion (last)

Figure 5: Two software testing tasks (and highlighted model generations). Full test suite generation
requires knowledge of code under test setup, along with meaningful assert statements. Test comple-
tion requires understanding the code under test and current test to generate an additional test method
(first, last, and extra test).

testing models, and can be applied to in IDE tools, however there is no benchmark for this task. The
test completion task aligns with different stages in the development life cycle; first test completion
mirrors a developer starting their test suite, last test completion mirrors the finishing of their test
suite and extra test completion measures whether language models can add an additional test to a
test suite a developer thinks is complete. This setup is in line with Rao et al. (2023), which models
test generation at the method level.

2.3 PROPERTIES OF TESTGENEVAL:

Table 1: Comparison of TESTGENEVAL against existing test generation benchmarks. TEST-
GENEVAL mirrors the real world task of unit test generation, including file level, human written
tests. TESTGENEVAL includes both individual test generation and full test suite generation, and is
the only benchmark to measure mutation score.

Dataset Size File level Human tests Test suite Mutation score
TESTEVAL 210 ✗ ✓ ✗ ✗
SWT-BENCH 1762 ✓ ✓ ✗ ✗
R2E 246 ✓ ✗ ✓ ✗
TESTGENEVAL 1210 ✓ ✓ ✓ ✓

Table 1 outlines some of the properties that differentiate TESTGENEVAL from existing test genera-
tion benchmarks. We explain each property in depth.

File level test generation: Real world unit testing involves reasoning over complex files, generating
tests for a given file under test. Unlike existing benchmarks that deal with a small, self contained
programs, TESTGENEVAL includes code and tests from large scale, highly starred projects.

Human-written tests: Existing benchmarks such as R2E (Jain et al., 2024) measure the ability
of an LLM to generate equivalence tests. While models that generate equivalence tests have the
advantage of high coverage and ease of scaling to large amounts of data, they often look different
from developer-written tests (Kambhamettu et al., 2022). Measuring the ability of LLMs to generate
equivalence tests is an adjacent, but different task from measuring unit test generation capabilities.
TESTGENEVAL is the first large-scale test-generation benchmark using human-written tests.

4

Published as a conference paper at ICLR 2025

Test suite generation: The goal of unit test generation is to generate high-quality test suites, which
is correlated to high coverage and mutation score for the code under test. However, existing methods
such as TestEval (Wang et al., 2024) and SWT-Bench (Mündler et al., 2024) only measure the
ability of an LLM to generate an individual test method rather than an entire test suite. We propose
complementing individual test completion tasks with the broader test suite generation task.

Mutation score: Unlike existing benchmarks, we report mutation score in conjunction with cov-
erage. The mutation score is empirically far more correlated with bug detection capabilities (Just
et al., 2014; Papadakis et al., 2018) and much harder to hack; in order to achieve high mutation score
tests must be able to discriminate non-buggy code from code with synthetic bugs introduced.

3 EVALUATION

We evaluate a selection of models on TESTGENEVAL to better understand how models of different
sizes and families (see Table 2 for list, and Appendix D.1 for more details about model choices)
perform at test suite generation and test completion. The HuggingFace checkpoints of all open
source models used are also available at Appendix B. We prompt each model with the maximum
context window size possible, otherwise truncate the starting tokens to fit the prompt in the context
window.

We report results for all models in both the full test generation (Section 3.1) and test completion tasks
(Section 3.2) on TESTGENEVAL. For test suite generation we report any pass@1 (if any of the tests
in the generated test suite pass), all pass@1 (if the generated test suite passes), coverage (coverage
of passing tests), and mutation score (proportion of synthetic bugs introduced to code caught by test
suite). For test completion we report pass@1 and pass@5 (whether generated test passes), along
with coverage improvement from adding the generated test. More detailed descriptions and our full
set of metrics can be found at Appendix D.2. Our full set of results for TESTGENEVAL and results
for TESTGENEVALLITE can be found in Appendix E. We also perform statistical significance tests
and report 95% confidence intervals in Appendix G.

3.1 TEST GENERATION PERFORMANCE OF VARIOUS MODELS

Table 2: Full test suite generation. All results shown for temperature=0.2. Larger models generally
perform better at test suite generation, however all models struggle to achieve high coverage and
mutation score.

Model All Pass@1 Any Pass@1 Coverage Mutation
Small Models

CodeLlama 7B 3.2% 4.1% 1.2% 0.5%
Gemma 9B 3.5% 42.1% 20.2% 9.0%
Llama 3.1 8B 3.1% 30.5% 14.1% 6.8%

Medium Models
DeepSeekCoder 16B 23.0% 63.7% 28.2% 12.1%
Gemma 27B 7.4% 57.7% 30.1% 14.6%
Codestral 22B 26.8% 72.7% 33.0% 14.2%

Large Models
CodeLlama 70B 14.0% 22.7% 7.0% 2.5%
Llama 3.1 70B 7.8% 60.7% 30.6% 15.4%

Flagship Models
GPT-4o 7.5% 64.0% 35.2% 18.8%
Llama 3.1 405B 17.7% 73.1% 35.0% 16.4%

Table 2 shows any pass@1, all pass@1 coverage and mutation score for small, medium and large
models. All three smaller models perform significantly worse than their larger counterparts, with

5

Published as a conference paper at ICLR 2025

a large difference (42.6% for Llama 3.1 models and 15.6% for Gemma models in any pass@1
performance). All pass@1 penalizes how verbose a model is: DeepSeekCoder 16B on average
generates a test suite with 106 lines of code and 16 methods, while Llama 3.1 70B generates an
average of 324 lines of code and 36 methods. This intuitively makes sense, as the more verbose a
model is, the more likely it is to generate a test with errors.

Coverage and mutation score remain low across all models. For coverage, GPT-4o performs the
best, but still covers only 35.2% of the lines of code tested in TESTGENEVAL. The mutation score
is even lower than the coverage, which implies that tests generated by these models cannot catch
all induced bugs. Despite generating passing tests for a smaller proportion of programs, GPT-4o
achieves higher coverage than Llama 3.1 405B, meaning that GPT-4o generates higher quality tests
on average (also reflected by the higher mutation score of GPT-4o compared to Llama 3.1 405B).

3.2 TEST COMPLETION PERFORMANCE OF VARIOUS MODELS

Table 3: Pass rates for different models in first, and last settings. Pass@1 is for temperature=0.2,
Pass@5 is for temperature=0.8. Codestral 22B outperforms all models across pass@1 and pass@5
(other than first test completion pass@5), solving between 60-70% of all tasks.

First Last
Model Pass@1 Pass@5 +Cov Pass@1 Pass@5 +Cov

Small Models
CodeLlama 7B 4.2% 19.8% 6.7% 6.9% 24.0% 0.0%
Gemma 9B 8.4% 18.0% 6.7% 21.4% 46.4% 0.1%
Llama 3.1 8B 14.4% 33.3% 12.8% 32.0% 54.3% 0.1%

Medium Models
DeepSeekCoder 16B 18.6% 47.0% 19.0% 17.0% 62.8% 0.2%
Gemma 27B 12.7% 33.7% 13.6% 32.2% 62.2% 0.1%
Codestral 22B 38.3% 61.7% 24.0% 50.4% 74.3% 0.4%

Large Models
CodeLlama 70B 0.5% 30.2% 11.2% 0.9% 50.7% 0.0%
Llama 3.1 70B 19.3% 46.4% 18.7% 35.0% 61.9% 0.5%

Flagship Models
GPT-4o 31.9% 63.5% 26.9% 32.6% 66.6% 0.5%
Llama 3.1 405B 32.1% 57.7% 21.6% 42.6% 72.3% 0.3%

Table 3 shows pass@1, pass@5 and coverage improvement for first and last settings. Information
on extra test completion can be found in Appendix E). Model performance generally increases as
more of the test file is provided as context (extra pass@5 is higher than both last pass@5 and first
pass@5). Similar to the full test setting, larger models tend to outperform smaller ones. An outlier is
Llama 3.1 8B, with a significantly higher pass@5 in all settings than its smaller model counterparts.
Codestral 22B performs the best at generating passing tests, with a pass@5 of 74.3% on the last test
completion setting. Models face challenges in augmenting coverage for existing human-written test-
suites, whereas they can more readily add coverage when no tests are initially present. In the final
test completion setting, all models generate virtually no new coverage, primarily testing computation
paths that have already been covered.

4 ANALYSIS

We perform a quantitative and qualitative analysis of all results. This includes correlation with other
benchmarks, effects of samples on pass@k, effects of context window size along with a qualitative
analysis of differentiating problems between Codestral, GPT-4o and Llama 405B. Our complete
analysis can be found in Appendix F.

6

Published as a conference paper at ICLR 2025

4.1 QUANTITATIVE ANALYSIS

We perform an analysis of model correlation with other benchmarks (Section 4.1.1) along with the
effects of sampling more (Section 4.1.2) and increasing context window (Section 4.1.3) on model
performance. Details on correlation between models and settings and common model errors can be
found in Appendix F.2 and Appendix F.5 respectively.

4.1.1 CORRELATION WITH OTHER BENCHMARKS

(a) Correlation with HumanEval (b) Correlation with TestEval

Figure 6: Correlation with HumanEval (a SOTA code generation benchmark), and TestEval (a SOTA
test generation benchmark). We find that there is a weak positive correlation between HumanEval
and TESTGENEVAL, and with the exception of Gemma 9B there is a similar weak positive correla-
tion between TestEval and TESTGENEVAL.

Figure 6a and Figure 6b display correlation between TESTGENEVAL, HumanEval (a code genera-
tion benchmark), and TestEval (a test generation benchmark). We find a weak positive correlation
between TESTGENEVAL scores and other benchmarks. For HumanEval outliers include Gemma 9B
(performs better at test generation than expected given code generation performance) and CodeL-
lama (performs worse at test generation than expected). For TestEval, the main outlier is Gemma
9B, with reasonable test generation performance on TESTGENEVAL, but very poor performance on
TestEval (it fails to properly follow the prompt format for TestEval). Full details and a comparison
against MMLU can be found in Appendix F.1.

4.1.2 EFFECT OF NUMBER OF SAMPLES

(a) Coverage@k vs k (full test generation) (b) Pass@k vs k (test completion)

Figure 7: Effect of sampling more tests for all settings on Llama 3.1 8B. Coverage@k seems to
gradually increase. Pass@k also increases more for lower k values and seems to plateau after k=20.

7

Published as a conference paper at ICLR 2025

Figure 7a and Figure 7b show how performance in the full test generation and first, last and extra test
completion settings changes as more tests are sampled for Llama 3.1 8B. For full test suite generation
we sample 20 examples and measure coverage@k. For test completion we sample 100 examples and
measure pass@k. For full test suite generation, we find that coverage seems to gradually increase,
with no plateau in the first 20 generations. For test completion, we find that the first 5 samples
improve performance the most, and performance gains seem to plateau after k=20 (the gain between
k=20 and k=100 is minimal). Full details of this analysis can be found in Appendix F.3.

4.1.3 EFFECT OF CONTEXT WINDOW ON TESTGENEVAL PERFORMANCE

(a) Coverage by context length (full test generation) (b) Pass@5 by context length (test completion)

Figure 8: Effect of context window for both our full setting (coverage of generated test suite) and
for our test completion setting (pass@5 for our first, last and extra test completion settings). We find
that context length generally helps test completion, however for test generation, even receiving parts
of the file under test (measured by a lower context window) seems to be effective.

Figure 8a and Figure 8b show the effect of context length on both our coverage (full test generation)
and on pass@5 (test completion). For test generation, we find that coverage only slightly improves
with additional context; even seeing part of the code under test is enough for the model to generate a
test suite (can mock inputs to various methods in the partial file). However for test completion con-
text is more important, with pass@5 increasing with more context up until around 32k tokens where
benefits decay. To complete tests, one must understand existing tests and their relationship with the
code under test. Having the entire file helps contextualize what existing tests are testing, improving
the performance of completed tests. Full details of this analysis can be found in Appendix F.4.

4.2 QUALITATIVE ANALYSIS

We highlight a case where TESTGENEVAL discriminates between our top three models (GPT-4o,
Llama 405B and Codestral 22B). Additional examples comparing these three models can be found
in Appendix F.6. Additionally, qualitative examples of common error types can be found in Ap-
pendix F.7 and examples of frontier problems (problems solved by at most one model and no mod-
els) in Appendix F.8.

class QuerySet(AltersData):
def __init__(self, model=None, query=None, ...):

...
def repr(self):

return "<%s %r>" % (self.__class__.__name__, data)
...

Listing 1: Query set class for managing data from database.

Our example involves a QuerySet class that manages records returned from a database. The class
has no database dependencies. The initialization takes a model and query, which can also not be set
if no database is being used. This is hard to test because it involves either mocking or creating a
complex model object.

8

Published as a conference paper at ICLR 2025

def test_queryset_repr(self):
queryset = QuerySet(model=None)
assertEqual(repr(queryset), "<QuerySet []>")

Listing 2: Cut GPT-4o generated test

GPT-4o instantiates the QuerySet with no parameters (the simplest possible version of the test). It
then tests all code methods, with all of the generated tests passing on the code under test.

from django.db import connection, models

def test_query_set_init(self):
model = models.Model()
qs = QuerySet(model=model)
self.assertEqual(qs.model, model)

Listing 3: Cut Llama 3.1 405B generated test

This is not the case with both Llama 3.1 405B and Codestral 22B. Both models ignore the empty case
entirely and instead hallucinate invocations or imports of models in Django (instead these models
should have mocked the model object and tested the null case). All models failing to properly mock
the class under test’s dependencies lead to low coverage of the source file, despite GPT-4o generating
passing tests all when other models fail.

5 LIMITATIONS

We outline potential limitations with TESTGENEVAL. A more detailed set of limitations can be
found in Appendix H.

Overfitting to SWEBench repositories: A potential limitation is that our benchmark is adapted
from SWEBench and as a result risks models overfitting to this specific dataset. Currently, this
does not seem to be a major issue, as model performance is low across the board. Even once
models can achieve high coverage, there is the significantly harder task of achieving high mutation
score (actually catching synthetic bugs introduced into the code under test). These multiple levels of
difficulty and numerous tasks help mitigate the risk of a model overfitting to any one task specifically.

Data contamination: There is also a risk of data contamination in the pretraining data of models.
To further understand data contamination, we measure perplexity of 10 randomly selected tests in
TESTGENEVAL for Llama 3.1 8B and common frequent, and non recent code from GitHub with
similar lengths. We find that the perplexity of this common GitHub code is lower than the 10 tests
from TESTGENEVAL (1.6 vs 2.0), indicating that data is unlikely to be contaminated. This is further
supported by the low performance of all models on TESTGENEVAL across the board.

Compute cost of mutation score: One other limitation is the compute cost of computing mutation
score. Each synthetic bug we introduce to the code under test, requires an additional test suite
execution. However, our results show that coverage and mutation score are highly correlated. Setting
a timeout of one hour per mutation testing run, we only timeout on 20% of files, and get an average
uncertainty of 1.1%. We provide an option to run TESTGENEVAL without mutation, enabling those
who lack compute to still benefit from TESTGENEVAL.

6 RELATED WORK

Test Generation Benchmarks: Recently, there has been more effort to evaluate language mod-
els software testing capabilities, however these benchmarks typically still consist of small, self-
contained projects. Common code generation benchmarks such as HumanEvalFix (Chen et al.,
2021), MBPP Plus (Austin et al., 2021) and APPS (Hendrycks et al., 2021) can easily be adapted
to test generation tasks. TestEval (Wang et al., 2024) measures test generation capabilities for Leet-
Code problems of varying difficulties. Bhatia et al. (2024) measure test generation performance for
modular code without external dependencies. While these benchmarks provide important execution
metrics, the small size of these problems and solutions does not mirror realistic test generation.

9

Published as a conference paper at ICLR 2025

There are also repository level test completion benchmarks, however these benchmarks often lack
realistic execution metrics. TeCo (Nie et al., 2023) and ConTest (Villmow et al., 2021) provides
a benchmark for completing unit tests, but only measures lexical metrics such as BLEU (Papineni
et al., 2002) and ROUGE scores (Lin, 2004). ATLAS (Watson et al., 2020) and TOGA (Dinella
et al., 2022) provide large scale benchmarks but for completing assertions rather than generating
entire tests. SWT-Bench (Mündler et al., 2024) provides a benchmark for test method generation
targeted as bug fixing PRs. Their task is also adjacent but measuring a specialized part of software
testing (generating tests that fail on code prior to PR and pass after PR).

More recently, there has been efforts to create executable code benchmarks. SWEBench (Jimenez
et al., 2024) measures the ability of language models to generate patches for failing PR tests.
R2E (Jain et al., 2024) provides a collection of 400 repositories that can be executed, however
they leverage equivalence test harnesses which look structurally different than human written unit
tests. CruxEval (Gu et al., 2024) provides a large set of executable code snippets, however measures
execution reasoning ability, which is a subset of the test generation task. TESTGENEVAL provides
a large scale executable environment to measure test generation and test completion performance.

Large Language Models for Code Generation: Large language models (LLMs) have shown
promising results on many software engineering tasks, including software testing (Rao et al., 2023;
Black et al., 2022; Touvron et al., 2023a). Top open source models include Llama 3.1 (Dubey et al.,
2024), DeepSeekCoder (DeepSeek-AI et al., 2024) and CodeStral 2. Closed source models includ-
ing GPT-4-o 3 and Claude 3.5 Sonnet 4 have also shown state of the art performance on a wide
variety of code generation benchmarks. We measure performance for top open source models and
GPT-4o, the current state of the art closed source model.

7 CONCLUSION

We introduce TESTGENEVAL, the first file-level benchmark for test generation and test completion.
We release a lite version consisting of 160 code-test file pairs and a full benchmark comprising 1,210
file pairs from real open-source projects. Considering real-world settings, we employ coverage and
mutation score to evaluate the models in our benchmark, as these metrics are closely related to the
real-world quality of test suites. We perform a comprehensive evaluation of both open and closed
source models on TESTGENEVAL. Additionally, we conduct a thorough error analysis, revealing
that models struggle with reasoning about execution, frequently making assertion errors and failing
to generate tests that run within the time limit. Overall, we believe TESTGENEVAL provides a
complementary dataset to existing test generation datasets, offering a more challenging and larger-
scale version of current benchmarks.

8 ETHICS STATEMENT

As models continue to grow in size and test generation capabilities improve, it is important to con-
sider the broader impacts of test generation. While generally test generation is an important task
for ensuring high quality software, generated tests can be used to assert that buggy code is correct
(as seen by the oracle problem). All generated tests should therefore be checked and approved by
developers. Furthermore, automated test generation techniques have the potential to automate qual-
ity assurance jobs, which can also potentially lead to negative societal impacts. We recommend
practitioners be cognizant of the impacts of test generation work when building and deploying new
techniques.

9 REPRODUCIBILITY STATEMENT

We took extensive efforts to ensure TESTGENEVAL is reproducible. We release code to run and
extend TESTGENEVAL along with all docker images for each project in SWEBench. We release
a website to view model generated tests for qualitative analysis. Our code and website is available

2https://mistral.ai/news/codestral/
3https://openai.com/index/hello-gpt-4o/
4https://www.anthropic.com/news/claude-3-5-sonnet

10

Published as a conference paper at ICLR 2025

at https://figshare.com/s/51171ae97cd21d233d4f. We designed TESTGENEVAL’s
code to be easy to extend; all projects have individual docker images to run them, enabling those
looking to extend TESTGENEVAL to simply create a new docker container and hook into our existing
code.

10 ACKNOWLEDGMENTS

The authors would like to thank Ori Yoran and Pierre Chambon for their feedback on the paper,
as well as Claire Le Goues for her support and mentorship. We also thank the CodeGen team for
their extensive support and feedback throughout the project. Last but not least, we give a special
thanks to Mei , an outstanding canine software engineering researcher, for providing support and
motivation throughout this paper.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. arXiv:abs/2108.07732, 2021.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. A
Survey of Symbolic Execution Techniques. ACM Computing Survey, 51(3):50–88, 2018.

Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When, how, and why
developers (do not) test in their ides. In Joint Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engineering, ESEC/FSE ’15, pp.
179–190, 2015a.

Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers test? In Interna-
tional Conference on Software Engineering, ICSE ’15, pp. 559–562, 2015b.

Shreya Bhatia, Tarushi Gandhi, Dhruv Kumar, and Pankaj Jalote. Unit test generation using gen-
erative ai : A comparative performance analysis of autogeneration tools, 2024. URL https:
//arxiv.org/abs/2312.10622.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivan-
shu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B:
An open-source autoregressive language model. arXiv:abs/2204.06745, 2022.

Carolin Brandt and Andy Zaidman. Developer-centric test amplification: The interplay between
automatic generation human exploration. Empirical Software Engineering, 27(4), 2022. ISSN
1382-3256.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv:abs/2107.03374, 2021.

Sourav Deb, Kush Jain, Rijnard van Tonder, Claire Le Goues, and Alex Groce. Syntax is all you
need: A universal-language approach to mutant generation. Proc. ACM Softw. Eng., 1(FSE), July
2024. doi: 10.1145/3643756. URL https://doi.org/10.1145/3643756.

11

https://figshare.com/s/51171ae97cd21d233d4f
https://arxiv.org/abs/2312.10622
https://arxiv.org/abs/2312.10622
https://doi.org/10.1145/3643756

Published as a conference paper at ICLR 2025

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang,
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence, 2024. URL https://arxiv.org/abs/2406.11931.

Anna Derezinska and Konrad Halas. Experimental evaluation of mutation testing approaches to
python programs. In 2014 IEEE Seventh International Conference on Software Testing, Verifica-
tion and Validation Workshops, pp. 156–164, 2014. doi: 10.1109/ICSTW.2014.24.

Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu Lahiri. Toga: A neural method
for test oracle generation. In International Conference on Software Engineering, ICSE ’22, pp.
2130–2141, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De

12

https://arxiv.org/abs/2406.11931

Published as a conference paper at ICLR 2025

Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for object-oriented
software. In Joint Meeting of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering, ESEC/FSE ’11, pp. 416–419, 2011.

Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions on Software
Engineering, 39(2):276–291, 2013. doi: 10.1109/TSE.2012.14.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024. URL https://arxiv.org/abs/2312.10997.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2312.10997

Published as a conference paper at ICLR 2025

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with APPS. In NeurIPS Datasets and Benchmarks, 2021.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning
any github repository into a programming agent environment. In ICML, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and Gordon Fraser.
Are mutants a valid substitute for real faults in software testing? In Symposium on Foundations
of Software Engineering, FSE ’14, pp. 654–665, 2014. URL https://doi.org/10.1145/
2635868.2635929.

Rajeswari Hita Kambhamettu, John Billos, Tomi Oluwaseun-Apo, Benjamin Gafford, Rohan Pad-
hye, and Vincent J. Hellendoorn. On the naturalness of fuzzer-generated code. In Proceedings
of the 19th International Conference on Mining Software Repositories, MSR ’22, pp. 506–510,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393034. doi:
10.1145/3524842.3527972. URL https://doi.org/10.1145/3524842.3527972.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Conference on Text
Summarization Branches Out, pp. 74–81, 2004.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023. URL https://arxiv.org/abs/2306.03091.

Niels Mündler, Mark Niklas Müller, Jingxuan He, and Martin Vechev. Code agents are state of the
art software testers, 2024. URL https://arxiv.org/abs/2406.12952.

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos Gligoric. Learning
deep semantics for test completion. In International Conference on Software Engineering, ICSE
’23, pp. 2111–2123, 2023.

A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. An
experimental determination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol., 5
(2):99–118, apr 1996. ISSN 1049-331X. doi: 10.1145/227607.227610. URL https://doi.
org/10.1145/227607.227610.

OpenAI. Gpt-4 technical report, 2023.

Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. Are mutation scores correlated
with real fault detection? a large scale empirical study on the relationship between mutants and
real faults. In International Conference on Software Engineering, ICSE ’18, pp. 537–548, 2018.
doi: 10.1145/3180155.3180183.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In ACL, pp. 311–318. ACL, 2002.

N. Rao, K. Jain, U. Alon, C. Goues, and V. J. Hellendoorn. Cat-lm training language models on
aligned code and tests. In 2023 38th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 409–420, Los Alamitos, CA, USA, sep 2023. IEEE Computer Soci-
ety. doi: 10.1109/ASE56229.2023.00193. URL https://doi.ieeecomputersociety.
org/10.1109/ASE56229.2023.00193.

Ana B. Sánchez, Pedro Delgado-Pérez, Inmaculada Medina-Bulo, and Sergio Segura. Mutation
testing in the wild: findings from github. Empirical Softw. Engg., 27(6), November 2022.
ISSN 1382-3256. doi: 10.1007/s10664-022-10177-8. URL https://doi.org/10.1007/
s10664-022-10177-8.

14

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/3524842.3527972
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2406.12952
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.ieeecomputersociety.org/10.1109/ASE56229.2023.00193
https://doi.ieeecomputersociety.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1007/s10664-022-10177-8
https://doi.org/10.1007/s10664-022-10177-8

Published as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models. CoRR, abs/2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv:abs/2307.09288, 2023b.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit
test case generation with transformers. CoRR, abs/2009.05617, 2020.

Victor Veloso and Andre Hora. Characterizing high-quality test methods: a first empirical study.
In Proceedings of the 19th International Conference on Mining Software Repositories, MSR
’22, pp. 265–269, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393034. doi: 10.1145/3524842.3529092. URL https://doi.org/10.1145/
3524842.3529092.

Johannes Villmow, Jonas Depoix, and Adrian Ulges. ConTest: A Unit Test Completion Benchmark
featuring Context. In Workshop on Natural Language Processing for Programming, pp. 17–25,
August 2021.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation, 2024. URL https://arxiv.org/abs/2406.04531.

Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk. On learning
meaningful assert statements for unit test cases. CoRR, abs/2002.05800, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2024. URL https://arxiv.org/abs/2406.15877.

15

https://doi.org/10.1145/3524842.3529092
https://doi.org/10.1145/3524842.3529092
https://arxiv.org/abs/2406.04531
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.15877

Published as a conference paper at ICLR 2025

Appendix

Table of Contents
A Benchmark Statistics 17

A.1 TESTGENEVAL . 17
A.2 TESTGENEVALLITE . 17

B Model URLs 21

C Prompts 22

D Experiment Setup 24
D.1 Models . 24
D.2 Metrics . 24

D.2.1 Test Generation Metrics . 24
D.2.2 Test Completion Metrics . 25

E Results 26
E.1 TESTGENEVAL . 26

E.1.1 Test Generation . 26
E.1.2 Test Completion . 26

E.2 TESTGENEVALLITE . 28
E.2.1 Test Generation . 28
E.2.2 Test Completion . 28

F Analysis 30
F.1 Correlation with other benchmarks . 30

F.1.1 TESTGENEVAL . 30
F.1.2 TESTGENEVALLITE . 31

F.2 Correlation between settings and models . 32
F.2.1 TESTGENEVAL . 32
F.2.2 TESTGENEVALLITE . 32

F.3 Effect of Sampling on Coverage and Pass@k 34
F.4 Effect of Context on Coverage and Pass@5 . 35
F.5 Quantitative Error Analysis . 35

F.5.1 TESTGENEVAL . 35
F.5.2 TESTGENEVALLITE . 37

F.6 Qualitative Model Comparison . 38
F.6.1 Example 1 - Test setup (only solved by GPT-4o) 38
F.6.2 Example 2 - Incorrectly mocking objects (only solved by Llama 3.1 405B) 38
F.6.3 Example 3 - Handling class dependencies (only solved by Codestral 22B) 39

F.7 Qualitative Error Analysis . 40
F.8 Frontiers of TESTGENEVAL . 42

G Statistical Tests 47
G.1 TESTGENEVAL . 47
G.2 TESTGENEVALLITE . 49

H Limitations 53

16

Published as a conference paper at ICLR 2025

A BENCHMARK STATISTICS

This section contains more details on benchmark statistics. Both our TESTGENEVAL and TEST-
GENEVALLITE splits consist of 11 repositories shown in Table 4.

Table 4: Benchmark repository information and datapoint distribution.

Repository URL # Stars # Lite # Full
astropy/astropy https://github.com/astropy/astropy 4325 3 45
django/django https://github.com/django/django 78287 66 451
matplotlib/matplotlib https://github.com/matplotlib/matplotlib 19756 7 72
mwaskom/seaborn https://github.com/mwaskom/seaborn 12264 2 12
pallets/flask https://github.com/pallets/flask 67203 1 2
pydata/xarray https://github.com/pydata/xarray 3523 3 45
pylint-dev/pylint https://github.com/pylint-dev/pylint 5206 2 17
pytest-dev/pytest https://github.com/pytest-dev/pytest 11719 12 67
scikit-learn/scikit-learn https://github.com/scikit-learn/scikit-learn 59057 20 192
sphinx-doc/sphinx https://github.com/sphinx-doc/sphinx 6264 2 70
sympy/sympy https://github.com/sympy/sympy 12657 42 239

A.1 TESTGENEVAL

We report detailed statistics for the TESTGENEVAL. These include the coverage of various files,
unique generations, correlations between different settings and MMLU.

Figure 9a, Figure 9b and Figure 9c show the distribution of code lengths, test lengths, and reposito-
ries across TESTGENEVAL. Tests and code files are thousands of tokens long, as the benchmark is
large in size. The repository distribution mirrors that of SWEBench and the TESTGENEVALLITE
split repo distribution is also similar.

Figure 10a, and Figure 10b show the distribution of code methods and test methods. Generally, both
code and tests methods are quite extensive across file pairs (average of 57 test methods and 58 code
methods per file pair).

Figure 11 provides violin plots of the coverage data of gold tests in TESTGENEVAL. Coverage is
generally high across all settings (first test alone adds on average 40% coverage) and by the end of
the test suite, file level coverage is approximately 80%.

A.2 TESTGENEVALLITE

We perform the same analysis on the TESTGENEVALLITE split of our benchmark. Many of the
distributions and trends observed in TESTGENEVAL hold here too.

Figure 12a, Figure 12b, and Figure 12c show the distribution of code lengths, test lengths, and
repositories in the TESTGENEVALLITE split. Both the distribution of repositories and lengths of
code and test files approximately mirror those present in full TESTGENEVAL. The long lengths
even in the TESTGENEVALLITE split require models that support long context lengths.

Figure 10a, and Figure 10b show the distribution of code methods and test methods for TEST-
GENEVALLITE. Results mirror those of TESTGENEVAL; both code and test files in this file have
many methods (average of 58 test methods and 50 code methods for each file pair).

Figure 14 provides violin plots of the coverage data of gold tests in the TESTGENEVALLITE split.
TESTGENEVALLITE coverage distributions mirror those of TESTGENEVAL.

17

https://github.com/astropy/astropy
https://github.com/django/django
https://github.com/matplotlib/matplotlib
https://github.com/mwaskom/seaborn
https://github.com/pallets/flask
https://github.com/pydata/xarray
https://github.com/pylint-dev/pylint
https://github.com/pytest-dev/pytest
https://github.com/scikit-learn/scikit-learn
https://github.com/sphinx-doc/sphinx
https://github.com/sympy/sympy

Published as a conference paper at ICLR 2025

(a) TESTGENEVAL code lengths (b) TESTGENEVAL test lengths

(c) TESTGENEVAL repo distribution

Figure 9: Code and test lengths across TESTGENEVAL. Both the code and test files in TEST-
GENEVAL are from real world projects and thus are often 10,000+ tokens long. Also shows the
distribution of repositories in TESTGENEVAL.

(a) TESTGENEVAL code methods (b) TESTGENEVAL test methods

Figure 10: Distribution of code and test methods for TESTGENEVAL.

18

Published as a conference paper at ICLR 2025

Figure 11: TESTGENEVAL gold test coverage

(a) TESTGENEVALLITE code lengths (b) TESTGENEVALLITE test lengths

(c) TESTGENEVALLITE repo distribution

Figure 12: Distributions in the TESTGENEVALLITE dataset

19

Published as a conference paper at ICLR 2025

(a) TESTGENEVALLITE code methods (b) TESTGENEVALLITE test methods

Figure 13: Distribution of code and test methods for TESTGENEVAL.

Figure 14: TESTGENEVALLITE gold test coverage

20

Published as a conference paper at ICLR 2025

B MODEL URLS

We used GPT-4o on 08/29/2024. Table 5 shows the model name and model URL for all open source
models on HuggingFace.

Table 5: Model Names and URLs

Model Name Model URL
CodeLlama (7B) https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf
CodeLlama (70B) https://huggingface.co/meta-llama/CodeLlama-70b-Instruct-hf
Llama 3.1 (8B) https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
Llama 3.1 (70B) https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
Llama 3.1 (405B) https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct
Codestral (22B) https://huggingface.co/mistralai/Codestral-22B-v0.1
DeepSeekCoder-Lite (16B) https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
Gemma-2 (9B) https://huggingface.co/google/gemma-2-9b-it
Gemma-2 (27B) https://huggingface.co/google/gemma-2-27b-it

21

https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf
https://huggingface.co/meta-llama/CodeLlama-70b-Instruct-hf
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/google/gemma-2-27b-it

Published as a conference paper at ICLR 2025

C PROMPTS

For each setting we prompt with different contexts. We provide the code under test as part of the
prompt for all settings. We also provide the preamble of the test file (imports and test setup) for
first test completion, the entire test file minus the last test for last test completion and the entire test
file for extra test completion. For our full file test generation setting, we only prompt with the code
under test. Since we use a large variety of models, our prompts are slightly different for each class
of model.

System Prompt

You are an expert Python automated testing assistant. Your
job is to generate a test file given a code file.

Instructions

Below is a code file:
‘‘‘python
{code src}
‘‘‘

The code file is called: {code filename}

Your job is to output a corresponding unit test file that
obtains high coverage and invokes the code under test.

Here are some examples of how to import {code filename}, (you
should use these as reference)

‘‘‘python
{imports}
‘‘‘

Each unit test must be a function starting with test . Include
all your test imports and setup before your first test. Do
not run the tests in the file, just output a series of tests.
Do not include a main method to run the tests.

Only output the unit test Python file in this format:

‘‘‘python
Unit test Python code (file level)
‘‘‘

Figure 15: Prompt for the full test suite generation setting. For models that use specific format for
chat, we format this appropriately to chat format.

22

Published as a conference paper at ICLR 2025

System Prompt

You are an expert Python software testing assistant. Your
job is to complete the next test given a code file an some
existing test context.

Instructions

Below is a code file:
‘‘‘python
{code src}
‘‘‘

And the current unit test file
‘‘‘python
{test src}
‘‘‘

Your job write the Python code the next test in the file.
Ideally your next test should improve coverage of the existing
unit test file for the code file.

Only output the next unit test, preserve indentation and
formatting. Do not output anything else. Format like this:

‘‘‘python
Next unit test Python code
‘‘‘

Figure 16: Prompt for the test completion settings (first, last, extra). For models that use specific
format for chat, we format this appropriately to chat format.

23

Published as a conference paper at ICLR 2025

D EXPERIMENT SETUP

We outline the metrics used for evaluation for each of our tasks.

D.1 MODELS

We evaluate a selection of models on TESTGENEVAL to better understand how models of different
sizes and families perform at test suite generation and test completion. We include a mixture of small
(less than 9B params), medium (between 9B and 27B params), large (approximately 70B params)
and flagship (greater than 70B params) models. This includes open source models (CodeLlama,
Llama 3, DeepSeekCoder 2, Codestral, and Gemma 2) of varying sizes and GPT-4o, a state of the
art closed source model.

We choose the Llama and Gemma families of models to understand the effects of size on model
performance in conjunction with their high scores on code benchmarks such as HumanEval. We
also include DeepSeekCoder, CodeLlama and Codestral due to their code specialization. Finally, we
include GPT-4o due to its state of the art performance on numerous code generation benchmarks.

D.2 METRICS

We report metrics for both our test generation (Appendix D.2.1) and test completion (Ap-
pendix D.2.2) tasks.

D.2.1 TEST GENERATION METRICS

All pass@1: All pass@1 measures if the generated test suite passes when run on the code under test.
This penalizes more verbose models, as the likelihood of an error increases with each additional test
generated in a test suite.

Any pass@1: Any pass@1 measures if any test in the generated test suite passes when run on the
code under test. We include this to not penalize models that generate longer test suites.

Coverage: Coverage measures the proportion of lines in the file under test executed by the test suite.
Ideally, a high quality test suite should execute a large percentage of the lines in the code under test.

Coverage@pass: Coverage@pass measures the coverage of only the passing tests. Models with
high coverage@pass may not successfully generate tests for many of the problems in TEST-
GENEVAL, but for the ones they do, they obtain high coverage.

Mutation score: The main limitation of coverage and pass@1 is that they can be potentially gamed
(a model can invoke all functions in the file under test without testing anything and achieve 100%
coverage and 100% pass@1). To compute mutation score we inject synthetic bugs into the code
under test. We then measure the percentage of bugs detected by the test suite (should pass on the
original code and fail on the buggy code). Unlike other metrics, mutation score is much harder to
game, however it is compute costly, as we have to execute the entire test suite for each bug. We rank
by coverage, as models still have relatively low coverage across the board and it is more compute
efficient for the community to run (we allow for TESTGENEVAL to be run omitting mutation score).

We use cosmic-ray5 to generate mutants and use the default set of mutation operators6. This default
set of operators follows best practices defined by the mutation testing community (Derezinska &
Halas, 2014; Offutt et al., 1996). Cosmic ray has 565 stars and commonly in mutation testing
research (Sánchez et al., 2022; Deb et al., 2024). We choose to not filter out mutation operators
to achieve the most granular results possible (with no filtering there is only a 1.06% uncertainty in
mutation score results).

Mutation score@pass: Mutation score@pass measures the the mutation score of only passing
tests. Mutation score@pass is similar to coverage@pass, measuring how the quality of generated
tests, rather than their coverage of all problems in TESTGENEVAL.

5https://github.com/sixty-north/cosmic-ray
6https://github.com/sixty-north/cosmic-ray/tree/master/src/cosmic_ray/

operators

24

https://github.com/sixty-north/cosmic-ray
https://github.com/sixty-north/cosmic-ray/tree/master/src/cosmic_ray/operators
https://github.com/sixty-north/cosmic-ray/tree/master/src/cosmic_ray/operators

Published as a conference paper at ICLR 2025

D.2.2 TEST COMPLETION METRICS

Pass@k: Pass@k measures if any of k test generated pass when added to the existing test suite for
the code under test. We rank by this metric, as coverage improvement is near 0 for 2/3 settings for
TESTGENEVAL.

Avg pass@k: Average pass@k measures the average proportion of k generated tests that pass. This
provides an idea of how many erroneous tests a model will generate before generating a correct test.

Coverage improvement: Coverage improvement measures the change in line coverage when
adding the generated test. Ideally, newly added tests should improve overall code coverage. We
choose not to report mutation score improvement here, due to computational cost and already near
0 coverage improvement of generated tests.

Coverage improvement@pass: Coverage improvement@pass measures the change in line cover-
age for only problems where generated tests pass the test suite. High coverage improvement@pass
indicates that a model may be good at generating high coverage test completion, but could still
struggle with generating passing test completions for all problems.

25

Published as a conference paper at ICLR 2025

E RESULTS

We report our full set of results on both TESTGENEVAL and TESTGENEVALLITE (results across
both splits are similar). We also report complete test completion results for the extra setting and add
the average pass@k metric.

E.1 TESTGENEVAL

We report performance on both the test generation and test completion tasks for TESTGENEVAL.

E.1.1 TEST GENERATION

Table 6: Full test suite generation. All results shown for temperature=0.2. We report all pass@1,
any pass@1, coverage, coverage of only passing tests, mutation score and mutation score of only
passing tests.

Model All@1 Any@1 Cov Cov@Pass Mut Mut@Pass
Small Models

CodeLlama 7B 3.2% 4.1% 1.2% 30.3% 0.5% 11.0%
Gemma 9B 3.5% 42.1% 20.2% 47.9% 9.0% 21.5%
Llama 3.1 8B 3.1% 30.5% 14.1% 46.3% 6.8% 22.4%

Medium Models
DeepSeekCoder 16B 23.0% 63.7% 28.2% 44.3% 12.1% 19.1%
Gemma 27B 7.4% 57.7% 30.1% 52.3% 14.6% 25.5%
Codestral 22B 26.8% 72.7% 33.0% 45.4% 14.2% 19.7%

Large Models
CodeLlama 70B 14.0% 22.7% 7.0% 32.4% 2.5% 11.4%
Llama 3.1 70B 7.8% 60.7% 30.6% 50.4% 15.4% 25.6%

Flagship Models
GPT-4o 7.5% 64.0% 35.2% 54.9% 18.8% 29.4%
Llama 3.1 405B 17.7% 73.1% 35.0% 47.9% 16.4% 22.5%

Table 6 shows full test suite performance for TESTGENEVAL. Smaller models struggle to generate
any tests that pass on complex code files present in TESTGENEVAL. Codestral 22B can generate
a passing test in 72.7% of all problems, however still has lower coverage and mutation score than
GPT-4o. This indicates despite generating tests for more problems, the tests generated by Codestral
22B tend to be lower quality than those generated by GPT-4 (indicated by a approximately 10%
lower coverage of passing tests).

E.1.2 TEST COMPLETION

Table 7 shows the pass rates across first, last, and extra test completion settings. Extra test comple-
tion setting results mirror those of last test completion, with Codestral 22B outperforming existing
models.

Table 8 shows the average pass@5 rates along with coverage improvements for all settings. Cov-
erage improvement for last and extra settings is near 0; it is hard to improve coverage for a near
complete test suite. Average pass@5 is interestingly lower for GPT-4o, despite higher coverage,
meaning that it would take more attempts to generate a passing test completion, but the quality of
the completion is better.

Figure 17a, Figure 17b, Figure 17c show the number of unique generations for each model across
temperatures 0.2 and 0.8. Of all models, CodeLlama models are the least diverse, with not a big
difference between 0.2 and 0.8 temperature, while Llama 3.1 generates far more unique solutions.

26

Published as a conference paper at ICLR 2025

Table 7: Pass rates for different models in first, last, and extra completion settings. Pass@1 is for
temperature=0.2, Pass@5 is for temperature=0.8.

First Last Extra
Model Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5

Small Models
CodeLlama 7B 4.2% 19.8% 6.9% 24.0% 5.2% 22.9%
Gemma 9B 8.4% 18.0% 21.4% 46.4% 18.9% 46.7%
Llama 3.1 8B 14.4% 33.3% 32.0% 54.3% 31.8% 53.8%

Medium Models
DeepSeekCoder 16B 18.6% 47.0% 17.0% 62.8% 15.5% 61.7%
Gemma 27B 12.7% 33.7% 32.2% 62.2% 31.7% 66.8%
Codestral 22B 38.3% 61.7% 50.4% 74.3% 48.3% 75.7%

Large Models
CodeLlama 70B 0.5% 30.2% 0.9% 50.7% 0.5% 52.8%
Llama 3.1 70B 19.3% 46.4% 35.0% 61.9% 36.4% 61.2%

Flagship Models
GPT-4o 31.9% 63.5% 32.6% 66.6% 30.4% 63.5%
Llama 3.1 405B 32.1% 57.7% 42.6% 72.3% 42.4% 74.5%

Table 8: Coverage improvements, including coverage improvements for passing tests, and average
pass@5 for first, last, and extra completion settings. Models struggle to improve coverage, and in
general report substantially worse average pass@5 than pass@5.

First Last Extra

Model +Cov +Cov@P Avg@5 +Cov +Cov@P Avg@5 +Cov +Cov@P Avg@5

Small Models

CodeLlama 7B 6.7% 33.9% 4.7% 0.0% 0.1% 5.7% 0.0% 0.1% 5.3%
Gemma 9B 6.7% 37.3% 8.2% 0.1% 0.2% 17.4% 0.1% 0.2% 16.5%
Llama 3.1 8B 12.8% 38.5% 10.5% 0.1% 0.2% 23.1% 0.0% 0.1% 23.5%

Medium Models

DeepSeekCoder 16B 19.0% 40.4% 16.4% 0.2% 0.3% 22.2% 0.1% 0.1% 21.9%
Gemma 27B 13.6% 40.2% 13.2% 0.1% 0.2% 28.0% 0.1% 0.1% 29.0%
Codestral 22B 24.0% 39.1% 31.2% 0.4% 0.5% 43.2% 0.2% 0.2% 43.5%

Large Models

CodeLlama 70B 11.2% 37.5% 7.5% 0.0% 0.0% 14.2% 0.0% 0.0% 15.4%
Llama 3.1 70B 18.7% 40.5% 18.4% 0.5% 0.7% 29.5% 0.1% 0.2% 29.0%

Flagship Models

GPT-4o 26.9% 42.4% 32.4% 0.5% 0.7% 31.5% 0.2% 0.3% 28.8%
Llama 3.1 405B 21.6% 37.5% 31.3% 0.3% 0.4% 40.9% 0.1% 0.2% 41.4%

(a) First setting (b) Last setting (c) Extra setting

Figure 17: Unique generations by model and temperature for first, last and extra test completion
settings (out of maximum of 5 generations).

27

Published as a conference paper at ICLR 2025

E.2 TESTGENEVALLITE

We also report our full set of results on our TESTGENEVALLITE split. We find that results generally
mirror those of TESTGENEVAL.

E.2.1 TEST GENERATION

Model All@1 Pass@1 Cov Cov@Pass Mut Mut@Pass
Small Models

CodeLlama 7B 3.8% 4.4% 2.1% 47.5% 0.8% 18.3%
Gemma 9B 7.5% 45.0% 19.6% 43.6% 8.1% 17.9%
Llama 3.1 8B 5.0% 29.4% 12.1% 41.3% 5.1% 17.9%

Medium Models
DeepSeekCoder 16B 24.4% 64.4% 27.3% 42.5% 11.6% 18.0%
Gemma 27B 11.9% 58.8% 28.4% 48.3% 12.8% 22.1%
Codestral 22B 30.0% 71.9% 31.7% 44.1% 12.3% 17.3%

Large Models
CodeLlama 70B 18.8% 25.6% 8.0% 32.8% 1.8% 7.7%
Llama 3.1 70B 10.0% 60.6% 30.3% 50.0% 15.1% 25.4%

Flagship Models
GPT-4o 5.0% 55.0% 29.7% 54.0% 14.7% 27.3%
Llama 3.1 405B 18.1% 74.4% 34.1% 45.9% 14.7% 19.9%

Table 9: Full test suite generation. All results shown for temperature=0.2

Table 9 shows pass@1, all pass@1 coverage and mutation score for small, medium and large mod-
els. Similar to TESTGENEVAL, smaller models perform significantly worse than their larger coun-
terparts. All pass@1 penalizes how verbose a model is, thus less verbose models such as Codestral
22B have a much higher all pass@1 than verbose models such as GPT-4o, which generate many
tests.

Coverage and mutation score remain low across all models. Similar to TESTGENEVAL, GPT-4o and
Llama 3.1 405B performs highly. Mutation score is even lower than coverage, implying that models
are not able to catch all induced bugs.

E.2.2 TEST COMPLETION

Table 10 shows pass@1, and pass@5 for all settings. Similar to TESTGENEVAL split, model perfor-
mance generally increases as more of the test file is provided as context (extra pass@5 is higher than
both last pass@5 and first pass@5). Table 11 shows the average pass@5 and coverage improvement
across all three settings. Similar to TESTGENEVAL, models struggle to add coverage to an existing
test suite, performing best at first test generation, where there is no coverage (or minimal coverage
from test setup) and thus it is easiest to add new coverage. For the last and extra test generation
testing, the model generates nearly 0 new coverage, testing already tested functions, rather than at-
tempting to test new functions. This represents a frontier of test generation (improving coverage
of an already high coverage test suite). Similar to TESTGENEVAL, Codestral has a higher average
pass@5 than GPT-4o, despite GPT-4o generating tests with higher coverage.

Figure 18a, Figure 18b, Figure 18c show the number of unique generations for each model across
temperatures 0.2 and 0.8. Similar to the full TESTGENEVAL, CodeLlama generates the fewest
unique solutions, while models such as Llama 3.1 8B generate a large number of unique solutions.

28

Published as a conference paper at ICLR 2025

Table 10: Pass rates for different models in first, last, and extra completion settings. Pass@1 is for
temperature=0.2, Pass@5 is for temperature=0.8.

First Last Extra
Model Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5

Small Models
CodeLlama 7B 6.9% 25.0% 7.5% 22.5% 6.9% 21.9%
Gemma 9B 6.9% 18.1% 18.8% 45.0% 25.0% 45.6%
Llama 3.1 8B 14.4% 41.2% 35.0% 56.2% 31.9% 51.2%

Medium Models
DeepSeekCoder 16B 18.8% 48.8% 20.6% 60.0% 13.1% 60.6%
Gemma 27B 16.2% 35.6% 31.9% 63.7% 30.6% 63.1%
Codestral 22B 43.1% 67.3% 51.2% 75.0% 47.5% 75.0%

Large Models
CodeLlama 70B 1.2% 26.9% 0.0% 61.9% 0.0% 56.9%
Llama 3.1 70B 21.9% 48.1% 36.2% 59.4% 41.2% 64.4%

Flagship Models
GPT-4o 36.2% 66.9% 26.9% 60.6% 26.2% 61.3%
Llama 3.1 405B 33.8% 60.0% 38.8% 68.1% 40.6% 71.2%

Table 11: Coverage improvements, including coverage improvements for passing tests, and average
pass@5 for first, last, and extra completion settings. Models struggle to improve coverage, and in
general report substantially worse average pass@5 than pass@5.

First Last Extra

Model +Cov +Cov@P Avg@5 +Cov +Cov@P Avg@5 +Cov +Cov@P Avg@5

Small Models

CodeLlama 7B 9.3% 37.3% 5.8% 0.0% 0.1% 5.0% 0.0% 0.0% 5.3%
Gemma 9B 7.9% 43.7% 6.8% 0.1% 0.2% 17.1% 0.1% 0.1% 16.1%
Llama 3.1 8B 16.3% 39.5% 10.7% 0.0% 0.0% 26.4% 0.1% 0.1% 23.8%

Medium Models

DeepSeekCoder 16B 20.6% 42.3% 17.9% 0.1% 0.1% 21.5% 0.1% 0.1% 20.1%
Gemma 27B 15.5% 43.6% 14.5% 0.1% 0.1% 29.1% 0.0% 0.0% 27.5%
Codestral 22B 26.4% 39.4% 32.5% 0.2% 0.3% 48.0% 0.1% 0.1% 43.8%

Large Models

CodeLlama 70B 8.7% 33.3% 7.0% 0.0% 0.0% 17.0% 0.0% 0.0% 15.7%
Llama 3.1 70B 18.8% 39.6% 16.9% 0.1% 0.2% 29.1% 0.1% 0.1% 32.5%

Flagship Models

GPT-4o 28.2% 42.2% 34.4% 0.3% 0.6% 28.8% 0.3% 0.5% 28.1%
Llama 3.1 405B 20.9% 35.2% 33.4% 0.2% 0.4% 41.3% 0.1% 0.2% 43.9%

(a) First setting (b) Last setting (c) Extra setting

Figure 18: Unique generations by model and temperature for first, last and extra test completion
settings (out of maximum of 5 generations).

29

Published as a conference paper at ICLR 2025

F ANALYSIS

F.1 CORRELATION WITH OTHER BENCHMARKS

F.1.1 TESTGENEVAL

(a) Correlation with HumanEval (b) Correlation with TestEval

(c) Correlation with MMLU

Figure 19: Correlation with HumanEval (a SOTA code generation benchmark), TestEval (a SOTA
test generation benchmark) and MMLU (a NLP benchmark). We find that there is a weak positive
correlation between HumanEval and TESTGENEVAL, and with the exception of Gemma 9B there
is a similar weak positive correlation between TestEval and TESTGENEVAL. MMLU correlation is
weaker, with code generation performing much better on TESTGENEVAL than MMLU.

We perform correlation analysis between TESTGENEVAL in our full test generation setting and
other benchmarks. We select two benchmarks for comparison: HumanEval (a widely used code
generation benchmark) and TestEval (a existing test generation benchmark).

Figure 19a shows correlation between TESTGENEVAL and HumanEval. Correlation between Hu-
manEval (a code generation task) and TESTGENEVAL is higher with a correlation coefficient of
0.86. The major outlier here is CodeLlama 7B with a very low TESTGENEVAL and HumanEval
score. Another outlier is Gemma 9B, with a lower HumanEval score than expected given its TEST-
GENEVAL score. The moderate correlation illustrates that there is still information added by adding
TESTGENEVAL, but that it does indeed correlate with code generation performance.

Figure 19b shows correlation between TESTGENEVAL and TestEval, a smaller scale test generation
benchmark. Generally all models tend to perform, well on TestEval, however Gemma 9B performs
significantly worse than expected. This is because the instruct model does not follow the prompt
provided by TestEval authors, instead generating code snippets. Additionally, there does is minimal

30

Published as a conference paper at ICLR 2025

differentiation between models, with some models performing highly on TestEval (Llama 3.1 70B
and CodeLlama 70B), but significantly worse on TESTGENEVAL.

Figure 19c shows correlation between TESTGENEVAL and MMLU, a state of the art natural lan-
guage processing benchmark. Code generation models such as Codestral and DeepSeekCoder per-
form significantly worse on MMLU than on TESTGENEVAL. Otherwise, the performance is gener-
ally correlated.

F.1.2 TESTGENEVALLITE

(a) Correlation with HumanEval (b) Correlation with TestEval

(c) Correlation with MMLU

Figure 20: Correlation with HumanEval (a SOTA code generation benchmark), TestEval (a SOTA
test generation benchmark) and MMLU (a NLP benchmark) with TESTGENEVALLITE. Correla-
tions are similar to the full split of our benchmark.

Figure 20a, Figure 20c, and Figure 20b display the correlations with HumanEval, MMLU, and
TestEval datasets, respectively, in the TESTGENEVALLITE dataset. Similar to TESTGENEVAL,
we find that HumanEval has the highest correlation of any benchmark, however there are some
outliers such as GPT-4o and Llama 3.1 8B having a higher HumanEval score. MMLU correlation
is less strong, with code models such as Codestral and DeepSeekCoder scoring significantly lower
on MMLU than on TESTGENEVAL. Finally, TestEval has the lowest correlation, with Gemma 9B
failing to follow the TestEval prompt.

31

Published as a conference paper at ICLR 2025

(a) Full-first correlation (b) Full-last correlation (c) Full-extra correlation

Figure 21: Correlations between the full dataset and the first, last, and extra subsets in the
SWEBench dataset

F.2 CORRELATION BETWEEN SETTINGS AND MODELS

F.2.1 TESTGENEVAL

Figure 21a, Figure 21b, and Figure 21c show the correlations between the full dataset and the first,
last, and extra subsets, respectively, in the TESTGENEVAL. Our full test generation setting has a
relatively high correlation with other settings, however it is not a perfect correlation, with some
models performing better on one setting than others.

(a) First-last correlation (b) First-extra correlation (c) Last-extra correlation

Figure 22: Correlations between the full dataset and the first, last, and extra subsets in TEST-
GENEVAL

Figure 22a, Figure 22b, and Figure 22c show the correlations between the test completion settings.
First and last and first and extra test completion settings have a highly positive but not perfect corre-
lation. Interestingly, last test generation and extra test generation have perfect correlation, indicating
that models performing well in one setting will in the other setting.

Figure 23 shows the correlation of all models in their ability to solve the TESTGENEVAL full test
generation setting. Models in the same families have the highest correlation (Gemma 9B and Gemma
27B for example, and Llama 3.1 8B and Llama 3.1 70B). Gemma 27B and Codestral 22B also are
very correlated in their ability to solve problems in the full test suite generation setting.

Figure 24a, Figure 24b, and Figure 24c show the correlations of all models in their ability to solve
first, last, and extra test completion tasks in TESTGENEVAL. Trends from the model predictions in
the full test suite generation continue here, with models in the same family most correlated in their
ability to solve tasks. Llama 3.1 405B and Codestral 22B also share some similarities in their first,
last and extra test settings problems solved, as well.

F.2.2 TESTGENEVALLITE

Figure 25a, Figure 25b, and Figure 25c show the correlations between the full test generation and the
first, last, and extra completion settings, respectively, in the TESTGENEVALLITE split. Similar to
TESTGENEVAL, correlation remains high between the full test suite generation and test completion
settings. However, there are still cases where a model is better at one setting than others, indicating
there is information gained by having all settings.

32

Published as a conference paper at ICLR 2025

Figure 23: TESTGENEVAL full model correlation

(a) TESTGENEVAL first model
correlation

(b) TESTGENEVAL last model
correlation

(c) TESTGENEVAL extra model
correlation

Figure 24: Correlations for various test completion settings between all models in the TEST-
GENEVAL.

(a) Full-first correlation (b) Full-last correlation (c) Full-extra correlation

Figure 25: Correlations between the full test generation and the first, last, and extra completion
settings in the TESTGENEVALLITE split

(a) First-last correlation (b) First-extra correlation (c) Full-extra correlation

Figure 26: Correlations between the full dataset and the first, last, and extra subsets in the TEST-
GENEVALLITE split

33

Published as a conference paper at ICLR 2025

Figure 26a, Figure 26b, and Figure 26c show the correlations between the test completion settings.
The first test completion setting is highly correlated with both the last and extra test completion set-
tings. Last test completion is nearly perfectly correlated with extra test completion performance. We
hypothesize this is because the tasks are very similar, with the only difference being one additional
test added to the context.

Figure 27: TESTGENEVALLITE full model correlation

(a) TESTGENEVALLITE first
model correlation

(b) TESTGENEVALLITE last
model correlation

(c) TESTGENEVALLITE extra
model correlation

Figure 28: Correlations for various test completion settings between all models in the TEST-
GENEVALLITE split. We omit CodeLlama 70B in settings where it has a pass@1 of 0.

Figure 27 shows the correlation the correlation of all models in their ability to solve the TEST-
GENEVAL full test generation setting. Similar to TESTGENEVAL, models in the same family
(Llama 3.1, Gemma) exhibit the highest correlation between different sizes, larger models solve
more of problems than smaller models, but still solve similar types of tasks.

Figure 28a, Figure 28b, and Figure 28c show the correlation of all models in their ability to solve the
TESTGENEVALLITE first, last, and extra test completion settings. Similar to the full test generation,
models in the same families are highly correlated in their ability to solve similar problems. Codestral
is also more correlated with Llama 3.1 8B than other models for the extra test completion task.

F.3 EFFECT OF SAMPLING ON COVERAGE AND PASS@K

Figure 29a and Figure 29b show how performance in the full test generation and first, last and extra
test completion settings changes as more tests are sampled. For full test suite generation, we find
that coverage at k gradually increases, with no noticeable plateau in the first 20 generations. The
curve is slightly steeper at the beginning, but still looks linear as k approaches 20. Sampling 20
generations leads to approximately a 10% increase in overall coverage (coverage@20 is 23.3%).

For test completion, we find that pass@k is most substantial in the first 5 tests, but slowly increases
after. Pass@100 performance is substantially higher than pass@1 and pass@5 performance, indi-
cating models are capable of solving test completion tasks, but with many attempts. The plot curve

34

Published as a conference paper at ICLR 2025

(a) Coverage@k vs k (full test generation) (b) Pass@k vs k (test completion)

Figure 29: Effect of sampling more tests for all settings on Llama 3.1 8B. Coverage@k seems to
gradually increase. Pass@k also increases more for lower k values and seems to plateau after k=20.

is steep initially, and then decays in value as more samples are added (first test completion plateaus
around 80% pass@k and last and extra test completion plateaus around 90% pass@k).

F.4 EFFECT OF CONTEXT ON COVERAGE AND PASS@5

We measure the effect of context length on both coverage for our full test generation setting and for
pass@5 for our test completion setting.

(a) Coverage by context length (full test generation) (b) Pass@5 by context length (test completion)

Figure 30: Effect of context window for both our full setting (coverage of generated test suite) and
for our test completion setting (pass@5 for our first, last and extra test completion settings). We find
that context length generally helps test completion, however for test generation, even receiving parts
of the file under test (measured by a lower context window) seems to be effective.

Figure 30a and Figure 30b show the effect of context length on both our coverage (full test gener-
ation) and on pass@5 (test completion). For full test suite generation, context does not help much;
seeing part of a large file with many classes is enough to generate covering tests. Since tests can
mock inputs in the partial test file, this partial context is sufficient to generate large test suite. How-
ever, for test completion context size helps significantly more. This is because to complete the
next test in a file one needs knowledge of both the code under test and the existing test file. Full
context ensures that the mapping between existing tests and the code under test is clear, improving
performance of completing additional tests.

F.5 QUANTITATIVE ERROR ANALYSIS

F.5.1 TESTGENEVAL

We bucket errors based off the logs from executing tests. Specifically for setting and generation we
scrape the logs and extract the Python error class. Figure 31 shows the most frequent errors made by
the best performing model for test completion, Codestral 22B: specifically assertion, no assertion,

35

Published as a conference paper at ICLR 2025

Figure 31: Different errors made on TESTGENEVAL by Codestral 22B (the best model on test
completion). Despite high performance, Codestral struggles to reason about execution (large number
of assertion and timeout errors).

timeout, indentation and name errors. As evidenced by the large number of assertion and timeout
errors Codestral 22B struggles to reason about code execution. There are also cases where Codestral
22B generates tests that do not contain an assert and simply invoke the method under test. We filter
these out and label such cases as an error.

(a) Top 5 errors across all models (b) Top 5 errors by model

(c) No assert errors by model

Figure 32: Common errors across all models. We find that the most common errors include not
generating tests with asserts, followed by execution and hallucination related errors.

Figure 32a, Figure 32b, and Figure 32c show examples of the most common errors made by all
models in TESTGENEVAL. We find that all models struggle the most with following the prompt,
generating tests that lack assertions. After this error, the most common error types have to do
with code execution (assertion, timeout errors), model hallucination (name error) and formatting
(indentation error).

36

Published as a conference paper at ICLR 2025

F.5.2 TESTGENEVALLITE

Figure 33: Different errors made on TESTGENEVALLITE by Codestral 22B. Results are similar to
TESTGENEVAL.

Figure 33 shows the most frequent errors made by our best performing model Codestral 22B. Error
counts remain the same as TESTGENEVAL.

(a) Top 5 errors across all models (b) Top 5 errors by model

(c) No assert errors by model

Figure 34: Common errors across all models. Results are similar to TESTGENEVAL.

Figure 34a, Figure 34b, and Figure 34c show examples of the most common errors made by all
models in TESTGENEVALLITE. Similar to TESTGENEVAL, we find that all models struggle the
most with following the prompt, generating tests that lack assertions and making both execution and
hallucination errors.

37

Published as a conference paper at ICLR 2025

F.6 QUALITATIVE MODEL COMPARISON

We outline three cases where TESTGENEVAL discriminates between GPT-4o, CodeStral and Llama
3.1 405B (only one model suceeds in each of these examples).

F.6.1 EXAMPLE 1 - TEST SETUP (ONLY SOLVED BY GPT-4O)

class QuerySet(AltersData):
def __init__(self, model=None, query=None, ...):

...
def repr(self):

return "<%s %r>" % (self.__class__.__name__, data)
...

Listing 4: Query set class for managing data from database.

Our first example involves a QuerySet class that manages records returned from a database. The
class has no database dependencies. The initialization takes a model and query, which can also not
be set if no database is being used. This is hard to test because it involves either mocking or creating
a complex model object.

def test_queryset_repr(self):
queryset = QuerySet(model=None)
assertEqual(repr(queryset), "<QuerySet []>")

Listing 5: Cut GPT-4o generated test

GPT-4o instantiates the QuerySet with no parameters (the simplest possible version of the test). It
then tests all code methods, with all of the generated tests passing on the code under test.

from django.db import connection, models

def test_query_set_init(self):
model = models.Model()
qs = QuerySet(model=model)
self.assertEqual(qs.model, model)

Listing 6: Cut Llama 3.1 405B generated test

This is not the case with both Llama 3.1 405B and Codestral 22B. Both models ignore the empty case
entirely and instead hallucinate invocations or imports of models in Django (instead these models
should have mocked the model object and tested the null case). All models failing to properly mock
the class under test’s dependencies lead to low coverage of the source file, despite GPT-4o generating
passing tests all when other models fail.

F.6.2 EXAMPLE 2 - INCORRECTLY MOCKING OBJECTS (ONLY SOLVED BY LLAMA 3.1 405B)

class MigrationAutodetector:
def __init__(self, from_state, to_state, questioner=None):

...
self.existing_apps = {app for app, model in

from_state.models}
def changes(self, graph, trim_to_apps=None,

convert_apps=None, migration_name=None):
...

Listing 7: Migration detection class to automatically detect changes needed between project states.

Our second example involves a MigrationAutodetector class that takes in two project states and mea-
sures the changes between the states passed in to automatically detect code that should be migrated.

38

Published as a conference paper at ICLR 2025

def test_changes():
class Model(models.Model):

pass
...
changes = migration.changes(graph={}, trim_to_apps=None)
self.assertEqual(len(changes), class="syntax-number">1)

Listing 8: Cut Llama 3.1 405B generated test

Llama 3.1 405B generates passing test for the changes method, providing an empty graph and model,
meaning the only difference between the from and to states is the addition of the model. The assert
passes, as the method only outputs one change.

def test_init():
from_state = MagicMock(spec=ProjectState)
to_state = MagicMock(spec=ProjectState)
autodetector = MigrationAutodetector(self.from_state,

self.to_state, self.questioner)
self.assertEqual(autodetector.from_state, self.from_state)

Listing 9: Cut GPT-4o generated test

GPT-4o attempts to mock the ProjectState class (passing instance checks of the ProjectState class).
However, it misses the line in initialization where the models attribute of from state is accessed.
This leads the setup to fail, and the MigrationAutodetector initialization fails. Codestral 22B makes
a similar error, where it incorrectly mocks the ProjectState class and misses the model attribute.

F.6.3 EXAMPLE 3 - HANDLING CLASS DEPENDENCIES (ONLY SOLVED BY CODESTRAL 22B)

class FieldGetDbPrepValueMixin:
...

class Exact(FieldGetDbPrepValueMixin, BuiltinLookup):
def process_rhs(self, compiler, connection):

...

Listing 10: Database classes to handle lookups and comparisons in queries.

Our final example deals with lookups and comparisons that could be applied when searching a
database (for example exact match, greater than, less than, etc.). The file under test has many
classes and subclasses such as Exact, which depends on FieldGetDbPrepValueMixin.

def test_exact_lookup():
lhs = F(’field’)
lookup = Exact(lhs, ’value’)
self.assertIn(’%s’, ...)

Listing 11: Cut GPT-4o generated test

GPT-4o and Llama 3.1 405B both hallucinate class invocations, rather than mocking or using the
classes provided in context. F is not a correct class to pass as lhs (missing the required output field).

def test_exact():
field = Field()
lookup = Exact(field, ’value’)
self.assertEqual(lookup.lookup_name, ’exact’)

Listing 12: Cut Codestral 22B generated test

Unlike GPT-4o and Llama 3.1 405B, Codestral 22B is able to understand the file under test. Code-
stral 22B both imports and instantiates valid field under test that is also imported in the file under
test and correctly instantiates the Exact class that has a dependency on the field.

39

Published as a conference paper at ICLR 2025

F.7 QUALITATIVE ERROR ANALYSIS

We manually examine errors made by Codestral (the top model for our test completion task) and
highlight examples for the most popular errors for TESTGENEVAL. Generally, models struggle
with reasoning about execution (high amount of assertion errors) and hallucination (leads to timeout
and value errors).

Assertion Errors: A common type of error is the model generating tests with incorrect asserts. This
is challenging, as models often miss nuances in code execution and methods under test themselves.

def prepare_import(path):
"""Given a filename this will try to calculate the python

path, checks the python path exists otherwise returns ’’"""
...

First test generation
def test_prepare_import():

path = test_path / "simple_app.py"
module_name = prepare_import(str(path))
assert module_name == "simple_app"

Listing 13: Codestral first test method completion and code method

This example shows a case where the code under test requires setup (creating directories), but the
model fails to add the required setup (either mocking the os methods or creating the required file in
test path so that the import is recognized).

def test_min_maxima_ratio():
...
clust1 = OPTICS(min_samples=class="syntax-number">9,

min_maxima_ratio=class="syntax-number">0.001).fit(X)
clust2 = OPTICS(min_samples=class="syntax-number">9,

min_maxima_ratio=class="syntax-number">0.01).fit(X)

assert not np.array_equal(clust1.labels_, clust2.labels_)

Listing 14: Codestral last test method completion

An example where Codestral asserts that two objects that have identical labels are not equal. This is a
case where Codestral misunderstands the code under test, which does not include min maxima ratio
in the labels.

No Assert Errors: Another common type of error is no assert errors. We filter out generated tests
that do not contain asserts.

def test_all_world2pix_with_adaptive_and_detect_divergence():
Open test FITS file:
fname = get_pkg_data_filename(’data/j94f05bgq_flt.fits’)
ext = (’SCI’, class="syntax-number">1)
h = fits.open(fname)
w = wcs.WCS(h[ext].header, h)

...

Listing 15: Codestral extra test completion (no asserts)

def test_tight_layout_h_pad_w_pad():
fig, ax = plt.subplots(class="syntax-number">2,

class="syntax-number">2)
fig.tight_layout(pad=class="syntax-number">1.0,

h_pad=class="syntax-number">2.0,
w_pad=class="syntax-number">3.0)

40

Published as a conference paper at ICLR 2025

plt.close(fig)

Listing 16: Codestral first test completion (no asserts)

Timeout Errors: Another common type of error is generating tests that lead to a degenerative state
(infinite loops, timeout errors).

def test_server_handler_cleanup_headers(self):
from django.core.servers.basehttp import ServerHandler

class MockRequestHandler:
class MockServer:

pass

self.server = self.MockServer()
self.headers = {}

pass
...
server_handler.cleanup_headers()
self.assertNotIn(’Connection’, server_handler.headers)

Listing 17: Codestral extra test method completion

This example shows a case where Codestral incorrectly mocks a request handler, by putting
self.server = self.MockServer() in the class MockServer rather than in a init method in Mock-
RequestHandler. The cleanup headers method requires that the headers are well formed to properly
close the connection, and thus never actually closes the connection.

def test_get_traceback_data(self):
request = RequestFactory().get(’/’)
exc_type = TemplateDoesNotExist
exc_value = TemplateDoesNotExist("Error message")
tb = mock.Mock()
reporter = ExceptionReporter(request, exc_type, exc_value,

tb)
data = reporter.get_traceback_data()
self.assertTrue(data[’template_does_not_exist’]

Listing 18: Codestral first test method completion

This shows a similar example with mocking. Because the mock will continuously return a non None
object when called by get traceback data in a loop (tb = tb.tb next), the model needs to mock the
traceback correctly and ensure that non null is returned.

Value Errors: Another common type of error is generating tests that invoke functions with incorrect
arguments (a value error) or missing some precondition to the function.

def test_timezone_aware(self):
now = timezone.now()
future = now + self.onehour
future = timezone.localtime(future)
self.assertEqual(timesince(now, future),

"class="syntax-number">1 hour")
self.assertEqual(timeuntil(future, now),

"class="syntax-number">1 hour")

Listing 19: Codestral last test method completion

This example shows a case where Codestral misses an implementation detail of localtime in the code
under test. Specifically, localtime cannot be applied on a naive datetime, instead a correct test would
use the .localize method to convert a datetime object to an object with a timezone.

41

Published as a conference paper at ICLR 2025

def test_get_paths(self):
view = JavaScriptCatalog()
paths = view.get_paths([’django.conf’])
self.assertEqual(paths, [path.join(settings.BASE_DIR,

’django/conf/locale’)])
with self.assertRaises(ValueError):

view.get_paths([’nonexistent_package’])

Listing 20: Codestral first test method completion

This shows a different example. Specifically, the input ’django.conf’ is not a valid package that can
be passed to the get paths method. The code under test shows a way to get valid paths (invoking the
apps.get app configs method, but instead of following this, the model hallucinates a non-existant
package).

def test_get_paths(self):
view = JavaScriptCatalog()
paths = view.get_paths([’django.conf’])
self.assertEqual(paths, [path.join(settings.BASE_DIR,

’django/conf/locale’)])
with self.assertRaises(ValueError):

view.get_paths([’nonexistent_package’])

Listing 21: Codestral first test method completion

This shows a different example. Specifically, the input ’django.conf’ is not a valid package that can
be passed to the get paths method. The code under test shows a way to get valid paths (invoking the
apps.get app configs method, but instead of following this, the model hallucinates a non-existant
package).

F.8 FRONTIERS OF TESTGENEVAL

We also show some code snippets on the frontier of TESTGENEVAL. Specifically we show two
examples of code snippets that no model can generate tests for and code snippets where only one
model can generate tests.

No Solve Cases: Below are two cases where no model is capable of generating tests.

class Plane(GeometryEntity):
def __new__(cls, p1, a=None, b=None, **kwargs):

p1 = Point3D(p1, dim=class="syntax-number">3)
if a and b:

p2 = Point(a, dim=class="syntax-number">3)
p3 = Point(b, dim=class="syntax-number">3)
if Point3D.are_collinear(p1, p2, p3):

raise ValueError(’Enter three non-collinear
points’)

a = p1.direction_ratio(p2)
b = p1.direction_ratio(p3)
normal_vector = tuple(Matrix(a).cross(Matrix(b)))

else:
a = kwargs.pop(’normal_vector’, a)
if is_sequence(a) and len(a) ==

class="syntax-number">3:
normal_vector = Point3D(a).args

else:
raise ValueError(filldedent(’’’

Either provide class="syntax-number">3 3D
points or a point with a

42

Published as a conference paper at ICLR 2025

normal vector expressed as a sequence of
length class="syntax-number">3’’’))

if all(coord.is_zero for coord in normal_vector):
raise ValueError(’Normal vector cannot be zero

vector’)
return GeometryEntity.__new__(cls, p1, normal_vector,

**kwargs)
...

Listing 22: No solve problem (class with many nested methods)

The above class is an example of a code file that no model is capable of generating tests for. This is
because generating tests for such a class requires understanding complex execution (we only show
one of many methods for brevity, but all methods involve complex execution sequences of methods).
Furthermore, generating a unit test for such a class requires intricate knowledge of the code under
test or complex mocking of all intermediate classes.

def write_latex(
cosmology, file, *, overwrite=False, cls=QTable,

latex_names=True, **kwargs
):

...
format = kwargs.pop("format", "latex")
if format not in ("latex", "ascii.latex"):

raise ValueError(f"format must be ’latex’ or
’ascii.latex’, not {format}")

Set cosmology_in_meta as false for now since there is no
metadata being kept

table = to_table(cosmology, cls=cls,
cosmology_in_meta=False)

cosmo_cls = type(cosmology)
for name, col in table.columns.copy().items():

param = getattr(cosmo_cls, name, None)
if not isinstance(param, Parameter) or param.unit in

(None, u.one):
continue

Get column to correct unit
table[name] <<= param.unit

Convert parameter names to LaTeX format
if latex_names:

new_names = [_FORMAT_TABLE.get(k, k) for k in
cosmology.__parameters__]

table.rename_columns(cosmology.__parameters__,
new_names)

table.write(file, overwrite=overwrite, format="latex",
**kwargs)

Listing 23: No solve problem (dealing with IO/Files)

The above code file is another case where models fail to generate valid tests. The most common issue
across models for this class is incorrectly testing the output file, as the method under test writes its
output to a file. Checking this output requires intricate knowledge of the content written to the file,
or complex mocking of IO operations. Ideally a model generating a unit test for this class would
either need increased context, or proper mocking of file writing.

43

Published as a conference paper at ICLR 2025

One Solve Cases: Below are two cases where only one model is capable of generating tests (frontier
problems for TESTGENEVAL).

class RawModelIterable(BaseIterable):
#Iterable that yields a model instance for each row from a

raw queryset.

class NamedValuesListIterable(ValuesListIterable):
Iterable returned by QuerySet.values_list(named=True)

class FlatValuesListIterable(BaseIterable):
Iterable returned by QuerySet.values_list(flat=True)

...
class QuerySet(AltersData):

GPT-4o test generation

class QuerySetTests(TestCase):
...
def test_queryset_getstate(self):

state = self.queryset.__getstate__()
self.assertIn(DJANGO_VERSION_PICKLE_KEY, state)
self.assertEqual(state[DJANGO_VERSION_PICKLE_KEY],

django.__version__)

def test_queryset_iter(self):
self.assertEqual(list(iter(self.queryset)), [])

Listing 24: One solve problem (only GPT-4o)

This example highlights a case where in order to write tests for the main class (QuerySet) the model
must understand a large number of classes defined in the code under test. GPT-4 successfully gen-
erates tests for methods that return these additional classes.

class RawModelIterable(BaseIterable):
#Iterable that yields a model instance for each row from a

raw queryset.

class NamedValuesListIterable(ValuesListIterable):
Iterable returned by QuerySet.values_list(named=True)

class FlatValuesListIterable(BaseIterable):
Iterable returned by QuerySet.values_list(flat=True)

...
class QuerySet(AltersData):

GPT-4o test generation

class QuerySetTests(TestCase):
...
def test_queryset_getstate(self):

state = self.queryset.__getstate__()
self.assertIn(DJANGO_VERSION_PICKLE_KEY, state)
self.assertEqual(state[DJANGO_VERSION_PICKLE_KEY],

django.__version__)

def test_queryset_iter(self):
self.assertEqual(list(iter(self.queryset)), [])

Listing 25: One solve problem (only GPT-4o)

44

Published as a conference paper at ICLR 2025

This example highlights a case where in order to write tests for the main class (QuerySet) the model
must understand a large number of classes defined in the code under test. GPT-4 successfully gen-
erates tests for methods that return these additional classes.

class ModelOperation(Operation):
def __init__(self, name):

self.name = name

@cached_property
def name_lower(self):

return self.name.lower()

def references_model(self, name, app_label):
return name.lower() == self.name_lower

def reduce(self, operation, app_label):
return super().reduce(operation, app_label) or

self.can_reduce_through(
operation, app_label

)

def can_reduce_through(self, operation, app_label):
return not operation.references_model(self.name,

app_label)

class CreateModel(ModelOperation):
"""Create a model’s table."""
...

class DeleteModel(ModelOperation):
"""Drop a model’s table."""
...

Codestral 22B generated test

class TestModelOperations(unittest.TestCase):
def setUp(self):

self.app_label = ’test_app’
self.model_name = ’TestModel’
self.fields = [(’id’,

models.AutoField(primary_key=True))]
self.options = {’managed’: True}
self.bases = (models.Model,)
self.managers = []

def test_create_model(self):
operation = CreateModel(self.model_name, self.fields,

self.options, self.bases, self.managers)
self.assertEqual(operation.name, self.model_name)
self.assertEqual(operation.fields, self.fields)
self.assertEqual(operation.options, self.options)
self.assertEqual(operation.bases, self.bases)
self.assertEqual(operation.managers, self.managers)

...

Listing 26: One solve problem (only Codestral 22B)

45

Published as a conference paper at ICLR 2025

This shows another example of a one solve problem. The challenge here is the subclassing of the
CreateModel class. Codestral is able to successfully invoke these subclasses and come up with valid
asserts.

46

Published as a conference paper at ICLR 2025

G STATISTICAL TESTS

We run pairwise comparisons for both TESTGENEVAL and TESTGENEVALLITE splits of our data.

G.1 TESTGENEVAL

Table 12: 95% confidence interval for pass@1 along with noise related statistics for each of TEST-
GENEVAL settings.

Setting 95% Int. No Solve Tau- Sig-Noise
Test generation 3.1% 4.7% 6.4% 2.70
Extra test completion 3.5% 12.0% 11.2% 1.21
First test completion 3.7% 25.9% 7.8% 1.87
Last test completion 4.4% 10.5% 10.4% 1.27

(a) TESTGENEVAL acc by problem (b) Min elo to solve problems

Figure 35: Problems by average model accuracy and min elo required to solve problems for full test
generation setting

Figure 35a and Figure 35b show the average model accuracies by problem, along with the min elo
required to solve each problem for our full test generation setting.

(a) TESTGENEVAL cov by problem (b) TESTGENEVAL acc per cov

Figure 36: Problems by average model coverage and average accuracy per coverage

Figure 37a and Figure 37b show the average model accuracies by problem, along with the min elo
required to solve each problem for our extra test completion setting.

Figures Figure 38a and Figure 38b show the average model accuracies by problem, along with the
min elo required to solve each problem for our extra test completion setting.

Figure 39a and Figure 39b show the average model accuracies by problem, along with the min elo
required to solve each problem for our first test completion setting.

47

Published as a conference paper at ICLR 2025

(a) TESTGENEVAL acc by problem (b) Min elo to solve problems

Figure 37: Problems by average model accuracy and min elo required to solve problems for extra
test completion generation setting

(a) TESTGENEVAL acc by problem (b) Min elo to solve problems

Figure 38: Problems by average model accuracy and min elo required to solve problems for last test
completion setting

(a) TESTGENEVAL acc by problem (b) Min elo to solve problems

Figure 39: Problems by average model accuracy and min elo required to solve problems for first test
completion setting

(a) TESTGENEVALLITE acc by problem (b) Min elo to solve problems

Figure 40: Problems by average model accuracy and min elo required to solve problems for full test
generation setting

48

Published as a conference paper at ICLR 2025

Table 13: Model performance for the full test suite generation setting. Coverage refers to the cover-
age of generated tests.

Model Coverage Win Rate Elo
GPT-4o 35.2% 79.6% 1280.6
Llama 3.1 405B 35.0% 72.8% 1221.2
Codestral 22B 33.0% 65.8% 1161.2
Llama 3.1 70B 30.6% 66.3% 1168.8
Gemma 27B 30.1% 69.8% 1196.5
DeepSeekCoder 16B 28.2% 53.4% 1086.1
Gemma 9B 20.2% 41.2% 996.7
Llama 3.1 8B 14.1% 27.1% 899.1
CodeLlama 70B 7.0% 7.3% 641.9
CodeLlama 7B 1.3% 1.4% 347.8

Table 14: Model performance for the first test completion setting. Pass@1 refers to if any of the
generated tests pass.

Model Pass@1 Win Rate Elo
Codestral 22B 38.3% 80.4% 1288.1
Llama 3.1 405B 32.1% 73.7% 1231.1
GPT-4o 31.9% 71.8% 1220.4
Llama 3.1 70B 19.3% 52.6% 1085.9
DeepSeekCoder 16B 18.6% 51.2% 1082.6
Llama 3.1 8B 14.4% 41.7% 1025.1
Gemma 27B 12.7% 37.6% 1003.0
Gemma 9B 8.4% 25.9% 912.0
CodeLlama 7B 4.2% 13.9% 774.6
CodeLlama 70B 0.5% 1.6% 377.2

G.2 TESTGENEVALLITE

Figure 40a and Figure 40b show the average model accuracies by problem, along with the min elo
required to solve each problem for our full test generation setting.

(a) TESTGENEVALLITE cov by problem (b) TESTGENEVALLITE acc per cov

Figure 41: Problems by average model coverage and average accuracy per coverage

Figure 42a and Figure 42b show the average model accuracies by problem, along with the min elo
required to solve each problem for our extra test completion setting.

Figure 43a and Figure 43b show the average model accuracies by problem, along with the min elo
required to solve each problem for our extra test completion setting.

Figure 44a and Figure 44b show the average model accuracies by problem, along with the min elo
required to solve each problem for our first test completion setting.

49

Published as a conference paper at ICLR 2025

(a) TESTGENEVALLITE acc by problem (b) Min elo to solve problems

Figure 42: Problems by average model accuracy and min elo required to solve problems for extra
test completion generation setting

(a) TESTGENEVALLITE acc by problem (b) Min elo to solve problems

Figure 43: Problems by average model accuracy and min elo required to solve problems for last test
completion setting

(a) TESTGENEVALLITE acc by problem (b) Min elo to solve problems

Figure 44: Problems by average model accuracy and min elo required to solve problems for full test
generation setting

50

Published as a conference paper at ICLR 2025

Table 15: Model performance for the last test completion setting. Pass@1 refers to if any of the
generated tests pass.

Model Pass@1 Win Rate Elo
Codestral 22B 50.4% 79.1% 1258.6
Llama 3.1 405B 42.6% 72.1% 1195.1
Llama-3.1 70B 35.0% 62.1% 1122.9
GPT-4o 32.6% 58.0% 1103.5
Gemma 27B 32.2% 57.3% 1105.4
Llama 3.1 8B 32.0% 57.6% 1096.5
Gemma 9B 21.4% 40.8% 994.0
DeepSeekCoder 16B 17.0% 33.4% 944.7
CodeLlama 7B 6.9% 13.9% 758.6
CodeLlama 70B 0.9% 2.2% 420.7

Table 16: Model performance for the extra test completion setting. Pass@1 refers to if any of the
generated tests pass.

Model Pass@1 Win Rate Elo
Codestral 22B 48.3% 77.9% 1262.1
Llama 3.1 405B 42.4% 72.9% 1216.4
Llama 3.1 70B 36.4% 65.6% 1160.7
Llama 3.1 8B 31.8% 59.0% 1121.8
Gemma 27B 31.7% 57.8% 1127.3
GPT-4o 30.4% 56.5% 1111.2
Gemma 9B 18.9% 38.2% 998.5
DeepSeekCoder 16B 15.5% 32.2% 958.2
CodeLlama 7B 5.2% 11.6% 744.5
CodeLlama 70B 0.5% 1.0% 299.2

Table 17: 95% confidence interval along with noise related statistics for each of TESTGENEVAL-
LITE settings.

Setting 95% Int. No Solve Tau- Noise
Test generation 5.6% 0.6% 6.2% 1.16
Extra test completion 6.9% 11.2% 11.9% 0.31
First test completion 5.6% 22.5% 6.9% 0.87
Last test completion 7.5% 8.8% 10.0% 0.13

Table 18: Model performance for the full test suite generation setting. Coverage refers to the cover-
age of generated tests.

Model Coverage Win Rate Elo
Llama 3.1 405B 35.3% 77.3% 1245.2
Codestral 22B 34.9% 69.1% 1176.7
GPT-4o 32.9% 74.6% 1223.3
Llama 3.1 70B 31.3% 66.8% 1171.7
Gemma 27B 29.4% 64.8% 1148.5
DeepSeekCoder 16B 27.6% 48.6% 1045.2
Gemma 9B 20.2% 38.1% 968.0
Llama 3.1 8B 12.4% 17.1% 783.9
CodeLlama 70B 8.0% 10.9% 708.8
CodeLlama 7B 2.1% 4.1% 528.6

51

Published as a conference paper at ICLR 2025

Table 19: Model performance for the first test completion setting. Pass@1 refers to if any of the
generated tests pass.

Model Pass@1 Win Rate Elo
Codestral 22B 43.1% 81.7% 1283.1
GPT-4o 36.2% 72.7% 1212.3
Llama 3.1 405B 33.8% 71.7% 1195.2
Llama 3.1 70B 21.9% 53.6% 1080.2
DeepSeekCoder 16B 19.4% 48.9% 1053.7
Gemma 27B 16.2% 42.7% 1012.9
Llama 3.1 8B 14.4% 38.3% 987.5
CodeLlama 7B 6.9% 20.2% 829.0
Gemma 9B 6.9% 19.3% 822.1
CodeLlama 70B 1.2% 4.0% 524.1

Table 20: Model performance for the last test completion setting. Pass@1 refers to if any of the
generated tests pass. We omit CodeLlama 70B because it is not able to complete any tests on first
generation.

Model Pass@1 Win Rate Elo
Codestral 22B 51.2% 79.2% 1575.4
Llama 3.1 405B 40.0% 68.0% 1478.3
Llama 3.1 70B 37.5% 64.1% 1453.6
Llama 3.1 8B 36.9% 63.9% 1453.5
Gemma 27B 33.1% 57.6% 1424.4
GPT-4o 28.1% 51.0% 1373.3
DeepSeekCoder 16B 20.6% 39.9% 1310.2
Gemma 9B 19.4% 36.5% 1277.5
CodeLlama 7B 7.5% 16.0% 1103.5
CodeLlama 70B 0.0% 0.0% -2449.8

Table 21: Model performance for the extra test completion setting. Pass@1 refers to if any of the
generated tests pass. We omit CodeLlama 70B because it is not able to complete any tests on first
generation.

Model Pass@1 Win Rate Elo
Codestral 22B 48.1% 78.1% 1552.9
Llama 3.1 405B 42.5% 72.6% 1501.1
Llama 3.1 70B 41.9% 71.4% 1494.1
Llama 3.1 8B 33.8% 60.3% 1419.8
Gemma 27B 31.9% 56.4% 1411.4
GPT-4o 26.2% 48.8% 1350.0
Gemma 9B 25.6% 47.8% 1349.1
DeepSeekCoder 16B 13.8% 28.6% 1221.7
CodeLlama 7B 6.9% 13.5% 1058.2
CodeLlama 70B 0.0% 0.0% -2358.4

52

Published as a conference paper at ICLR 2025

H LIMITATIONS

Variation due to prompt and temperature Model performance is highly dependant on the prompt
and temperature used Gao et al. (2024); Wei et al. (2023). A potential limitation of our work is that
we primarily focused on 0-shot performance, asking each model to generate the entire test suite or to
complete a test given the code under test. To mitigate this we provide our prompt in Appendix C and
also provide the model with the correct imports to the code under test to enable prompted models to
generate the test suite successfully.

Overfitting to SWEBench repositories: Another potential limitation is that our benchmark is
adapted from SWEBench and as a result risks models overfitting to this specific dataset. Currently,
this does not seem to be a major issue, as model performance is low across the board. Even once
models can achieve high coverage, a significantly harder task of achieving high mutation score (ac-
tually catching synthetic bugs introduced into the code under test). These multiple levels of difficulty
and numerous tasks help mitigate the risk of a model overfitting to any one task specifically.

Data contamination: There is also a risk of data contamination in the pretraining data of models.
To further understand data contamination, we measure perplexity of 10 randomly selected tests in
TESTGENEVAL for Llama 3.1 8B and common frequent, and non recent code from GitHub with
similar lengths. We find that the perplexity of this common GitHub code is lower than the 10 tests
from TESTGENEVAL (1.6 vs 2.0), indicating that data is unlikely to be contaminated. This is further
supported by the low performance of all models on TESTGENEVAL across the board.

File level context: TESTGENEVAL currently works at the file level. This means that the context
given to the model is the source file, imports and for the test completion setting a partial test file.
While in many cases, this context is sufficient sometimes there are cross file dependencies that are
not captured, making the context provided to the model limited. However, we believe this is not a
major limitation, as models can mock objects which they lack context for. Furthermore, expanding
to repository level context is out of context window for most state-of-the-art models.

Additional baselines: One other limitation is the lack of agentic baselines. This might be a promis-
ing future work direction in overcoming some of the limitations of the context windows of current
models, and could potentially perform better than baselines showed. However, the benchmark is
still highly valuable to the community, as the first file level test generation benchmark.

Compute cost of mutation score: One other limitation is the compute cost of computing mutation
score. Each synthetic bug we introduce to the code under test, requires an additional test suite
execution. However, our results show that coverage and mutation score are highly correlated. Setting
a timeout of one hour per mutation testing run, we only timeout on 20% of files, and get an average
uncertainty of 1.1%. We provide an option to run TESTGENEVAL without mutation, enabling those
who lack compute to still benefit from TESTGENEVAL.

Misc Limitations: Quantitative metrics such as code coverage and mutation score can approximate
the quality of generated tests, however they do not perfectly measure the quality of generated tests.
For example, a test could be very hard to read, while still achieving high coverage and mutation
score. Additionally, all test generation benchmarks assume the code under test is correct. Generated
tests may fail on the code under test, while exposing bugs in the code under test (a phenomenon
known as the oracle problem). Despite this, current test generation approaches are still useful in
catching regressions or bugs introduced in future versions of the code under test.

53

	Introduction
	TestGenEval
	Benchmark Construction
	Tasks
	Properties of TestGenEval:

	Evaluation
	Test generation performance of various models
	Test completion performance of various models

	Analysis
	Quantitative Analysis
	Correlation with other benchmarks
	Effect of number of samples
	Effect of context window on TestGenEval performance

	Qualitative Analysis

	Limitations
	Related Work
	Conclusion
	Ethics statement
	Reproducibility statement
	Acknowledgments
	Appendix
	 Appendix
	Benchmark Statistics
	TestGenEval
	TestGenEvalLite

	Model URLs
	Prompts
	Experiment Setup
	Models
	Metrics
	Test Generation Metrics
	Test Completion Metrics

	Results
	TestGenEval
	Test Generation
	Test Completion

	TestGenEvalLite
	Test Generation
	Test Completion

	Analysis
	Correlation with other benchmarks
	TestGenEval
	TestGenEvalLite

	Correlation between settings and models
	TestGenEval
	TestGenEvalLite

	Effect of Sampling on Coverage and Pass@k
	Effect of Context on Coverage and Pass@5
	Quantitative Error Analysis
	TestGenEval
	TestGenEvalLite

	Qualitative Model Comparison
	Example 1 - Test setup (only solved by GPT-4o)
	Example 2 - Incorrectly mocking objects (only solved by Llama 3.1 405B)
	Example 3 - Handling class dependencies (only solved by Codestral 22B)

	Qualitative Error Analysis
	Frontiers of TestGenEval

	Statistical Tests
	TestGenEval
	TestGenEvalLite

	Limitations

