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ABSTRACT

To obtain, deterministic guarantees of adversarial robustness, specialized training
methods are used. We propose, SABR, a novel such certified training method,
based on the key insight that propagating interval bounds for a small but care-
fully selected subset of the adversarial input region is sufficient to approximate
the worst-case loss over the whole region while significantly reducing approxima-
tion errors. We show in an extensive empirical evaluation that SABR outperforms
existing certified defenses in terms of both standard and certifiable accuracies
across perturbation magnitudes and datasets, pointing to a new class of certified
training methods promising to alleviate the robustness-accuracy trade-off.

1 INTRODUCTION

As neural networks are increasingly deployed in safety-critical domains, formal robustness guaran-
tees against adversarial examples (Biggio et al., 2013; Szegedy et al., 2014) are becoming ever more
important. However, despite significant progress, specialized training methods that improve certifia-
bility at the cost of severely reduced accuracies are still required to obtain deterministic guarantees.

Given an input region defined by an adversary specification, both training and certification methods
compute a network’s reachable set by propagating a symbolic over-approximation of this region
through the network (Singh et al., 2018; 2019a; Gowal et al., 2018a). Depending on the propagation
method, both the computational complexity and approximation-tightness can vary widely. For cer-
tified training, an over-approximation of the worst-case loss is computed from this reachable set and
then optimized (Mirman et al., 2018; Wong et al., 2018). Surprisingly, the least precise propagation
methods yield the highest certified accuracies as more precise methods induce harder optimization
problems (Jovanovic et al., 2021). However, the large approximation errors incurred by these impre-
cise methods lead to over-regularization and thus poor accuracy. Combining precise worst-case loss
approximations and a tractable optimization problem is thus the core challenge of certified training.

In this work, we tackle this challenge and propose a novel certified training method, SABR, Small
Adversarial Bounding Regions, based on the following key insight: by propagating small but care-
fully selected subsets of the adversarial input region with imprecise methods (i.e., BOX), we can
obtain both well-behaved optimization problems and precise approximations of the worst-case loss.
This yields less over-regularized networks, allowing SABR to improve on state-of-the-art certified
defenses in terms of both standard and certified accuracies across settings, thereby pointing to a new
class of certified training methods.

Main Contributions Our main contributions are:

• A novel certified training method, SABR, reducing over-regularization to improve both
standard and certified accuracy (§3).

• A theoretical investigation motivating SABR by deriving new insights into the growth of
BOX relaxations during propagation (§4).

• An extensive empirical evaluation demonstrating that SABR outperforms all state-of-the-
art certified training methods in terms of both standard and certifiable accuracies on
MNIST, CIFAR-10, and TINYIMAGENET (§5).

∗Equal contribution
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2 BACKGROUND

In this section, we provide the necessary background for SABR.

Adversarial Robustness Consider a classification model h : Rdin 7→ Rc that, given an input x ∈
X ⊆ Rdin , predicts numerical scores y := h(x) for every class. We say that h is adversarially robust
on an ℓp-norm ball Bϵp

p (x) of radius ϵp if it consistently predicts the target class t for all perturbed
inputs x′ ∈ Bϵp

p (x). More formally, we define adversarial robustness as:

argmax
j

h(x′)j = t, ∀x′ ∈ Bϵp
p (x) := {x′ ∈ X | ∥x− x′∥p ≤ ϵp}. (1)
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Figure 1: Comparison of exact (blue) and BOX
(red) propagation through a one layer network.
We show the concrete points maximizing the
logit difference y2 − y1 as a black × and the
corresponding relaxation as a red ×.

Neural Network Verification To verify that a neural
network h is adversarially robust, several verification
techniques have been proposed.

A simple but effective such method is verification with
the BOX relaxation (Mirman et al., 2018), also called
interval bound propagation (IBP) (Gowal et al., 2018b).
Conceptually, we first compute an over-approximation
of a network’s reachable set by propagating the input re-
gion Bϵp

p (x) through the neural network and then check
whether all outputs in the reachable set yield the cor-
rect classification. This propagation sequentially com-
putes a hyper-box (each dimension is described as an
interval) relaxation of a layer’s output, given a hyper-
box input. As an example, consider an L-layer net-
work h = fL ◦ σ ◦ fL−2 ◦ . . . ◦ f1, with linear lay-
ers fi and ReLU activation functions σ. Given an in-
put region Bϵp

p (x), we over-approximate it as a hyper-
box, centered at x̄0 := x and with radius δ0 := ϵp,
such that we have the ith dimension of the input x0

i ∈ [x̄0
i − δ0i , x̄

0
i + δ0i ]. Given a linear layer

fi(x
i−1) = Wxi−1 + b =: xi, we obtain the hyper-box relaxation of its output with centre

x̄i = Wx̄i−1 + b and radius δi = |W |δi−1, where | · | denotes the elementwise absolute value.
A ReLU activation ReLU(xi−1) := max(0,xi−1) can be over-approximated by propagating the
lower and upper bound separately, resulting in a output hyper-box with x̄i = ui+li

2 and δi = ui−li

2

where li = ReLU(x̄i−1−δi−1) and ui = ReLU(x̄i−1+δi−1). Proceeding this way for all layers,
we obtain lower and upper bounds on the network output y and can check if the output score of
the target class is greater than that of all other classes by computing the upper bound on the logit
difference y∆i := yi − yt and then checking whether y∆i < 0, ∀i ̸= t.

We illustrate this propagation process for a one-layer network in Fig. 1. There, the blue shapes ( )
show an exact propagation of the input region and the red shapes ( ) their hyper-box relaxation.
Note how after the first linear and ReLU layer (third row), the relaxation (red) contains already
many points not reachable via exact propagation (blue), despite it being the smallest hyper-box
containing the exact region. These so-called approximation errors accumulate quickly, leading to an
increasingly imprecise abstraction, as can be seen by comparing the two shapes after an additional
linear layer (last row). To verify that this network classifies all inputs in [−1, 1]2 to class 1, we
have to show the upper bound of the logit difference y2 − y1 to be less than 0. While the concrete
maximum of −0.3 ≥ y2 − y1 (black ×) is indeed less than 0, showing that the network is robust,
the BOX relaxation only yields 0.6 ≥ y2 − y1 (red ×) and is thus too imprecise to prove it.

Beyond BOX, more precise verification approaches track more relational information at the cost of
increased computational complexity (Palma et al., 2022; Wang et al., 2021). A recent example is
MN-BAB (Ferrari et al., 2022), which improves on BOX in two key ways: First, instead of propa-
gating axis-aligned hyper-boxes, it uses much more expressive polyhedra, allowing linear layers to
be captured exactly and ReLU layers much more precisely. Second, if the result is still too impre-
cise, the verification problem is recursively split into easier ones, by introducing a case distinction
between the two linear segments of the ReLU function. This is called the branch-and-bound (BaB)
approach (Bunel et al., 2020). We refer the interested reader to Ferrari et al. (2022) for more details.
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Training for Robustness For neural networks to be certifiably robust, special training is nec-
essary. Given a data distribution (x, t) ∼ D, standard training generally aims to find a network
parametrization θ that minimizes the expected cross-entropy loss (see App. B.1):

θstd = argmin
θ

ED[LCE(hθ(x), t)], with LCE(y, t) = ln
(
1 +

∑
i̸=t

exp(yi − yt)
)
. (2)

When training for robustness, we, instead, wish to minimize the expected worst-case loss around
the data distribution, leading to the min-max optimization problem:

θrob = argmin
θ

ED
[

max
x′∈Bϵp

p (x)
LCE(hθ(x

′), t)
]
. (3)

Unfortunately, solving the inner maximization problem is generally intractable. Therefore, it is
commonly under- or over-approximated, yielding adversarial and certified training, respectively.
For notational clarity, we henceforth drop the subscript p.

Adversarial Training Adversarial training optimizes a lower bound on the inner optimization
objective in Eq. (3) by first computing concrete examples x′ ∈ Bϵ(x) maximizing the loss term
and then optimizing the network parameters θ for these samples. Typically, x′ is computed by
initializing x′

0 uniformly at random in Bϵ(x) and then updating it over N projected gradient descent
steps (PGD) (Madry et al., 2018) x′

n+1 = ΠBϵ(x)x
′
n + α sign(∇x′

n
LCE(hθ(x

′
n), t)), with step size

α and projection operator Π. While networks trained this way typically exhibit good empirical
robustness, they remain hard to formally verify and sometimes vulnerable to stronger or different
attacks (Tramèr et al., 2020; Croce & Hein, 2020).

Certified Training Certified training optimizes an upper bound on the inner maximization objec-
tive in Eq. (3), obtained via a bound propagation method. These methods compute an upper bound
uy∆ on the logit differences y∆ := y − yt, as described above, to obtain the robust cross-entropy
loss LCE,rob(Bϵ(x), t) = LCE(uy∆ , t). We will use BOX to refer to the verification and propagation
approach, and IBP to refer to the corresponding training method.

Surprisingly, using the imprecise BOX relaxation (Mirman et al., 2018; Gowal et al., 2018b; Shi
et al., 2021) consistently produces better results than methods based on tighter abstractions (Zhang
et al., 2020; Balunovic & Vechev, 2020; Wong et al., 2018). Jovanovic et al. (2021) trace this back
to the optimization problems induced by the more precise methods becoming intractable to solve.
While the heavily regularized, IBP trained networks are amenable to certification, they suffer from
severely reduced (standard) accuracies. Overcoming this robustness-accuracy trade-off remains a
key challenge of robust machine learning.

3 METHOD – SMALL REGIONS FOR CERTIFIED TRAINING

To train networks that are not only robust and amenable to certification but also retain compara-
tively high standard accuracies, we propose the novel certified training method, SABR — Small
Adversarial Bounding Regions. We leverage the key insight that computing an over-approximation
of the worst-case loss over a small but carefully selected subset of the input region Bϵ(x) often
yields a good proxy for the worst-case loss over the whole region while significantly reducing ap-
proximation errors.

We illustrate this intuition in Fig. 2. Existing certified training methods always consider the whole
input region (dashed box in the input panel). Propagating such large regions through the network
yields quickly growing approximation errors and thus very imprecise over-approximations of the
actual worst-case loss (compare the reachable set in red and green to the dashed box in
the output panel), causing significant over-regularization (large blue arrow ). Adversarial training
methods, in contrast, only consider individual points in the input space (× in Fig. 2) and often fail to
capture the actual worst-case loss. This leads to insufficient regularization (small blue arrow in the
output panel) and yields networks which are not amenable to certification and potentially not robust.

We tackle this problem by propagating small, adversarially chosen subsets of the input region (solid
box in the input panel of Fig. 2), which we call the propagation region. This leads to significantly
reduced approximation errors (see the solid box in the output panel) inducing a level of regular-
ization in-between certified and adversarial training methods (medium blue arrow ), allowing us to
train networks that are both robust and accurate.
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Figure 2: Illustration of SABR training. Instead of propagating a BOX approximation (dashed box ) of the
whole input region (red and green shapes in input space), SABR propagates a small subset of this region
(solid box ), selected to contain the adversarial example (black ×) and thus the misclassified region ( red).
The smaller BOX accumulates much fewer approximation errors during propagation, leading to a significantly
smaller output relaxation, which induces much less regularization (medium blue ) than training with the full
region (large blue ), but more than training with just the adversarial example (small blue ).

More formally, we define an auxiliary objective for the robust optimization problem Eq. (3) as

LSABR = max
x∗∈Bτ (x′)

LCE(x
∗, t), (4)

where we replace the maximum over the whole input region Bϵ(x) with that over a carefully selected
subset Bτ (x′). While choosing x′ = ΠBϵ−τ (x) argmaxx∗∈Bϵ(x) LCE(x

∗, t) would recover the orig-
inal robust training problem (Eq. (3)), both, computing the maximum loss over a given input region
(Eq. (4)) and finding a point that realizes this loss is generally intractable. Instead, we instantiate
SABR by combining different approximate approaches for the two key components: a) a method for
choosing the location x′ and size τ of the propagation region, and b) a method used for propagating
the thus selected region. Note that we thus generally do not obtain a sound over-approximation of
the loss on Bϵ(x). Depending on the size of the propagated region Bτ (x′), SABR can be seen as
a continuous interpolation between adversarial training for infinitesimally small regions τ = 0 and
standard certified training for the full input region τ = ϵ.

2ϵ

2τ

x x∗x′

Figure 3: Illustration
of propagation region
selection process.

Selecting the Propagation Region SABR aims to find and propagate a
small subset of the adversarial input region Bϵ(x) that contains the inputs
leading to the worst-case loss. To this end, we parametrize this propagation
region as an ℓp-norm ball Bτ (x′) with centre x′ and radius τ ≤ ϵ−∥x−x′∥p.
We first choose τ = λϵ by scaling the original perturbation radius ϵ with the
subselection ratio λ ∈ (0, 1]. We then select x′ as follows: We conduct a PGD
attack, choosing the preliminary centre x∗ as the sample with the highest loss.
We then ensure the obtained region is fully contained in the original one by
projecting x∗ onto Bϵ−τ (x) to obtain x′. We show this in Fig. 3.

Propagation Method Having found the propagation region Bτ (x′), we can use any symbolic
propagation method to compute an over-approximation of its worst-case loss. We chose BOX prop-
agation (DIFFAI Mirman et al. (2018) or IBP (Gowal et al., 2018b)) to obtain well-behaved opti-
mization problems (Jovanovic et al., 2021). There, choosing small propagation regions (τ ≪ 1),
can significantly reduce the incurred over-approximation errors, as we will show later (see §4).

4 UNDERSTANDING SABR: ROBUST LOSS AND GROWTH OF SMALL BOXES

In this section, we aim to uncover the reasons behind SABR’s success. Towards this, we first analyse
the relationship between robust loss and over-approximation size before investigating the growth of
the BOX approximation with propagation region size.

Robust Loss Analysis Certified training typically optimizes an over-approximation of the worst-
case cross-entropy loss LCE,rob, computed via the softmax of the upper-bound on the logit differences
y∆ := y− yt. When training with the BOX relaxation and assuming the target class t = 1, w.l.o.g.,
we obtain the logit difference y∆ ∈ [ȳ∆ − δ∆, ȳ∆ + δ∆] and thus the robust cross entropy loss

LCE, rob(x) = ln
(
1 +

n∑
i=2

eȳ
∆
i +δ∆i

)
. (5)
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We observe that samples with high (>0) worst-case misclassification margin ȳ∆+δ∆ := maxi ȳ
∆
i +

δ∆i dominate the overall loss and permit the per-sample loss term to be approximated as

max
i

ȳ∆i + δ∆i =: ȳ∆ + δ∆ < LCE, rob < ln(n) + max
i

ȳ∆i + δ∆i . (6)

Further, we note that the BOX relaxations of many functions preserve the box centres, i.e., x̄i =
f(x̄i−1). Only unstable ReLUs, i.e., ReLUs containing 0 in their input bounds, introduce a slight
shift. However, these are empirically few in certifiably trained networks (see Table 4).

These observations allow us to decompose the robust loss into an accuracy term ȳ∆, correspond-
ing to the misclassification margin of the adversarial example x′ at the centre of the propagation
region, and a robustness term δ∆, bounding the difference to the actual worst-case loss. These terms
generally represent conflicting objectives, as local robustness requires the network to disregard high
frequency features (Ilyas et al., 2019). Therefore, robustness and accuracy are balanced to minimize
the optimization objective Eq. (5). Consequently, reducing the regularization induced by the robust-
ness term will bias the optimization process towards standard accuracy. Next, we investigate how
SABR reduces exactly this regularization strength, by propagating smaller regions.
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Figure 4: Input distribution for last
ReLU layer depending on training
method.
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Figure 5: Comparison of the actual
(purple) mean output size and a lin-
ear growth (orange) around the black
× for a ReLU layer where input box
centres x̄∼N (µ=−1.0, σ=0.5).

BOX Growth To investigate how BOX approximations grow
as they are propagated, let us again consider an L-layer network
h = fL ◦ σ ◦ fL−2 ◦ . . . ◦ f1, with linear layers fi and ReLU
activation functions σ. Given a BOX input with radius δi−1

and centre distribution x̄i−1 ∼ D, we now define the per-layer
growth rate κi as the ratio of input and expected output radius:

κi =
ED[δ

i]

δi−1
. (7)

For linear layers with weight matrix W , we obtain an output
radius δi = |W |δi−1 and thus a constant growth rate κi, corre-
sponding to the row-wise ℓ1 norm of the weight matrix |Wj,·|1.
Empirically, we find most linear and convolutional layers to ex-
hibit growth rates between 10 and 100 (see Table 9 in App. D.4).

For ReLU layers xi = σ(xi−1), computing the growth rate is
more challenging, as it depends on the location and size of the
inputs. Shi et al. (2021) assume the input BOX centres x̄i−1

to be symmetrically distributed around 0, i.e., PD(x̄
i−1) =

PD(−x̄i−1), and obtain a constant growth rate of κi = 0.5.
While this assumption holds at initialization, we observe that
trained networks tend to have more inactive than active ReLUs
(see Table 4), indicating asymmetric distributions with more
negative inputs (see Fig. 4).

We now investigate this more realistic setting. We first con-
sider the two limit cases where input radii δi−1 go against 0
and ∞. When input radii are δi−1 ≈ 0, active neurons will
stay stably active, yielding δi = δi−1 and inactive neurons
will stay stably inactive, yielding δi = 0. Thus, we obtain a
growth rate, equivalent to the portion of active neurons. In the
other extreme δi−1 → ∞, all neurons will become unstable
with x̄i−1 ≪ δi−1, yielding δi ≈ 0.5 δi−1, and thus a constant
growth rate of κi = 0.5. To analyze the behavior in between those extremes, we assume pointwise
asymmetry favouring negative inputs, i.e., p(x̄i−1 = −z) > p(x̄i−1 = z), ∀z ∈ R>0. In this
setting, we find that output radii grow strictly super-linear in the input size:
Theorem 4.1 (Hyper-Box Growth). Let y := σ(x) = max(0, x) be a ReLU function and consider
box inputs with radius δx and asymmetrically distributed centres x̄ ∼ D such that PD(x̄ = −z) >
PD(x̄ = z), ∀z ∈ R>0. Then, the mean output radius δy will grow super-linearly in the input
radius δx. More formally:

∀δx, δ′x ∈ R≥0 : δ′x > δx =⇒ ED[δ
′
y] > ED[δy] + (δ′x − δx)

∂

∂δx
ED[δy]. (8)
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We defer a proof to App. A and illustrate this behaviour in Fig. 5 for the box centre distribution
x̄ ∼ N (µ=−1.0, σ=0.5). There, we clearly observe that the actual super-linear growth (purple)
outpaces a linear approximation (orange). While even the qualitative behaviour depends on the exact
centre distribution and the input box size δx, we can solve special cases analytically. For example, a
piecewise uniform centre distribution yields quadratic growth on its support (see App. A).

Multiplying all layer-wise growth rates, we obtain the overall growth rate κ=
∏L

i=1 κ
i, which is ex-

ponential in network depth and super-linear in input radius. When not specifically training with the
BOX relaxation, we empirically observe that the large growth factors of linear layers dominate the
shrinking effect of the ReLU layers, leading to a quick exponential growth in network depth. Fur-
ther, for both SABR and IBP trained networks, the super-linear growth in input radius empirically
manifests as exponential behaviour (see Figs. 8 and 9). Using SABR, we thus expect the regulariza-
tion induced by the robustness term to decrease super-linearly, and empirically even exponentially,
with subselection ratio λ, explaining the significantly higher accuracies compared to IBP.

5 EVALUATION

In this section, we first compare SABR to existing certified training methods before investigating
its behavior in an ablation study.

Experimental Setup We implement SABR in PyTorch (Paszke et al., 2019)1 and use MN-BAB
(Ferrari et al., 2022) for certification. We conduct experiments on MNIST (LeCun et al., 2010),
CIFAR-10 (Krizhevsky et al., 2009), and TINYIMAGENET (Le & Yang, 2015) for the challenging
ℓ∞ perturbations, using the same 7-layer convolutional architecture CNN7 as prior work (Shi et al.,
2021) unless indicated otherwise (see App. C for more details). We choose similar training hyper-
parameters as prior work (Shi et al., 2021) and provide more detailed information in App. C.

5.1 MAIN RESULTS
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Figure 6: Certified over standard accu-
racy for different certified training meth-
ods. The upper right-hand corner is best.

We compare SABR to state-of-the-art certified training
methods in Table 1 and Fig. 6, reporting the best results
achieved with a given method on any architecture.

In Fig. 6, we show certified over standard accuracy (upper
right-hand corner is best) and observe that SABR ( ) dom-
inates all other methods, achieving both the highest certi-
fied and standard accuracy across all settings. As existing
methods typically perform well either at large or small per-
turbation radii (see Table 1 and Fig. 6), we believe the high
performance of SABR across perturbation radii to be par-
ticularly promising.

Methods striving to balance accuracy and regularization by
bridging the gap between provable and adversarial training
( , )(Balunovic & Vechev, 2020; Palma et al., 2022) per-
form only slightly worse than SABR at small perturbation
radii (CIFAR-10 ϵ = 2/255), but much worse at large radii,
e.g., attaining only 27.5% ( ) and 27.9% ( ) certifiable ac-
curacy for CIFAR-10 ϵ = 8/255 compared to 35.1% ( ).
Similarly, methods focusing purely on certified accuracy by directly optimizing over-approximations
of the worst-case loss ( , ) (Gowal et al., 2018b; Zhang et al., 2020) tend to perform well at large
perturbation radii (MNIST ϵ=0.3 and CIFAR-10 ϵ=8/255), but poorly at small perturbation radii,
e.g. on CIFAR-10 at ϵ=2/255, SABR improves natural accuracy to 79.2% ( ) up from 66.8% ( )
and 71.5% ( ) and even more significantly certified accuracy to 62.8% ( ) up from 52.9% ( ) and
54.0% ( ). On the particularly challenging TINYIMAGENET, SABR again dominates all existing
certified training methods, improving certified and standard accuracy by almost 3%.

To summarize, SABR improves strictly on all existing certified training methods across all com-
monly used benchmarks with relative improvements exceeding 25% in some cases.

1Code released at https://github.com/eth-sri/sabr
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Table 1: Comparison of the standard (Acc.) and certified (Cert. Acc.) accuracy for different certified training
methods on the full MNIST, CIFAR-10, and TINYIMAGENET test sets. We use MN-BAB (Ferrari et al., 2022)
for certification and report other results from the relevant literature.

Dataset ϵ∞ Training Method Source Acc. [%] Cert. Acc. [%]

MNIST

0.1

COLT Balunovic & Vechev (2020) 99.2 97.1
CROWN-IBP Zhang et al. (2020) 98.83 97.76
IBP Shi et al. (2021) 98.84 97.95
SABR this work 99.23 98.22

0.3

COLT Balunovic & Vechev (2020) 97.3 85.7
CROWN-IBP Zhang et al. (2020) 98.18 92.98
IBP Shi et al. (2021) 97.67 93.10
SABR this work 98.75 93.40

CIFAR-10

2/255

COLT Balunovic & Vechev (2020) 78.4 60.5
CROWN-IBP Zhang et al. (2020) 71.52 53.97
IBP Shi et al. (2021) 66.84 52.85
IBP-R Palma et al. (2022) 78.19 61.97
SABR this work 79.24 62.84

8/255

COLT Balunovic & Vechev (2020) 51.7 27.5
CROWN-IBP Xu et al. (2020) 46.29 33.38
IBP Shi et al. (2021) 48.94 34.97
IBP-R Palma et al. (2022) 51.43 27.87
SABR this work 52.38 35.13

TINYIMAGENET 1/255
CROWN-IBP Shi et al. (2021) 25.62 17.93
IBP Shi et al. (2021) 25.92 17.87
SABR this work 28.85 20.46
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Figure 7: Standard, adversarial and certified accuracy depending on the certification method (BOX, DEEPPOLY,
and MN-BAB) for the first 1000 test set samples of CIFAR-10.

Table 2: Comparison of natural (Nat.) and certified (Cert.)
accuracy [%] to SORTNET (Zhang et al., 2022b).

Dataset ϵ
SORTNET SABR (ours)

Nat. Cert. Nat. Cert.

MNIST 0.1 99.01 98.14 99.23 98.22
0.3 98.46 93.40 98.75 93.40

CIFAR-10 2/255 67.72 56.94 79.24 62.84
8/255 54.84 40.39 52.38 35.13

TINYIMAGENET 1/255 25.69 18.18 28.85 20.46

In contrast to certified training methods,
Zhang et al. (2022b) propose SORTNET, a
generalization of recent architectures (Zhang
et al., 2021; 2022a; Anil et al., 2019) with
inherent ℓ∞-robustness properties. While
SORTNET performs well at very high pertur-
bation magnitudes (ϵ = 8/255 for CIFAR-
10), it is dominated by SABR in all other
settings. Further, robustness can only be ob-
tained against one perturbation type at a time.

5.2 ABLATION STUDIES

Certification Method and Propagation Region Size To analyze the interaction between the pre-
cision of the certification method and the size of the propagation region, we train a range of models
with subselection ratios λ varying from 0.0125 to 1.0 and analyze them with verification methods
of increasing precision (BOX, DEEPPOLY, MN-BAB). Further, we compute adversarial accuracies
using a 50-step PGD attack (Madry et al., 2018) with 5 random restarts and the targeted logit mar-
gin loss (Carlini & Wagner, 2017). We illustrate results in Fig. 7 and observe that standard and
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adversarial accuracies increase with decreasing λ, as regularization decreases. For λ = 1, i.e., IBP
training, we observe little difference between the verification methods. However, as we decrease
λ, the BOX verified accuracy decreases quickly, despite BOX relaxations being used during train-
ing. In contrast, using the most precise method, MN-BAB, we initially observe increasing certified
accuracies, as the reduced regularization yields more accurate networks, before the level of regu-
larization becomes insufficient for certification. While DEEPPOLY loses precision less quickly than
BOX, it can not benefit from more accurate networks. This indicates that the increased accuracy,
enabled by the reduced regularization, may rely on complex neuron interactions, only captured by
MN-BAB. These trends hold across perturbation magnitudes (Figs. 7a and 7b) and become even
more pronounced for narrower networks (Fig. 7c), which are more easily over-regularized.

This qualitatively different behavior depending on the precision of the certification method high-
lights the importance of recent advances in neural network verification for certified training. Even
more importantly, these results clearly show that provably robust networks do not necessarily require
the level of regularization introduced by IBP training.

0.0 0.2 0.4 0.6 0.8 1.0
λ

100

101
Loss

Box
DP
Std
IBP
SABR

Figure 8: Standard (Std.) and robust cross-
entropy loss, computed with BOX (Box) and
DEEPPOLY (DP) for an IBP and SABR trained
network over evaluation subselection ratios λ.

Loss Analysis In Fig. 8, we compare the robust loss
of a SABR and an IBP trained network across differ-
ent propagation region sizes (all centred around the
original sample) depending on the bound propagation
method used. We first observe that, when propagating
the full input region (λ = 1), the SABR trained net-
work yields a much higher robust loss than the IBP
trained one. However, when comparing the respective
training subselection ratios, λ = 0.05 for SABR and
λ = 1.0 for IBP, SABR yields significantly smaller
training losses. Even more importantly, the differ-
ence between robust and standard loss is significantly
lower, which, recalling §4, directly corresponds to a
reduced regularization for robustness and allows the
SABR trained network to reach a much lower stan-
dard loss. Finally, we observe the losses to clearly grow super-linearly with increasing propagation
region sizes (note the logarithmic scaling of the y-axis) when using the BOX relaxation, agreeing
well with our theoretical results in §4. While the more precise DEEPPOLY (DP) bounds yield sig-
nificantly reduced robust losses for the SABR trained network, the IBP trained network does not
benefit at all, again highlighting its over-regularization. See App. C for extended results.

Table 3: Cosine similarity
between ∇θLrob for IBP and
SABR and ∇θLCE for ad-
versarial (Adv.) and unper-
turbed (Std.) examples.

Loss IBP SABR

Std. 0.5586 0.8071
Adv. 0.8047 0.9062

Gradient Alignment To analyze whether SABR training is actually
more aligned with standard accuracy and empirical robustness, as in-
dicated by our theory in §4, we conduct the following experiment for
CIFAR-10 and ϵ = 2/255: We train one network using SABR with
λ = 0.05 and one with IBP, corresponding to λ = 1.0. For both, we
now compute the gradients ∇θ of their respective robust training losses
Lrob and the cross-entropy loss LCE applied to unperturbed (Std.) and
adversarial (Adv.) samples. We then report the mean cosine similarity
between these gradients across the whole test set in Table 3. We clearly
observe that the SABR loss is much better aligned with both the cross-
entropy loss of unperturbed and adversarial samples, corresponding to
standard accuracy and empirical robustness, respectively.

Table 4: Average percentage of active, inac-
tive, and unstable ReLUs for concrete points and
boxes depending on training method.

Point Whole Region

Method Act Inact Unst Act Inact

IBP 26.2 73.8 1.18 25.6 73.2
SABR 35.9 64.1 3.67 34.3 62.0
PGD 36.5 63.5 65.5 15.2 19.3

ReLU Activation States The portion of ReLU acti-
vations which are (stably) active, inactive, or unstable
has been identified as an important characteristic of cer-
tifiably trained networks (Shi et al., 2021). We evaluate
these metrics for IBP, SABR, and adversarially (PGD)
trained networks on CIFAR-10 at ϵ = 2/255, using the
BOX relaxation to compute intermediate bounds, and
report the average over all layers and test set samples in
Table 4. We observe that, when evaluated on concrete
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points, the SABR trained network has around 37% more active ReLUs than the IBP trained one
and almost as many as the PGD trained one, indicating a significantly smaller level of regulariza-
tion. While the SABR trained network has around 3-times as many unstable ReLUs as the IBP
trained network, when evaluated on the whole input region, it has 20-times fewer than the PGD
trained one, highlighting the improved certifiability.

6 RELATED WORK

Verification Methods Deterministic verification methods analyse a given network by using ab-
stract interpretation (Gehr et al., 2018; Singh et al., 2018; 2019a), or translating the verification
into an optimization problem which they then solve using linear programming (LP) (Palma et al.,
2021; Müller et al., 2022; Wang et al., 2021; Zhang et al., 2022c), mixed integer linear program-
ming (MILP) (Tjeng et al., 2019; Singh et al., 2019b), or semidefinite programming (SDP) (Raghu-
nathan et al., 2018; Dathathri et al., 2020). However, as neural network verification is generally
NP-complete (Katz et al., 2017), many of these methods trade precision for scalability, yielding so-
called incomplete certification methods, which might fail to prove robustness even when it holds. In
this work, we analyze our SABR trained networks with deterministic methods.

Certified Training DIFFAI (Mirman et al., 2018) and IBP (Gowal et al., 2018b) minimize a
sound over-approximation of the worst-case loss computed using the BOX relaxation. Wong et al.
(2018) instead use the DEEPZ relaxation (Singh et al., 2018), approximated using Cauchy random
matrices. Wong & Kolter (2018) compute worst-case losses by back-substituting linear bounds using
fixed relaxations. CROWN-IBP (Zhang et al., 2020) uses a similar back-substitution approach but
leverages minimal area relaxations introduced by Zhang et al. (2018) and Singh et al. (2019a) to
bound the worst-case loss while computing intermediate bounds using the less precise but much
faster BOX relaxation. Shi et al. (2021) show that they can obtain the same accuracies with much
shorter training schedules by combining IBP training with a special initialization. COLT (Balunovic
& Vechev, 2020) combines propagation using the DEEPZ relaxation with adversarial search. IBP-R
(Palma et al., 2022) combines adversarial training with much larger perturbation radii and a ReLU-
stability regularization based on the BOX relaxation. We compare favorably to all (recent) methods
above in our experimental evaluation (see §5). Müller et al. (2021) combine certifiable and accurate
networks to allow for more efficient trade-offs between robustness and accuracy.

The idea of propagating subsets of the adversarial input region has been explored in the settings
of adversarial patches (Chiang et al., 2020) and geometric perturbations (Balunovic et al., 2019),
where the number of subsets required to cover the whole region is linear or constant in the input di-
mensionality. However, these methods are not applicable to the ℓp-perturbation setting, we consider,
where this scaling is exponential.

Robustness by Construction Li et al. (2019), Lécuyer et al. (2019), and Cohen et al. (2019) con-
struct locally Lipschitz classifiers by introducing randomness into the inference process, allowing
them to derive probabilistic robustness guarantees. Extended in a variety of ways (Salman et al.,
2019; Yang et al., 2020), these methods can obtain strong robustness guarantees with high proba-
bility (Salman et al., 2019) at the cost of significantly (100x) increased runtime during inference.
We focus our comparison on deterministic methods. Zhang et al. (2021) propose a novel archi-
tecture, which inherently exhibits ℓ∞-Lipschitzness properties, allowing them to efficiently derive
corresponding robustness guarantees. Zhang et al. (2022a) build on this work by improving the
challenging training process. Finally, Zhang et al. (2022b) generalize this concept in SORTNET.

7 CONCLUSION

We introduced a novel certified training method called SABR (Small Adversarial Bounding
Regions) based on the key insight, that propagating small but carefully selected subsets of the input
region combines small approximation errors and thus regularization with well-behaved optimization
problems. This allows SABR trained networks to outperform all existing certified training methods
on all commonly used benchmarks in terms of both standard and certified accuracy. Even more
importantly, SABR lays the foundation for a new class of certified training methods promising to
alleviate the robustness-accuracy trade-off and enable the training of networks that are both accurate
and certifiably robust.
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8 ETHICS STATEMENT

As SABR improves both certified and standard accuracy compared to existing approaches, it could
help make real-world AI systems more robust to both malicious and random interference. Thus
any positive and negative societal effects these systems have could be amplified. Further, while we
achieve state-of-the-art results on all considered benchmark problems, this does not (necessarily)
indicate sufficient robustness for safety-critical real-world applications, but could give practitioners
a false sense of security when using SABR trained models.

9 REPRODUCIBILITY STATEMENT

We publish our code, all trained models, and detailed instructions on how to reproduce our results at
https://github.com/eth-sri/sabr, providing an anonymized version to the reviewers. Further,
we provide proofs for our theoretical contributions in App. A and a detailed description of all hyper-
parameter choices as well as a discussion of the used data sets including all preprocessing steps in
App. C.
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