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ABSTRACT

The consensus about machine learning tasks, such as object detection, is still the
test data are drawn from the same distribution as the training data, which is known
as IID (Independent and Identically Distributed). However, it can not avoid being
confronted with OOD (Out-of-Distribution) scenarios in real practice. It is risky to
apply an object detection algorithm without figuring out its OOD generalization
performance. On the other hand, a plethora of OOD generalization algorithms
has been proposed to amortize the gap between the in-house and open-world per-
formances of machine learning systems. However, their effectiveness was only
demonstrated in the image classification tasks. It is still an opening question of
how these algorithms perform on more complex tasks. In this paper, we first
specify the setting of OOD-OD (OOD generalization object detection). Then, we
propose OOD-ODBench consisting of four OOD-OD benchmark datasets to eval-
uate various object detection and OOD generalization algorithms. From extensive
experiments on OOD-ODBench, we find that existing OOD generalization algo-
rithms fail dramatically when applied to the more complex object detection tasks.
This raises questions over the current progress on a large number of these algo-
rithms and whether they can be effective in practice beyond simple toy examples.
For future work, we sincerely hope that OOD-ODBench can serve as a foothold
for OOD generalization object detection research.

1 INTRODUCTION

Modern object detection methods (Liu et al., 2021; Huang et al., 2019; Pang et al., 2019; Wu et al.,
2019; Zhang et al., 2020a; Sun et al., 2020; Zhu et al., 2021; Ge et al., 2021) have achieved many pro-
gresses on various applications, such as autonomous driving and industrial defect detection. Tremen-
dous efforts have been devoted to improving an object detector’s performance on standard datasets,
such as MS-COCO (Lin et al., 2014). While these efforts have seen impacts on industry (Redmon
et al., 2016; Redmon & Farhadi, 2017; 2018; Bochkovskiy et al., 2020; Ge et al., 2021), the im-
provements are becoming marginal recently and most achievements are accompanied by an inherent
assumption, i.e. , the training data and the test data are IID (Independent and Identically Distributed).
However, this assumption is unlikely to hold in real-world scenarios. For example, an autonomous
system suffers from different environmental conditions (Dai & Gool, 2018; Volk et al., 2019); a
medical system fails to work consistently among hospitals when data are collected from different
equipment (de Castro et al., 2019; Albadawy et al., 2018; Perone et al., 2019). As a consequence,
models trained on IID dataset are susceptible to a subtle disturbance in test data distribution (Out-
of-Distribution) and fail to generalize to real scenarios (Torralba & Efros, 2011). Previous research
devoted to encountering this train-test discrepancy can be summarized as either “less complex” or
“complex but not general”. From the first perspective, a plethora of Domain Generalization (DG)
algorithms (Arjovsky et al., 2019; Ahuja et al., 2021; Li et al., 2018b; Sun & Saenko, 2016; Xu
et al., 2020c; Yan et al., 2020; Krueger et al., 2021; Pezeshki et al., 2020; Parascandolo et al., 2021;
Koyama & Yamaguchi, 2021; Huang et al., 2020; Sagawa et al., 2019) concentrate on improving
OOD generalization ability. But they are simply evaluated on the image classification. The effec-
tiveness is unknown when applied to the complex task (object detection). On the other perspective,
numerous Domain Adaption (DA) algorithms (Chen et al., 2018; He & Zhang, 2020; Rodriguez &
Mikolajczyk, 2019; Xu et al., 2020a; Su et al., 2020; Xu et al., 2020b; Soviany et al., 2019; Deng
et al., 2020; Chen et al., 2021) aim to build an optimal object detector that can be generalized into
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Figure 1: The setting illustration of out-of-distribution generalization object detection (OOD-OD).

a pre-specified target domain. However, it is hard to ensure performance consistency when dealing
with unseen and infinite real-world domains. In this paper, we focus on OOD generalization object
detection (OOD-OD) which aims at training detectors to generalize to the testing data drawn from
an unseen distribution distinct from the training distribution. See Table 1 for more details and we
provide the theoretical definition for OOD-OD in Appendix A.1.

In this work, we propose OOD-ODBench, in which four OOD-OD benchmarks are constructed
with existing datasets, including BDD100K (Yu et al., 2018), Cityscapes (Cordts et al., 2016) and
Sim10K (Johnson-Roberson et al., 2016). As revealed by (Ye et al., 2021), data distribution shifts
on classification datasets are dominated by correlation shift and diversity shift. We test whether a
similar phenomenon also exists on detection datasets and we construct a synthetic dataset named
CtrlShift to quantitatively analyze generalization ability over the two kinds of distribution shifts of
OOD-OD, respectively. With the above benchmark datasets, numerous experiments are conducted
with detectors ranging from one(two)-stage to transformer-based and diverse OOD generalization
algorithms carefully implemented on popular detectors (Ren et al., 2015; Lin et al., 2017b).

Section 2 reviews the related work dispersed in different research areas. Section 3 provides clarifica-
tion of different techniques and tasks with similar names. Section 4 introduces the implementation
details of OOD-ODBench, including the datasets, algorithms, and model selection methods. Finally,
Section 5 discusses the experiment results on OOD-ODBench and offers insightful recommenda-
tions for future work. Our main contributions can be summarized as followed:

1. We propose OOD-ODBench, the first OOD generalization benchmark for object detection
algorithms. Based on the extensive experiment results, we arrive at a surprising conclusion:
The enormous achievements in IID object detection are marginal on OOD generalization
object detection, and the OOD generalization improvements on classification are hard to
generalize to more complex tasks (i.e., object detection).

2. In OOD-ODBench, we propose a Sim2real benchmark for OOD generalization object de-
tection analysis which measures the possibility of training models with low-cost simulated
data to generalize well on real scenarios.

3. To further analyze the generalization ability under the different types of shifts, we con-
struct a synthetic dataset with designed shifts, namely CtrlShift. The synthetic dataset can
systematically measure the OOD generalization algorithms’ performances under different
types of distribution shifts.

4. From Benchmark results and analysis, we recommend future research to clearly investigate
the diversity shift and the correlation shift on OOD generalization object detection before
designing algorithms and then evaluate them comprehensively on the two-dimensional shift
using CtrlShift.

2 RELATED WORK

2.1 OBJECT DETECTION

The task of object detection aims at classifying and localizing the objects in an image based on
the assumption that test data are drawn from the same distribution as training data. Modern deep
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Table 1: Comparison between OOD generalization object detection and other tasks. Xi, Y i indicate
the data drawn from distribution i and Y1, Y2 represent category labels and bounding box labels
respectively.

Setup Task Training inputs Test inputs Outputs

Unsupervised learning classify / detect X1 X1 Y 1

Supervised learning classify / detect X1, Y 1 X1 Y 1

Semi-supervised learning classify / detect X1, (Y 1)′ X1 Y 1

Transfer learning classify / detect X1,...,d, Xd+1, Y d+1 Xd+1 Y d+1

Domain generalization classify X1,...,d, Y 1,...,d Xd+1 Y d+1
1

Domain adaption detect X1,...,d, Y 1,...,d, Xd+1 Xd+1 Y d+1
1,2

OOD-OD detect X1,...,d, Y 1,...,d Xd+1,... Y d+1,...
1,2

learning-based object detection models can be divided into three categories: two-stage detectors
(Girshick et al., 2014; Grauman & Darrell, 2005; Girshick, 2015; Ren et al., 2015; Lin et al., 2017a;
Dai et al., 2016; He et al., 2017; Qiao et al., 2021; Cai & Vasconcelos, 2019; Huang et al., 2019;
Pang et al., 2019; Wu et al., 2019; Sun et al., 2020), one-stage detectors (Redmon et al., 2016;
Redmon & Farhadi, 2017; 2018; Bochkovskiy et al., 2020; Ge et al., 2021; Liu et al., 2016; Lin
et al., 2017b; Zhou et al., 2019; Tan et al., 2020; Law & Deng, 2018; Tian et al., 2019; Zhang
et al., 2020a; Zhu et al., 2021; Liu et al., 2021) and lightweight detectors with small components
(Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019; Zhang et al., 2018; Ma et al., 2018;
Wang et al., 2018; Iandola et al., 2016). Compared to one-stage detectors, two-stage detectors are
equipped with a separate differentiable module to generate region proposals which are possible to
contain objects. Lightweight detectors are usually proposed to improve real-time performance with a
small and efficient network. Recently, with the enormous success of applying transformer (Vaswani
et al., 2017) on computer vision, a branch of transformer-based detector (Zhu et al., 2021; Liu et al.,
2021) has shaped up.

2.2 OOD GENERALIZATION

The task of OOD generalization is training on multiple datasets sampled from distinct domains
and then generalizing to an unseen test domain. Models with OOD generalization ability typically
have access to multiple training datasets for the same task obtained from various environments.
The purpose of OOD generalization algorithms is to learn from these diverse but relevant training
settings before being applied to unknown testing environments. Driven by this motivation, many
algorithms have been proposed throughout these years. These algorithms can be divided into: em-
pirical risk learning (Vapnik, 1998; Sagawa et al., 2019), invariant risk optimization (Arjovsky et al.,
2019), domain adversarial learning (Ajakan et al., 2014; Li et al., 2018c; Ruan et al., 2021), meta-
learning (Zhang et al., 2020b; Li et al., 2018a), kernel function (Li et al., 2018b; Sun & Saenko,
2016), gradient-based approach (Shi et al., 2021; Pezeshki et al., 2020; Bai et al., 2020; Parascan-
dolo et al., 2021; Shahtalebi et al., 2021; Koyama & Yamaguchi, 2021; Rame et al., 2021), risk
extrapolation (Krueger et al., 2021), data processing (Xu et al., 2020c; Yan et al., 2020), transfer
learning (Blanchard et al., 2017; Xu & Jaakkola, 2021), information bottleneck (Ahuja et al., 2021)
and self-supervised learning (Wang et al., 2020; Zhou et al., 2020).

OOD generalization for object detection is currently underexplored. Region Aware Proposal
reweighTing (RAPT) (Zhang et al., 2022) aims to eliminate dependence within RoI features for
domain generalization. Cyclic-Disentangled Self-Distillation (Wu & Deng, 2022) aims at disentan-
gling domain-invariant representations. 3D-VField (Lehner et al., 2022) improves generalization on
3D object detection.

2.3 OOD BENCHMARK

Different domains data (Zhou et al., 2021; Wang et al., 2022) can be viewed as data drawn from
different distributions and the distinct train-test domains are Out-of-Distribution. DomainBed (Gul-
rajani & Lopez-Paz, 2020) is a large-scale benchmark suite for reproducing domain generalization
research and facilitating the implementation of new algorithms. With the experiment results of four-
teen algorithms on seven datasets, the authors found that empirical risk minimization (Vapnik, 1998)
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Table 2: Details of datasets used in benchmarks. Quantity indicates the number of images in each
domain. Total counts the total number of training and testing domains respectively.

Benchmark Dataset Domain Train Test Quantity Total

Weather BDD100K

clear
√

42690 52699overcast
√

10009
foggy

√
143

17888cloudy
√

5619
rainy

√
5808

snowy
√

6318

Scene BDD100K

city street
√

49628 69506highway
√

19878
gas station

√
34

9943parking lot
√

426
residential

√
9327

tunnel
√

156

Time BDD100K
daytime

√
41986 47791dawn dusk

√
5805

night
√

31900 31900

Sim2real Sim10K
Cityscapes

simulation
√

8500 8500
reality

√
3975 3975

achieves state-of-the-art performance across all datasets. OoD-Bench (Ye et al., 2021) identifies and
measures two distinct kinds of distribution shifts in various OOD datasets. With tremendous empir-
ical learning results, the authors recommend that algorithms should be comprehensively evaluated
on two types of datasets dominated by correlation shift and diversity shift respectively.

3 CLARIFICATION OF TASKS

Domain Randomization techniques (Tobin et al., 2017; Tremblay et al., 2018; Zakharov et al.,
2019; Yue et al., 2019; Huang et al., 2021) aim at providing enough simulated domains at training
data so that models are possible to generalize to real-world scenarios based on a hypothesis that with
enough variability in the data simulator, the real world may appear to be a specific variation of the
simulation data which exists in the training set.
OOD Detection for Object Detection (Joseph et al., 2021; Du et al., 2022a; Harakeh & Waslander,
2021; Riedlinger et al., 2021; Dhamija et al., 2020; Miller et al., 2019; Hall et al., 2020; Deepshikha
et al., 2021) can be formulated as a binary classification problem which distinguishes whether the
distribution of the incoming data is out of the distribution of the training data.
Open-World Object Detection (Joseph et al., 2021; Zhao et al., 2022) initially learns a model
which can detect all the previously encountered categories, and incrementally updates the model
when unseen classes come.
Open-Vocabulary Object Detection (Gu et al., 2021; Zareian et al., 2021; Du et al., 2022b; Bravo
et al., 2022) aims to train an detector which can detect various objects in any novel categories
described by arbitrary texts.

4 OOD-ODBENCH: IMPLEMENTATION DETAILS
4.1 BENCHMARKING DATASETS

In OOD-ODBench, we choose datasets to cover as many types of variations between training and
test datasets as possible. Figure 2 lists some samples of the four benchmark datasets.

BDD100K (Yu et al., 2018) contains 80,000 labeled images (70,000 for training and 10,000 for val-
idation) with ten annotated object categories, including bike, bus, car, motor, person, rider, traffic
light, traffic sign, train and truck. Each image has three attribute labels which indicate the condition,
including the weather, scene and time for data collection and we remove the images with an unde-
fined attribute label. Specifically, we construct three OOD environments using the attribute labels,
including Weather, Scene, and Time.
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BDD100K Sim10K Cityscapes

Figure 2: Some samples of datasets included in OOD-ODBench. Note that BDD100K has ten
categories while Sim10K and Cityscapes only use the annotated cars.

Diversity shift
Origin

Correlation shift

Figure 3: Some samples of CtrlShift and the illustration of the two-dimensional shift.

Sim10K (Johnson-Roberson et al., 2016) is a synthetic dataset containing 10,000 images (8,000 for
training, 1,000 for validating and 1,000 for testing) with bounding box annotations for cars, which
is rendered with the Grand Theft Auto V (GTA5) game engine.

Cityscapes (Cordts et al., 2016) is a large-scale database which focuses on urban street scenes. The
dataset consists of around 5000 fine annotated images (2975 for training, 500 for validating and the
rest for testing) with eight annotated instance categories. On OOD-ODBench, we consider the car
recognition task to construct the Sim2real benchmark for simplicity and without loss of generality.
We construct the Sim2Real benchmark which covers the “sim2real” scenario. The simulated images
of Sim10K are used for training and the real images of Cityscapes are used for testing.

CtrlShift is a synthetic dataset to analyze the two-dimension shift in OOD generalization object
detection. The Airsim simulator (Shah et al., 2017) based on the high-fidelity rendering software
Unreal Engine 4 is used to generate samples in CtrlShift. We totally sample over 2000 simulated
images from both the rural and urban environments which contain common objects, including build-
ings, traffic lights, and vehicles. Moreover, every image comprises two attribute labels to construct
a controllable distribution shift. One is car color which indicates the color of the car in the image,
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Table 3: Experimental results of detectors performance measured by AP(%) on MS COCO and the
four OOD benchmarks of OOD-ODBench. All models are implemented by mmdetection (Chen
et al., 2019) and loaded pretrained weights provided by open-mmlab (Contributors, 2018). Note
that @Faster in Libra R-CNN row represents applying Faster R-CNN as architecture. X-101-64x4d
represents a modified ResNeXt-101 network architecture from (Xie et al., 2017), R-50 and R-101
represents ResNet backbones with 50 or 101 layers (He et al., 2016). OODAvg calculate the average
accuracy on the four OOD benchmark.

Detector Backbone MS COCO Sim2real Weather Scene Time OODAvg

Faster R-CNN X-101-64x4d 42.1 52.1 35.3 36.0 26.4 37.5
RetinaNet X-101-64x4d 41.0 49.3 34.7 35.8 24.6 36.1
Mask R-CNN X-101-64x4d 42.8 52.9 34.8 35.8 26.8 37.6
CornetNet Hourglass104 41.2 27.8 29.7 30.8 22.5 27.7
YOLOv3 DarkNet-53 33.7 38.2 27.0 28.2 19.2 28.2
FCOS X-101-64x4d 42.6 50.8 35.6 36.5 24.8 36.9
Cascade R-CNN X-101-64x4d 44.7 53.1 36.3 36.7 24.1 37.6
MS R-CNN X101-64x4d 43.0 52.5 35.5 35.7 25.5 37.3
Libra R-CNN@Faster X-101-64x4d 42.7 51.4 34.9 35.5 25.5 36.8
Double-Head R-CNN R-50 40.0 52.2 35.3 35.2 25.5 37.1
VarifocalNet X-101-64x4d 50.4 56.1 38.7 39.0 27.4 40.3
Sparse R-CNN R-101 46.2 54.1 36.3 36.4 28.2 38.8
DETR R-50 42.0 37.8 23.5 24.4 15.8 25.4
Deformable DETR R-50 46.8 53.3 35.1 35.3 26.1 37.5
Swin Transformer Swin-B 51.9 58.4 36.6 32.0 28.9 39.0
YOLOX YOLOX-x 50.9 51.1 33.1 34.8 29.4 37.1

the other is snow intensity which indicates the intensity of the weather snow added using Airsim’s
plugin. Cars are annotated in the dataset since the car is a common object in existing datasets. To
construct CtrlShift dominated by correlation shift, we restrict the white cars only existing in the
training set and control the quantity ratio ρcorrelation of white car data in the training set. In a way
that spuriously correlates strongly with the class label since the color white will be more relevant to
the car label in the training set when the ρcorrelation increases, which increases the correlation shifts
in the dataset. And for CtrlShift dominated by diversity shift, we render snow weather effects on
each training datum with a certain intensity ρdiversity and the increase of ρdiversity corresponds to
a larger diversity shift. See Figure 3 for some examples. Moreover, we provide an API to generate
the training set and the testing set with specific choices of ρdiversity and ρcorrelation.

4.2 DETECTION METHODS FOR COMPARISONS

We choose widely-used detectors trained with the empirical risk minimization (ERM) or OOD gen-
eralization algorithms on OOD-ODBench. The comparisons of different detectors trained with ERM
on OOD-ODBench can help answer the question that whether the progress made by recently pro-
posed detectors is generalizable to OOD data. The benchmarks of detectors trained with proposed
OOD generalization algorithms can indicate whether the OOD generalization algorithms proposed
recently are still effective for object detection beyond toy image classification tasks.

Detectors. Object detection models (detectors) generally can be categorized into two genres: one-
stage methods and two-stage methods. One-stage detectors predict the bounding boxes as well as
the categories of the objects. Two-stage detectors predict the bounding boxes first to indicate the
possible locations of objects. Then, two-stage detectors conduct classifications on the images within
the bounding boxes to predict the categories of these images. Recently, with the tremendous success
of transformer (Vaswani et al., 2017), transformer-based detectors become popular. We have selected
one/two-stage and transformer-based algorithms ranging from 2015 to 2021 for our Object Detection
OOD generalization benchmark. One-stage detectors: RetinaNet (Lin et al., 2017b), CornerNet
(Law & Deng, 2018), YOLOv3 (Redmon & Farhadi, 2018), FCOS (Tian et al., 2019), VarifocalNet
(Zhang et al., 2020a), YOLOX (Ge et al., 2021). Two-stage detectors: Faster R-CNN (Ren et al.,
2015), Mask R-CNN (He et al., 2017), Cascade R-CNN (Cai & Vasconcelos, 2019), Mask Scoring
R-CNN (MS R-CNN) (Huang et al., 2019), Libra R-CNN (Pang et al., 2019), Double-Head R-
CNN (Wu et al., 2019) and Sparse R-CNN (Sun et al., 2020). Transformer-based detectors: DETR
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Table 4: Experimental results of domain generalization algorithms on OOD generalization object
detection. All algorithms are implemented by ourselves based on Faster R-CNN (Girshick, 2015)
with ResNet-50 (He et al., 2016) backbone. Hyper-parameter of each algorithm is chosen among
0.1, 1 and 10 according to the average AP over the four benchmarks.

Algorithm Hyper-parameters Sim2real Weather Scene Time Average

ERM - 44.1 24.4 24.1 17.7 27.6
IB-ERM λib = 0.1 42.5 24.7 23.4 18.2 27.2
IRM λirm = 0.1 42.3 24.9 23.2 17.5 27.0
MMD γmmd = 1 42.9 24.1 23.9 18.4 27.3
CORAL γmmd = 10 42.6 24.4 22.8 17.7 26.9
VREx λvrex = 1 43.1 24.7 24.3 18.0 27.5
GS λreg = 10 40.3 19.9 18.4 15.2 23.5
IGA λpenalty = 1 42.9 24.6 24.3 18.6 27.6
GroupDRO ηgroupdro = 1 42.8 24.5 23.6 18.1 27.3
RSC λrsc = 10 41.0 8.7 8.8 7.0 16.4
CAD λcad = 1 42.8 24.2 23.1 18.4 27.1
CausIRL λcirl = 1 42.4 23.8 23.4 17.1 26.7

(Carion et al., 2020), Deformable DETR (Zhu et al., 2021) and Swin Transformer (Liu et al.,
2021).

OOD generalization algorithms. We have adapted eleven algorithms from different OOD research
areas to the classification branch in object detection, including Empirical Risk Minimization (ERM)
(Vapnik, 1998) which aims to minimize the loss function overall the training domains, (IB-ERM)
(Ahuja et al., 2021) which applies an information bottleneck constraint to address OOD generaliza-
tion, Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) which aims at estimating invariant
correlations across different domains, adversarial feature learning (MMD) (Li et al., 2018b) which
imposes Maximum Mean Discrepancy (Gretton et al., 2012) to align the distributions among dif-
ferent domains, correlation alignment (CORAL) (Sun & Saenko, 2016) which aims at matching
the mean and covariance of feature distributions, Variance Risk Extrapolation (VREx) (Krueger
et al., 2021) which performs a form of robust optimization over extrapolated domains, Gradient
Starvation (GS) (Pezeshki et al., 2020) which derives a regularization to overcome the gradient
descent phenomenon across different domains, (IGA) (Koyama & Yamaguchi, 2021) which uses a
parametrization trick to conduct feature searching and predictor training, Group Distributionally Ro-
bust Optimization (GroupDRO) (Sagawa et al., 2019) which increases the importance of each do-
main with penalty loss, and Representation Self-Challenging (RSC) (Huang et al., 2020) iteratively
challenges the dominant features to force the model to activate the remaining features. Optimal Rep-
resentations (CAD) (Ruan et al., 2021) designs self-supervised objectives to obtain representations
on which risk is minimal to any distribution. Invariant Causal Mechanisms (CausIRL) (Chevalley
et al., 2022) learns the invariant features by viewing the learning process as a causal process and
introduces a unifying framework.

4.3 MODEL SELECTION METHODS

Model selection methods can influence the final rankings of methods to a large extent, especially in
OOD generalization tasks (Gulrajani & Lopez-Paz, 2020). However, there is no consensus on what
parameters selection strategy should be used in OOD generalization research for object detection. In
OOD-ODBench, we choose the models trained at the last epoch as our model selection method. This
is because the testing data is inaccessible and selecting models based on the trainset’s performances
may lead to excessive over-fitting for current methods since there is a huge distribution gap between
the training set and testing set. For future research, we strongly recommend that researchers should
detail and include the model selection methods in OOD generalization object detection research.

5 EXPERIMENT RESULTS

5.1 BENCHMARK RESULTS
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Table 5: Ablation study of OOD algorithms with different detectors on Sim2real. Faster R-CNN
(Ren et al., 2015), RetinaNet (Lin et al., 2017b) and DETR (Carion et al., 2020) are all with ResNet-
50 (He et al., 2016) backbone.

Algorithm Hyper-parameters Faster R-CNN RetinaNet DETR Average

ERM - 44.1 38.5 36.0 39.5
IB-ERM λib = 0.1 42.5 38.8 35.1 38.8
IRM λirm = 0.1 42.3 38.4 34.7 38.5
MMD γmmd = 1 42.9 14.0 36.2 31.0
CORAL γmmd = 10 42.6 35.8 36.9 38.4
VREx λvrex = 1 43.1 37.6 36.9 39.2
GS λreg = 10 40.3 33.0 33.0 35.4
IGA λpenalty = 1 42.9 38.2 29.5 36.9
GroupDRO ηgroupdro = 1 42.8 37.3 36.2 38.8
RSC λrsc = 10 41.0 38.4 36.9 38.8
CAD λcad = 1 42.8 37.9 35.5 38.7
CausIRL λcirl = 1 42.4 38.3 36.3 39.0

Figure 4: The improvements of recent object de-
tection methods over the baseline on IID and
OOD respectively. While the improvements on
IID datasets (MS COCO) are prominent, it is not
generalizable to OOD scenarios. The compared
baseline method is Faster R-CNN.

In this section, we conduct numerical experi-
ments on our benchmark to reveal the OOD
generalization ability for existing algorithms
and we provide further discussion in Ap-
pendix A.5. All experiments are conducted
on a Pytorch platform with eight Tesla V100
GPUs. We evaluate each algorithm using the
Average Precision (AP) from MS COCO (Lin
et al., 2014). For object detection algorithms,
our codes are based on mmdetection (Chen
et al., 2019) and for domain generalization al-
gorithms, our codes are stemmed from Do-
mainBed (Gulrajani & Lopez-Paz, 2020). We
draw several conclusions from the results.

The enormous achievements of object de-
tection on IID datasets are marginal on the
OOD condition. Table 3 summarizes the OOD
results of various object detection algorithms.
If we use the classic Faster R-CNN (Ren et al.,
2015) as our baseline, all successful algorithms
on object detection only marginally improve
OOD generalization ability by 2.8 AP (Varifo-
calNet (Zhang et al., 2020a)) overall the four OOD benchmarks. While on the IID object detection
benchmark (MS COCO test-dev (Lin et al., 2014)), this performance improvement can be up to 14.8
AP comparing to VarifocalNet (Zhang et al., 2020a). Figure 4 intuitively displaces the significant
discrepancy between IID and OOD. What is responsible for these results? We suspect two factors:
One is that current researches simply stem from the ideal assumption of IID regardless of whether it
can be satisfied in real scenarios. The other is that the improvement on IID datasets may be a phe-
nomenon of over-fitting since few works provide sufficient evidence that the causal features have
been learned during the training process without evaluating on OOD benchmarks.

The tremendous success of domain generalization algorithms confronting OOD is inconsistent
between classification and object detection. We draw this conclusion from Table 4 and the exper-
imental results reported on OOD-bench (Ye et al., 2021). The OOD results on the four benchmarks
in Table 4 suggest that the domain generalization algorithms degenerate or slightly outperform the
ERM (Vapnik, 1998) which can be attributed to the hyper-parameters bias. Moreover, as for VREx
(Krueger et al., 2021) which is the best models on Correlation-Bench (Ye et al., 2021), AP drops by
0.1 comparing to ERM (Vapnik, 1998) while VREx (Krueger et al., 2021) outperforms ERM (Vap-
nik, 1998) by 8.6 AP on Correlation-Bench (Ye et al., 2021). RSC (Huang et al., 2020) which is the
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(a) ERM (Vapnik, 1998) (b) IRM (Arjovsky et al., 2019) (c) VREx (Krueger et al., 2021)

Figure 5: Controlled distribution shifts experiments results of ERM, IRM and VREx. X-axis is
Diversity shift and Y-axis is Correlation shift. Each block indicates the AP(%).

best models on Diversity-Bench (Ye et al., 2021) degenerates 11.2 AP while improves 0.6 accuracy
comparing to ERM (Vapnik, 1998).

The generalization inconsistency between classification and object detection of domain gen-
eralization algorithms happens among different detectors. As shown in Table 4.2, we choose
the popular two-stage detector, Faster R-CNN (Ren et al., 2015), one-stage detector, RetinaNet
(Lin et al., 2017b), and transformer-based detector, DETR (Carion et al., 2020), as base models
for implementing domain generalization algorithms. Obviously, ERM achieves the best average
generalization ability on the three detectors and we can conclude that the degeneration of domain
generalization algorithms has little relevance to the detectors.

5.2 CONTROLLED DISTRIBUTION SHIFTS EXPERIMENTS

Previous experiments provide performance analysis on the real scenarios for OOD generalization
object detection. But it is hard to see which kind of distribution shift leads to performance de-
generation. To systematically analyze the generalization performance under the influence of the
two-dimensional distribution shift, we test the performance of Faster-RCNN trained by ERM (Vap-
nik, 1998), and the top performers on previous datasets (IRM (Arjovsky et al., 2019) and VREx
(Krueger et al., 2021)) on CtrlShift dataset with different settings of the correlation shift and di-
versity shift. The results are shown in Figure 5, all methods consistently (Vapnik, 1998; Arjovsky
et al., 2019; Krueger et al., 2021) achieve the best AP when both correlation shift and diversity
shift are low. For ERM (Vapnik, 1998), the performance evenly degenerates on two dimensions. In
Figure 5(b), with the increase of the two-dimension shift, the performance of IRM (Arjovsky et al.,
2019) in the horizontal direction tends to degenerate faster than in the vertical direction. This indi-
cates that IRM (Arjovsky et al., 2019) confronts correlation shift better than diversity shift. From
Figure 5(c), we can observe the similar phenomenon happens for VREx (Krueger et al., 2021) on the
two-dimensional shift. This phenomenon demonstrates that existing OOD generalization algorithms
may help mitigate performance degradation when confronted with correlation shifts. Whereas for
diversity shift, key components are missing to improve the generalization abilities, let alone the
complex mixture of both shifts in real datasets. For future research, we recommend that both shifts
should be included in new benchmark datasets and algorithms should be evaluated on both types of
distribution shifts simultaneously.

6 CONCLUSION AND DISCUSSION

In this paper, we propose the first benchmark for OOD-OD tasks, named OOD-ODBench. The
benchmark suite includes four benchmark datasets along with a synthetic dataset to generate con-
trolled distribution shifts. The experimental results conducted on OOD-ODBench suggest that the
enormous achievements in classical IID object detection are marginal on OOD generalization object
detection. And the OOD generalization methods mainly tested on classification cannot generalize
to object detection tasks. This raises questions about existing progress on object detection and OOD
generalization algorithms. We appeal for more attention from the community for this problem to
propose an OOD-OD method that is undoubtedly effective.
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A APPENDIX

A.1 THEORETICAL ANALYSIS OF OOD GENERALIZATION OBJECT DETECTION

Figure 6: The causal influ-
ence among the concerned
variables.

The OOD generalization object detection has been fragmentally re-
searched in previous research, however, no rigorous definition of
OOD generalization object detection has been given. We give a
definition and taxonomy as follows:

OOD generalization object detection (OOD-OD): In object de-
tection tasks, algorithms learn a mapping function f to predict the
category (y) and location of interested objects in an image x. In
OOD generalization object detection tasks, training and test data
pairs (X,Y) are not necessarily drawn from the same distribution.
This poses great challenges for existing machine learning methods
as most methods are reliant on exploiting the correlation between
X and Y. Due to the distribution change, the correlation might not
be generalizable. More specifically, we depict the causal data gen-
erating process in Figure 6. When the data X are given, the causal
features Z1 and the non-causal features Z2 are given. The causal
features reliably determine the location and categories of interested objects in the input images. The
non-causal features are irrelevant features for predictions. An intuitive example is that if we want to
recognize a dog in an image, the causal features are dogs’ shapes. The non-causal features are the
environment features, such as weather or captured time of the image. We improve the definitions
in (Ye et al., 2021) and propose the following mathematical definitions for Z1 and Z2 given overall
semantic features z1:

∀ z ∈ Z1 : p(z) · q(z) ̸= 0∧ ∀ y1 ∈ Y1 : p(y1|z) = q(y1|z)∧ ∀ y2 ∈ Y2 : p(y2|z) = q(y2|z) (1)

∃ z ∈ Z2 : p(z) · q(z) = 0∨ ∃ y1 ∈ Y1 : p(y1|z) ̸= q(y1|z)∨ ∃ y2 ∈ Y2 : p(y2|z) ̸= q(y2|z) (2)
where p is the training distribution and q is the test distribution. Since Z1 is the stable and reliable
predictor for the category and location of objects, there are two kinds of shifts intuitively because
of the discrepancy of Z2 in training and test distribution. Diversity shift stems from the first kind of
features in Z2 since the diversity of data is embodied by novel features not shared by the environ-
ments; whereas correlation shift is caused by the second kind of features in Z2 which is spuriously
correlated with some Y1 or Y2. Based on this, we partition Z2 into two subsets:

S := {z ∈ Z2|p(z) · q(z) = 0} T := {z ∈ Z2|p(z) · q(z) ̸= 0} (3)

Definition A.1. (Definition of Diversity shift and Correlation shift for OOD-OD.) Given S and T
defined in Equation 3, the definitions of diversity shift and correlation shift are given as follows:

Ddiversity :=
1

2

∫
S

| p(z)− q(z) | dz (4)

Dcorrelation :=
1

2

∫
T

√
p(z) · q(z)

∫
y2

∑
y1

| p(y1, y2|z)− q(y1, y2|z) | dz (5)

It can be seen that both Ddiversity and Dcorrelation are within the range of [0, 1]. Ddiversity measures the
support difference non-causal features for object detection. While Dcorrelation gauges the variations of
conditional probabilities of the object category Y1 given non-causal features and object locations.
This serves as an indicator for spurious correlations existing in datasets. The proposed definition
first provides a quantitative way for measuring the distributional shifts for OOD-OD to the best of
our knowledge. We leave it for future work to compute the numerical values of shifts given an object
detection dataset.

A.2 PROOF

Proposition A.2. For any probability functions p and q of training distribution and testing distribu-
tion, Ddiversity and Dcorrelation are inclusively bounded between 0 and 1.

1We assume no category label (Y1) shifts for simplicity and without loss of generality
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Table 6: Illustration of the two settings on Sim2real. simtrain and simval indicate the training set and
validating set from original Sim10K (Johnson-Roberson et al., 2016) while citytrain and cityval are
from original Cityscapes (Cordts et al., 2016). Quantity indicates the number of images. Total
counts the total number of training and testing domains respectively.

Setting Split Train Test Quantity Total

part-sim-part-real

simtrain
√

8000 8500simval
√

1000
citytrain

√
2975 3975cityval

√
500

all-sim-all-real

simtrain
√

8000 9000simval
√

1000
citytrain

√
2975 3475cityval

√
500

Proof. Obviously, both Ddiversity and Dcorrelation are positive. Then, we prove the upper bound by the
triangle inequality as followed:

Ddiversity =
1

2

∫
S

| p(z)− q(z) | dz ≤ 1

2

∫
S

[p(z) + q(z)]dz ≤ 1 (6)

Similarly, we have the following inequality:

Dcorrelation =
1

2

∫
T

√
p(z) · q(z)

∑
y1,y2

| p(y1, y2|z)− q(y1, y2|z) | dz

≤ 1

2

∫
T

√
p(z) · q(z)

∑
y1,y2

[p(y1, y2|z) + q(y1, y2|z)]dz

=
1

2

∫
T

2
√
p(z) · q(z)dz =

∫
T

√
p(z) · q(z)dz ≤ 1

(7)

The second inequality is due to triangle inequality.

A.3 IMPLEMENTATION DETAILS

To evaluate the object detection algorithms, we use the models and the pre-trained weights provided
by mmdetection (Chen et al., 2019). For domain generalization algorithms on OOD generalization
object detection, we derive the implementations using Faster R-CNN (Ren et al., 2015) with ResNet-
50 FPN backbone (He et al., 2016) from torchvision. The whole network is optimized by Stochastic
Gradient Descent with learning rate 0.02, momentum 0.9 and weight decay 0.0005.

A.4 FURTHER RESULTS

Task complexity. To analyse the IID condition on CtrlShift, which indicates both Dcorrelation and
Ddiversity equal zero, we propose a hyper-parameter task complexity α to measure the difficulty of
the task. The difficulty is adjusted by using 1− α percent novel data in the testing set in addition to
the original training data. The experimental results are shown in Figure 7. The generalization ability
of each algorithm drops with the increase of task complexity.

Sim2real benchmark. The training set of the Sim2real results reported in the main manuscript com-
prises the training data from Sim10K (Johnson-Roberson et al., 2016) and the validating data from
Cityscapes (Cordts et al., 2016), while the testing set comprises the training data from Cityscapes
(Cordts et al., 2016) and the validating data from Sim10K (Johnson-Roberson et al., 2016) (noted
by part-sim-part-real, more details can be found in Table A.4). We reported the experimental results
on all-sim-all-real in Table 7 and Table 8.

Full results. Table 9, 10, 11, 12 and 13 are the full experimental results of Table 3 and 4, including
AP, AP50, AP75, APs, APm and APl evaluation metrics.
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Table 7: The experimental results of object detection algorithms on the all-sim-all-real of Sim2real.
Mem (GB)† and Inf time (fps)† are from mmdetection (Chen et al., 2019).

Detector Backbone Mem† fps† AP

Faster R-CNN (Ren et al., 2015) X-101 10.3 9.4 35.6
RetinaNet (Lin et al., 2017b) X-101 10.0 8.7 38.0
Mask R-CNN (He et al., 2017) X-101 10.7 8.0 36.7
CornetNet (Law & Deng, 2018) Hourglass104 13.9 4.2 21.6
YOLOv3 (Redmon & Farhadi, 2018) DarkNet-53 7.4 48.1 28.2
FCOS (Tian et al., 2019) X-101 10.0 9.7 37.9
Cascade R-CNN (Cai & Vasconcelos, 2019) X-101 10.7 - 40.5
MS R-CNN (Huang et al., 2019) R-X101 11.0 8.0 35.7
Libra R-CNN (Pang et al., 2019) X-101 10.8 8.5 35.3
DH R-CNN (Wu et al., 2019) R-50 6.8 9.5 33.8
VarifocalNet (Zhang et al., 2020a) X-101 - - 42.3
Sparse R-CNN (Sun et al., 2020) R-101 - - 40.3
Deformable (Zhu et al., 2021) R-50 - - 37.4
YOLOX (Ge et al., 2021) YOLOX-x 28.1 - 36.4

Table 8: The experimental results of domain generalization algorithms on the all-sim-all-real of
Sim2real.

Algorithm hyper-parameters AP

ERM (Vapnik, 1998) - 32.8
IB-ERM (Ahuja et al., 2021) λib = 100 18.3
IRM (Arjovsky et al., 2019) λirm = 1 32.7
MMD (Li et al., 2018b) γmmd = 1 33.2
CORAL (Sun & Saenko, 2016) γmmd = 1 32.5
VREx (Krueger et al., 2021) λvrex = 1 32.4
GS (Pezeshki et al., 2020) λreg = 0.1 31.4
IGA (Koyama & Yamaguchi, 2021) λpenalty = 1000 33.4
GroupDRO (Sagawa et al., 2019) ηgroupdro = 0.01 31.9

Figure 7: X-axis is task complexity α. Each block indicates the AP(%).
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Table 9: Experimental results of detectors on Sim2real.
Detector Backbone AP AP50 AP75 APs APm APl

Faster R-CNN X-101 52.1 73.6 55.2 22.3 58.6 82.3
RetinaNet X-101 49.3 72.2 51.0 16.8 56.2 81.6
Mask R-CNN X-101 52.9 74.2 56.4 23.2 60.0 82.7
CornetNet Hourglass104 27.8 40.2 28.7 6.6 34.4 46.7
YOLOv3 DarkNet-53 38.2 62.7 40.0 10.2 42.2 70.0
FCOS X-101 50.8 72.1 53.1 21.4 56.6 82.1
Cascade R-CNN X-101 53.1 74.1 56.2 23.2 59.2 83.6
MS R-CNN R-X101 52.5 73.7 56.0 23.0 59.5 82.3
Libra R-CNN X-101 51.4 72.1 55.0 22.0 59.7 81.5
DH R-CNN R-50 52.2 73.4 56.1 23.6 59.2 81.2
VarifocalNet X-101 56.1 75.3 59.4 25.9 63.9 85.9
Sparse R-CNN R-101 54.1 76.8 57.7 26.7 59.3 81.9
DETR R-50 37.8 63.9 38.3 10.2 38.0 72.1
Deformable R-50 53.3 78.0 57.0 25.6 59.7 80.2
Swin Transformer Swin-B 58.4 78.5 63.5 31.4 65.5 84.2
YOLOX YOLOX-x 51.1 70.3 53.7 19.3 58.4 84.4

Table 10: Experimental results of detectors on Weather.
Detector Backbone AP AP50 AP75 APs APm APl

Faster R-CNN X-101 35.3 56.1 36.3 14.5 37.5 49.5
RetinaNet X-101 34.7 54.3 35.8 12.8 36.9 49.4
Mask R-CNN X-101 34.8 55.2 35.8 14.9 36.9 47.9
CornetNet Hourglass104 29.7 46.1 30.6 12.2 34.3 38.4
YOLOv3 DarkNet-53 27.0 47.9 26.1 8.7 29.4 40.5
FCOS X-101 35.6 55.7 36.4 14.8 37.9 48.8
Cascade R-CNN X-101 36.3 56.4 37.8 15.1 38.2 51.7
MS R-CNN R-X101 35.5 56.1 36.6 14.6 37.4 50.2
Libra R-CNN X-101 34.9 54.8 36.3 14.0 37.4 49.5
DH R-CNN R-50 35.3 55.7 36.5 14.5 37.2 50.5
VarifocalNet X-101 38.7 59.3 39.8 16.0 41.0 54.1
Sparse R-CNN R-101 36.3 57.5 37.1 15.6 38.5 50.8
DETR R-50 23.5 41.7 22.5 4.9 23.2 40.1
Deformable R-50 35.1 56.7 35.3 14.7 37.2 49.8
Swin Transformer Swin-B 36.6 56.2 38.2 15.8 39.7 51.1
YOLOX YOLOX-x 33.1 51.7 34.1 11.5 35.4 47.6

A.5 FURTHER DISCUSSION

High accuracy in IID may be the results of over-fitting since the spurious correlation exists in
both the training and the testing distribution. Recently proposed methods, such as Deformable
DETR, Sparse R-CNN and Swin Transformer, significantly outperform classic Faster R-CNN on
IID dataset, however, have similar performance on OOD datasets. We can conclude that these meth-
ods make prediction based on spurious correlated representations existed in IID data and not existed
in OOD data.
Defined by our theory in Appendix A.1, diversity shift is embodied by the novel features not shared
by environments while correlation shift is caused by the shared non-causal features. Experiment
results in Section 5.2 show that VREx and IRM obtain better OOD generalization ability against
correlation shift than diversity shift, and it is a challenge to tackle diversity shift.
Current study starts to explore the impact of model architectures on OOD performance. NAS-OoD
(?) applies a neural architecture search strategy to find the architecture with optimal OOD general-
ization ability and the results demonstrate that model architecture can significantly influence OOD
accuracy. Some detectors have relatively consistent performance on OOD, such as VarifocalNet,
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Table 11: Experimental results of detectors on Scene.
Detector Backbone AP AP50 AP75 APs APm APl

Faster R-CNN X-101 36.0 56.3 38.0 15.9 38.8 54.7
RetinaNet X-101 35.8 56.1 37.4 13.5 39.5 55.9
Mask R-CNN X-101 35.8 56.2 37.5 15.7 38.2 54.3
CornetNet Hourglass104 30.8 46.1 32.6 13.8 32.7 45.9
YOLOv3 DarkNet-53 28.2 49.7 27.1 10.0 32.3 44.2
FCOS X-101 36.5 56.7 38.7 15.9 39.1 54.8
Cascade R-CNN X-101 36.7 56.7 38.1 15.0 39.3 58.9
MS R-CNN R-X101 35.7 56.1 37.2 15.3 38.4 54.4
Libra R-CNN X-101 35.5 55.6 36.8 15.9 38.3 54.9
DH R-CNN R-50 35.2 55.3 36.9 15.9 38.2 54.7
VarifocalNet X-101 39.0 58.8 40.8 18.1 41.4 59.4
Sparse R-CNN R-101 36.4 57.4 37.4 18.4 39.1 56.0
DETR R-50 24.4 42.8 23.8 6.3 25.3 47.4
Deformable R-50 35.3 55.8 36.2 15.3 37.9 54.6
Swin Transformer Swin-B 32.0 50.1 33.7 14.7 36.7 48.3
YOLOX YOLOX-x 34.8 54.1 36.2 13.4 37.7 53.4

Table 12: Experimental results of detectors on Time.
Detector Backbone AP AP50 AP75 APs APm APl

Faster R-CNN X-101 26.4 45.2 26.3 9.7 25.2 39.7
RetinaNet X-101 24.6 43.1 24.3 7.8 23.5 37.8
Mask R-CNN X-101 26.8 45.8 26.5 9.5 25.8 39.8
CornetNet Hourglass104 22.5 37.8 22.3 8.6 23.4 29.6
YOLOv3 DarkNet-53 19.2 34.5 18.7 5.1 18.3 31.3
FCOS X-101 24.8 42.5 24.4 9.2 23.6 36.2
Cascade R-CNN X-101 24.1 41.0 23.6 8.7 21.9 37.6
MS R-CNN R-X101 25.5 43.4 25.3 9.2 23.8 39.0
Libra R-CNN X-101 25.5 43.7 25.2 8.9 24.6 39.2
DH R-CNN R-50 25.5 43.9 25.4 9.4 24.9 37.6
VarifocalNet X-101 27.4 45.6 27.0 10.4 26.0 39.3
Sparse R-CNN R-101 28.2 48.3 27.7 10.6 27.2 41.4
DETR R-50 15.8 30.9 13.7 3.2 14.7 28.2
Deformable R-50 26.1 46.2 25.1 10.1 25.4 39.0
Swin Transformer Swin-B 28.9 47.6 29.4 10.5 28.6 42.3
YOLOX YOLOX-x 29.4 48.0 29.2 9.4 28.2 44.0
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Table 13: Generalization performance of detectors with OOD algorithms.
Algorithm hyper-parameters Dataset AP AP50 AP75 APs APm APl

ERM -

Sim2real

44.1 64.0 47.1 13.8 41.2 68.4
IB-ERM λib = 0.1 42.5 64.4 44.9 12.6 39.2 67.0
IRM λirm = 0.1 42.3 64.9 45.0 12.7 39.4 66.1
MMD γmmd = 1 42.9 64.8 45.4 13.2 39.8 67.2
CORAL γmmd = 10 42.6 64.6 45.3 12.8 39.7 66.8
VREx λvrex = 1 43.1 65.4 45.4 13.0 40.0 67.4
GS λreg = 10 40.3 64.2 42.5 11.5 37.6 65.3
IGA λpenalty = 1 42.9 64.7 45.6 13.7 40.0 66.6
GroupDRO ηgroupdro = 1 42.8 65.0 45.4 12.8 39.9 67.1
RSC λrsc = 10 41.0 63.6 43.2 10.8 38.6 64.9

ERM -

Weather

24.4 47.8 21.8 9.5 29.3 41.9
IB-ERM λib = 0.1 24.7 47.7 21.9 9.7 29.6 41.8
IRM λirm = 0.1 24.9 48.3 22.1 9.7 29.9 41.9
MMD γmmd = 1 24.1 47.2 21.5 9.4 29.0 41.6
CORAL γmmd = 10 24.4 47.3 21.9 9.7 29.2 41.6
VREx λvrex = 1 24.7 48.4 21.8 9.6 29.6 41.4
GS λreg = 10 19.9 39.2 17.5 8.0 24.6 35.4
IGA λpenalty = 1 24.6 47.9 21.7 9.9 29.6 41.2
GroupDRO ηgroupdro = 1 24.5 47.8 21.6 9.6 29.2 41.3
RSC λrsc = 10 8.7 17.6 7.5 3.3 11.1 17.9

ERM -

Scene

24.1 46.7 21.2 9.7 29.4 46.5
IB-ERM λib = 0.1 23.4 45.6 20.4 9.5 28.6 45.7
IRM λirm = 0.1 23.2 45.8 20.3 9.4 28.4 45.0
MMD γmmd = 1 23.9 46.4 21.2 9.4 29.2 47.5
CORAL γmmd = 10 22.8 44.5 20.1 9.4 27.8 45.4
VREx λvrex = 1 24.3 47.0 21.6 9.7 29.7 46.6
GS λreg = 10 18.4 35.9 16.4 8.0 23.7 38.0
IGA λpenalty = 1 24.3 47.6 21.0 10.2 29.3 45.9
GroupDRO ηgroupdro = 1 23.6 46.1 21.1 10.1 29.0 45.7
RSC λrsc = 10 8.8 17.9 7.4 3.5 11.6 21.5

ERM -

Time

17.7 37.5 14.6 6.6 19.5 32.0
IB-ERM λib = 0.1 18.2 38.3 15.2 6.8 20.1 32.1
IRM λirm = 0.1 17.5 37.5 14.2 6.6 19.3 30.6
MMD γmmd = 1 18.4 38.4 15.4 7.0 20.2 31.4
CORAL γmmd = 10 17.7 37.6 14.6 6.4 19.5 30.7
VREx λvrex = 1 18.0 38.3 14.9 6.8 19.9 31.2
GS λreg = 10 15.2 32.4 12.5 5.6 17.4 27.7
IGA λpenalty = 1 18.6 39.1 15.4 7.2 20.4 32.0
GroupDRO ηgroupdro = 1 18.1 38.1 15.1 6.9 20.1 31.4
RSC λrsc = 10 7.0 15.0 5.7 2.5 8.2 14.7
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the proposed varifocal loss (Zhang et al., 2020a) can be considered to improve OOD generalization
ability.
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