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Abstract001

Recent studies show that large language mod-002
els (LLMs) exhibit self-preference bias when003
serving as judges, meaning they tend to fa-004
vor their own responses over those generated005
by other models. Existing methods typically006
measure this bias by calculating the difference007
between the scores a judge model assigns to008
its own responses and those it assigns to re-009
sponses from other models. However, this010
approach conflates self-preference bias with011
response quality, as higher-quality responses012
from the judge model may also lead to posi-013
tive score differences, even in the absence of014
bias. To address this issue, we introduce gold015
judgments as proxies for the actual quality of016
responses and propose the DBG score, which017
measures self-preference bias as the difference018
between the scores assigned by the judge model019
to its own responses and the corresponding020
gold judgments. Since gold judgments reflect021
true response quality, the DBG score mitigates022
the confounding effect of response quality on023
bias measurement. Using the DBG score, we024
conduct comprehensive experiments to assess025
self-preference bias across LLMs of varying026
versions, sizes, and reasoning abilities. Ad-027
ditionally, we investigate two factors that in-028
fluence and help alleviate self-preference bias:029
response text style and the post-training data030
of judge models. Finally, we explore potential031
underlying mechanisms of self-preference bias032
from an attention-based perspective. Our code033
and data are available at https://anonymous.034
4open.science/r/preference-3A30.035

1 Introduction036

Comprehensive evaluation of large language mod-037

els (LLMs) has become a central and evolving038

research challenge in recent years. As tasks be-039

come increasingly diverse and complex, traditional040

rule-based (e.g., BLEU (Papineni et al., 2002)) and041

human-based evaluation approaches encounter sig-042

nificant limitations. Rule-based approaches often043
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Figure 1: Current methods (Top) measure the self-
preference bias of the judge model by comparing the
scores (such as win rate) that the judge model assigns to
its own responses with those assigned to other models’
responses. However, these methods overlook the impact
of the intrinsic quality of the responses on the scores
provided by the judge model. Our approach (Bottom)
introduces gold judgments as proxies for the ground
truth scores of responses. By comparing the scores that
the judge model gives to its own responses with gold
judgments, our method can provide a more reliable as-
sessment of the self-preference bias.

lack flexibility in open-ended tasks, while human- 044

based approaches are prohibitively expensive and 045

time-consuming (Hendrycks et al., 2021; Chiang 046

et al., 2024). Recently, LLMs as judges is pro- 047

posed as a valuable complement to both rule-based 048

and human-based evaluation approaches (Zheng 049

et al., 2023; Li et al., 2024). By leveraging their 050

extensive world knowledge and reasoning abilities, 051

LLMs show a high degree of alignment with human 052

judgments and offer a convenient, cost-effective al- 053

ternative to human-based evaluation (Zheng et al., 054

2023; Zhu et al., 2023). While LLMs are widely 055
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employed as judges, empirical evidence indicates056

that they are susceptible to self-preference bias,057

which refers to the tendency of LLMs to assign058

higher scores to their own responses compared to059

those generated by other models (Liu et al., 2023b;060

Wataoka et al., 2024; Chen et al., 2025). Self-061

preference bias leads LLMs to produce inaccurate062

judgment results, undermining their reliability as063

judges.064

To measuring the self-preference bias of a judge065

model, existing work typically uses the difference066

between the scores the judge model assigns to its067

own responses and those it assigns to other models’068

responses as the bias indicator (as shown in Fig-069

ure 1). However, this approach conflates response070

quality with the judge model’s self-preference071

bias (Chen et al., 2025), potentially leading to inac-072

curate assessments. Specifically, if the judge model073

produces high-quality responses, it becomes am-074

biguous whether the high scores it assigns to its075

own responses are due to their actual quality or due076

to self-preference bias.077

To address this issue, we introduce gold judg-078

ments and use them as proxies for the ground truth079

scores of responses. We then propose the DBG080

score, which measures the degree of a model’s081

self-preference bias as the difference between082

the scores it assigns to its own responses and083

the corresponding gold judgments. Subtracting084

the gold judgments from the scores assigned by085

the judge model helps isolate self-preference bias086

and reduces the confounding effect of response087

quality on the bias measurement (Section 2). To088

obtain gold judgments in this setting, we aggregate089

evaluation results from multiple strong LLMs. By090

leveraging the consensus among these models, the091

gold judgments offer a reliable estimate of the true092

response scores.093

Based on the DBG score, we conduct compre-094

hensive experiments to investigate self-preference095

bias across judge models of different versions,096

sizes, and reasoning abilities. For model versions,097

we consider both pre-trained and post-trained vari-098

ants of LLMs. We observe that both pre-trained and099

post-trained models exhibit self-preference bias to100

some extent. Interestingly, although post-trained101

models undergo additional training based on their102

pre-trained counterparts, they do not necessarily ex-103

hibit a more severe degree of self-preference bias.104

Regarding model size, we examine models rang-105

ing from 0.5B to 72B and find that larger models106

tend to exhibit less self-preference bias than their107

smaller counterparts. For reasoning ability, we 108

study large reasoning models (LRMs) (Jaech et al., 109

2024; Guo et al., 2025) and find that LRMs also 110

display self-preference bias when serving as judges. 111

Notably, the severity of this bias is not necessarily 112

less pronounced than that observed in LLMs. 113

Furthermore, to investigate the factors that influ- 114

ence and potentially mitigate self-preference bias in 115

models, we explore two key aspects: response text 116

style (Ostheimer et al., 2023) and post-training data. 117

Empirical experiments show that aligning the re- 118

sponse styles of different models to a unified style 119

helps alleviate self-preference bias. In addition, 120

training two different types of models on the same 121

dataset encourages a reduction in self-preference 122

bias in both models. Attention-level analysis re- 123

veals that, during judgment, models naturally tend 124

to assign higher attention scores to their own re- 125

sponses compared to those generated by the other 126

model, which may partly explain the presence of 127

self-preference bias. 128

In summary, our contributions are as follows. 129

(1) We propose the DBG score to enable more 130

accurate and reliable evaluation of self-preference 131

bias. (2) We conduct comprehensive experiments 132

to measure the self-preference bias of models with 133

varying versions, sizes, and reasoning abilities. (3) 134

We analyze the impact of response text style and 135

post-training data on the self-preference bias of 136

LLMs and offer an attention-based explanation of 137

its potential causes. 138

2 The DBG Score: Measuring 139

Self-Preference in Judge Models 140

Self-preference, also known as self-enhancement, 141

refers to the tendency of an LLM to favor its 142

own generated responses when making judg- 143

ments (Zheng et al., 2023). Formally, let A and 144

B denote two different LLMs, and let rA and rB 145

represent the responses generated by A and B, re- 146

spectively, in response to the same instruction x. 147

For simplicity, we focus our analysis on the sce- 148

nario where model A serves as the judge. 149

Let SA(r) denote the score assigned by judge 150

A to response r. Following the Bradley-Terry 151

model (Bradley and Terry, 1952), the probability 152

that judge A prefers rA over rB is given by: 153

P(rA ≻ rB | x) = σ(SA(rA)− SA(rB)), 154

where σ is the sigmoid function. Assume that each 155

response r has an underlying true quality Q(r), 156
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and that judge A has an inherent bias bA(r) toward157

response r. We approximate the score as: SA(r) ≈158

Q(r) + bA(r) and obtain159

P(rA ≻ rB | x) = σ(δ + bA),160

where δ = Q(rA) − Q(rB) captures the qual-161

ity gap between the two responses, and bA =162

bA(rA)−bA(rB) reflects the bias of judge A. In the163

self-preference bias case, we assume that the judge164

exhibits bias only toward its own response, such165

that bA(rB) = 0 and bA = bA(rA) > 0. The ex-166

pected preference probability of judge A choosing167

its own response rA over all instructions is168

wA = Ex[σ(δ + bA)].169

In contrast, for an unbiased gold judge, the ex-170

pected preference probability of selecting rA is171

w∗ = Ex[σ(δ)].172

Recent work adopts metrics based on wA to173

quantify self-preference bias (Panickssery et al.,174

2024; Ye et al., 2024). However, this approach175

conflates the quality of the responses with the self-176

preference bias of the judge model (Chen et al.,177

2025), leading to biased estimations. Specifically,178

when models A and B correspond to a strong LLM179

(e.g., GPT-4o (Hurst et al., 2024)) and a weaker180

LLM (e.g., Llama-3.1-8B-Instruct (Grattafiori181

et al., 2024)), it becomes ambiguous whether a182

higher wA is driven by inherent differences in re-183

sponse quality or by the self-preference bias of the184

judge model A.185

To isolate the self-preference bias of model A,186

we propose using the difference between the biased187

judge and the gold judge as a metric (referred to188

as the DBG score) for measuring self-preference189

bias:190

ŵA = Ex[σ(δ + bA)− σ(δ)].191

This formulation removes the confounding effect of192

response quality (captured by δ) and focuses explic-193

itly on the self-preference bias term bA. A DBG194

score greater than zero indicates that the model195

exhibits self-preference bias, with larger values196

suggesting a more severe degree of bias.197

When bA is small, a first-order Taylor approxi-198

mation yields199

ŵA ≈ Ex[σ
′(δ) · bA].200

Assuming a weak correlation between response201

quality gaps and self-preference bias of A, we have202

ŵA ≈ Ex[σ
′(δ)] · Ex[bA],203

suggesting that ŵA serves as a linearly scaled es- 204

timator of the true bias. Thus, it offers a more ac- 205

curate and disentangled measure of self-preference 206

than wA. 207

In practice, we aggregate the judgment results 208

from three strong LLMs to construct the unbiased 209

gold judgment: 210

ŵ∗ = Ex,k[σ(δ + bk)], 211

where bk denotes the bias of model k toward rA. 212

Using the Taylor expansion, we obtain: 213

ŵ∗ = Ex[σ(δ)] + Ex,k[∆], 214

where ∆ represents the remainder term. If the bias 215

of each individual model is relatively small or fluc- 216

tuates around zero, then ∆ ≈ 0. This indicates that 217

aggregation helps mitigate the bias of any single 218

model and enhances the stability of the evaluation. 219

Additionally, to further validate the reliability of 220

the gold judgments, we conduct a human study, as 221

detailed in Section 3.3. 222

3 Experiments 223

3.1 Experimental Setup 224

Models and Datasets. We select GPT-4o- 225

mini (Hurst et al., 2024), Gemini-1.5-Flash (Team 226

et al., 2024a), and DeepSeek-V3 (Liu et al., 2024) 227

as gold judge models due to their strong judging ca- 228

pabilities. To avoid preference leakage, we choose 229

models of different types from the gold judge mod- 230

els to test self-preference bias. Specifically, we 231

select Llama-3.1-8B(-Instruct), Llama-3.1-70B(- 232

Instruct) (Grattafiori et al., 2024), Qwen2.5-7B(- 233

Instruct), Qwen2.5-72B(-Instruct) (Yang et al., 234

2024), and gemma-2-9B(-it) (Team et al., 2024b), 235

where "-Instruct" and "-it" indicate models that 236

have undergone post-training. We also discuss pro- 237

prietary models in Appendix A.1. 238

We conduct our experiments on two widely- 239

used datasets: AlpacaEval (Li et al., 2023), 240

for instruction-following tasks, and WMT19 (de- 241

en) (Foundation, 2019), for translation tasks. 242

For AlpacaEval, following prior work on multi- 243

objective alignment (Cui et al., 2023; Guo et al., 244

2024), we measure the self-preference bias of 245

LLMs in two scenarios: evaluating helpfulness 246

and truthfulness. To facilitate experiments and en- 247

sure reliable evaluation, we randomly sample 500 248

examples from each dataset. 249
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Figure 2: Judgment results for model pairs of the same size on AlpacaEval (helpfulness).

Implementation Details. For all models, we set250

the temperature to 0 to ensure output determinism251

and consistency. For pre-trained LLMs, we lever-252

age the in-context learning method (Brown et al.,253

2020) and prepend two examples to the prompt,254

enabling them to generate judgments. Given an255

LLM and two responses, where one response is256

generated by the LLM itself, we evaluate the two257

responses using a pairwise comparison approach.258

Compared to single-response scoring methods, the259

pairwise comparison approach yields more stable260

evaluation results (Zheng et al., 2023).261

We denote each input to the judge model as262

(p, rA, rB), where p is the judge prompt. This263

prompt instructs the LLM to judge which of rA and264

rB is better and to output only token A or B. We col-265

lect and normalize the probabilities corresponding266

to the output tokens A and B. To mitigate the impact267

of position bias (Zheng et al., 2023; Ye et al., 2024)268

on the evaluation results, we swap the order of the269

responses and compute the average probability for270

each response across both positions (Panickssery271

et al., 2024). Finally, we select the response with272

the highest average probability as the winner and273

calculate the win rate over all instructions. The274

consistency between the theoretical analysis and275

the empirical implementation is discussed in Ap-276

pendix A.4. For gold judgments, since some mod- 277

els do not provide output probabilities, we assign 278

a probability of 1.0 to the output token from gold 279

judge models and 0.0 to the other token. Then, we 280

select the winner by averaging the probabilities of 281

all three gold judge models. Furthermore, we alle- 282

viate the influence of length bias by constraining 283

the maximum length of the responses. The detailed 284

prompts are presented in Appendix A.6. 285

3.2 Main Results 286

To implement the pairwise comparison judge 287

method, we combine two LLMs into a pair and 288

have each LLM judge the responses generated by 289

the two LLMs in the pair. This approach can simul- 290

taneously capture the self-preference bias of the 291

two LLMs. LLM pairs are formed based on model 292

version and model size. The experimental results 293

of LLMs judging helpfulness on the AlpacaEval 294

dataset are shown in Figure 2 and Figure 3. Ad- 295

ditional experimental results are presented in Ap- 296

pendix A.2. Based on the figures, we observe that: 297

(1) Introducing gold judgments makes the evalu- 298

ation of self-preference bias more accurate. From 299

Figure 2 (b), we observe that when Qwen2.5-72B- 300

Instruct is used as the judge, the win rate score 301

of its responses is 52.3%, which is higher than 302
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Figure 3: Judgment results for model pairs of different sizes on AlpacaEval (helpfulness).

the score obtained when Llama-3.1-70B-Instruct303

is used as the judge (50.0%), but still falls short304

of the win rate score given by the gold judgment305

(54.5%). This suggests that the higher score of306

Qwen2.5-72B-Instruct may be attributed to the su-307

perior quality of its own responses, rather than the308

self-preference bias. This confirms that introduc-309

ing gold judgments is necessary to more accurately310

measure self-preference bias.311

(2) Both pre-trained and post-trained models312

exhibit a certain degree of self-preference bias.313

Figure 2 (a) shows that when Llama-3.1-8B is314

paired with Qwen2.5-7B and gemma-2-9B, it as-315

signs higher win rate scores to its own responses316

than gold judgments do. This indicates that Llama-317

3.1-8B, when acting as the judge, tends to favor318

its own responses, resulting in biased scores. Ad-319

ditionally, as shown in Figure 2 (b), we observe320

that the DBG score of Llama-3.1-8B-Instruct is321

also greater than zero. Larger models, such as322

Llama-3.1-70B and Llama-3.1-70B-Instruct, ex-323

hibit a similar phenomenon. These results suggest324

that the self-preference bias exists after the pre-325

training phase and is not solely introduced by the326

post-training phase.327

(3) Post-trained models do not exhibit a more328

pronounced self-preference bias than pre-trained329

models. Since post-trained models are further fine-330

tuned from pre-trained models, an intuitive ques-331

tion arises: does the post-training process intensify332

the self-preference bias? Figure 2 (c) shows that the333

self-preference bias in post-trained models is not334

more severe than in their pre-trained counterparts.335

In fact, the DBG score of Llama-3.1-8B-Instruct is336

lower than that of Llama-3.1-8B (0.2% vs. 25.6%).337

(4) Larger models exhibit less self-preference338

bias compared to smaller models. As shown in339

Figure 3, although all models demonstrate self-340

preference, a noticeable distinction is that the DBG341

scores of larger models are closer to 0. For in-342

stance, the DBG score of Llama-3.1-70B is 0.4%,343

whereas that of Llama-3.1-8B is 21.6%, which is344

much higher than the score of Llama-3.1-70B. We345

hypothesize that this may be due to the enhanced346

instruction-following and judgment capabilities of 347

the larger models, which allow them to assess re- 348

sponse quality more fairly and accurately. 349

0.5B 1.5B 3B 7B 14B 32B 72B
Qwen2.5-Instruct series models

0

10

20

30

40

50

60

70

Qw
en

2.
5-

In
st

ru
ct

 W
in

 R
at

e 
(%

)

Llama-3.1-70B-Instruct
Qwen2.5-Instruct
Gold Judgments

Figure 4: Judgment results for Qwen2.5-Instruct models
at different scales.

To further investigate how self-preference bias 350

varies with model scale, we conduct experiments 351

using Qwen2.5-Instruct models of different sizes, 352

ranging from 0.5B to 72B. Each model is paired 353

with Llama-3.1-70B-Instruct for judgment. Fig- 354

ure 4 illustrates the win rate of Qwen2.5-Instruct 355

responses under various judge models as the model 356

size increases. As observed in the figure, mod- 357

els larger than 7B exhibit significantly less self- 358

preference bias compared to those of 7B or smaller. 359

For example, the DBG score of Qwen2.5-0.5B- 360

Instruct is 41.7%. In contrast, the DBG score of 361

Qwen2.5-14B-Instruct is only 2.1%. This suggests 362

that LLM judging tasks should utilize larger mod- 363

els to obtain more accurate and unbiased judgment 364

results. 365

3.3 Alignment Between Gold Judgments and 366

Human Annotations 367

In our experiments, we aggregate the judgment re- 368

sults from three models to serve as gold judgments, 369

which is then used as a reference to measure self- 370

preference bias. To validate the reliability of the 371

gold judgments, we compare it with actual human 372

annotations. Specifically, we randomly sample 100 373

instructions from AlpacaEval and obtain the corre- 374

sponding responses from Llama-3.1-70B-Instruct 375
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and Llama-3.1-8B-Instruct. We guide human anno-376

tators to compare the responses generated by the377

two models and determine which response is more378

helpful. The experimental results are presented in379

Table 1. From the table, we observe a high degree380

of consistency between gold judgments and hu-381

man annotations. On the 100 samples, the human-382

annotated win rate for Llama-3.1-70B-Instruct is383

63%, whereas the gold judgment indicate a win384

rate of 66%. More specifically, we find that hu-385

man annotations and gold judgment results agree386

on 74% of the samples. These experimental results387

validate the reliability and effectiveness of using388

gold judgments.389

Model Pair Judgment

Gold Human

Llama-3.1-70B-Instruct 66.0% 63.0%
Llama-3.1-8B-Instruct 34.0% 37.0%

Table 1: Comparison between gold judgments and hu-
man annotation results.

4 Further Analysis390

In this section, we analyze the self-preference bias391

exhibited by models of different reasoning abilities.392

Additionally, we investigate two key factors that in-393

fluence and help mitigate self-preference: response394

text style and post-training data. We further explore395

the underlying mechanisms of self-preference from396

the perspective of attention. All experiments are397

conducted on the AlpacaEval benchmark for help-398

fulness evaluation.399

4.1 Self-Preference in Reasoning Models400

To investigate the impact of reasoning abil-401

ity on model self-preference bias, we test the402

self-preference bias of DeepSeek(DS)-R1-Distill-403

Qwen-32B (Guo et al., 2025) and QwQ-32B (Team,404

2025), and compare the results with those of405

Qwen2.5-32B-Instruct. For LRMs, we remove the406

reasoning content generated by the models and re-407

tain only the final answer for judgment. Since all408

models are trained on Qwen2.5-32B, this setup mit-409

igates the influence of model size and pre-training410

process on the results. The experimental results are411

shown in Table 2.412

As evidenced in the table, both LRMs exhibit the413

phenomenon of self-preference bias, as they assign414

higher win rates to their own responses compared415

to gold judgments. Notably, although QwQ-32B is416

capable of generating high-quality responses (with417

win rate scores from all judge models significantly 418

surpassing those for Llama-3.1-70B-Instruct), it 419

still displays a slight self-preference bias during 420

judgment. Furthermore, we observe that the self- 421

preference bias in reasoning models is not neces- 422

sarily less significant than the bias found in lan- 423

guage models. For instance, the DBG score of DS- 424

R1-Distill-Qwen-32B is 4.8%, whereas the DBG 425

score of Qwen2.5-72B-Instruct is only 2.6%. This 426

highlights the importance of addressing judge bias 427

when employing reasoning models as judges in 428

subsequent studies. 429

Model Pair Judge Model

Model A Gold Model B

A: Llama-3.1-70B-Instruct 46.6% 39.8% 37.2%
B: Qwen2.5-32B-Instruct 53.4% 60.2% 62.8%

A: Llama-3.1-70B-Instruct 55.8% 51.0% 46.2%
B: DS-R1-Distill-Qwen-32B 44.2% 49.0% 53.8%

A: Llama-3.1-70B-Instruct 12.4% 7.6% 7.0%
B: QwQ-32B 87.6% 92.4% 93.0%

Table 2: Self-preference analysis of reasoning models.

4.2 Impact of Response Style on 430

Self-Preference 431

In this section, we investigate whether the super- 432

ficial linguistic style of LLM-generated responses 433

influences and helps mitigate LLM self-preference. 434

To do so, we modify the response styles and com- 435

pare the changes in model self-preference bias be- 436

fore and after the modifications. Specifically, for 437

a pair of models, we prompt DeepSeek-V3 to uni- 438

formly rewrite the responses of both models into 439

attractive and humorous styles (Ostheimer et al., 440

2023; Mir et al., 2019). Since DeepSeek-V3 is 441

used to modify the response styles, we exclude it 442

from the gold judge models to mitigate its poten- 443

tial impact on the results. Experimental results are 444

presented in Figure 5. In Appendix A.3, we pro- 445

vide evidence that our rewriting method minimally 446

affects the semantic content of the responses, thus 447

ensuring that variations in content do not confound 448

the experimental outcomes. 449

From the figure, we observe that modifying the 450

style of model responses helps alleviate the self- 451

preference bias exhibited by the models when act- 452

ing as judges. For example, considering the pre- 453

trained models Llama-3.1-70B and Llama-3.1-8B, 454

before style modifications, their DBG scores are 455

3.3% and 18.7%, respectively. After rewriting their 456

responses into the attractive style, the scores de- 457
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Figure 6: Analysis of post-training data on model self-preference.

crease to 1.4% and 7.2%, respectively. Similarly,458

the post-trained models Qwen2.5-72B-Instruct and459

Qwen2.5-7B-Instruct exhibit DBG scores of 2.0%460

and 8.4%, respectively, before style modifications.461

After rewriting the responses into the humorous462

style, the scores decrease to 1.2% and 5.9%, re-463

spectively. Furthermore, we note that style modifi-464

cations alone do not entirely eliminate the model465

self-preference phenomenon, suggesting that the466

content of the responses may also contribute to467

self-preference bias.468

4.3 Impact of Post-Training Data on469

Self-Preference470

In this section, we investigate whether fine-tuning471

two distinct pre-trained models on identical data472

can help mitigate self-preference bias. Training473

different models with the same data may encour-474

age the generation of similar responses and align475

their judgment tendencies. We fine-tune Llama-476

3.1-8B and Qwen2.5-7B on UltraChat-200k (Ding477

et al., 2023) using consistent training settings, re-478

sulting in Llama-3.1-8B-UltraChat and Qwen2.5-479

7B-UltraChat. The evaluation results are presented480

in Figure 6.481

As shown in Figure 6, fine-tuning different482

models on the same data helps reduce their self-483

preference bias. Specifically, the DBG scores of484

Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct485

are 10.5% and 2.1%, respectively. After fine-486

tuning with UltraChat-200k, the scores decrease487

to 2.1% and 1.1%. In contrast, for Llama-3.1-488

8B-Instruct and Qwen2.5-7B-Instruct, which are 489

trained with different data and methods, the DBG 490

scores are substantially larger than those observed 491

in their UltraChat-tuned counterparts, reaching 492

6.1% and 7.6%, respectively. Moreover, even after 493

further training on the same dataset, the two models 494

continue to exhibit self-preference bias, suggest- 495

ing that discrepancies between response generation 496

and evaluation established during pre-training may 497

persist and influence the behavior of downstream 498

fine-tuned models. 499

4.4 Attention Analysis 500

In this section, we analyze self-preference bias 501

from the perspective of attention in LLMs. Specifi- 502

cally, we compare how different judge models allo- 503

cate attention scores to various responses, aiming to 504

better understand the underlying mechanism of self- 505

preference bias. We use Llama-3.1-8B and Llama- 506

3.1-8B-Instruct as judges and compute the aver- 507

age attention scores over all tokens in the model- 508

generated responses. We then average the attention 509

scores across all test instances and present them for 510

each layer, as shown in Figure 7. 511

As illustrated in the figure, both judge models 512

assign higher attention scores to the responses gen- 513

erated by Llama-3.1-8B-Instruct compared to those 514

from Llama-3.1-8B (as indicated by the bottom row 515

showing the attention difference). We hypothesize 516

that this is due to the generally higher response 517

quality of Llama-3.1-8B-Instruct, as verified in Fig- 518

ure 2, which leads to greater attention being paid 519

7



to its outputs.520

Moreover, we also observe that each model tends521

to assign more attention to its own responses than522

the other model does. For example, Llama-3.1-523

8B assigns higher attention to its own responses524

than Llama-3.1-8B-Instruct does, and vice versa (as525

indicated by the rightmost column showing the at-526

tention difference). This suggests that models natu-527

rally allocate more attention to their own responses,528

contributing to the emergence of self-preference.529
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Figure 7: Attention scores of each layer in judge models.
The scores are averaged over response tokens. The bot-
tom row shows the difference in scores between Llama-
3.1-8B and Llama-3.1-8B-Instruct responses for the
same judge model. The rightmost column shows the dif-
ference in scores assigned by Llama-3.1-8B and Llama-
3.1-8B-Instruct (as judges) to the same responses.

5 Related Work530

5.1 Large Language Models for Judgment531

LLMs are widely used in judgment tasks such as re-532

sponse ranking (Cui et al., 2023; Liu et al., 2023a),533

reward modeling (Lee et al., 2023; Wu et al., 2024),534

and verifying agent task completion (Qin et al.,535

2023; Xia et al., 2024), driven by their scalabil-536

ity and cost-effectiveness. Leveraging the inherent537

knowledge and instruction-following abilities of538

LLMs, researchers can guide these models to per-539

form judgments by directly integrating rules into540

the prompts (Zheng et al., 2023; Sun et al., 2023).541

To further refine the judgment capabilities of LLMs542

in areas such as helpfulness and harmlessness (Bai543

et al., 2022; Wang et al., 2023c), numerous datasets544

and models have been developed (Lambert et al.,545

2024; Wang et al., 2023b; Zhu et al., 2023), greatly546

advancing the development and democratization547

of LLM-based judgment. Another active research548

area focuses on the meta-evaluation of LLM judges,549

examining the alignment between LLM judgments550

and human assessments (Zheng et al., 2023; Dubois551

et al., 2023), as well as identifying bias in these 552

judges (Koo et al., 2023; Ye et al., 2024; Chen et al., 553

2024). In this work, we focus on self-preference 554

bias and propose a novel method to more accurately 555

quantify it in LLMs. 556

5.2 Bias in Large Language Models 557

Extensive studies reveal that LLMs are subject to 558

biases such as length bias (Zheng et al., 2023; Hu 559

et al., 2024), position bias (Zhu et al., 2023; Shi 560

et al., 2024), and self-preference bias (Ye et al., 561

2024; Wataoka et al., 2024) in judgment tasks. In 562

this work, we focus on self-preference bias, which 563

refers to the tendency of LLMs to favor their own 564

responses when serving as judges. While sev- 565

eral studies have evaluated the presence of self- 566

preference bias in specific models (Ye et al., 2024; 567

Chen et al., 2024; Wang et al., 2023a), a compre- 568

hensive analysis across models of different ver- 569

sions, sizes, and reasoning capabilities is still lack- 570

ing. Although concurrent work (Chen et al., 2025) 571

conducts large-scale experiments to assess self- 572

preference bias across model families, their focus 573

lies primarily on verifiable tasks such as mathemat- 574

ical reasoning. In contrast, our study centers on 575

open-ended tasks. In addition, several studies have 576

investigated factors related to self-preference bias, 577

such as self-recognition (Panickssery et al., 2024), 578

self-enhancement (Xu et al., 2024), and preference 579

leakage (Li et al., 2025). However, little attention 580

has been given to mitigating this bias. In this work, 581

we make an initial attempt to reduce self-preference 582

bias by exploring two factors: response style and 583

the data used for post-training. 584

6 Conclusions 585

In this work, we propose the DBG score to pro- 586

vide more accurate and reliable measurements of 587

self-preference bias in LLMs. Using this metric, 588

we conduct extensive experiments to evaluate self- 589

preference bias across LLMs of varying versions, 590

sizes, and reasoning abilities. Our further analysis 591

reveals that both the response style and the post- 592

training data of judge models can influence and 593

help alleviate self-preference bias. Additionally, 594

we explore the underlying mechanisms of this bias 595

from an attention-level perspective. Overall, our 596

study underscores the importance of recognizing 597

and addressing self-preference bias when deploy- 598

ing LLMs as judges, and it offers actionable in- 599

sights into strategies for reducing such bias. 600
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Limitations601

In this work, we employ GPT-4o-mini, Gemini-1.5-602

Flash, and DeepSeek-V3 as gold judges to mea-603

sure the self-preference bias of LLMs. Due to cost604

constraints, we do not utilize more powerful mod-605

els, such as GPT-4o or Gemini-1.5-Pro. Using606

these more capable models could potentially pro-607

vide more reliable gold-standard judgments, yield-608

ing more accurate measurements of self-preference609

bias. Furthermore, while we mitigate the impact610

of position bias and length bias through methods611

like response position swapping and length lim-612

itation, other biases, such as authority bias and613

sentiment bias (Ye et al., 2024), may still influ-614

ence the results. Additionally, this work limits its615

scope to instruction-following and translation tasks.616

Further investigation is needed to explore the self-617

preference bias of LLMs in other tasks, such as618

agent tasks and dialogue tasks.619
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A Appendix868

A.1 Self-Preference of Proprietary Models869

In this section, we attempt to analyze the self-870

preference bias of proprietary models. We se-871

lect Claude-3.5-Haiku (Anthropic, 2024), Qwen-872

Plus (Yang et al., 2024), and GLM-4-Plus (GLM873

et al., 2024) for the experiment. Each model is874

paired with Llama-3.1-70B-Instruct. Since we875

do not have access to the output probabilities of876

these models, and preliminary experiments reveal877

a strong position bias, we classify any test sample878

where the output tokens (A or B) differ after swap-879

ping response positions as a tie in this experiment.880

The results are shown in Figure 8. Based on the881

figure, we observe that all three proprietary models882

exhibit significant position bias, with more than883

45% of test samples yielding different judgment884

results after swapping response positions. When885

excluding the tied samples, we find that Claude-3.5-886

Haiku classifies its own responses as superior in887

51.8%/(51.8%+ 1.8%) = 96.6% of cases, which888

is higher than the gold judgment of 88.0%. This889

suggests that Claude-3.5-Haiku may exhibit self-890

preference bias. However, further work is needed891

to obtain the model’s output probabilities to pro-892

vide more accurate results.893

A.2 Self-Preference on More Datasets894

Figure 9 and Figure 10 respectively show the perfor-895

mance of LLM judges in terms of judging truthful-896

ness on the AlpacaEval dataset and self-preference897

bias on the WMT19 (de-en) dataset. From the898

figures, we observe similar conclusions to those899

drawn from AlpacaEval (helpfulness). Specifi-900

cally, both pre-trained and post-trained models901

exhibit self-preference bias. For instance, when902

acting as judges, models like Llama-3.1-8B and903

Llama-3.1-8B-Instruct tend to give higher scores904

to their own responses than gold judgments assign905

to those responses. For example, on the WMT19906

dataset, when Llama-3.1-8B judges the response907

pairs of Llama-3.1-8B and Qwen2.5-7B, it exhibits908

a DBG score of 2.5%. Additionally, we observe909

that large-sized models exhibit less pronounced910

self-preference bias compared to smaller models.911

For example, in the AlpacaEval (truthfulness) task,912

when large-sized models are paired with small-913

sized models, the DBG scores of the large-sized914

models tend to be closer to zero than those of the915

small-sized models.916

A.3 Content Variation in Text Transfer 917

To verify that the rewriting approach introduced in 918

Section 4.2 has minimal impact on the semantic 919

content of the text, this section presents an analysis 920

of the representation shifts before and after rewrit- 921

ing. Specifically, we employ gte-multilingual- 922

base (Zhang et al., 2024), a widely-used text rep- 923

resentation model, to encode both the original re- 924

sponses generated by Llama-3.1-70B-Instruct and 925

their rewritten counterparts. We use the embed- 926

ding corresponding to the [CLS] token as the rep- 927

resentation of each response. Then, we apply t- 928

SNE (van der Maaten and Hinton, 2008) to visu- 929

alize the changes in representations. The results 930

are shown in Figure 11. As observed, the rep- 931

resentations before and after rewriting exhibit a 932

high degree of overlap, indicating that our rewrit- 933

ing method primarily transfers the style of the re- 934

sponses with minimal impact on their underlying 935

semantics. 936

A.4 Consistency Between the Theoretical Bias 937

Estimator and Implementation 938

In our experimental implementation, for a judge 939

model A, we obtain the probabilities assigned to 940

tokens A and B for each individual instruction. The 941

token with the higher probability is selected as the 942

winner. By aggregating the outcomes over all in- 943

structions, we compute the win rate, which can 944

be formulated as Ex[I[σ(δ + bA) > 0.5]], where 945

I is the indicator function. While this procedure 946

produces a binary (0-1) decision for each instruc- 947

tion rather than a continuous probability, it can be 948

viewed as a thresholded approximation to the theo- 949

retical quantity wA = Ex[σ(δ + bA)]. Specifically, 950

it can be seen as an approximation to sampling 951

from a Bernoulli distribution with success proba- 952

bility σ(δ + bA). The same applies to gold judge 953

models. The approximation error is small when 954

the underlying probabilities are well-separated (i.e., 955

close to 0 or 1). This justifies the empirical pro- 956

cedure as a practical surrogate to the theoretical 957

self-preference bias formulation. 958

A.5 Few-shot Setting Analysis 959

To guide pre-trained models in making judgments, 960

we leverage their few-shot learning ability and 961

prepend examples to each input. For post-trained 962

models, due to their strong instruction-following 963

ability, we prompt them to make judgments in a 964

zero-shot setting. To investigate the differences in 965
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Model Paired Response Win Rate

Zero-shot Few-shot

Llama-3.1-8B-Instruct Llama-3.1-8B 82.0% 78.0%
Qwen2.5-7B-Instruct 54.0% 53.2%

Llama-3.1-70B-Instruct Llama-3.1-70B 83.5% 84.9%
Qwen2.5-72B-Instruct 50.0% 48.0%

Qwen2.5-7B-Instruct Qwen2.5-7B 68.1% 69.8%
Llama-3.1-8B-Instruct 59.7% 60.6%

Table 3: Comparison of post-trained models judgments
to their responses under zero-shot and few-shot settings.

judgment between zero-shot and few-shot settings966

for post-trained models, we conduct judgment ex-967

periments under the few-shot setting. The results968

are shown in Table 3. From the table, we observe969

that the judgment results of the post-trained model970

in the zero-shot and few-shot settings are similar,971

indicating that the post-trained model is capable of972

generating appropriate judgments in the zero-shot973

setting, which validates the reasonableness of our974

experimental setup.975

A.6 Prompt976

We present the prompts used for response gener-977

ation in Table 4, Table 5, and Table 6, and the978

prompts used for response judgment in Table 7,979

Table 8, and Table 9.980
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Figure 8: Judgment results for proprietary models on AlpacaEval (helpfulness).
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Figure 9: Judgment results on AlpacaEval (truthfulness).
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Figure 10: Judgment results on WMT19 (de-en).
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Figure 11: t-SNE visualizations of the embedding representations of responses before and after rewriting.
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Post-trained Models:
You are a helpful assistant. Please help me answer the query below. Keep your answer within 200 words.

# Query
{query}

Now, please provide your answer to this query.
# Answer

Pre-trained Models:
# Instruction
Below is a list of conversations between a human and an AI assistant (you).
As an AI assistant, you will engage in conversations with users, responding to their queries which are presented under the
heading "# Query".
Your responses should be entered under the heading "# Answer".
You excel in a wide range of tasks including, but not limited to, providing general information, conducting reasoning,
engaging in role-play, creative writing, planning, and solving mathematical and coding problems.
Your responses should be well-structured, comprehensive, and aim to thoroughly address the user’s query or problem at
hand. **Please keep your answer within 200 words.**

# Query
{example 1 query}
# Answer
{example 1 answer}

# Query
{example 2 query}
# Answer
{example 2 answer}

# Query
{example 3 query}
# Answer
{example 3 answer}

# Query
{test query}
# Answer

Table 4: Prompt used for response generation on AlpacaEval (helpfulness). The prompt for pre-trained models is
derived from Lin et al. (2023).
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Post-trained Models:
You are a truthful assistant. Please help me answer the query below truthfully, remaining faithful to factual knowledge and
the given context. Avoid making up any untrue facts.

# Query
{query}

Now, please provide your answer to the query. Keep your answer within 200 words.
# Answer

Pre-trained Models:
# Instruction
As an AI assistant, you will engage in conversations with users, responding to their queries which are presented under the
heading "# Query".
Your responses should be entered under the heading "# Answer".
**You should respond to queries truthfully, remaining faithful to factual knowledge and the given context. Avoid making
up any untrue facts.**
Keep your answers within 200 words.

# Query
{example 1 query}
# Answer
{example 1 answer}

# Query
{example 2 query}
# Answer
{example 2 answer}

# Query
{test query}
# Answer

Table 5: Prompt used for response generation on AlpacaEval (truthfulness).

Post-trained Models:
You are an excellent translator, and you specialize in translating German into English. Given a piece of German text, please
help translate it into English.
Here is the given German text.
# German
{german}

Now, please translate the German text into English. You only need to provide the English translation, with no other text.
# English

Pre-trained Models:
# Instruction
You are an excellent translator, and you specialize in translating German into English. **Given a piece of German text,
please translate it into English.**
The German texts are under "# German", and the corresponding English translations are under "# English".

# German
{example 1 german}
# English
{example 1 english}

# German
{example 2 german}
# English
{example 2 english}

# German
{test german}
# English

Table 6: Prompt used for response generation on WMT19 (de-en).
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Post-trained Models:
You are a helpful assistant tasked with evaluating the quality of different responses to a given query. For each query, you
will receive two independent responses. Please judge which response is better.

Here is the given query.
# Query
{query}

Here are two independent responses (Response A and Response B) to the query.
# Responses
<Response A>{response a}</Response A>
<Response B>{response b}</Response B>

Now, please judge which response is better. You only need to output A or B, with no other text.
Your output should be A if Response A is better or B if Response B is better.
Please remember that your response should start with either A or B

Pre-trained Models:
# Instruction
You are a helpful assistant tasked with evaluating the quality of different responses to a query. You will receive multiple
queries, each accompanied by two independent responses. For each query, you should judge which response you think is
better.
Queries are placed under "# Query". The two responses for each query are listed under "# Responses" as "Response A"
and "Response B". Your outputs should be placed under "# Judgment".
You only need to output A or B, with no other text.

# Query
{example 1 query}
# Responses
<Response A>{example 1 response a}</Response A>
<Response B>{example 1 response b}</Response B>
# Judgment
{example 1 judgment}

# Query
{example 2 query}
# Responses
<Response A>{example 2 response a}</Response A>
<Response B>{example 2 response b}</Response B>
# Judgment
{example 2 judgment}

# Query
{test query}
# Responses
<Response A>{test response a}</Response A>
<Response B>{test response b}</Response B>
# Judgment

Table 7: Prompt used for judgment generation on AlpacaEval (helpfulness).
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Post-trained Models:
You are a knowledgeable assistant. Given a query and two corresponding responses, your task is to determine which
response is more truthful, ensuring it is less misleading, free from fabricated content, factual inaccuracies, and logical
errors.

Here is the query.
# Query
{query}

Here are two responses (Response A and Response B) to the query.
# Responses
<Response A>{response a}</Response A>
<Response B>{response b}</Response B>

Now, please judge which response is more truthful. You only need to output A or B, with no other text. Please remember
that your response should start with either A or B.

Pre-trained Models:
# Instruction
You are a knowledgeable assistant. Given a query and two corresponding responses, your task is to determine which
response is **more truthful**, ensuring it is less misleading, free from fabricated content, factual inaccuracies, and logical
errors.
Queries are placed under "# Query". The two responses for each query are listed under "# Responses" as "Response A"
and "Response B". Your outputs should be placed under "# Judgment".
You only need to output A or B, with no other text.

# Query
{example 1 query}
# Responses
<Response A>{example 1 response a}</Response A>
<Response B>{example 1 response b}</Response B>
# Judgment
{example 1 judgment}

# Query
{example 2 query}
# Responses
<Response A>{example 2 response a}</Response A>
<Response B>{example 2 response b}</Response B>
# Judgment
{example 2 judgment}

# Query
{test query}
# Responses
<Response A>{test response a}</Response A>
<Response B>{test response b}</Response B>
# Judgment

Table 8: Prompt used for judgment generation on AlpacaEval (truthfulness).
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Post-trained Models:
You are a helpful assistant tasked with evaluating the quality of two different English translations of the same German text.
For each German text, you will receive two independent English translations. Please judge which English translation is
better.

Here is the German text.
# German
{german}

Here are two independent English translations (English A and English B) for the German text.
# English
<English A>{english a}</English A>
<English B>{english b}</English B>

Now, please judge which English translation is better. You only need to output A or B, with no other text. Please remember
that your response should start with either A or B

Pre-trained Models:
# Instruction
You are a helpful assistant tasked with evaluating the quality of two different English translations of the same German text.
For each German text, you will receive two independent English translations. Please judge which English translation is
better.
The German texts are under "# German". The two independent English translations for each German text are under "#
English", labeled as "English A" and "English B", respectively. Your outputs should be placed under "# Judgment".
You only need to output A or B, with no other text.

# German
{example 1 german}
# English
<English A>{example 1 english a}</English A>
<English B>{example 1 english b}</English B>
# Judgment
{example 1 judgment}

# German
{example 2 german}
# English
<English A>{example 2 english a}</English A>
<English B>{example 2 english b}</English B>
# Judgment
{example 2 judgment}

# German
{test german}
# English
<English A>{test english a}</English A>
<English B>{test english b}</English B>
# Judgment

Table 9: Prompt used for judgment generation on WMT19 (de-en).
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